抽象函数经典综合题33例(含详细解答)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象函数经典综合题33例(含详细解答)

抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答)

1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1;

(2)

求证:对任意的x ∈R ,恒有f(x)>0;

(3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)

(1

)(x f x f =

- /

由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)

(1

)(>-=

x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0

(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴

1)()()()

()

(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数

(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增

∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0

()f x ,()g x 在

R

上有定义,对任意的,x y R ∈有

()()()()()f x y f x g y g x f y -=- 且(1)0f ≠

.

(1)求证:()f x 为奇函数

(2)若(1)(2)f f =, 求(1)(1)g g +-的值

解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x) (2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0

∴g(-1)+g(1)=1

3.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,

.2)1(.0)(-=

(1)判断)(x f 的奇偶性;

(2)求)(x f 在区间[-3,3]上的最大值; 《

(3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f

解(1)取,0==y x 则0)0()

0(2)00(=∴=+f f f

取)()()(,x f x f x x f x y -+=--=则

)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x

0)()()(1212<-=-+∴x x f x f x f

),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f

*

而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f

6

)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6

(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2

-+<-+f ax f x f ax f

进一步可得)2()2(2

-<-ax f x ax f

而)(x f 在(-∞,+∞)上是减函数,222

->-∴ax x ax

.0)1)(2(>--∴x ax

∴当0=a 时,)1,(-∞∈x

当2=a 时,}1|{R x x x x ∈≠∈且

当0

|{<<∈x a

x x

当20<

|{<>∈x a

x x x 或

.

当a>2时,}12

|{><∈x a

x x x 或

4.已知f (x )在(-1,1)上有定义,f (

21

)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xy

y x ++1) ⑴证明:f (x )在(-1,1)上为奇函数; ⑵对数列x 1=

21

,x n +1=212n

n x x +,求f (x n ); ⑶求证

25

2)(1)(1)(121++-

>+++n n x f x f x f n

(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0

令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x ) ∴f (x )为奇函数

%

(Ⅱ)解:f (x 1)=f (

21

)=-1,f (x n +1)=f (2

12n

n x x +)=f (n n n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n )

)

()

(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列

∴f (x n )=-2n -

1 (Ⅲ)解:

)21

21211()(1)(1)(11

221-++++=+++n n

x f x f x f 221

2)212(2112111

1->+-=--=---=--n n n

而2

2

12)212(252-<+--=++-=++-n n n n ∴25

2)(1)(1)(121++-

>+++n n x f x f x f n

5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有

)()()()(12212211x f x x f x x f x x f x +>+;

(1)试证明:)(x f 为N 上的单调增函数;

(2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;

(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:

=<-n

i i

f 1

4

1

)13(12. 证明:(1)由①知,对任意*

,,a b a b ∈--b f a f b a ,

由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥

••• ∴ f(2)-f(1)1≥

∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证

(3)(3)由任意

,m n N ∈,有1)())((+=+n f m f n f :

得()1f m = 由f(0)=1得m=0

相关文档
最新文档