江苏省南京市金陵中学2020-2021学年高一第一学期第一次月考数学试卷 含答案

合集下载

2020-2021学年江苏省南京市金陵中学高一上学期12月月考数学试题(解析版)

2020-2021学年江苏省南京市金陵中学高一上学期12月月考数学试题(解析版)
2
D.f(x)的最小值为 2
【答案】BC
【分析】通过
f
6
f
6
可判断 A;通过
f
x
f
x 可判断 B;通过
5
f
2
x
f
2
x
可判断
C;通过当
x
0 时,
f
x
0
可判断
D.
【详解】对于命题
A,
f
6
1 2
2
5 2

f
6
1 2
2
5 2
,则
f
6
f
6

所以,函数 f x 的图象不关于 y 轴对称,命题 A 错误;
【分析】先由幂函数的定义求出 m 0 或 m 3 ,再检验得解. 【详解】依题意得 m2 3m 1 1 ,解得 m 0 或 m 3 .
当 m 0 时, f x x ,其图像经过原点,不符合题意; 当 m 3 时, f x x2 ,其图像不经过原点,符合题意,
因此实数 m 的值为 3. 故答案为 3 【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平.
14. 2 lg 5 2 lg 8 lg 5 lg 20 lg2 2 =___________ 3
【答案】3 【分析】由题意结合对数的运算法则整理计算即可求得最终结果. 【详解】由题意结合对数的运算法则有:
2 lg 5 2 lg 8 lg 5 lg 20 lg2 2 3
2 lg 5 2 lg 2 lg 5 2 lg 2 lg 5 lg 22
1 标变为原来的
倍(纵坐标不变),得到函数 g(x) 的图象,则函数 g( x) 3sin(2x ) ,

江苏省南京金陵中学2020—2021学年高一第一学期第一次月考数学试卷(含答案)

江苏省南京金陵中学2020—2021学年高一第一学期第一次月考数学试卷(含答案)

D.( − ,﹣4)
6.已知 x>2,则函数 y = 4 + 4x 的最小值是 x−2
A.6
B.8
C.12
(4, + )
D.16
7.设全集 U=R,M= x x −2或x 2 ,N= x 1 x 3 .如图所示,则阴影部分所表
示的集合为
A.x −2 x 1 B.x −2 x 3
3
21.(本小题满分 12 分)
已知 y = −3x2 + a(6 − a)x +12 .
(1)若不等式 y>b 的解集为(0,3),求实数 a,b 的值;
(2)若 a=3 时,对于任意的实数 x,都有 y 3x + 9m2 − 6m ,求 m 的取值范围.
22.(本小题满分 14 分)
设函数 y = ax2 + x − b (aR,bR).
三、填空题(本大题共 5 小题, 每小题 5 分,共计 25 分.请把答案填写在答题卡相应位置 上)
12.集合 A= x x2 − 8x +15 = 0 ,B= x x2 − ax + b = 0 ,若 A B={2,3,5},A
B={3},则 ab=

13.若关于 x 的不等式 ax + b 0 的解集为(1, + ),则 a − 1 +1 的最小值为
已知加工此农产品还要投入成本 3(w + 3 ) 万元(不包括推广促销费用),若加工后的每 w
件成品的销售价格定为 (4 + 30) 元/件. w
(1)试将该批产品的利润 y 万元表示为推广促销费 x 万元的函数;(利润=销售额﹣成 本﹣推广促销费)
(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

南京市金陵中学高一数学12月月考试卷 (1)

南京市金陵中学高一数学12月月考试卷 (1)

19.(12 分)已知函数 y = f(x) 定义域为 D,对于定义域 D 上的任意不等实数 x1,x2, 试比较下列
函数中的 f(x1) + f(x2) 与f x1 + x2 的大小关系.
被用来构造“同族函数”的是
()
A. y = x)
B. y = x + 1 x
C. y = 2x − 2−x
D. y = log0.5 x
7.
函数 f(x) =
ex + 1 ex − 1
cos x 的部分图像大致为
y
y
y
()
y
O
x
O
x
O
x
O
x
A.
B.
C.
D.
8.
定义在 R 上的函数 f(x) 满足:f(x + 1) =
实数 a 的取位范围.Robin 老师告诉该同学“函数:g(x) = ex − x − 1 的单调区间是 [0, + ∞) 和
(−∞,0], 且函数 h(x) = x − 3 ln x 在 (1, + ∞) 有零点”. 根据 Robin 老师的提示,可求得问题中
实数 a 的取值范围是
.
四、解答题:共 6 小题,共 70 分,解答应写出文字说明、证明过程或演算步骤.
A. 充分不必要条件 C. 充要条件
B. 必要不充分条件 D. 既不充分也不必要条件
()
6. 若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”. 例如:函
数 y = x2,x ∈ [1,2] 与函数 y = x2, x ∈ [−2, − 1] 即为“同族函数”. 下面函数解析式中也能够

2020-2021学年高一数学上学期第一次月考试题 (I)

2020-2021学年高一数学上学期第一次月考试题 (I)

2020-2021学年高一数学上学期第一次月考试题 (I)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分第I 卷一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}1,2,3,4,0,1,2,3,M N ==则( ).A M N ⊆ .B N M ⊆ {}.1,2,3C MN = {}.1,2,3D M N =2.函数的定义域是 ( )A.B.C.D.3.下列函数中,在R 上单调递增的是( ).3x A y = 13.log B y x = 1.C y x =- 2.(1)D y x =+4.函数的零点所在的区间是 ( )A.B.C.D.5.在同一直角坐标系中,当1a >时,函数1xy a ⎛⎫= ⎪⎝⎭和log a y x =的大致图像( )y xyxyxyxDCBA1O1O1O1O11116.如图是一个几何体的三视图,则这个几何体是 ( )A.圆柱B. 圆台C.圆锥D. 棱台俯视图侧视图正视图7. 直线320x y -+=的倾斜角的大小为 ( )A.B.C.D.8. 已知球的直径是4cm ,则它的表面积是( )(单位:2cm )16.3A π 32.3B π.8C π .16D π9.圆心在轴上,并且过点和的圆的方程为 ( )A. B. C.D.10.已知直线b a ,与平面γβα,,,下列条件中能推出βα//的是( ) A .ββαα//,//,,b a b a ⊂⊂ B .γβγα⊥⊥且C .b a b a //,,βα⊂⊂D .βα⊥⊥a a 且11. 若直线x+2y+1=0与直线ax+y ﹣2=0互相垂直,那么a 的值等于( ) A .﹣2 B .﹣. C.﹣D .112.圆221:4C x y +=和222:(3)(4)49C x y -++=的位置关系是( ).A 相交 .B 相离 .C 内切 .D 外切二、填空题:本大题共4小题,每小题5分,共20分.13. 已知幂函数αx y =的图象过点)2,2(,这个函数的表达式为______.14. 已知函数,则( )15.直线:0l x y k ++=与圆:2)1()2(22=++-y x 相切,则k 的值为_____________. 16. 直线02=--y mx 与直线012=-+y x 平行,则m 的值为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知全集U=R ,集合A={x | x+1≥1且x ﹣3≤0},B={x| a≤ x ≤ a+2,a ∈R}. (1)当a = 1时,求A∩B;(2)当集合A ,B 满足A B ⊆时,求实数a 取值范围.18.(本小题满分12分)已知函数)1(log )1(log )(x x x f a a --+=其中(01)a a >≠且. (1)求函数)(x f 的定义域; (2)判断)(x f 的奇偶性,并说明理由;19. (本小题满分12分)在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别是A (5,﹣1), B (7,3),C (2,8). (1)求直线AB 的方程;(2)求AB 边上高所在的直线l 的方程;20. (本小题满分12分)如图,长方体1111ABCD A B C D -中,,AB AD =点P 为的1DD 中点. (1) 若12,6,AB DD ==求三棱锥的体P ACD V -; (2) 求证:1//BD PAC 直线面; (3) 求证:1PAC BDD ⊥平面平面.P DAA 1BCC 1D 1B 121. (本小题满分12分)有一个几何体的三视图如下图所示,主视图(正视图)和左视图(侧视图)均为边长为3的等边三角形,俯视图是边长为3的正方形,求这个几何体的表面积和体积.22.(本小题满分12分)已知圆C经过点A(2,﹣1),和直线x+y=1相切,且圆心在直线y=﹣2x上.(1)求圆C的方程;(2)已知斜率为k的直线m过原点,并且被圆C截得的弦长为2,求直线m的方程.高一年级数学试题答案1-12:CDACDB BDADAC13:x y = 14:8 15:-3或1 16:-2三、解答题:本大题共3小题,共35分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知全集U=R ,集合A={x | x+1≥1且x ﹣3≤0},B={x| a≤ x ≤ a+2,a ∈R}. (1)当a = 1时,求A∩B;(2)当集合A ,B 满足A B ⊆时,求实数a 取值范围. 解:(1)当a=1时,由题可解得A=[0,3],B=[1,3],… A∩B=[1,3]…(2)当集合A ,B 满足A B ⊆时,由得实数a 的取值范围是[0,1] 18.(本小题满分12分)已知函数)1(log )1(log )(x x x f a a --+=其中(01)a a >≠且. (1)求函数)(x f 的定义域; (2)判断)(x f 的奇偶性,并说明理由; 解(1)所以所求定义域为{}11x x -<<. (2)是奇函数.19. (本小题满分12分) 【解答】解:(1)∵K AB ==2,∴直线AB 的方程是:y+1=2(x ﹣5),即2x ﹣y ﹣11=0; (2)∵AB⊥l,∴K AB •K l =﹣1,解得:K l =﹣,∴过C (2,8),斜率是﹣的直线方程是:y ﹣8=﹣(x ﹣2), 即x+2y ﹣18=0;20. (本小题满分12分)如图,长方体1111ABCD A B C D -中,,AB AD =点P 为的1DD 中点. (1) 若12,6,AB DD ==求三棱锥的体积P ACD V -; (2) 求证:1//BD PAC 直线面; (3) 求证:1PAC BDD ⊥平面平面.P DAA 1C 1D 1B 1证明:(1)若12,6,AB DD ==则3,PD PD ACD =⊥平面,∴11232P ACD V PD AD DC -=⨯⨯⨯⨯=,……3分 (2)设AC 和BD 交于点O ,连接PO ,……4分 ∵,P O 分别是1,DD BD 的中点,∴1//PO BD ,……………………6分又PO AC ⊂平面P ,1BD AC ⊄平面P ,……7分 ∴1//BD PAC 直线面;……………8分(3)在长方体1111ABCD A B C D -中,AB AD =, ∴底面ABCD 是正方形,∴AC BD ⊥,…………………………………9分 又1DD ABCD AC ABCD ⊥⊂面,面, ∴1DD AC ⊥,又1DD BD D =,…………………………………11分∴1AC BDD ⊥面,又AC AC ⊂面P ,…………………………………13分 ∴1PAC BDD ⊥平面平面.…………………………………14分21.解:该几何体为底边为3、侧面斜高为3的正四棱锥. 故这个几何体的表面积4S S S =+表侧三角形底143333272=⨯⨯⨯+⨯=正四棱锥高为22333322h =-=四棱锥()故这个几何体的体积为1393333322V =⨯⨯⨯=四棱锥22.已知圆C 经过点A (2,﹣1),和直线x+y=1相切,且圆心在直线y=﹣2x 上. (1)求圆C 的方程;(2)已知斜率为k 的直线m 过原点,并且被圆C 截得的弦长为2,求直线m 的方程. 解:(1)由题意设圆心的坐标为C (a ,﹣2a ),…(1分) ∵圆C 经过点A (2,﹣1),直线x+y=1相切, ∴=,…(3分)化简得a 2﹣2a+1=0,解得a=1,…(4分) ∴圆心C (1,﹣2),半径r=|AC|==∴圆C 的方程为(x ﹣1)2+(y+2)2=2 (2)设直线m 的方程为y=kx ,俯视图左视图主视图OPDAA 1BCC 1D 1B 1由题意得解得k=,…(11分)∴直线m的方程为.【感谢您的阅览,下载后可自由编辑和修改,关注我每天更新】。

2020-2021学年江苏省南京市高一(上)10月月考数学试卷及答案

2020-2021学年江苏省南京市高一(上)10月月考数学试卷及答案

2020-2021学年江苏省南京市高一(上)10月月考数学试卷一、单项选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}2.(4分)下列图象表示函数图象的是()A.B.C.D.3.(4分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}4.(4分)函数f(x)=的值域是()A.R B.[﹣8,1]C.[﹣9,+∞)D.[﹣9,1]5.(4分)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为()A.(1,2)B.(﹣2,﹣1)C.(﹣2,﹣1)∪(1,2)D.(﹣1,1)6.(4分)若函数y=x2﹣3x﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是()A.(0,4]B.C.D.7.(4分)若函数f(x)是R上的偶函数,当x<0时,f(x)为增函数,若x1<0,x2>0,且|x1|<|x2|,则()A.f(﹣x1)>f(﹣x2)B.f(﹣x1)<f(﹣x2)C.﹣f(x1)>f(﹣x2)D.﹣f(x1)<f(﹣x2)8.(4分)设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是()A.(﹣∞,1)B.[﹣2,0]C.(﹣2﹣2,﹣2+2)D.[0,1]二、不定项选择题(本大题共2小题,每小题5分,共10分)9.(5分)下列四个关系中错误的是()A.1⊆{1,2,3}B.{1}∈{1,2,3}C.{1,2,3}⊆{1,2,3}D.空集∅⊆{1}10.(5分)已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x﹣x2,则下列说法正确的是()A.f(x)的最大值为B.f(x)在(﹣1,0)是增函数C.f(x)>0的解集为(﹣1,1)D.f(x)+2x≥0的解集为[0,3]三、填空题(本大题共4小题,每小题5分,共20分)11.(5分)已知集合A={x|ax+1=0},B={﹣1,1},若A∩B=A,则实数a的所有可能取值的集合为.12.(5分)函数f(x)=的定义域是.13.(5分)函数y=|x2﹣4x|的单调减区间为.14.(5分)定义在R上的奇函数f(x),满足x>0时,f(x)=x(1﹣x),则当x≤0时,f (x)=.四、解答题(本大题共3小题,共38分)15.(10分)已知集合A={x|x2﹣4>0},B={x|2x2+x﹣6>0},求A∪(∁R B),A∩(∁R B).16.(14分)小张周末自驾游.早上八点从家出发,驾车3个小时后到达景区停车场,期间由于交通等原因,小张的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系为s(t)=﹣5t(t﹣13).由于景区内不能驾车,小张把车停在景区停车场.在景区玩到16点,小张开车从停车场以60km/h的速度沿原路返回.(Ⅰ)求这天小张的车所走的路程s(单位:km)与离家时间t(单位:h)的函数解析式;(Ⅱ)在距离小张家60km处有一加油站,求这天小张的车途经该加油站的时间.17.(14分)已知定义在(0,+∞)上的函数f(x),对任意a,b∈(0,+∞),都有f(a⋅b)=f(a)+f(b)恒成立,当x>1时,满足f(x)>0.(1)判断f(x)在(0,+∞)上的单调性并用定义证明;(2)若f(4)=4,解关于实数m的不等式f(m2﹣2m﹣1)<2.2020-2021学年江苏省南京市高一(上)10月月考数学试卷参考答案与试题解析一、单项选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}【分析】利用集合的三个性质及其定义,对A、B、C、D四个选项进行一一判断;【解答】解:A、M={(3,2)},M集合的元素表示点的集合,N={3,2},N表示数集,故不是同一集合,故A错误;B、M={2,3},N={3,2}根据集合的无序性,集合M,N表示同一集合,故B正确C、M={(x,y)|x+y=1},M集合的元素表示点的集合,N={y|x+y=1},N表示直线x+y=1的纵坐标,是数集,故不是同一集合,故C错误;D、M={2,3} 集合M的元素是点(2,3),N={(5,4)},集合N的元素是点(5,4),故D错误;故选:B.【点评】此题主要考查集合的定义及其判断,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.2.(4分)下列图象表示函数图象的是()A.B.C.D.【分析】根据函数的定义可知:对于x的任何值y都有唯一的值与之相对应.紧扣概念,分析图象.【解答】解:根据函数的定义,对任意的一个x都存在唯一的y与之对应而A、B、D都是一对多,只有C是多对一.故选:C.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.3.(4分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.4.(4分)函数f(x)=的值域是()A.R B.[﹣8,1]C.[﹣9,+∞)D.[﹣9,1]【分析】分别求出f(x)=2x﹣x2,f(x)=x2+6x在其定义域上的值域,故得到答案.【解答】解:f(x)=2x﹣x2=﹣(x﹣1)2+1,开口向下,最大值为f(﹣1)=1,f(0)=0,f(3)=﹣3,故函数f(x)=2x﹣x2的值域为[﹣3,1],f(x)=x2+6x=(x+3)2﹣9,开口向上,函数f(x)=x2+6x在[﹣2,0]上单调递增,f (﹣2)=﹣8,f(0)=0,故函数f(x)=x2+6x的值域为[﹣8,0],故函数f(x)=的值域为[﹣8,1].故选:B.【点评】本题主要考查了函数的值域的求法,属于基础题.5.(4分)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为()A.(1,2)B.(﹣2,﹣1)C.(﹣2,﹣1)∪(1,2)D.(﹣1,1)【分析】由f(x)是奇函数得函数图象关于原点对称,可画出y轴左侧的图象,利用两因式异号相乘得负,得出f(x)的正负,由图象可求出x的范围得结果.【解答】解:(1)x>0时,f(x)<0,∴1<x<2,(2)x<0时,f(x)>0,∴﹣2<x<﹣1,∴不等式xf(x)<0的解集为(﹣2,﹣1)∪(1,2).故选:C.【点评】由函数的奇偶性得出整个图象,分类讨论的思想得出函数值的正负,数形结合得出自变量的范围.6.(4分)若函数y=x2﹣3x﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是()A.(0,4]B.C.D.【分析】根据函数的函数值f()=﹣,f(0)=﹣4,结合函数的图象即可求解【解答】解:∵f(x)=x2﹣3x﹣4=(x﹣)2﹣,∴f()=﹣,又f(0)=﹣4,故由二次函数图象可知:m的值最小为;最大为3.m的取值范围是:[,3],故选:C.【点评】本题考查了二次函数的性质,特别是利用抛物线的对称特点进行解题,属于基础题.7.(4分)若函数f(x)是R上的偶函数,当x<0时,f(x)为增函数,若x1<0,x2>0,且|x1|<|x2|,则()A.f(﹣x1)>f(﹣x2)B.f(﹣x1)<f(﹣x2)C.﹣f(x1)>f(﹣x2)D.﹣f(x1)<f(﹣x2)【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:∵f(x)是偶函数,x∈R,当x<0时,f(x)为增函数,故x>0时,f(x)为减函数,∵|x1|<|x2|,∴f(|x1|)>f(|x2|),则f(﹣x1)>f(﹣x2)成立,故选:A.【点评】本题主要考查函数值的大小比较,根据函数奇偶性和单调性的性质是解决本题的关键.8.(4分)设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是()A.(﹣∞,1)B.[﹣2,0]C.(﹣2﹣2,﹣2+2)D.[0,1]【分析】解法一:由条件得1﹣ax﹣x2<2﹣a对于x∈[0,1]恒成立,令g(x)=x2+ax﹣a+1,只需g(x)在[0,1]上的最小值大于0即可,分类讨论,求最值即可求出实数a的取值范围;解法二:由1﹣ax﹣x2<2﹣a,得(1﹣x)a<x2+1,对x讨论,再分离参数,求最值,即可求出实数a的取值范围.【解答】解:法一:由条件得1﹣ax﹣x2<2﹣a对于x∈[0,1]恒成立令g(x)=x2+ax﹣a+1,只需g(x)在[0,1]上的最小值大于0即可.g(x)=x2+ax﹣a+1=(x+)2﹣﹣a+1.①当﹣<0,即a>0时,g(x)min=g(0)=1﹣a>0,∴a<1,故0<a<1;②当0≤﹣≤1,即﹣2≤a≤0时,g(x)min=g(﹣)=﹣﹣a+1>0,∴﹣2﹣2<a<﹣2+2,故﹣2≤a≤0;③当﹣>1,即a<﹣2时,g(x)min=g(1)=2>0,满足,故a<﹣2.综上a<1.法二:由1﹣ax﹣x2<2﹣a得(1﹣x)a<x2+1,∵x∈[0,1],∴1﹣x≥0,∴①当x=1时,0<2恒成立,此时a∈R;②当x∈[0,1)时,a<恒成立.求当x∈[0,1)时,函数y=的最小值.令t=1﹣x(t∈(0,1]),则y===t+﹣2,而函数y=t+﹣2是(0,1]上的减函数,所以当且仅当t=1,即x=0时,y min=1.故要使不等式在[0,1)上恒成立,只需a<1,由①②得a<1.故选:A.【点评】本题考查恒成立问题,考查分离参数法的运用,利用函数的单调性求出函数的最值是解决本题的关键.注意要利用分类讨论的数学思想.二、不定项选择题(本大题共2小题,每小题5分,共10分)9.(5分)下列四个关系中错误的是()A.1⊆{1,2,3}B.{1}∈{1,2,3}C.{1,2,3}⊆{1,2,3}D.空集∅⊆{1}【分析】首先确定二者之间是元素与集合,还是集合与集合,再判断所用符号即可.【解答】解:A应该为1∈{1,2,3};B应该为{1}⊆{1,2,3};C:{1,2,3}⊆{1,2,3},正确;D空集∅⊆{1},正确;故选:AB.【点评】本题考查了集合与元素,集合与集合之间的关系的判断与应用,属于基础题.10.(5分)已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x﹣x2,则下列说法正确的是()A.f(x)的最大值为B.f(x)在(﹣1,0)是增函数C.f(x)>0的解集为(﹣1,1)D.f(x)+2x≥0的解集为[0,3]【分析】由偶函数的定义求得x<0时,f(x)的解析式,由二次函数的最值求法,可判断A;由x<0时,f(x)的单调区间可判断B;讨论x<0,x≥0,由二次不等式的解法可判断C、D.【解答】解:函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x﹣x2,可得x<0时,f(x)=f(﹣x)=﹣x﹣x2,当x≥0时,f(x)=x﹣x2=﹣(x﹣)2+,即x=时,f(x)取得最大值,故A 正确;且f(x)在(﹣1,﹣)递增,在(﹣,0)递减,故B错误;当x≥0时,f(x)=x﹣x2>0,解得0<x<1;当x<0时,f(x)=﹣x﹣x2>0,解得﹣1<x<0,所以f(x)>0的解集为(﹣1,0)∪(0,1),故C错误;当x≥0时,f(x)+2x=3x﹣x2≥0,解得0≤x≤3;当x<0时,f(x)+2x=x﹣x2≥0,解得x∈∅.所以f(x)+2x≥0的解集为[0,3],故D正确.故选:AD.【点评】本题考查函数的奇偶性和单调性的判断和运用,考查转化思想和运算能力、推理能力,属于中档题.三、填空题(本大题共4小题,每小题5分,共20分)11.(5分)已知集合A={x|ax+1=0},B={﹣1,1},若A∩B=A,则实数a的所有可能取值的集合为{﹣1,0,1}.【分析】根据题中条件:“A∩B=A”,得到B是A的子集,故集合B可能是∅或B={﹣1},或{1},由此得出方程ax+1=0无解或只有一个解x=1或x=﹣1.从而得出a的值即可【解答】解:由于A∩B=A,∴A=∅或A={﹣1},或{1},∴a=0或a=1或a=﹣1,∴实数a的所有可能取值的集合为{﹣1,0,1}故答案为:{﹣1,0,1}【点评】本题主要考查了集合的包含关系判断及应用,方程的根的概念等基本知识,考查了分类讨论的思想方法,属于基础题12.(5分)函数f(x)=的定义域是(﹣∞,1).【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:依题意,得1﹣x>0,解得x<1,∴函数的定义域是(﹣∞,1)故答案为:(﹣∞,1).【点评】本题考查了函数自变量的取值范围:注意分式有意义,分母不为0;二次根式的被开方数是非负数.13.(5分)函数y=|x2﹣4x|的单调减区间为(﹣∞,0),(2,4).【分析】画出函数y=|x2﹣4x|的图象,利用图象写出单调区间.【解答】解:画出函数y=|x2﹣4x|的图象,由图象得单调减区间为:(﹣∞,0),(2,4)故答案为:(﹣∞,0),(2,4)【点评】本题考查了函数的单调性,画出图象是关键,属于基础题.14.(5分)定义在R上的奇函数f(x),满足x>0时,f(x)=x(1﹣x),则当x≤0时,f (x)=x(x+1).【分析】根据题意,由奇函数的性质可得f(0)=0,设x<0,则﹣x>0,由函数的奇偶性和解析式可得f(x)=﹣f(﹣x)=x(x+1),综合2种情况即可得答案.【解答】解:根据题意,f(x)为定义在R上的奇函数,则f(0)=0,设x<0,则﹣x>0,则f(﹣x)=(﹣x)(1+x),又由函数为奇函数,则f(x)=﹣f(﹣x)=x(x+1),综合可得:当x≤0时,f(x)=x(x+1);故答案为:x(x+1)【点评】本题考查函数的奇偶性的性质以及应用,注意f(0)=0,属于基础题.四、解答题(本大题共3小题,共38分)15.(10分)已知集合A={x|x2﹣4>0},B={x|2x2+x﹣6>0},求A∪(∁R B),A∩(∁R B).【分析】利用集合的交、并、补集的混合运算求解.【解答】解:∵集合A={x|x2﹣4>0}={x|x>2或x<﹣2},B={x|2x2+x﹣6>0}={x|x>或x<﹣2},∴∁R B={x|﹣2},A∪(∁R B)={x|x或x>2},A∩(∁R B)=∅.【点评】本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题,注意不等式性质的合理运用.16.(14分)小张周末自驾游.早上八点从家出发,驾车3个小时后到达景区停车场,期间由于交通等原因,小张的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系为s(t)=﹣5t(t﹣13).由于景区内不能驾车,小张把车停在景区停车场.在景区玩到16点,小张开车从停车场以60km/h的速度沿原路返回.(Ⅰ)求这天小张的车所走的路程s(单位:km)与离家时间t(单位:h)的函数解析式;(Ⅱ)在距离小张家60km处有一加油站,求这天小张的车途经该加油站的时间.【分析】(Ⅰ)根据题意,可得分段函数解析式,关键是确定返回时函数的解析式;(Ⅱ)利用分段函数解析式,建立方程,即可求得结论.【解答】解:(Ⅰ)由题意,0<t≤3时,s(t)=﹣5t(t﹣13),当t=3时,s(3)=150;3<t≤8时,s(t)=150;∵150÷60=2.5,∴8<t≤10.5时,s(t)=150+(t﹣8)×60=60t﹣330;∴s(t)=;(Ⅱ)0<t≤3时,令﹣5t(t﹣13)=60,则t=1或12,所以t=1,即九点小张的车途经该加油站;8<t≤10.5时,60t﹣330=150+150﹣60,则t=9.5,即17:30小张的车途经该加油站.【点评】本题考查函数模型的构建,考查函数解析式的运用,考查利用数学知识解决实际问题,确定函数的解析式是关键.17.(14分)已知定义在(0,+∞)上的函数f(x),对任意a,b∈(0,+∞),都有f(a⋅b)=f(a)+f(b)恒成立,当x>1时,满足f(x)>0.(1)判断f(x)在(0,+∞)上的单调性并用定义证明;(2)若f(4)=4,解关于实数m的不等式f(m2﹣2m﹣1)<2.【分析】(1)设0<x1<x2,根据f(x2)=f()+f(x1)即可得出f(x)的单调性;(2)根据f(x)的单调性和定义域列不等式组解出m的范围.【解答】解:(1)f(x)在(0,+∞)上是增函数,证明如下:设x1,x2是(0,+∞)上任意两个数,且x1<x2,则f(x2)=f(•x1)=f()+f(x1),∴f(x2)﹣f(x1)=f(),∵0<x1<x2,∴>1,∴f()>0,∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(0,+∞)上是增函数.(2)∵f(4)=f(2×2)=f(2)+f(2)=4,∴f(2)=2,∴f(m2﹣2m﹣1)<2⇔f(m2﹣2m﹣1)<f(2),由(1)知f(x)是定义在(0,+∞)上的增函数,∴0<m2﹣2m﹣1<2,解得:﹣1<m<1﹣或1+<m<3.【点评】本题考查了抽象函数单调性判断及应用,属于中档题.。

2021-2022学年高一上学期10月月考数学试卷(解析版)(江苏省南京市金陵中学集团人民中学)

2021-2022学年高一上学期10月月考数学试卷(解析版)(江苏省南京市金陵中学集团人民中学)

金陵中学集团·人民中学高一年级月考试卷数学(满分:150分考试时间:120分钟)2021.10一、单项选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列集合表示正确的是()A.{2,4}B.{2,3,3}C.{2,2,3}D.{高个于男生}【答案】A【考点】集合的表示【解析】由题意可知,选项B、C不满足集合的互异性,选项D不满足集合的确定性,故答案选A.2.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A.a+b>0B.a2>b2C.1a<1bD.a2+b2>2ab【答案】D【考点】不等关系的判断【解析】由题意可知,因为a>b,所以a2+b2-2ab=(a-b)2>0,故答案选D.3.集合M={x|x=3k-2,k∈Z),P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z},集合之间的关系是()A.S M P B.S=P M C.S P=M D.P=M S【答案】C【考点】集合间的关系【解析】由题意可知,集合M、P表示的是被3整除余1的整数集,集合S表示的是被6整除余1的整数集,故答案选C.4.已知全集U=R,集合M={x∈Z|-1≤x-1≤2}和N={x|x=2k+1,k∈N*}的关系如图所示,则阴影部分表示的集合的元素共有()A.2个B.3个C.4个D.无穷多个【答案】B【考点】集合的图示法应用【解析】由题意可知,集合M={x∈Z|-1≤x-1≤2}={x∈Z|0≤x≤3}={0,1,2,3},N ={x|x=2k+1,k∈N*},所以阴影部分表示的集合为(C U N)∩M={0,1,2},则有3个元素,故答案选B.5.使不等式x2-x-6>0成立的充分不必要条件是()A.-2<x<0B.-3<x<2C.0<x<5D.-2<x<4【答案】A【考点】逻辑用语中条件的判断【解析】由题意可知,不等式x2-x-6>0的解为-2<x<3,则(-2,0) (-2,3),即不等式的充分不必要条件是为-2<x<0,故答案选A.6.当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位,大约每经过5730年一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了个“半衰期”.【提示:1290.00195】A.10B.9C.11D.8【答案】A【考点】新情景问题下的指对数运算【解析】由题意可设生物组织内原有的碳14含量为x,需要经过n个才能被测到碳14,则x 12n <11000x,即12n<0.001,由参考数据可知,129=0.00195>0.001,1210=0.00195×12=0.000975<0.001,所以n=10,故答案选A.7.已知不等式ax2+5x+b>0的解集是{x|2<x<3},则不等式bx2-5x+a<0的解集是()A.{x|x<-3或x>-2}B.{x|x<-12或x>-1 3 }C .{x |-12<x <-13}D .{x |-3<x <-2}【答案】B【考点】三个“二次”关系的转化与应用【解析】由题意可知,2,3为方程ax 2+5x +b =0+3=-5a ×3=b a=-1=-6,所以不等式bx 2-5x +a <0可化为-6x 2-5x -1<0,即(2x +1)(3x +1)>0,解得x <-12或x>-13,故答案选B .8.已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最大值是()A .63B .-233C .433D .-433【答案】D【考点】三个“二次”的转化、基本不等式的应用【解析】由题意可得,x 1,x 2为方程x 2-4ax +3a 2=0的两个根,所以由根与系数的关系,可得x 1x 2=3a 2,x 1+x 2=4a ,所以x 1+x 2+a x 1x 2=4a +13a,因为a <0,所以-4a -13a≥2(-4a )·(-13a )=433,当且仅当-4a =-13a ,即a =-36时等号成立,所以4a +13a≤-433,故答案选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错得0分.9.下列运算结果中,一定正确的是()A .a 3·a 4=a 7B .(-a 2)3=a6C .8a 8=aD .5(-π)5=-π【答案】AD【考点】指数幂的运算【解析】由题意可知,对于选项A ,a 3·a 4=a3+4=a 7,故选项A 正确;对于选项B ,(-a 2)3=-a 6,故选项B 错误;对于选项C ,当a 为负数时,结果为-a ,故选项C 错误;对于选项D ,5(-π)5=-π成立,故选项D 正确;综上,答案选AD .10.下列四个不等式中解集为R 的是()A .-x 2+x +1≥0B .x 2-25x +5>0C .-2x 2+3x -4<0D .x 2+6x +10>0【答案】CD【考点】一元二次不等式的解【解析】由题意可知,对于选项A ,-x 2+x +1≥0可化为x 2-x -1≤0,其解集为1-52≤x ≤1+52,故选项A 错误;对于选项B ,不等式x 2-25x +5>0,因为∆=(25)2-4×5>0,则其解集不为R ,故选项B 错误;对于选项C ,不等式-2x 2+3x -4<0可化为x 2+32x+2>0,所以(x -34)2>-2316,则原不等式的解集为R ,故选项C 正确;对于选项D ,不等式x 2+6x +10>0可化为(x +3)2>-1,则原不等式的解集为R ,故选项D 正确;综上,答案选CD .11.下列结论正确的是()A .若函数y =ax 2+bx +c (a ≠0)不存在零点,则不等式ax 2+bx +c >0的解集为R B .不等式ax 2+bx +c ≤0(a ≠0)在R 上恒成立的条件是a <0且∆=b 2-4ac ≤0C .若关于x 的不等式ax 2+x -1≤0的解集为R ,则a ≤-14D .不等式1x >1的解为x <1【答案】BC【考点】不等式的综合应用【解析】由题意,对于选项A ,函数y =ax 2+bx +c (a ≠0)不存在零点,则∆<0,而不等式ax 2+bx +c >0的解集:①当a >0时,解集为R ,②当a <0时,解集为x ≠ ,故选项A 错误;对于选项B ,不等式ax 2+bx +c ≤0(a ≠0)在R 上恒成立的条件是a <0且∆=b 2-4ac ≤0,故选项B 正确;对于选项C ,关于x 的不等式ax 2+x -1≤0的解集为R ,则①当a =0时,x ≤1,不满足条件,②当a <0时,∆=1+4a ≤0,解得a ≤-14,故选项C 正确;对于选项D ,1x >1,整理得1-x x >0,即x -1x <0,解得0<x <1,故选项D 错误;综上,答案选BC .12.设全集为U ,则下面四个命题中是“A ⊆B ”的充要条件的是()A .A ∩B =AB .( U A ) ( U B )C .( U B )∩A =D .( U A )∩B =【答案】ABC【考点】集合的关系判断、充要条件的判断【解析】由A ∩B =A ,可得A B ,由A B ,可得A ∩B =A ,故“A ∩B =A ”是“A B ”的充要条件,故选项A 满足条件;由( U A ) ( U B ),可得A B ,由A B ,可得( U A ) ( U B ),故“( U A ) ( U B )”是“A B ”的充要条件,故选项B 满足条件;由( U B )∩A = ,可得A B ,由A B 可得( U B )∩A = ,故“( U B )∩A = ”是“A B ”的充要条件,故选项C 满足条件;由( U A )∩B = ,可得B A ,不能推出A B ,故“( U A )∩B = ”不是“A B ”的充要条件,故选项D 不满足条件;综上,答案选ABC .三、填空题:本题共4小题,每小题5分,共20分.13.命题“∀x ∈R ,x 2-x +3>0”的否定是.【答案】∃x ∈R ,x 2-x +3≤0【考点】全称量词命题的否定为∃x ∈R ,x 2-x +3≤0.【解析】由题意,全称量词命题的否定为14.计算(-9.6)0-(338)-23+(1.5)-2=.【答案】1【考点】指数幂的运算【解析】由题意,(-9.6)0-(338)-23+(1.5)-2=1-(278)-23+(23)2=1-[(23)3]23+(23)2=1-(23)2+(23)2=1.15.若集合A ={x |ax 2-3x +1=0}中只含有一个元素,则a 值为;若A 的真子集个数是3个,则a 的取值范围是.(第一空2分,第二空3分)【答案】0或94;{a |a <0或0<a <94}【考点】双空题:集合与元素的关系【解析】由题意可知,集合A ={x |ax 2-3x +1=0}中只含有一个元素,则a =0≠0=9-4a =0,解得a =0或a =94;若A 的真子集个数是3个,则方程ax 2-3x +1=0有两个实数根,所以≠0=9-4a >0,解得a <0或0<a <94,所以a 的取值范围是{a |a <0或0<a <94}.16.在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是.【答案】[10,30]【考点】二次函数的实际问题应用【解析】设矩形的另一边长为y m ,由相似三角形的性质可得:x 40=40-y40,解得y =40-x ,(0<x <40),所以矩形的面积S =x (40-x ),因为矩形花园的面积不小于300m 2,所以x (40-x )≥300,化为(x -10)(x -30)≤0,解得10≤x ≤30,满足0<x <40,故其边长x (单位:m)的取值范围是[10,30],故答案为[10,30].四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本题满分10分)(1)试比较(x +1)(x +5)与(x +3)2的大小;(2)已知a >b ,1a <1b ,求证:ab >0.【考点】不等关系的判断与证明【解析】(1)由题意,(x +1)(x +5)-(x +3)2=x 2+6x +5-x 2-6x -9=-4<0,所以(x +1)(x +5)<(x +3)2;(2)证明:因为1a <1b ,所以1a -1b <0,即b -aab<0,而a >b ,所以b -a <0则ab >0.得证18.(本题满分12分)化简或计算下列各式:(1)(a 23b 12)×(a 12b 13)÷(a 16b 56);(2)已知m =lg2,10n =3,计算103m -2n 2的值.【考点】指数幂的运算、指对数综合运算【解析】(1)(a 23b 12)×(a 12b 13)÷(a 16b 56)=(a 23×a 12÷a 16)(b 12×b 13÷b 56)=a 23+12-16b 12+13-56=a 1b 0=a ;(2)因为m =lg2,所以10m =2,所以103m -2n2=(103m÷102n )12=[(10m )3÷(10n )2]12=(8÷9)12=223.19.(本题满分12分)已知集合A ={x |x +63-x≥0},集合B ={x |x 2≤16},集合C ={x |3x +m <0}.(1)求A ∪B ,A ∩B , R (A ∪B );(2)若x ∈C 是x ∈A 的必要条件,求m 的取值范围.【考点】集合的运算、必要条件的应用【解析】(1)解不等式x +63-x ≥0,即x +6x -3≤0,解得-6≤x <3,则A ={x |-6≤x <3},B ={x |x 2≤16}={x |-4≤x ≤4},所以A ∪B ={x |-6≤x ≤4},A ∩B ={x |-4≤x <3},因此, R (A ∪B )={x |x >4或x <-6};(2)因为C ={x |3x +m <0}={x |x <-m3},由于x ∈C 是x ∈A 的必要条件,则A C ,所以-m3≥3,解得m ≤-9,因此,实数m 的取值范围是(-∞,-9].20.(本题满分12分)已知关于x 的不等式ax 2-(2a 2+1)x +2a <0,a ∈R .(1)若a =-1,求不等式的解集;(2)若关于x 的不等式解集为{x |x >1a 或x <2a },求a 的取值范围.【考点】一元二次不等式的解法、含参的一元二次不等式的应用【解析】(1)若a =-1,则不等式可化为-x 2-3x -2<0,即x 2+3x +2>0,解得x >-1或x <-2,则原不等式的解集为(-∞,-2)∪(-1,+∞);(2)原不等式可化为(ax -1)(x -2a )<0,因为不等式解集为{x |x >1a 或x <2a },所以1a >2a ,且a <0,所以-22≤a <0,则m 的取值范围为[-22,0).21.(本题满分12分)在①A ∩B =B ;②A ∩B = ;③B R A 这三个条件中任选一个,补充在下列问题(2)中,若实数a 存在,求a 的取值范围;若不存在,说明理由.已知集合A ={x |x -2x -8<0},集合B ={x |x 2-(a 2+a +2)x +a 3+2a ≤0}.(1)当a =3时,求A ∩B ;(2)当时,求实数a 的取值范围.(注:如果选择多个方案分别解答,按第一个方案解答计分)【考点】结构不良题:集合的运算与应用【解析】(1)当a =3时,B ={x |x 2-(a 2+a +2)x +a 3+2a ≤0}={x |3≤x ≤11},又因为A ={x |x -2x -8<0}={x |2<x <8},所以A ∩B =[3,8);(2)选①,在B 中,(x -a )(x -a 2-2)≤0,对应的方程的根为x 1=a ,x 2=a 2+2.因为a 2+2-a =(a -12)2+74>0,a 2+2>a ,此时B =[a ,a 2+2],由A ∩B =B 知,B A所以a >2,且a 2+2<8,解得2<a <6,则实数a 的取值范围为(2,6).选②在B 中,(x -a )(x -a 2-2)≤0对应的方程的根为x 1=a ,x 2=a 2+2.因为a 2+2-a =(a -12)2+74>0,所以a 2+2>a ,这样B =[a ,a 2+2].由A ∩B = 知,所以a ≥8或a =0,则实数a 的取值范围为{a |a ≥8或a =0}.选③,在B 中,(x -a )(x -a 2-2)≤0对应的方程的根为x 1=a ,x 2=a 2+2.因为a 2+2-a =(a -12)2+74>0,所以a 2+2>a ,这样B =[a ,a 2+2], R A =(-∞,2]∪[8,+∞).因为B R A ,所以a ≥8或a 2+2≤2,解得:a ≥8或a =0则实数a 的取值范围为{a |a ≥8或a =0}.22.(本题满分12分)中欧班列是推进与“一带一路”沿线国家铁路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设.目前车站准备在某仓库外,利用其一侧原有墙体,建造一间高为3m ,底面积为12m 2,且背面靠墙的长方体形状的保管员室.由于此保管员室的后背靠墙,无需建造费用,因此甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体的报价为每平方米150元,屋顶和地面以及其他报价共计7200元.设屋子的左右两面墙的长度均为x m(2≤x ≤6).(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900a (1+x )3元(a >0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a 的取值范围.【考点】基本不等式的实际问题应用【解析】(1)设甲工程队的总报价为y 元,则y =3×(150×2x +400×12x )+7200=900(x +16x )+7200(2≤x ≤6).因为900(x +16x)+7200≥900×2×x ·16x+7200=14400,当且仅当x =16x,即x =4时取“=”,所以当左右两面墙的长度为4m 时,甲工程队的报价最低,为14400元.(2)由题意可得900(x +16x )+7200>900a (1+x )3对任意的2≤x ≤6恒成立,即(x +4)2x >a (1+x )3,所以(x +4)2x +1>a ,即x +1+9x +1+6>a 恒成立,又x +1+9x +1+6≥2(x +1)·9x +1+6=12,当且仅当x +1=9x +1,即x =2时取“=”,所以a 的取值范围是{a |0<a <12}.。

2020-2021学年高一上学期第一次月考数学试卷及答案

2020-2021学年高一上学期第一次月考数学试卷及答案
12.【解析】
因为 ,所以 即 ,
因为 选D.
二.填空题
13.
14.
15.
【详解】因为对任意 ,都有 成立,所以 为单调递增函数,
因此 .
16.
【详解】因为 ,作函数 图象:
由图象得
17.解:(1)A∪B={x|4≤x<10},∵(CRA)={x|x<4或x≥8},
∴(CRA)∩B={x|8≤x<10}
21.(1)最大值为1;最小值为-24
(2)
22.解:(1)f(x)=x2﹣mx+m﹣1= ,对称轴 x= .
①若 ,此时函数f(x)在区间[﹣1,1]上单调递增,所以最小值g(m)=f(﹣1)=2m.
②若 ,此时当x= 时,函数f(x)最小,最小值g(m)=f( )= .
③若 ,此时函数f(x)在区间[﹣1,1]上单调递减,所以最小值g(m)=f(1)=0.
即f(x1)>f(x2),所以f(x)在(-3,3)上单调递减.
(3)由g(x)≤0得f(x-1)+f(3-2x)≤0,所以f(x-1)≤-f(3-2x).
又f(x)满足f(-x)=-f(x),所以f(x-1)≤f(2x-3),
又f(x)在(-3,3)上单调递减,所以 解得0<x≤2,
故不等式g(x)≤0的解集是(0,2].
A. B. C. D.
9.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是( )

【月考试卷】2020-2021学年上学期高一年级数学第一次月考试卷含答案(内容:必修1)

【月考试卷】2020-2021学年上学期高一年级数学第一次月考试卷含答案(内容:必修1)
________.
15 . 已 知 函 数 是 定 义 在 上 的 奇 函 数 , 当
时,
,则 __________. 16.已知集合 A {x | ax 1 0},且 2 A,3 A,则 a 的取值范围是
xa
_______.
三、解答题(本大题共 6 个小题,共 70 分,解答应写出文字说明, 证明过程或演算步骤) 17.(本小题满分 10 分)设集合 A={a2,a+1,-3},B={a-3,2a -1,a2+1},A∩B={-3},求实数 a 的值.
18.(本小题满分 12 分)
已知集合
.
(1)若 (2的取值范围.
试卷第 3 页,总 5 页
19.(本小题满分 12 分) 已知函数 f(x)是定义域为 R 的奇函数,当 x>0 时,f(x)=x2-2x. (1)求出函数 f(x)在 R 上的解析式; (2)画出函数 f(x)的图象.
围是 ( )
A. a 0 B. a 0 C. a 10 D. a 10 9.下面四个函数:
x, x 0,
① y 3x ② y
1 x2 1

y
x2
2x
10

y
{
1
,
x
0.
.其中值域为
x
R 的函数有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
10.已知函数 f x { 2x,x 0 ,若 f a f 1 0,则实数 a 的值等
A. {x|0<x<2}
B. {x|1<x≤2}
C. {x|0≤x≤1,或 x≥2} D. {x|0≤x≤1,或 x>2}
4.已知 f(x)=
,则 f[f(3)]= ( )

江苏省南京市2020-2021学年高一上学期数学月考试题

江苏省南京市2020-2021学年高一上学期数学月考试题

三、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
11. 已知集合=A {x ax +=1 0} , B = {−1,1} ,若 A B = A ,则实数 a 的所有可能取值的集合


12. 函数 f ( x) = 1 的定义域是
1− x 13. 函数=y x2 − 4x 的单调递减区间为
A. {1, 2,3, 4}
B. {2,3, 4}
C. {2,3}
D. {1,3, 4}
2. 一元二次不等式 x2 − 2019x − 2020 < 0 的解集为( )
A. (−1, 2020)
B. (−2020,1)
C. (−∞, −1) (2020, +∞)
D. (−∞, −2020) (1, +∞)
= D. M {= 2,3}, N {(2,3)}
2. 下列图象表示函数图象的是( )
y
y
x O
x O
y
x O
y
x O
A.
B.
C.
D.
{ } 3. 设集合 A = {1, 2, 4} , B= x x2 − 4x + m= 0 .若 A B = {1} ,则 B = ( ).
A. {1,3}
B. {1,0}
C. {1, −3}
D. {1,5}
4.
函数
f
(x)
=
2x − x2 (0 ≤ x ≤ 3)
x
2
+
6x
( −2

x
<
0)
的值域是(
).
A. R
B. [−8,1]
C. [−9,+∞)

江苏省南京市金陵中学2021-2022高一数学上学期10月月考试题(含解析).doc

江苏省南京市金陵中学2021-2022高一数学上学期10月月考试题(含解析).doc

江苏省南京市⾦陵中学2021-2022⾼⼀数学上学期10⽉⽉考试题(含解析).doc江苏省南京市⾦陵中学2021-2022⾼⼀数学上学期10⽉⽉考试题(含解析)⼀、单选题:本⼤题共 12⼩题,每题 4 分,共 48 分. 1.集合A ={1,2,3},B ={2,3,4},则A B =()A. {1,2,3,4}B. {2,3}C. {2,3,4}D. {1,3,4}【答案】B 【解析】【分析】先观察两集合中的公共元素,再求交集即可得解. 【详解】解:因为集合{}1,2,3A =,{}2,3,4B =, 所以{}2,3A B ?=,故选B.【点睛】本题考查了集合交集的运算,属基础题.2.⼀元⼆次不等式2201920200x x --<的解集为(). A. (1,2020)- B. (2020,1)- C. (,1)(2020,)-∞-+∞ D.(,2020)(1,)-∞-+∞【答案】A 【解析】【分析】根据⼀元⼆次不等式的解法,直接求解,即可得出结果.【详解】由2201920200x x --<得(1)(2020)0+-【点睛】本题主要考查解不含参数的⼀元⼆次不等式,熟记⼀元⼆次不等式的解法即可,属于基础题型.3. 下列各函数在其定义域中,既是奇函数,⼜是增函数的是() A. y =x +1 B. y =-x 3 C. 1y x=-D. y =x|x|【答案】D 【解析】试题分析:A 中函数是增函数但不是奇函数;B 中函数是奇函数但不是增函数;C 中函数是奇函数但不是增函数;D 中函数既是奇函数⼜是增函数考点:函数奇偶性单调性4.若集合A ={x |mx 2+2x +m =0,m ∈R }中有且只有⼀个元素,则m 的取值集合是 A. {1} B. {1-} C. {0,1} D.{1-,0,1}【答案】D 【解析】【分析】分类讨论0m =及0m ≠时0?=.【详解】当0m =时,{}{|20}0A x x ===,满⾜题意;当0m ≠时,2440m ?=-=,解得1m =±.综上m 的取值集合是{1,0,1}-.点睛:集合的元素具有互异性,当⼆次⽅程的两根相等时,⽅程的解集只有⼀个元素,另外⼀元⼀次⽅程有解也最多只能有⼀个解.5.函数1()2f x x =+的定义域是() A. [3,)-+∞ B. [3,2)--C. [3,2)(2,)--?-+∞D. (2,)-+∞【答案】C 【解析】分析:根据定义域求法即可. 详解:由题可得:30{320x x x +≥?≥-+≠且2x ≠-,故选C.点睛:考查函数的定义域,属于基础题.6.已知函数23,0(),0x x f x x x ≥?=?,则((2))f f -的值为().A. 4B. 12C. 16D. 36【答案】B 【解析】【分析】根据函数解析式,由内到外逐步代⼊,即可得出结果.【详解】因为23,0(),0x x f x x x ≥?=?故选:B【点睛】本题主要考查求分段函数值,由内到外逐步代⼊即可求解,属于基础题型. 7.若对任意的[1,3]x ∈,不等式230x x m --<都成⽴,则实数m 的取值范围为(). A. (2,)-+∞ B. 9(,)4-+∞C. 9(,0)4-D. (0,)+∞【答案】D 【解析】【分析】先由题意得到23m x x >-在[1,3]x ∈恒成⽴,记2()3g x x x =-,根据⼆次函数求出2()3g x x x =-的最⼤值,即可得出结果.【详解】由题知,23m x x >-在[1,3]x ∈恒成⽴,记2()3g x x x =-,则函数()g x 开⼝向上,对称轴为32x =;⼜[1,3]x ∈,所以函数()g x 在31,2??上单调递减,在3,32上单调递增;因为(1)132=-=-g ,(3)990=-=g ,所以max ()(3)0g x g ==;所以0m >. 故选:D【点睛】本题主要考查由不等式恒成⽴求参数的问题,熟记⼆次函数的性质即可求解,属于常考题型.8.已知{2A x x =<-或}3x >,{}21B x a x a =≤≤-,若A B A ?=,则实数a 的取值范围为().A. 1(,)(3,)2-∞-+∞B. (,1)(3,)-∞+∞C. 1(,)(1,)2-∞-?+∞ D. (,1][3,)-∞+∞【答案】B 【解析】【分析】根据A B A ?=得B A ?,分别讨论B =?和B ≠?两种情况,即可求出结果. 【详解】因为A B A ?=,所以B A ?. 若B =?,则21a a >-,解得1a <;若B ≠?,则1212a a ≥??-<-?或13a a ≥??>?,解得3a >;综上,实数a 的取值范围是(,1)(3,)-∞+∞.故选:B【点睛】本题主要考查由集合的并集结果求参数的问题,熟记集合间的基本关系即可,属于常考题型.9.若2()(3)1f x ax a x =++-在区间(1,)+∞上是增函数,则实数a 的取值范围为(). A. [1,)-+∞ B. [1,0]-C. [0,1]D. [0,)+∞【答案】D 【解析】【分析】当0a =时,得到()31f x x =-满⾜题意;当0a ≠时,根据⼆次函数性质,得到0312a a a>??+?-≤??,求解,即可得出结果.【详解】若0a =,则()31f x x =-,符合题意;若0a ≠,由2()(3)1f x ax a x =++-在区间(1,)+∞上是增函数,可得:0312a a a>??+?-≤??,解得0a >.综上,a 的取值范围为[0,)+∞. 故选:D【点睛】本题主要考查由函数在给定区间的单调性求参数的问题,熟记⼆次函数性质,灵活运⽤分类讨论的思想即可,属于常考题型. 10.已知函数()y f x =是定义在(,0)(0,)-∞+∞上的奇函数,且当0x <时,函数的图像如图所⽰,则不等式()0xf x >的解集为().A. (2,1)(1,2)--?B. (2,1)(0,1)(2,)--??+∞C. (,2)(1,0)(1,2)-∞--D. (,2)(1,0)(0,1)(2,)-∞--+∞【答案】A 【解析】【分析】先由题意,以及函数图像,得到0x <时,不等式的解集;再由函数奇偶性,即可求出结果. 【详解】当0x <时,由()0xf x >得()0f x <;由函数图像可知,(2,1)x ∈--;由函数()y f x =是定义在(,0)(0,)-∞+∞上奇函数,所以当(1,2)x ∈时,()0f x >,此时也满⾜()0xf x >;综上,不等式()0xf x >的解集为(2,1)(1,2)--?. 故选:A【点睛】本题主要考查由函数奇偶性解不等式,熟记奇函数的性质即可,属于常考题型.11.设3()2kf x x x=++,其中k 为参数,k ∈R .若函数()y f x =在区间[2,1]--上的最⼤值为4,则函数()y f x =在区间[1,2]上有().A. 最⼩值2-B. 最⼩值0C. 最⼩值4D. 最⼤值2【答案】B 【解析】【分析】先设3()kg x x x=+,则()()2g x f x =-,根据题意得到()g x 在区间[2,1]--上的最⼤值为2,再判断函数()g x 是奇函数,求出()g x 在区间[1,2]上的最⼩值为2-,即可得出结果.【详解】设3()kg x x x=+,则()()2g x f x =-,因为函数()y f x =在区间[2,1]--上的最⼤值为4,所以()g x 在区间[2,1]--上的最⼤值为2.⼜3()()-=--=-kg x x g x x,所以()g x 是奇函数,所以()g x 在区间[1,2]上的最⼩值为2-,此时()()2f x g x =+有最⼩值0. 故选:B【点睛】本题主要考查由函数奇偶性求函数最值,熟记奇函数的性质即可,属于常考题型.12.已知266,0()34,0x x x f x x x ?-+≥=?+,若互不相等的实数123,,x x x 满⾜123()()()f x f x f x ==,则123x x x ++的取值范围为().A. 11(,6)3B. 18(,)33-C. 11(,6]3D. 18(,]33-【答案】A 【解析】【分析】先作出函数图像,由题意得互不相等的实数123,,x x x 满⾜123()()()===f x f x f x k ,根据函数图像确定34-<(,0)3x ∈-,进⽽可求出结果.【详解】作出函数266,0()34,0x x x f x x x ?-+≥=?+若互不相等的实数123,,x x x 满⾜123()()()===f x f x f x k ,由图像可得:34-<不妨设123x x x <<,则236x x +=,由13344-<+(,0)3x ∈-;所以123x x x ++的取值范围为11(,6)3. 故选:A【点睛】本题主要考查函数与⽅程的综合应⽤,根据转化与化归的思想,将问题转化为函数交点问题,利⽤数形结合的⽅法即可求解,属于常考题型. ⼆、填空题:本⼤题共 4⼩题,每题 4 分,共 16 分. 13.若21{2,}x x ∈+,则实数x 的值为________.【答案】1 【解析】【分析】分别讨论21x +=和21x =两种情况,即可得出结果.【详解】若21x +=,则1x =-,所以21x =,此时22x x =+,不符合集合中元素的互异性;若21x =,则1x =±,当1x =时,223+=≠x x ,满⾜题意;综上,1x =. 故答案为:1【点睛】本题主要考查由元素与集合间的关系求参数的问题,熟记元素的特征即可,属于基础题型.14.若定义运算2,,a a b a b b a b≥??=?值域为________.【答案】[1,)+∞ 【解析】【分析】先由题意得到2,1()(2),1x x f x x x ≥?=?-【详解】因为2,,a a b a b b a b ≥??=?,所以22,2,1()(2)=(2),2(2),1x x x x x f x x x x x x x x ≥-≥??=?-=?-<--,当1x ≥时,()1=≥f x x ;当1x <时,2()(2)=-f x x 单调递减,所以()(1)1f x f >=;综上,所求函数值域为[1,)+∞. 故答案为:[1,)+∞【点睛】本题主要考查求分段函数的值域,熟记⼀次函数以及⼆次函数的性质即可,属于常考题型.15.若函数2()()1f x a a x =++在区间[,1]a a +上的最⼤值与最⼩值的差为2,则实数a 的值为________. 【答案】1或2- 【解析】【分析】先由题意得到20a a +≠,推出()f x 为⼀次函数,所以有()(1)2f a f a -+=,求解,即可得出结果.【详解】因为函数2()()1f x a a x =++在区间[,1]a a +上的最⼤值与最⼩值的差为2,所以20a a +≠,因此()f x 为⼀次函数,则()(1)2f a f a -+=,即()()()221112++-++-=a a a a a a ,即22+=a a ,所以22+=±a a ,解得1a =或2-. 故答案为:1或2-【点睛】本主要考查由函数最值的差求参数的问题,熟记函数单调性即可,属于常考题型.16.已知函数21()21f x x x =--+,若(2)(2)f a f a ≤-,则实数a 的取值范围为________. 【答案】2[2,]3-【解析】【分析】先由奇偶性的定义,判断函数()f x 为偶函数,再由0x >时,21()21f x x x =--+,根据⼆次函数与反⽐例函数的单调性,得出21()21f x x x =--+单调递增,进⽽原不等式可化为:22a a ≤-,求解即可得出结果.【详解】因为21()21f x x x =--+,所以21()2()1-=--=+f x x f x x ,因此函数21()21f x x x =--+为偶函数,⼜当0x >时,21()21f x x x =--+,显然单调递增;所以(2)(2)f a f a ≤-等价于22a a ≤-,解得2[2,]3a ∈-.故答案:2[2,]3-【点睛】本题主要考查由函数奇偶性与单调性解不等式,熟记函数奇偶性,以及基本初等函数的单调性即可,属于常考题型.三、解答题:本题共 6⼩题,共 56 分. 17.在实数范围内解下列不等式或⽅程.(1)2340x x -->;(2)3210x x -+=【答案】(1)4(,1)(,)3-∞-?+∞ (2)1231,x x x ===. 【解析】【分析】(1)根据⼀元⼆次不等式的解法,直接求解,即可得出结果;(2)先由3210x x -+=得到2(1)(1)0x x x -+-=,推出1x =或210x x +-=,进⽽可求出结果.【详解】(1)由2340x x -->得(1)(34)0x x +->,解得43x >或1x <-;所以不等式的解集为:4(,1)(,)3-∞-?+∞. (2)由3210x x -+=,得2(1)(1)0x x x -+-=,所以1x =或210x x +-=,解得1x =或12x -=或12x -+=;因此原⽅程的解为:1231,x x x ==. 【点睛】本题主要考查解不含参数的⼀元⼆次不等式,以及三次⽅程,熟记不等式的解法,以及因式分解的⽅法即可,属于常考题型.18.已知集合{}2870A x x x =-+<,{}22220B x x x a a =---<. (1)当4a =时,求AB ;(2)若A B B ?=,求实数a 的取值范围.【答案】(1){}16x x <<;(2)(,5][7,)a ∈-∞-+∞ 【解析】【分析】(1)先化简集合A ,根据4a =,化简集合B ,再由交集的概念,即可求出结果;(2)先由A B B ?=,则A B ?,将原问题化为对任意(1,7)x ∈,2222a a x x ->-恒成⽴,令2()2g x x x =-,根据⼆次函数性质,求出2()2g x x x =-在(1,7)x ∈上的最⼤值,解不等式,即可得出结果.【详解】(1)因为{}{}287017A x x x x x =-+<=<<,当4a =时,{}{}{22240(6)(4)046}B x x x x x x x x =--<=-+<=-<<,所以{}16A B x x ?=<<;(2)若A B B ?=,则A B ?.所以对任意(1,7)x ∈,2222a a x x ->-恒成⽴.令2()2g x x x =-,则函数2()2g x x x =-开⼝向上,对称轴为1x =,⼜因为(1,7)x ∈,所以2()2g x x x =-单调递增,因此2()2(1,35)=-∈-g x x x ,所以只需2235a a -≥,解得(,5][7,)a ∈-∞-+∞.【点睛】本题主要考查集合交集的运算,以及由集合的包含关系求参数的问题,熟记集合交集的概念,以及集合间的基本关系即可,属于常考题型.19.如图,OAB ?是边长为2的正三⾓形,记OAB ?位于直线()0x t t =>左侧的图形的⾯积为()f t ,试求函数()f x 的解析式,并画出函数()y f t =的图象.【答案】2()23f t =,图象见解析. 【解析】【分析】分三种情况讨论,在求()f t 的解析式时,关键是要根据图象,对t 的取值进⾏恰当的分类,然后分类讨论,给出分段函数的解析式后,再根据解析式画出函数的图象.【详解】当01t <≤时,如图,设直线x t =与OAB 分别交于C 、D 两点,则|Ot|=t , ⼜3,||3CD BCCD t OC OE==∴= 2113()||||322f t OC CD t t ∴=== (2)当12t <≤时,如图,设直线x t =与OAB 分别交于M 、N 两点,则||=2AN t -,⼜|||33,||3(2)||||MN BE MN t AN AE ==∴=- 221133()23||||3)23322f t AN MN t t ∴==-=+(3)当2t >时,()3f t =综上所述223,0123()233,123,2t f t t t t <≤=+<≤??>,图象如图,【点睛】本题主要考查分段函数的解析式、分段函数的图象,意在考查综合运⽤所学知识解答问题的能⼒,属于中档题. 20.设函数()af x x x=+,其中0a >. (1)证明:函数()y f x =在a 上是单调减函数,在,)a +∞上是单调增函数;(2)若函数()y f x =在区间(0,]a 上的最⼩值为4,求实数a 的值. 【答案】(1)证明见解析(2)4a = 【解析】【分析】(1)先设120x x <<,作差法得到12121212()()()--=-x x af x f x x x x x ,分别讨论120x x a <<≤12a x x ≤<两种情况,根据函数单调性的定义,即可得出结论;(2)分别讨论01a <≤,1a >两种情况,根据(1)的结论,结合函数最⼩值,即可得出结果.【详解】(1)设120x x <<,则211212121212121212()()()()()a x x x x a a af x f x x x x x x x x x x x x x ---=+-+=-+=-,若120x x <<≤120x x -<,且12所以12())0(f x f x ->,因此函数()y f x =在上是单调减函数,12x x ≤<,则120x x -<,且1212,0x x a x x a >->,所以12())0(f x f x -<,因此函数()y f x =在上是单调增函数;综上,函数()y f x =在上是单调减函数,在)+∞上是单调增函数;(2)若01a <≤,则a ≤1)可得:()f x 在(0,]a 上单调减,所以min ()()14f x f a a ==+=,解得3a =,不合题意,舍去;若1a >,则a 1)得()f x 在上单调减,)+∞上单调增,所以min ()4f x f ===,解得4a =,经检验,符合题意. 综上,4a =.【点睛】本题主要考查由单调性的定义判断函数单调性,以及由函数最值求参数,熟记函数单调性的定义,灵活运⽤分类讨论的思想即可,属于常考题型.21.已知函数()()22,*f x ax x c a c N =++∈,满⾜①()15f =;②()6211f <<.(1)求a ,c 的值.(2)设()()231g x f x x x =--+-,求()g x 的最⼩值.【答案】(1)1,2;(2)14-.【解析】【分析】(1)根据条件列不等式与⽅程,根据正整数的限制条件求a ,c 的值.(2)先根据绝对值定义将函数化为分段函数,再根据各段单调性求各段最⼩值,最后⽐较两个最⼩值得函数最⼩值.【详解】(1)()125f a c =++=,()()2446,11f a c =++∈,⼜523c a a =--=-,∴443a a ++-()376,11a =+∈,∴1433a -<<,⼜*a N ∈,∴1a =,2c =.(2)()222f x x x =++,∴()()231g x f x x x =--+-222231x x x x =++--+- 211x x =+--,1x ≥时,()22g x x x =+-,此时()g x 在[]1,+∞上单调递增,∴()()min 11120g x g ==+-=,1x <时,()2g x x x =-,()g x 在1,2-∞ ??上单调递减,在1,12上单调递增,∴()min 11112424g x g ??==-=-,⼜104-<,∴()min 1124g x g ??==-.【点睛】本题考查⼀元⼆次函数解析式以及单调性应⽤,考查基本分析求解能⼒. 22.函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =.(1)确定()f x 的解析式;(2)判断并证明()f x 在(2,2)-上的单调性;(3)解不等式(1)()0f t f t -+<. 【答案】(1)2()4xf x x =-,(2,2)x ∈-;(2) ()f x 是(2,2)-上增函数,证明见解析;(3)1(1,)2-. 【解析】试题分析:(1)若奇函数在x=0处有定义,则f (0)=0,代⼊即可得b ,再由1(1)3f =代⼊即可得a 值;(2)因为函数为奇函数,故只需判断x >0时函数的单调性即可,利⽤单调性定义即可证明;(3)利⽤函数的单调性和奇偶性将不等式中的f 脱去,等价转化为关于t 的不等式组,解之即可. 试题解析:(1)由函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数知(0)04b f -==,所以0b =,经检验,0b =时2()4axf x x=-是(2,2)-上的奇函数,满⾜题意. ⼜21(1)413a f ==-,解得1a =,故2()4xf x x =-,(2,2)x ∈-. (2) ()f x 是(2,2)-上增函数.证明如下:在(2,2)-任取12,x x 且12x x <,则210x x ->,1240x x +>,2140x ->,2240x ->,所以2121122122222121()(4)()()44(4)(4)x x x x x x f x f x x x x x -+-=-=----0>,即21()()f x f x >,所以()f x 是(2,2)-上增函数.(3) 因为()f x 是(2,2)-上的奇函数,所以由(1)()0f t f t -+<得,(1)()()f t f t f t -<-<-,⼜()f x 是(2,2)-上增函数,所以1,212,22,t t t t -<-??-<-解得112t -<<,从⽽原不等式的解集为1(1,)2-.试题点睛:本题综合考查了函数的奇偶性和函数的单调性,奇函数的性质,函数单调性的判断⽅法,利⽤函数性质解不等式.。

【数学】南京市金陵中学河西分校2021-2022学年高一上学期10月月考数学试题

【数学】南京市金陵中学河西分校2021-2022学年高一上学期10月月考数学试题

南京市金陵中学河西分校2021-2022学年高一(上)数学(10月份)一、单项选择题1.已知集合{2,0,1,9,}A π=-,B N =,则A B = ()A.{0,1,9}B.{1,9}C.{2,0,1,9}- D.{0,1,9,}π2.设x ∈R ,则“x >1”是“2x >1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数f (x )=x 2﹣4x +4的零点是()A.(0,2)B.(2,0)C.2D.44.已知实数a ,b R +∈,且2a b +=,则14a b+的最小值为()A.9B.92C.5D.45.若3x <|6|x -的值是()A .-3B.3C.-9D.96.已知命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题,则实数a 的取值范围是()A.(﹣∞,0)∪(0,4)B.(0,4)C.(﹣∞,0]∪[4,+∞)D.[0,4]7.已知关于x 的不等式(4x ﹣3)2≤4ax 2的解集中恰有三个整数,则实数a 的取值范围是()A .[94,3] B.(2,3]C.(2,16964]D.9169,464⎡⎫⎪⎢⎣⎭二、多项选择题(共4小题,每小题5分,共20分.每小题有至少两个选项正确,少选且选正确得2分,错选不得分)8.下列选项中p 是q 的必要不充分条件的有()A.p :a ≤1,q :a <1B.p :A ∩B =A ,q :A ∪B =BC.p :两个三角形全等,q :两个三角形面积相等D.p :x 2+y 2=1,q :x =1,y =09.下列不等式解集为空集的有()A.x 2+2x +2≤0B.x 2+2x +1≤0C.|x +1|+|x +2|<1D.|x +1x|<210.设a ,b 为正实数,则下列命题中是真命题的是()A.若221a b -=,则1a b -<B.若111b a-=,则1a b -<C.1=,则1a b -<D.若1a,1b ,则1a bab--11.已知关于x 的不等式23344a x x b ≤-+≤,下列结论正确的是()A.当1a b <<时,不等式23344a x x b ≤-+≤的解集为∅B.当1,4a b ==时,不等式23344a x xb ≤-+≤的解集为{}|04x x ≤≤C.不等式23344a x x b ≤-+≤的解集恰好为{}x a x b |≤≤,那么43b =D.不等式23344a x xb ≤-+≤的解集恰好为{}x a x b |≤≤,那么4b a -=三、填空题(共4小题,每小题5分,共20分.)12.方程2442(log )log 6x x -=的解是_______.13.不等式2112x x +≥+的解集为__________.14.已知正数a 、b 满足2a b +=,则12a b a b +++的最大值为______.15.若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.四、解答题(答题时要写出必要的演算步骤和文字说明,共6小题,共70分.)16.设全集{|5U x x =≤且*2},{|50}x N A x x x q ∈=-+=,2{|120}B x x px =++=且{}()1,3,4,5U C A B ⋃=,求实数,p q 的值.17.已知2:870p x x -+≤,:23q m x m ≤≤+.(I )是否存在m ,使得p 是q 的充要条件?若存在,求m 的值,若不存在,请说明理由:(II )从下面三个条件中任选一个,求m 的取值范围.①p 是q 的必要条件②q 是p 的充分条件③p ⌝是q ⌝的充分条件18.(1)已知,x y 均为正数,4x y xy +=,求x y +的最小值;(2)010.256371.586-⎛⎫⨯-++ ⎪⎝⎭(3)已知14x x -+=,求3322x x -+的值.19.(1)对任意R x ∈,关于x 的不等式23x ax a ++≥恒成立,求实数a 的取值范围;(2)存在1x <,关于x 的不等式23x ax a ++≤有实数解,求实数a 的取值范围.20.某风投公司到一开发区投资72万元建起一座小型工厂.第一年共支出12万元,以后每年支出增加4万元,从第一年起每年产品产值50万元.设y表示前n年的纯利润总和(y=前n年的产品总产值﹣前n年的总支出﹣投资额).(1)该风投公司从第几年开始盈利?(2)若干年后,风投公司决定投资更有前景的开发区,对该开发区的小型工厂有两种该风投公司处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂.试通过计算,比较两种方案,并作简要说明.参考公式:n∈N*,1+2+3+•••+n()12n n+ =.21.已知a为常数,二次函数y=x2﹣ax+a+3.(1)若该二次函数的图象与x轴有交点,求a的取值范围;(2)已知y≥4,求x的解集;(3)若存在x∈[2,4],使y=0成立,求a的取值范围.2021-2022学年江苏省南京市金陵中学河西分校高一(上)段考数学试卷(10月份)一、单项选择题(共7小题,每小题5分,共40分.)1.已知集合{2,0,1,9,}A π=-,B N =,则A B = ()A.{0,1,9} B.{1,9}C.{2,0,1,9}- D.{0,1,9,}π【答案】A 【解析】【分析】利用集合的交集运算求解.【详解】 集合{2,0,1,9,}A π=-,B N =,{0,1,9}A B ∴= .故选:A .【点睛】本题主要考查集合的基本运算,属于基础题.2.设x ∈R ,则“x >1”是“2x >1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由1x >可得21x >成立,反之不成立,所以“1x >”是“21x >”的充分不必要条件考点:充分条件与必要条件3.函数f (x )=x 2﹣4x +4的零点是()A.(0,2)B.(2,0)C.2D.4【答案】C 【解析】【分析】由函数零点的定义列出方程x 2﹣4x +4=0,求出方程的根是函数的零点.【详解】由f (x )=x 2﹣4x +4=0得,x =2,所以函数f (x )=x 2﹣4x +4的零点是2,故选:C .4.已知实数a ,b R +∈,且2a b +=,则14a b+的最小值为()A.9B.92C.5D.4【答案】B 【解析】【分析】根据条件可得14114()()2a b a b a b+=++然后利用基本不等式可求出最小值.【详解】解: 实数a ,b R +∈,且2a b +=,∴141141419()(5)(52222b a a b a b abab +=++=+++=,当且仅当4b aa b =,即23a =,43b =时取等号,∴14a b +的最小值为92.故选:B .【点睛】本题考查了利用基本不等式求最值和“1“的代换,考查了转化思想和计算能力,属于基础题.5.若3x <|6|x -的值是()A.-3B.3C.-9D.9【答案】A 解析】【分析】根据x 的范围化简根式和绝对值,由此求得表达式的值.【详解】依题意3x <,所以60,30x x -<-<,所以6x --6x =--36x x =---363x x =-+-=-.故选:A.【点睛】本小题主要考查根式和绝对值的化简,属于基础题.6.已知命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题,则实数a 的取值范围是()A.(﹣∞,0)∪(0,4)B.(0,4)C .(﹣∞,0]∪[4,+∞)D.[0,4]【答案】D 【解析】【分析】由命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题,可知:∀x ∈R ,x 2+ax +a ≥0,利用判别式法即可求解.【详解】由命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题可知:∀x ∈R ,x 2+ax +a ≥0,∴∆=a 2﹣4×1×a ≤0,解得:a ∈[0,4].故选:D .7.已知关于x 的不等式(4x ﹣3)2≤4ax 2的解集中恰有三个整数,则实数a 的取值范围是()A.[94,3] B.(2,3] C.(2,16964] D.9169,464⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】将不等式变形为(43(430x x ⎡⎤⎡⎤+---≤⎣⎦⎣⎦,然后分a =4,a =0,0<a <4,a >4四种情况,分别求出不等式的解集,分析求解即可.【详解】由题意可知,a ≥0,则不等式(4x ﹣3)2≤4ax 2可变形为(4x ﹣3)2﹣4ax 2≤0,即(43(430x x ⎡⎤⎡⎤+---≤⎣⎦⎣⎦,①当a =4时,不等式为﹣24x +9≤0,解得x ≥38,不符合题意;②当a ≠4时,不等式为关于x 的一元二次不等式,=a =0时,不等式的解集为{34},不符合题意;若0<<,即0<a <4时,不等式的解集为|x x ⎧≤≤⎨⎩,又01<<,所以如果恰有三个整数,只能是1,2,3,故34≤,解得9169464a ≤<;0<<,即a >4时,不等式的解集为|x x ⎧≤⎨⎩或x >,不会恰好有三个整数解,不符合题意.综上所述,实数a 的取值范围为9169,464⎡⎫⎪⎢⎣⎭.故选:D .二、多项选择题(共4小题,每小题5分,共20分.每小题有至少两个选项正确,少选且选正确得2分,错选不得分)8.下列选项中p 是q 的必要不充分条件的有()A.p :a ≤1,q :a <1B.p :A ∩B =A ,q :A ∪B =BC.p :两个三角形全等,q :两个三角形面积相等D.p :x 2+y 2=1,q :x =1,y =0【答案】AD 【解析】【分析】根据充分必要条件的定义分别判断即可.【详解】解:A :∵a <1⇒a ≤1,而当a ≤1时,不一定有a <1,∴p 是q 的必要不充分条件,∴A 正确,B :∵p :A ∩B =A ,∴A ⊆B ,∵q :A ∪B =B ,∴A ⊆B ,∴p 是q 的充要条件,∴B 错误,C :∵两个三角形全等⇒两个三角形面积相等,但两个三角形面积相等不一定推出两个三角形全等,∴p 是q 的充分不必要条件,∴C 错误,D :当x =1,y =0时,则x 2+y 2=1,反之,当x +y 2=1时,x =1,y =0不一定成立,∴p 是q 的必要不充分条件,∴D 正确,故选:AD .9.下列不等式解集为空集的有()A.x 2+2x +2≤0B.x 2+2x +1≤0C.|x +1|+|x +2|<1D.|x +1x|<2【答案】ACD 【解析】【分析】求解不等式的解集即可得到结果.【详解】对于A ,因为2222(1)10x x x ++=++≥,所以2220x x ++≤无解,解集为∅;对于B ,2221(1)0x x x ++=+≤的解集为{﹣1};对于C ,因为12(1)(2)1x x x x +++≥+-+=,所以121x x +++<的解集为∅;对于D ,因为112x x x x +=+≥=,所以12x x +<的解集为∅;故选:ACD .10.设a ,b 为正实数,则下列命题中是真命题的是()A.若221a b -=,则1a b -< B.若111b a-=,则1a b -<C.1=,则1a b -< D.若1a ,1b ,则1a bab--【答案】AD 【解析】【分析】结合不等式的基本性质,熟练应用作差比较进行运算,即可求解,得到答案.【详解】对于A 选项,由a ,b 为正实数,且221a b -=,可得1a b a b-=+,所以0a b ->,所以0a b >>,若1ab -≥,则11a b≥+,可得1a b +≤,这与0a b a b +>->矛盾,故1a b -<成立,所以A 中命题为真命题;对于B 选项,取5a =,56b =,则111b a -=,但5516a b -=->,所以B 中命题为假命题;对于C 选项,取4a =,1b =1=,但31a b -=>,所以C 中命题为假命题;对于D 选项,由1,1a b ≤≤,则()()()()2222222211110a b ab a b a b a b ---=+--=--,即()()221a b ab -≤-,可得1a b ab--,所以D 中命题为真命题.故选AD.【点睛】本题主要考查了不等式的性质的应用,其中解答中结合不等式的基本性质,熟练应用作差比较进行运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.已知关于x 的不等式23344a x xb ≤-+≤,下列结论正确的是()A.当1a b <<时,不等式23344a x x b ≤-+≤的解集为∅B.当1,4a b ==时,不等式23344a x xb ≤-+≤的解集为{}|04x x ≤≤C.不等式23344a x x b ≤-+≤的解集恰好为{}x a x b |≤≤,那么43b =D.不等式23344a x xb ≤-+≤的解集恰好为{}x a x b |≤≤,那么4b a -=【答案】ABD 【解析】分析】对于A ,由23344x x b -+≤,得23121640x x b -+-≤,再由判别式小于零,可得结果;对于B ,把1,4a b ==代入23344a x xb ≤-+≤中解不等式组可得结果;对于C ,D ,不等式23344a x xb ≤-+≤的解集恰好为{}x a x b |≤≤,而1a ≤,,因此,x a x b ==时函数值都是b ,从而解方程可得,a b 的值,进而可判断C ,D【详解】解:由23344x x b -+≤得23121640x x b -+-≤,又1b <,所以48(1)0b ∆=-<,从而不等式23344a x xb ≤-+≤的解集为∅,所以A 正确;当1a =时,不等式23344a x x ≤-+就是2440x x -+≥,解集为R ,当4b =时,23344x x b -+≤就是240x x -≤,解集为{}|04x x ≤≤,所以B 正确;当23344ax x b ≤-+≤的解集为{}x a x b |≤≤,2min 3(34)4a x x ≤-+,即1a ≤,因此,x a xb ==时函数23344y x x =-+值都是b ,由当x b =时,函数值为b ,得23344b b b -+=,解得43b =或4b =,当43b =时,由2343443a a b -+==,解得43a =或83a =,不满足1a ≤,不符合题意,所以C 错误;当4b =时,由233444a ab -+==,解得0a =或4a =,0a =满足1a ≤,所以0a =,此时404b a -=-=,所以D 正确,故选:ABD【点睛】关键点点睛:此题考查一元二次不等式的解法应用,解题的关键是当23344ax x b ≤-+≤的解集为{}x a x b |≤≤时,要先求出2min 3(34)14x x -+=,可得1a ≤,进而得,x a x b ==时函数23344y x x =-+值都是b ,先将x b =代入求解出b 的值,再代入x a =可求出a 的值三、填空题(共4小题,每小题5分,共20分.)12.方程2442(log)log 6x x -=的解是_______.【答案】18,16【解析】【分析】令4log x m =,则2442(log )log 6x x -=可化为2260m m --=,解方程即可.【详解】解:令4log x m =,则2442(log )log 6x x -=可化为2260m m --=,解得32m=-或2m =,即43log 2x =-或4log 2x =,解得18x =,或16x =;故答案为:18,16.13.不等式2112x x +≥+的解集为__________.【答案】{x |x ≥1或x <﹣2}【解析】【分析】利用移项,通分,转化整式不等式求解即可.【详解】由2112x x +≥+得21102x x +-≥+,即102x x -≥+,解得:x ≥1或x <﹣2,所以原不等式的解集为{x |x ≥1或x <﹣2}.故答案为:{x |x ≥1或x <﹣2}.14.已知正数a 、b 满足2a b +=,则12a ba b +++的最大值为______.【答案】75-【解析】【分析】由题意得出()()125a b +++=,将所求代数式变形为1221212a b a b a b ⎛⎫+=-+ ⎪++++⎝⎭,利用基本不等式求出1212a b +++的最小值,即可得出12a ba b +++的最大值.【详解】 正数a 、b 满足2a b +=,()()125a b ∴+++=.1122121211212121212a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭,由基本不等式得()()12125121212a b a b a b ⎛⎫⎛⎫+=++++⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭()21233321a b b a ++=++≥+=+++,即123125a b ++≥++,当且仅当)21b a +=+时,等号成立,3721255a b a b +-∴+≤-=++,因此,12a b a b +++的最大值为75-.故答案为:75-.【点睛】本题考查了利用基本不等式求最值,考查基本不等式的性质、变形方法,考查了推理能力与计算能力,属于中等题.15.若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12##0.5【解析】【分析】先令1x =,可得4a b c ++=,再根据222x ax bx c +≤++恒成立,可得2c a =+,22b a =-,由此可得12≤ab ,再验证符合22224ax bx c x x ++≤-+恒成立即可.【详解】解:令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2ca =+,此时22b a =-,∴2111(22)2(1)2()222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.四、解答题(答题时要写出必要的演算步骤和文字说明,共6小题,共70分.)16.设全集{|5Ux x =≤且*2},{|50}x N A x x x q ∈=-+=,2{|120}B x x px =++=且{}()1,3,4,5U C A B ⋃=,求实数,p q 的值.【答案】7p =-,6q =.【解析】【详解】试题分析:集合,A B 是方程的解集,从集合的运算可以发现,由{}()1,3,4,5U C A B ⋃=,知2U C A ∉,从而2A ∈,由此可求得q ,从而得{2,3}A =,再由{}()1,3,4,5U C A B ⋃=知3B ∈,代入可得q .试题解析:∵2UC A ∉,∴2A ∈;将2x =代入250x x q -+=得:6q =;∴{}22{|50}{|560}2,3A x x x q x x x =-+==-+==,{}1,4,5U C A =;又∵{}()1,3,4,5U C A B ⋃=,∴3B ∈,将3x =代入2120x px ++=得:7p =-;∴{}22{|120}{|7120}3,4B x x px x x x =++==-+==适合{}()1,3,4,5U C A B ⋃=;所以得:7p =-,6q =考点:集合的运算.17.已知2:870p x x -+≤,:23q m x m ≤≤+.(I )是否存在m ,使得p 是q 的充要条件?若存在,求m 的值,若不存在,请说明理由:(II )从下面三个条件中任选一个,求m 的取值范围.①p 是q 的必要条件②q 是p 的充分条件③p ⌝是q ⌝的充分条件【答案】(I )不存在,理由见解析;(II )1,2⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(I )求出不等式的等价条件,结合充要条件的定义建立方程进行求解即可;(II )根据所选条件,利用集合的子集关系进行求解即可.【详解】解:(I )由2870x x -+≤,解得:17x ≤≤,若p 是q 的充要条件,则2137m m =⎧⎨+=⎩,即124m m ⎧=⎪⎨⎪=⎩,此时方程组无解,即不存在m ,使p 是q 的充要条件;(II )设命题p 对应的集合为[]1,7A =,命题q 对应的集合为[]2,3B m m =+,若选①,p 是q 的必要条件,则B A ⊆,当B =∅时,23m m >+,即3m>成立;当B ≠∅时,3m ≤且2137m m ≥⎧⎨+≤⎩,解得:132m ≤≤,综上所述:1,2m ⎡⎫∈+∞⎪⎢⎣⎭;若选择②,q 是p 的充分条件,则B A ⊆,当B =∅时,23m m >+,即3m >成立;当B ≠∅时,3m ≤且2137m m ≥⎧⎨+≤⎩,解得:132m ≤≤,综上所述:1,2m ⎡⎫∈+∞⎪⎢⎣⎭;若选择③,p ⌝是q ⌝的充分条件,即q 是p 的充分条件,则B A ⊆,当B =∅时,23m m >+,即3m>成立;当B ≠∅时,3m ≤且2137m m ≥⎧⎨+≤⎩,解得:132m ≤≤,综上所述:1,2m ⎡⎫∈+∞⎪⎢⎣⎭.18.(1)已知,x y 均为正数,4x y xy +=,求x y +的最小值;(2)010.256371.586-⎛⎫⨯-++ ⎪⎝⎭(3)已知14x x -+=,求3322x x -+的值.【答案】(1)9;(2)218;(3).【解析】【分析】(1)由0,0x y >>,4x y xy +=化简得141y x +=,144()5x y x y x y yx y x⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求最值;(2)利用幂运算的性质化简即可;(3)由14x x -+=得1122x x -+==【详解】解:(1)∵0,0x y >>,4x y xy +=,∴141y x+=,∴144()559x y x y x y y x y x⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4x y y x =,即6,3x y ==时,等号成立),故x y +的最小值为9;(2)010.256371.586-⎛⎫⨯-++ ⎪⎝⎭113133344222633+⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭2216218=+=(3)∵14x x -+=,∴1122x x-+==故3322x x -+11122(1)x x x x --⎛⎫=++- ⎪⎝⎭=19.(1)对任意R x ∈,关于x 的不等式23x ax a ++≥恒成立,求实数a 的取值范围;(2)存在1x <,关于x 的不等式23x ax a ++≤有实数解,求实数a 的取值范围.【答案】(1){}62a a -≤≤(2){}2a a ≥【解析】【分析】(1)根据给定条件借助0∆≤即可求得实数a 的取值范围.(2)根据给定条件分离参数,再利用均值不等式计算即得.【小问1详解】因对任意R x ∈,不等式23x ax a ++≥恒成立,则230x ax a ++-≥对任意R x ∈恒成立,于是得:()2430a a ∆=--≤,解得62a -≤≤,所以实数a 的取值范围是{}62a a -≤≤.【小问2详解】当1x <时,222(1)2(1)443(1)3(1)211x x x ax a a x x a x x x ---+++≤⇔-≥+⇔≥=-+---,因存在1x <,不等式23x ax a ++≤有实数解,则存在1x <,不等式4(1)21a x x ≥-+--成立,当1x <时,10x ->,则4(1)2221x x -+-≥=-,当且仅当411x x -=-,即1x =-时取“=”,于是得2a ≥,所以实数a 的取值范围是{}2a a ≥.20.某风投公司到一开发区投资72万元建起一座小型工厂.第一年共支出12万元,以后每年支出增加4万元,从第一年起每年产品产值50万元.设y 表示前n 年的纯利润总和(y =前n 年的产品总产值﹣前n 年的总支出﹣投资额).(1)该风投公司从第几年开始盈利?(2)若干年后,风投公司决定投资更有前景的开发区,对该开发区的小型工厂有两种该风投公司处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂.试通过计算,比较两种方案,并作简要说明.参考公式:n ∈N *,1+2+3+•••+n ()12n n +=.【答案】(1)第三年(2)选择方案①更合算,说明见解析【解析】【分析】(1)根据题意计算出前n 年的总支出y ,若盈利,则y >0,求得盈利年份;(2)分别按照两种方案计算总获利,并比较获利最大化所需要的年份,从而判断选择的方案.【小问1详解】前n 年的总支出为12+16+•••+[12+4(n ﹣1)]=12n +[0+4+•••+4(n ﹣1)]=12n +4[1+2+•••+(n ﹣1)]=12n +4•()12n n -=2n 2+10n ,所以y =50n ﹣(2n 2+10n )﹣72=﹣2n 2+40n ﹣72,若盈利,则y >0,所以﹣2n 2+40n ﹣72>0,解得2<n <8,故从第三年开始盈利;【小问2详解】方案①:年平均纯利润为3640240216y n n n ⎛⎫=-+≤-⨯ ⎪⎝⎭,当且仅当n =6时取等号,故方案①共获利6×16+48=144万元;方案②:y =﹣2(n ﹣10)2+128≤128,当n =10时取等号,故方案②共获利128+16=144万元.比较两种方案,都是获利144万元,但由于方案①只需要6年,而方案②需要10年,且风投公司是投资更有前景的开发区,故选择方案①更合算.21.已知a 为常数,二次函数y =x 2﹣ax +a +3.(1)若该二次函数的图象与x 轴有交点,求a 的取值范围;(2)已知y ≥4,求x 的解集;(3)若存在x∈[2,4],使y=0成立,求a的取值范围.【答案】(1)a≤﹣2或a≥6(2)答案见解析(3)[6,7]【解析】【分析】(1)首先求出b2﹣4ac的值,进而配方求出其符号,进而得出答案;(2)将不等式化简为(x﹣1)[x﹣(a﹣1)]≥0,然后对两根1,a﹣1分三种情况讨论即可;(3)由题意可将条件化为∃x∈[2,4],使得a=231xx+-成立,求出231xx+-在x∈[2,4]时的值域,即为a的范围.【小问1详解】由题意可得△=(﹣a)2﹣4(a+3)≥0,解得a≤﹣2或a≥6;【小问2详解】由y=x2﹣ax+a+3≥4,可得(x﹣1)[x﹣(a﹣1)]≥0,当a﹣1>1时,即a>2,不等式解集为(﹣∞,1]∪[a﹣1,+∞),当a﹣1=1时,即a=2,不等式解集为R,当a﹣1<1时,即a<2,不等式解集为(﹣∞,a﹣1]∪[1,+∞),综上所述:当a>2,不等式解集为(﹣∞,1]∪[a﹣1,+∞),当a=2,不等式解集为R,当a<2,不等式解集为(﹣∞,a﹣1]∪[1,+∞);【小问3详解】若存在x∈[2,4],使y=x2﹣ax+a+3=0成立,即∃x∈[2,4],使得a=231xx+-成立,令x﹣1=t,t∈[1,3],x=t+1,则231xx+-=2(1)34226 ttt t++=++≥+=,当且仅当t=4t,即t=2,x=3时等式成立,因为t=1时,42tt++=7,t=3时,42tt++=193,所以a=231xx+-∈[6,7],所以a的取值范围为[6,7].。

2020-2021学年南京金陵中学高一上数学10月第一次考试卷+答案(解析版)

2020-2021学年南京金陵中学高一上数学10月第一次考试卷+答案(解析版)

注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 3 页,包含单项选择题(第 1 题~第 8 题)、多项选择题(第 9 题~第 11 题) 填空题(第 12 题~第 16 题)、解答题(第 17 题~第 22 题)四部分。

本试卷满分 150分,考试时间为 120 分钟。

考试结束后,请将答题卡上交。

2. 考生在作答时必须使用 0.5 毫米的黑色墨水签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

2020 级高一年级第一学期阶段性测试数学命题人 高一数学备课组一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集 U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(∁U M )∩N 等于( ▲ ).A .{2,3,4}B .{3}C .{2}D .{0,1,2,3,4}答案 B2.设 P (x ,y ),则“x =2 且 y =-1”是“点 P 在一次函数 y =-x +1 的图象上”的( ▲ ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A3.设 a >b ,c >d ,则下列不等式中一定成立的是( ▲ ). A .a -c >b -d B .ac >bd C .a +c >b +dD .a +d >b +c答案C4.已知集合 A = x -40,x ∈Z },B ={m ,2,8},若 A ∪B =B ,则 m =( ▲ ). x -1 A .1B .2C .3D .5答案 C5.若不等式 x 2+ax +4<0 的解集为空集,则 a 的取值范围是( ▲ ) A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞)答案 A6.已知 x >2,则函数 y = 4+4x 的最小值是( ▲ ).x -2A .6B .8C .12D .16答案 D{x |<[ , 7.设全集U =R ,M ={x |x <-2 或x >2},N ={x |1≤x ≤3}.如图所示,则阴影部分所表示的集合为( ▲ ).A .{x |-2≤x <1}B .{x |-2≤x ≤3}C .{x |x ≤2 或 x >3}D .{x |-2≤x ≤2}答案 A8. 定义一个集合 A 的所有子集组成的集合叫做集合 A 的幂集,记为 P (A ),用 n (A )表示有限集 A 的元素个数,给出下列命题:①对于任意集合 A ,都有 A ⊆P (A );②存在集合 A ,使得 n [P (A )]=3;③若 A ∩B = ∅,则 P (A )∩P (B )=∅;④若 A ⊆B ,则 P (A )⊆P (B );⑤若 n (A )-n (B )=1,则 n [P (A )]=2×n [P (B )].其中正确的命题个数为( ▲ ). A .5 B .4 C .3 D .2答案 D二、选择题:本题共 3 小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多项符合题目要求.全 部选对得 5 分,有选错的得 0 分,部分选对的得 3 分.9. 下列命题中是真命题的是( ▲ ).A .∀x ∈R ,2x 2-3x +4>0B .∀x ∈{1,-1,0},2x +1>0C .∃x ∈N ,使 x ≤xD .∃x ∈N *,使 x 为 29 的约数答案 ACD10. 已知 p :x 2+x -6=0;q :ax +1=0.若 p 是 q 的必要不充分条件,则实数 a 的值可以是( ▲ ).A .-2B 1C 1D 1答案 BC.-2.3 .-311. 已知函数 y =x 2+ax +b (a >0)有且只有一个零点,则( ▲ ).A .a 2-b 2≤4B. a 2 1 4+b ≥C. 若不等式 x 2+ax -b <0 的解集为(x 1,x 2),则 x 1x 2>0D. 若不等式 x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则 c =4答案 ABD三、填空题:本题共 5 小题,每小题 5 分,共 25 分.12.集合 A ={x |x 2-8x +15=0},B ={x|x 2-ax +b =0},若 A ∪B ={2,3,5},A ∩B ={3},则 ab = ▲.答案30.13.若关于 x 的不等式 ax +b >0 的解集为(1,+∞),则 a 11 的最小值为 ▲ .答案 3 14x -m +1 -b +1 1.若不等式 <0 成立的一个充分不必要条件是 <x < ,则实数 m 的取值范围是 ▲ .x -2m3 2 答案: 1 44 3⎧a 2=ma -1,15. 若存在两个互不相等的实数 a ,b ,使得⎨ 2 成立,则实数 m 的取值范围是 ▲.⎩b =mb -1.答案:(-∞,-2)∪(2,+∞).16. 已知正实数 x ,y 满足 5x 2+4xy -y 2=1,则 12x 2+8xy -y 2 的最小值为 ▲.答案 73].2 1 2 1 2 1 1 2 2 <2四、解答题:本题共 6 小题,共 70 分. 17.(本小题 10 分)44 1(1) 计算+ 0.062 5+⎛ ⎫-2;(2)解不等式 6-2x ≤x 2-3x <18.⎝25⎭ 25 27 1625 1 4 15 3 1 5 解 (1)原式=( )2-( )3+( )4+⎛ ⎫-2=- + +=4 .................................................... 4 分 4 8 10000 ⎝25⎭2 2 2 2⎧⎪6-2x ≤x 2-3x , (2) 原不等式等价于⎨ ⎪⎩x 2-3x <18, ⎧⎪x ≤-2或x ≥3,⎧⎪x 2-x -6≥0,即⎨ ⎪⎩x 2-3x -18<0, ⎧⎪(x -3)(x +2)≥0,因式分解,得⎨⎪⎩(x -6)(x +3)<0, 所以⎨ ⎪⎩-3<x <6,…………………………8 分所以-3<x ≤-2 或 3≤x <6.所以原不等式的解集为{x |-3<x ≤-2 或 3≤x <6}. ................... 10 分 评分说明:两个不等式如果只解对一个得两分18.(本小题 10 分)若 x 1 和 x 2 分别是函数 y =2x 2+4x -3 的两个零点.(1)求|x 1-x 2|的值;(2)求 x 3+x 3的值.12解:由题知 x 1,x 2 即为方程 2x 2+4x -3=0 的两根x 1+x 2=-2,x 1x 2=-3. ................................................ 2 分(1)|x 1-x 2|= (x 1+x 2)2-4x 1x 2 = 10. ..................................... 5 分(2)x 3+x 3=(x +x )(x 2-x x +x 2) ................................................................................ 7 分=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]=-17. .................................. 10 分评分说明:如果学生直接求出 x 1、x 2,再代入求值,按相应小问给分. 19.(本小题 12 分)设集合 A ={x |-1≤x ≤2},非.空.集合 B ={x |2m <x <1}. (1) 若“x ∈A ”是“x ∈B ”成立的必要条件,求实数 m 的取值范围; (2) 若 B ∩(∁R A )的元素中只有两个整数,求实数 m 的取值范围.解 (1)∵B ≠∅∴2m <1,解得 m 1………………………………………2 分若“x ∈A ”是“x ∈B ”成立的必要条件,则 B ⊆A , .......................... 4 分∵A ={x |-1≤x ≤2},∴2m ≥-1 1 m 1 ,解得-2≤ <2,⎡ 1 1⎫综上所述,实数 m 的取值范围是⎣-2,2⎭. ............................. 6 分 (2)∵A ={x |-1≤x ≤2},∴∁R A ={x |x <-1 或 x >2}, ........................................ 8 分 B ={x |2m <x <1},若(∁R A )∩B 中只有两个整数,则必为-2,-3,所以-4≤2m <-3, ............................................. 10 分得-2≤m 3<-2;⎡-23⎫ 综上,实数 m 的取值范围是⎣ ,-2⎭. ............................ 12 分2 2 2 2 20.(本小题 12 分)精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品x +3销售量 w 万件(生产量与销售量相等)与推广促销费 x 万元之间的函数关系为 w = 2 (其中推广促销费不能超过 5 万元).已知加工此农产品还要投入成本 3⎛w +3⎫万元(不包括推广促销费用),若加工后的每件成品⎛4 30⎫⎝ w ⎭ 的销售价格定为⎝ + w ⎭元/件.(1) 试将该批产品的利润 y 万元表示为推广促销费 x 万元的函数;(利润=销售额-成本-推广促销费)(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?⎛4 30⎫⎛ 3⎫ 解 (1)由题意知 y =⎝ + w ⎭w -3⎝w +w ⎭-x=w +30 9x-w -63 x 18 = 2 -2- ,........................................... 4 分 x +3∴y 63 x 18 = - - x +3 (0≤x ≤5)......................................... 6 分 (2)∵y 63 x18 ,= - - x +3 ∴y 63 1⎛x36 ⎫ = 2 -2⎝ x +3⎭=331⎡(x +3) 36 ⎤ 8 分 -2⎣ x +3⎦……………………………………… ≤33 1 -2=27.当且仅当 x =3 时,上式取“=”.∴当 x =3 时,y max =27. ............... 11 分 答:当推广促销费投入 3 万元时,此批产品的利润最大为 27 万元. ............ 12 分 评分说明:自变量的取值范围不写扣两分,若写成 0<x ≤5 不扣分;没有答扣 1 分.+ +⎨ ≥321.(本小题 12 分) 已知 y =-3x 2+a (6-a )x +12.(1) 若不等式 y >b 的解集为(0,3),求实数 a ,b 的值;(2) 若 a =3 时,对于任意的实数 x ,都有 y ≤3x +9m 2-6m ,求 m 的取值范围. 解 (1)∵y >b 的解集为(0,3),∴方程-3x 2+a (6-a )x +12-b =0 的两根为 0,3,⎧3=a (6-a ),⎪ 3∴ 12-b………………………………………2 分 ⎪⎩0=-3 ,⎧⎪a =3, 解得⎨⎪⎩b =12,………………………………………4 分∴经检验:a ,b 的值分别为 3,12 时不等式 y >b 的解集为(0,3). ......... 5 分(2) 法一:当 a =3 时,y =-3x 2+9x +12,由 y ≤3x +9m 2-6m 恒成立得 -3x 2+6x +12≤9m 2-6m即 x 2-2x -4+3m 2-2m ≥0 恒成立...................................... 7 分 又二次不等式对应的函数 y =x 2-2x -4+3m 2-2m 开口向上所以 △=4-4(-4+3m 2-2m )≤0 ...................................................................... 10 分 化简得:3m 2-2m -5≥0解得:m ≤-1 或 m 5≥3综上,m 的取值范围为(-∞,-1]∪ 5) .......................................................... 12 分 法二:[3,+∞ 当 a =3 时,y =-3x 2+9x +12,由 y ≤3x +9m 2-6m 恒成立得 9m 2-6m ≥-3x 2+6x +12即 3m 2-2m ≥-x 2+2x +4 恒成立 ......................................... 7 分 又-x 2+2x +4=-(x -1)2+5,即 3m 2-2m ≥5, ....................................................... 10 分 解得 m ≤-1 或 m 5综上,m 的取值范围为(-∞,-1]∪ 5) .......................................................... 12 分 [3,+∞2 22.(本小题 14 分)设函数 y =ax 2+x -b (a ∈R ,b ∈R ). (1) 若 b =a 5 {x |y =0}中有且只有一个元素,求实数 a 的取值集合;-4,且集合(2) 求不等式 y <(2a +2)x -b -2 的解集;(3) 当 a >0,b >1 时,记不等式 y >0 的解集为 P ,集合 Q ={x |-2-t <x <-2+t }.若对于任意正数 t ,P∩Q ≠∅ 1 1,求a -b 的最大值. 解 (1) 当 b =a 5 y =ax 2+x -a 5-4时, +4因为集合{x |y =0}中有且只有一个元素, ①当 a =0 时,x 5 0,得 x 5+4= =-4,此时满足题意;②当 a ≠0 时,令 y =0,得 ax 2+x -a 5 0,Δ=1+4a (a 5 =0,解得 a =1 1+4= -4) 或4综上:a 的取值集合为{0 11} .............................................................................. 3分,4,(2) 由 y <(2a +2)x -b -2 得 ax 2-(2a +1)x +2<0,即(ax -1)(x -2)<0. ⎛x 1⎫(Ⅰ)当 a >0 时,不等式可以化为⎝ -a ⎭(x -2)<0.1 1 ⎛2 1⎫①若 0<a <2,则a >2,此时不等式的解集为⎝ ,a ⎭;②若 a 1(x -2)2<0,不等式的解集为∅;=2,则不等式为 1 1 ⎛1 ⎫③若 a >2,则a <2,此时不等式的解集为⎝a ,2⎭. ........................... 6分(Ⅱ)当 a =0 时,不等式即-x +2<0,此时不等式的解集为(2,+∞). ......... 7分 ⎛x 1⎫ ⎛ 1⎫(Ⅲ)当 a <0 时,不等式可以化为⎝ -a ⎭(x -2)>0,解集为⎝-∞,a ⎭∪(2,+∞).8分 综上所述, ⎛ 1⎫当 a <0 时,不等式的解集为⎝-∞,a ⎭∪(2,+∞);当 a =0 时,不等式的解集为(2,+∞);1 ⎛2 1⎫当 0<a <2时,不等式的解集为⎝ ,a ⎭;当 a =1时,不等式的解集为∅;1 ⎛1 ⎫ 当 a >2时,不等式的解集为⎝a ,2⎭. ...................................... 9 分 (3) 集合 Q ={x |-2-t <x <-2+t },对于任意正数 t ,-2∈Q ,又 P ∩Q ≠∅,所以满足当 x =-2 时,函数 y ≥0,即 4a -2-b ≥0,所以 4a ≥b +2>3, ................................ 11 分 1 1 4 1 3b -2 t +2 a -b ≤ -b = ,记 t =3b -2>1,此时 b = 3 ,b +2 b (b +2) 1 1 4 1 3b -2 9t 9 1 则a -b ≤ -b = = = 16 ≤2,b +2 b (b +2) (t +2)(t +8)t + t +10⎧a =1, 1 1 1当且仅当 t =4,即⎨ 时,a -b 有最大值2. ....................... 14 分⎩b =2. 评分说明:第二小问综上不写扣 1 分.。

【数学】20-21学年金陵中学高一10月月考数学试卷及答案

【数学】20-21学年金陵中学高一10月月考数学试卷及答案

四、解答题:本题共 6 小题,共 70 分. 17.(本小题 10 分)
(1)计算: 245- 3 338+4 0.062 5+245-12 ;(2)解不等式 6-2x≤x2-3x<18.
18.(本小题 10 分)若 x1 和 x2 分别是函数 y=2x2+4x-3 的两个零点. (1)求|x1-x2|的值;(2)求 x31+x32的值.
A.1
B.2
C.3
D.5
5.若不等式 x2+ax+4<0 的解集为空集,则 a 的取值范围是( ▲ )
A.[-4,4]
B.(-4,4)
C (-∞,-4]∪[4,+∞)
D.(-∞,-4)∪(4,+∞)
6.已知 x>2,则函数 y=x-4 2+4x 的最小值是( ▲ ).
A.6
B.8
C.12
D.16
7.设全集 U=R,M={x|x<-2 或 x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为( ▲ ).
B.-12
C.13
D.-13
11.已知函数 y=x2+ax+b(a>0)有且只有一个零点,则( ▲ ). A.a2-b2≤4 B.a2+1b≥4 C.若不等式 x2+ax-b<0 的解集为(x1,x2),则 x1x2>0 D.若不等式 x2+ax+b<c 的解集为(x1,x2),且|x1-x2|=4,则 c=4
2020 级高一年级第一学期阶段性测试 数学
命题人 高一数学备课组
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 3 页,包含单项选择题(第 1 题~第 8 题)、多项选择题(第 9 题~第 11 题)
填空题(第 12 题~第 16 题)、解答题(第 17 题~第 22 题)四部分。本试卷满分 150 分,考试时间为 120 分钟。考试结束后,请将答题卡上交。 2.考生在作答时必须使用 0.5 毫米的黑色墨水签字笔写在答题卡上的指定位置,在其它位 置作答一律无效。

2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案

2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案

2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3} 2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<03.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.15.(5分)函数y=的图象大致为()A.B.C.D.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<0【分析】根据特称命题的否定形式进行判断【解答】解:命题“∃x0∈R,x02﹣1≥0”的否定是∀x∈R,x2﹣1<0,故选:D.【点评】本题考查了命题的否定,属于基础题.3.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]【分析】可看出,要使得原函数有意义,需满足,然后解出x的范围即可.【解答】解:要使原函数有意义,则,解得且x≠﹣1,∴原函数的定义域为:.故选:D.【点评】本题考查了函数定义域的定义及求法,区间的定义,考查了计算能力,属于基础题.4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.1【分析】先研究函数在每一段的单调性,分别求出它们的最值,然后求解函数的最值,就是大中取大,小中取小.【解答】解:对于函数函数f(x)=,当x≤1时,f(x)=x2﹣2x+3.在(﹣∞,1]上递减;所以此时y min=f(1)=2,当x>1时,f(x)=x+≥2=2,当且仅当x=,取等号,综上可知原函数的最小值为:2.故选:C.【点评】本题考查分段函数的性质,一般来讲分段函数的处理原则:分段函数,分段处理.如本题求最值,应先在每一段上求它们的最大(小)值,最后大中取大.小中取小.5.(5分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除A,C,当x>0时,y=f(x)>0,故排除D,故选:B.【点评】本题考查了函数图象的识别,属于基础题.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]【分析】根据分段函数的单调性的判断方法建立不等式组,即可求解.【解答】解:要满足已知题意,只需,解得,故选:B.【点评】本题考查了分段函数的单调性,考查了学生解不等式的能力,属于基础题.7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)【分析】讨论a=0、a<0和a>0时,求出不等式有解时a的取值范围.【解答】解:a=0时,不等式为2x+1<0,有实数解,满足题意;a<0时,一元二次不等式为ax2+2x+1<0,不等式对应的二次函数开口向下,所以有实数解;a>0时,一元二次不等式为ax2+2x+1<0,应满足△=4﹣4a>0,解得a<1;综上知,a的取值范围是(﹣∞,1).故选:D.【点评】本题考查了不等式有解的应用问题,也考查了分类讨论思想,是基础题.8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4【分析】利用已知条件中理想数集的定义判断命题的真假,题目中给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【解答】解:对于①,设a=b∈G,显然有a﹣a∈G,即0∈G,故0是任何“理想数集”的元素,故①正确;对于②:当a=b时,显然有,则1+1,2+1,…,N+1∈M,所以N*∈M,故②正确;对于③:易知2∈P,而,故③错误;对于④:a,b∈Z,故1+2∈T,而,故④错误.故选:B.【点评】本题考查学生对于新定义题型的理解和把握能力,理解“理想数集”的定义是解决该题的关键,题目着重考察学生的构造性思维,属于难题.二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件【分析】根据偶函数的定义即可判断A;由增函数的定义即可判断B;由子集的定义即可判断C;由充分必要条件的定义即可判断D.【解答】解:对于A,“f(x)是定义在R上的偶函数”的含义是“对任意的x∈R,都有f(﹣x)=f(x)”,故A错误;对于B,“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f(x2)”,故B正确;对于C,由子集的定义可知C正确;对于D,若f(x)是定义在R上的奇函数,则f(0)=0,若f(x)是定义在R上的函数,且f(0)=0,不能得出f(x)为奇函数,例如f(x)=x2,故“f(0)=0”是“f(x)是奇函数”的必要条件,故D正确.故选:BCD.【点评】本题主要考查函数奇偶性单调性的定义,考查子集的定义,充要条件的定义,属于中档题.10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b【分析】由不等式的基本性质逐一判断即可.【解答】解:对于A,若ac2>bc2,则a>b,故A正确;对于B,若<0<,则a<0<b,故B错误;对于C,取a=9,b=1,c=2,d=3,满足a>b>0,ac>bd>0,但c<d,故C错误;对于D,若,则﹣=>0,则b>a,故D正确.故选:AD.【点评】本题主要考查不等式的基本性质,属于基础题.11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数【分析】由集合的基本运算即可判断A;判断定义域与解析式是否相同即可判断B;利用换元及对勾函数的性质即可判断选项C;由函数的奇偶性的定义即可判断D.【解答】解:对于A,设A,B是两个集合,若A∪B=A∩B,则A=B,故A正确;对于B,函数y==|x|,函数y==x,两函数定义域相同,解析式不同,故不是同一函数,故B错误;对于C,令t=≥,则y=+t在[,+∞)上单调递增,所以当t=时,取得最小值为,所以函数y=+的最小值为,故C错误;对于D,函数y=g(x)=xf(|x|),g(﹣x)=﹣xf(|﹣x|)=﹣xf(|x|)=﹣g(x),所以函数y=xf(|x|)是奇函数,故D正确.故选:BC.【点评】本题主要考查即可得基本运算,同一函数的判断,函数最值的求法,以及函数奇偶性的判断,属于中档题.12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x【分析】先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的减函数,由此判断各选项是否同时具备两个性质即可.【解答】解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f (x)为定义域上的减函数,对于A,f(x)=为定义域上的奇函数,但不是定义域上的减函数,其单调区间为(﹣∞,0),(0,+∞),故A不是“颜值函数”;对于B,f(x)=x2为定义域上的偶函数,故B不是“颜值函数”;对于C,函数f(x)=的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,故C是“颜值函数”.对于D,f(x)=﹣2x为定义域上的奇函数,且是定义域上的减函数,故D是“颜值函数”.故选:CD.【点评】本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的必要且不充分条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要且不充分条件,即0<x<5是|x﹣1|<1的必要且不充分条件故答案为:必要且不充分.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=2.【分析】根据题意,由函数的解析式可得f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,结合函数的奇偶性可得f(﹣1)﹣g(﹣1)=f(1)+g(1),即可得答案.【解答】解:根据题意,f(x)﹣g(x)=x2+x+2,则f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,又由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,则f(﹣1)﹣g(﹣1)=f(1)+g(1)=2.故答案为:2.【点评】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为1.【分析】由已知可转化为函数y=2a﹣2与函数y=|x﹣a|的图象只有一个交点,利用函数的图象性质即可求解.【解答】解:由已知可令a=|x﹣a|+2﹣a,可得:2a﹣2=|x﹣a|,可看成函数y=2a﹣2与函数y=|x﹣a|图象只有一个公共点,而函数y=|x﹣a|是以x=a为对称轴,最小值为0的函数,所以要满足题意只需令2a﹣2=0,即a=1,故答案为:1【点评】本题考查了函数的零点与方程根的关系,属于基础题.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为16.【分析】由=+++=++(+)(x+2y),利用基本不等式即可求得最小值.【解答】解:∵x>0,y>0,x+2y=2,∴=+++=++(+)(x+2y)=++4≥4+2=16,当且仅当=时,取得最小值16.故答案为:16.【点评】本题考查了利用基本不等式性质求最值问题,属于基础题.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.【分析】(1)利用对数的运算性质求解.(2)利用有理数指数幂的运算性质求解.【解答】解:(1)原式=2lg5+2lg2+lg5•lg20+(lg2)2=2+lg5•(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg5•lg2+(lg2)2=2+(lg5+lg2)2=2+1=3.(2)原式=1﹣+×=1﹣16+2=﹣13.【点评】本题主要考查了对数的运算性质和有理数指数幂的运算性质,是基础题.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.【分析】(1)可以求出集合A={x|x≤﹣2或x≥3},B={x|1<x<5},然后进行交集、并集和补集的运算即可;(2)根据B∩C=C可得出C⊆B,然后讨论C是否为空集:C=∅时,m﹣1>2m;C≠∅时,,然后解出m的范围即可.【解答】解:(1)A={x|x≤﹣2或x≥3},B={x|1<x<5},U=R,∴A∩B={x|3≤x<5},∁U A={x|﹣2<x<3},(∁U A)∪B={x|﹣2<x<5};(2)∵B∩C=C,∴C⊆B,①C=∅时,m﹣1>2m,解得m<﹣1;②C≠∅时,,解得;综上得实数m的取值范围为.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,子集的定义,考查了计算能力,属于基础题.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.【分析】(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c=0的解,然后结合方程的根与系数关系可求;(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,然后结合对称轴与已知区间的位置关系进行分类讨论可求.【解答】解:(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c =0的解,故,解得,b=﹣2,c=﹣3,(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,(i)即a≥2时,函数g(x)在[0,2]上单调递减,g(x)min=g(2)=﹣2a ﹣3=﹣4,解得,a=(舍),(ii)即a≤﹣2时,函数g(x)在[0,2]上单调递增,g(x)min=g(0)=﹣3≠﹣4,(舍),(iii)当0即﹣2<a<2时,函数g(x)在[0,2]上先减后增,g(x)min=g ()=﹣3﹣=﹣4,解得,a=4(舍)或a=0,综上,a=0.【点评】本题主要考查了二次函数与二次不等式的相互转化关系的应用及二次函数闭区间上最值的求解,体现了转化思想及分类讨论思想的应用.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?【分析】设车速为xkm/h,用x表示出油耗和行车时间,得出总费用关于x的函数,根据基本不等式求出费用最小值.【解答】解:设车速为xkm/h,耗油率m(x)=kx2,则由题意可得m(100)=10000k =,∴k==.∴从A地到B地消耗汽油的价钱为,司机的工资为=,故从A地到B地的总费用f(x)=≥2=300元.当且仅当,即x=80∈[60,120]时取等号.∴从A地到B地的车速是80km/h时,转运一次的总费用最低为300元.【点评】本题考查函数模型的选择及应用,考查函数解析式求解,函数最值的计算,属于中档题.21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.【分析】(1)由f(x)为奇函数,结合奇函数的定义代入可求;(2)结合单调性定义,设2≤x1<x2,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)中单调性即可求解函数最值.【解答】解:(1)因为f(x)=为奇函数,x≠0,所以f(﹣x)=﹣f(x),所以,整理可得,ax=0,所以a=0,(2)证明:由(1)可得f(x)==x+,设2≤x1<x2,则f(x1)﹣f(x2)=x1﹣x2+,=x1﹣x2+=(x1﹣x2)(1﹣)<0,所以f(x1)<f(x2),所以f(x)在区间[2,+∞)上是增函数;(3)由(2)可得f(x)=x在[2,4]上单调递增,故f(x)max=f(4)=5,f(x)min=f(2)=4,若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,所以1≤m2﹣2m﹣2,解得m≥3或m≤﹣1.【点评】本题主要考查了函数奇偶性及单调性的应用及判断,还考查了函数单调性在求解最值中的应用.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.【分析】(1)令x=y=0,可得f(0),再令y=﹣x,结合奇偶性的定义,即可得到结论;(2)分别选①②,将原不等式转化为﹣m>t2+2t+4对t∈[﹣3,2]成立或恒成立,结合参数分离和二次函数的最值求法,可得所求范围;(3)考虑g(x)=0与g(g(x))=3的解集相等,求得b=3,再由g(x)≤0的解集,结合判别式的符号和因式分解,可得所求范围.【解答】解:(1)令x=y=0,则f(0)=f(0)+f(0),即f(0)=0,再令y=﹣x,则f(0)=f(x)+f(﹣x),即f(﹣x)=﹣f(x),所以f(x)为R上的奇函数;(2)①存在t∈[﹣3,2].f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4对t∈[﹣3,2]成立,y=t2+2t+4=(t+1)2+3在t=﹣1时取得最小值4,则﹣m>3,即m<﹣3;选②任意t∈[﹣3,2],f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4在任意t∈[﹣3,2]恒成立,y=t2+2t+4=(t+1)2+3在t=2时取得最大值12,则﹣m>12,即m<﹣12;(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,可得g(x)=0与g(g(x))=3的解集相等,可得g(0)=3,即b=3,g(x)=x2+ax+3≤0,可得△=a2﹣12≥0,即a≥2(a≤﹣2舍去),又g(g(x)﹣3=(x2+ax+3)2+a(x2+ax+3)+3﹣3=(x2+ax+3)(x2+ax+3+a),由题意可得x2+ax+3+a≥0恒成立,可得△=a2﹣4(a+3)≤0,解得﹣2≤a≤6,又a>0,可得0<a≤6,综上可得2≤a≤6.【点评】本题考查抽象函数的奇偶性和单调性的判断和运用,以及不等式恒成立和成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京金陵中学2020—2021学年第一学期第一次月考
高一数学试卷
2020.10
一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(
U
M)N 等于
A .{2,3,4}
B .{3}
C .{2}
D .{0,1,2,3,4} 2.设P(x ,y ),则“x =2且y =﹣1”是“点P 在一次函数y =﹣x +1的图像上”的 A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 3.设a >b ,c >d ,则下列不等式中一定成立的是
A .a c b d −>−
B .ac bd >
C .a c b d +>+
D .a d b c +>+ 4.已知集合A =40, 1x x
x Z x ⎧−⎫
<∈⎨⎬−⎩⎭
,B ={m ,2,8},若A B =B ,则m =
A .1
B .2
C .3
D .5 5.若不等式2
40x
ax ++<的解集为∅,则a 的取值范围是
A .[﹣4,4]
B .(﹣4,4)
C .(−∞,﹣4][4,+∞)
D .(−∞,﹣4)(4,+∞)
6.已知x >2,则函数4
42
y x x =
+−的最小值是 A .6 B .8 C .12 D .16
7.设全集U =R ,M ={}
22x x x <−>或,N ={}
13x x ≤≤.如图所示,则阴影部分所表
示的集合为
A .{}21x x −≤<
B .{}
23x x −≤≤
C .{}
23x x x ≤>或 D .{}
22x x −≤≤ 第7题 8.定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为P(A),用n (A)表示有
限集A 的元素个数,给出下列命题:①对于任意集合A ,都有A ⊆P(A);②存在集合A ,使得n [P(A)]=3;③若A
B =∅,则P(A)
P(B)=∅;④若A ⊆B ,则P(A)⊆P(B);
⑤若n (A)﹣n (B)=1,则n [P(A)]=2×n [P(B)].其中正确的命题个数为
A .5
B .4
C .3
D .2
二、 多项选择题(本大题共3小题,每小题5分, 共计15分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.下列命题中是真命题的是 A .R x ∀∈,2
2340x
x −+> B .x ∀∈{1,﹣1,0},2x +1>0
C .N x ∃∈
x ≤ D .N x *
∃∈,使x 为29的约数 10.已知p :2
60x
x +−=;q :10ax +=.若p 是q 的必要不充分条件,则实数a 的值可
以是
A .﹣2
B .12−
C .13
D .13
− 11.已知函数2
y x ax b =++(a >0)有且只有一个零点,则
A .2
24a
b −≤
B .2
14a b
+
≥ C .若不等式2
0x
ax b +−<的解集为(1x ,2x ),则120x x >
D .若不等式2
x
ax b c ++<的解集为(1x ,2x ),且124x x −=,则c =4
三、填空题(本大题共5小题, 每小题5分,共计25分.请把答案填写在答题卡相应位置上)
12.集合A ={
}2
8150x x x −+=,B ={
}
2
0x x ax b −+=,若A
B ={2,3,5},A
B ={3},则ab = .
13.若关于x 的不等式0ax b +>的解集为(1,+∞),则1
1a b

+的最小值为 . 14.若不等式
102x m x m −+<−成立的一个充分不必要条件是11
32
x <<,则实数m 的取值范围
是 .
15.若存在两个互不相等的实数a ,b ,使得2
21
1
a ma
b mb ⎧=−⎪⎨=−⎪⎩成立,则实数m 的取值范围是

16.已知正实数x ,y 满足22541x xy y +−=,则22
128x xy y +−的最小值为 .
四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)
(11
24()25
−; (2)解不等式:2
62318x x x −≤−<.
18.(本小题满分12分)
若1x 和2x 分别是函数2
243y x x =+−的两个零点. (1)求12x x −的值; (2)求33
12x x +的值. 19.(本小题满分12分)
设集合A ={}
12x x −≤≤,非空集合B ={}
21x m x <<.
(1)若“x ∈A ”是“x ∈B ”成立的必要条件,求实数m 的取值范围; (2)若B (
R
A)的元素中只有两个整数,求实数m 的取值范围.
20.(本小题满分12分)
精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量w 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为3
2
x w +=
(其中推广促销费不能超过5万元). 已知加工此农产品还要投入成本3
3()w w
+
万元(不包括推广促销费用),若加工后的每件成品的销售价格定为30
(4)w
+
元/件. (1)试将该批产品的利润y 万元表示为推广促销费x 万元的函数;(利润=销售额﹣成本﹣推广促销费)
(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?
21.(本小题满分12分)
已知2
3(6)12y x a a x =−+−+.
(1)若不等式y >b 的解集为(0,3),求实数a ,b 的值;
(2)若a =3时,对于任意的实数x ,都有2
396y x m m ≤+−,求m 的取值范围.
22.(本小题满分14分)
设函数2
y ax x b =+−(a ∈R ,b ∈R).
(1)若b =a ﹣
5
4
,且集合{}0x y =中有且只有一个元素,求实数a 的取值集合; (2)求不等式(22)2y a x b <+−−的解集;
(3)当a >0,b >1时,记不等式y >0的解集为P ,集合Q ={}
22x t x t −−<<−+.若
对于任意正数t ,P Q ≠∅,求
11
a b
−的最大值.
江苏省南京金陵中学2020—2021学年第一学期第一次月考高一数学试卷参考答案
1.B 2.A 3.C 4.C 5.A 6.D 7.A 8.D 9.ACD 10.BC 11.ABD
12.30 13.3 14.[1
4

4
3
] 15.(−∞,﹣2)(2,+∞) 16.
7
3
17.
18.
19.
20.
21.
22.。

相关文档
最新文档