微晶玻璃

合集下载

微晶玻璃名词解释

微晶玻璃名词解释

微晶玻璃名词解释
微晶玻璃是一种具有特殊性能的玻璃材料,通常由玻璃粉末经过特殊处理而制成。

微晶玻璃具有许多优良的性质,如良好的耐温性、耐腐蚀性以及高透明度等,因此在许多领域都得到了广泛的应用。

微晶玻璃的制备过程通常采用以下步骤:首先将玻璃粉末加热至高温,然后加入适当的助熔剂,使其能够均匀地分散在玻璃粉末中。

接着,将混合物在高温下持续加热,使其不断形成晶核,并且促使玻璃粉末中的长石、石英和二氧化硅等物质发生化学反应,形成微晶结构。

这样就可以在玻璃粉末中形成许多微小的晶核,使得微晶玻璃具有更加均匀的晶粒结构和更加良好的光学性能。

微晶玻璃的主要性能特点包括:
1.高透明度:微晶玻璃具有极高的透明度,可以透过99%的阳光,使得其在光学领域应用广泛。

2.良好的耐温性:微晶玻璃具有出色的耐温性,可以承受温度高达600°C的极端高温环境,因此非常适合用于高温环境下的光学设备。

3.耐腐蚀性:微晶玻璃对于许多化学品和化学物质的耐腐蚀性非常好,因此在化学工业和制药行业中得到了广泛应用。

4.良好的机械性能:微晶玻璃具有出色的机械性能,可以轻松地承受压力和冲击负荷,因此非常适合用于机械部件和设备中。

总结起来,微晶玻璃是一种具有特殊性能的玻璃材料,其良好的光学性能、耐温性、耐腐蚀性和机械性能使得其在许多领域得到了广泛的应用。

微晶玻璃的结构特征

微晶玻璃的结构特征

微晶玻璃的结构特征微晶玻璃是一种具有特殊结构特征的材料,其独特的结构决定了其在光学、电子等领域的广泛应用。

本文将从晶体结构、非晶结构以及微晶结构三个方面介绍微晶玻璃的结构特征。

一、晶体结构晶体结构是指物质中原子或分子的有序排列方式。

晶体结构规整有序,具有周期性重复性。

微晶玻璃的晶体结构主要包括长程有序和短程有序两个部分。

1. 长程有序长程有序是指微晶玻璃中存在一定规则的排列方式,这种排列方式可以延伸到相对较大的距离。

长程有序使得微晶玻璃具有晶体的某些特性,例如热膨胀系数小、热导率高等。

2. 短程有序短程有序是指微晶玻璃中存在的局部有序结构,这种结构的范围较小,一般只涉及几个原子或分子的排列。

短程有序是微晶玻璃的一个重要特征,也是其与晶体和非晶体之间的过渡态。

二、非晶结构非晶结构是指物质中原子或分子的无序排列方式。

与晶体结构不同,非晶结构没有周期性重复性,呈现出类似于无规则堆积的状态。

微晶玻璃的非晶结构主要体现在局部有序和无序混杂的特点上。

1. 局部有序微晶玻璃的非晶结构中会存在一些小的局部有序区域,这些区域由于原子或分子的排列方式相对规整,具有一定的结构特征。

2. 无序混杂除了局部有序区域外,微晶玻璃的非晶结构中还存在大量的无序混杂区域,这些区域中的原子或分子排列方式几乎是随机的,没有明显的规则性。

三、微晶结构微晶玻璃的微晶结构是指晶体结构和非晶结构的混合状态。

微晶玻璃中的微晶区域由于晶体结构的存在,使得其具有一些晶体的特性,例如硬度较高、热稳定性好等。

微晶玻璃的微晶结构特征主要体现在以下几个方面:1. 微晶区域的大小微晶区域的大小是指微晶玻璃中晶体结构所占据的空间范围。

微晶玻璃中的微晶区域通常较小,一般在纳米到微米的尺度范围内。

2. 微晶区域的分布微晶玻璃中的微晶区域通常呈现分散分布的特点,这种分布方式使得微晶玻璃具有均匀的结构特征。

3. 微晶区域的形状微晶区域的形状可以是球形、棒状等不规则形状,这种形状多样性使得微晶玻璃具有更多的应用可能性。

微晶玻璃

微晶玻璃
不吸水、抗冻和抗渗性优异: 天然花岗岩装修的外墙壁,经长年雨雪淋浸, 会留下阴暗的色斑,原因为花岗岩有一定的吸水性。大理石即使是在室内 使用,也易出现水渍或色斑。而微晶玻璃因吸水率为零,表面干燥光亮, 雨雪洗新表面而不易侵蚀,具有天雨自涤的特点。
色调均匀: 采用天然石材装修墙面、地面,难免色差不一,而微晶玻璃生 产可以精确控制,易于获得类似彩色玻璃那样的颜色均匀性,使建筑物达 到更完美的装修效果。
线膨胀 系数可 调
• 热稳定性好(加热900℃骤然投入5℃ 耐磨
冷水而性能与高频瓷接近;
• 化学稳定性与硼硅酸玻璃相同,不怕酸 碱侵蚀。
优异 的抗 热震
• 可进行车、刨、磨 、钻、锯切和攻丝 等加工。其加工性能类似于铸铁,可加 工成各种形状复杂,精度要求高的产品
微晶 玻璃
良好的 可加工 性能
➢ 耐高温玻璃陶瓷
耐高温玻璃陶瓷是随着烧结法、溶胶一凝胶法等新工艺在玻璃陶瓷 制备中的应用而发展起来的。当玻璃陶瓷中析出如莫来石、尖晶石、 铯榴石等耐高温的晶体且含量较高时,材料可以耐很高的温度。如铯 榴石玻璃陶瓷中,不仅析出了这种耐高温微晶,还析出了一些莫来石 晶体,而且其残余玻璃相为晶体所包裹,所以这种材料在1420℃时的 压强为1012Pa。
➢ 溶胶-凝胶法:
首先将某些金属有机盐作为原料,使其均匀地溶解在乙醇中,并以醋酸作 为催化剂,在规定的温度下恒温加热,随时间变化,一部分溶剂挥发后,有 机金属盐不断水解并缩聚,溶液的浓度和黏度不断增大,并形成一种不可流 动的凝胶状态,然后在逐步进行热处理,最终获得微晶玻璃。
• 优点:其制备低温远低于传统方法;同时可以避免某些组分挥发、侵蚀容器、
枝状结构是由于晶体沿某些晶面或晶格方向生长而形成,它实质上是 种骨架结构,有种光敏玻璃陶瓷中的二硅酸锂晶体就属于这种结构。二硅 酸锂晶体比玻璃基体易溶于氢氟酸中,利用这种特性可进行酸刻蚀并制造 成图案尺寸精度高的电子器件。

2024年微晶玻璃市场发展现状

2024年微晶玻璃市场发展现状

2024年微晶玻璃市场发展现状引言微晶玻璃是一种独特的玻璃材料,具有细致的晶体结构和较高的硬度,因此在众多应用领域中得到了广泛的应用。

本文将对2024年微晶玻璃市场发展现状进行探讨,分析其应用领域和市场前景。

微晶玻璃的性质和特点微晶玻璃是一种非晶态玻璃,其晶体尺寸通常在纳米到微米级别,具有以下特点:1.高硬度:微晶玻璃硬度较高,通常在6-7级(摩氏硬度),相比普通玻璃更加耐磨损。

2.优异的光透性:微晶玻璃具有较高的透光率,可以有效地传递光信号,在光学设备领域有广泛应用。

3.优良的化学稳定性:微晶玻璃具有较低的化学活性,可以抵御大多数化学物质的侵蚀,具有良好的耐腐蚀性。

4.良好的热稳定性:微晶玻璃具有良好的热稳定性,在高温环境下也能保持较好的稳定性。

微晶玻璃的应用领域1.光学器件:由于微晶玻璃具有优异的光学特性,可以用于制造光学透镜、光学窗口等光学器件。

2.电子产业:微晶玻璃可以制成高硬度的显示屏保护层、触摸屏面板等电子产品的关键零部件。

3.医疗领域:微晶玻璃具有良好的生物相容性和耐腐蚀性,可以用于制造人工关节、医疗器械等医疗器械。

4.化工领域:微晶玻璃的化学稳定性使其成为化工设备的理想材料,被广泛应用于化工反应容器、传热设备等。

5.其他领域:微晶玻璃还可以应用于建筑、汽车、航空航天等领域,用于制造建筑玻璃、汽车玻璃、航空航天器件等。

2024年微晶玻璃市场发展现状当前,微晶玻璃市场正在快速发展,主要有以下几个方面的现状:1.市场规模扩大:随着微晶玻璃应用领域的不断拓展,市场需求不断增加,市场规模正在逐年扩大。

2.技术创新:微晶玻璃制备技术和加工技术在不断创新,使得微晶玻璃的制造成本不断降低,产能不断提升。

3.行业竞争激烈:由于微晶玻璃市场前景广阔,吸引了众多企业的关注,行业竞争激烈,需要不断提高产品质量和技术水平来保持竞争力。

4.地区分布不均:微晶玻璃市场的地区分布不均,目前国内一些发达地区的微晶玻璃产业比较集中,但其他地区的发展也逐渐加快。

微晶玻璃的定义

微晶玻璃的定义

微晶玻璃的定义微晶玻璃是一种新型的玻璃产品,也被称为粉晶玻璃、微晶质玻璃或云母玻璃。

它是一种由各种硼酸、氧化物和氟化物组成的玻璃陶瓷材料,主要通过高温烧制和快速冷却而形成。

与传统的玻璃相比,微晶玻璃具有更高的硬度、耐热性和耐腐蚀性,可以广泛应用于建筑、家居装饰、电子、医疗、航天等领域。

微晶玻璃的制作微晶玻璃的制作过程包括原料配比、混合、烧结和加工四个步骤。

原料配比微晶玻璃的主要原料包括氧化硅、碱金属氧化物、硼酸、氟化物、氧化钇、氧化镁等。

这些原料需要严格按照一定比例混合,以保证后续加工过程的稳定性和产品质量。

混合将原料混合在一起,并使用球磨机等装置将它们粉碎,以便更好地进行后续的烧结加工。

烧结将混合好的原料在高温下进行烧结,以形成微晶玻璃颗粒。

加工经过烧结后的微晶玻璃颗粒需要进行加工,以便制成各种形状和大小的产品。

加工方式包括切割、打磨、抛光等。

微晶玻璃的特性微晶玻璃具有以下主要特性:高硬度微晶玻璃比普通玻璃更硬,更耐划伤和磨损。

它的硬度接近于天然石英,可以有效降低产品的维护成本,延长寿命。

耐腐蚀性微晶玻璃的表面光洁度高,不易吸附污垢和油脂。

它还对酸、碱、盐溶液等腐蚀性物质具有很好的抵抗能力。

耐热性微晶玻璃的熔点较高,耐高温性能好,可以承受较高温度的蒸汽和火焰,不易变形和炸裂。

透明性微晶玻璃透明度高,可以通过调整成分和加工工艺改善其光学性能,使其具有更好的透光性和透明度。

微晶玻璃的应用微晶玻璃具有广泛的应用前景,可以用于以下方面:建筑微晶玻璃可以用于制作高档玻璃幕墙、楼梯扶手、实验室设备和医疗设备等。

它的高硬度、耐热性和耐腐蚀性可以有效保护建筑物和设备,延长使用寿命。

家居装饰微晶玻璃可以用于制作高档灯饰、花瓶、工艺品等家居装饰品。

它的优美外观和透明度可以为家居带来更高的精致感和品位。

电子微晶玻璃可以用于制造电容器、电池隔膜和触摸屏等电子产品。

它的高硬度和透明度可以使电子产品更加耐用和美观。

医疗微晶玻璃可以用于制作手术器械、人工器官、医疗设备和药品包装等医疗用品。

微晶玻璃透明的原理

微晶玻璃透明的原理

微晶玻璃是一种特殊的玻璃材料,其透明性能取决于其化学成分和微观结构。

以下是微晶玻璃透明的原理:
1. 纯净的化学成分:微晶玻璃通常采用高纯度的玻璃原料,如二氧化硅(SiO2)、硼三氧化物(B2O3)等,以确保玻璃中没有显著的杂质和不均匀性。

2. 均匀的微观结构:微晶玻璃的制备过程中需要严格控制玻璃的结晶和微观结构,使得玻璃内部的晶粒尺寸均匀,没有明显的气泡和夹杂物。

3. 光的透射和折射:由于微晶玻璃内部没有明显的结构不均匀性和杂质,光线在玻璃中的传播受到较小的散射和吸收,因此可以实现较高的透明度。

4. 表面处理:微晶玻璃的表面经过精细加工和抛光处理,可以减少表面粗糙度对光线的散射,提高玻璃的透明性能。

总的来说,微晶玻璃透明的原理是通过优化材料的化学成分、微观结构和表面处理,最大限度地减少光线在玻璃中的吸收和散射,从而实现较高的透明度。

微晶玻璃分类

微晶玻璃分类

微晶玻璃分类微晶玻璃是一种具有特殊纹理和光泽的玻璃材料。

它具有高质量的透明度和耐磨性,被广泛应用于建筑、家居装饰、电子产品和汽车等领域。

本文将从微晶玻璃的制备工艺、特点和应用方面进行分类介绍。

一、微晶玻璃的制备工艺微晶玻璃是通过特殊的制备工艺制成的。

首先,将玻璃坯料加热至高温状态,然后迅速冷却。

这一过程使得玻璃内部的晶体结构发生变化,形成微晶体。

随后,对玻璃进行进一步的热处理和加工,使其表面呈现出独特的纹理和光泽。

二、微晶玻璃的特点1. 纹理独特:微晶玻璃具有独特的纹理和光泽,能够使其与普通玻璃材料相区别。

2. 高透明度:微晶玻璃具有较高的透明度,能够有效传递光线,增加室内采光亮度。

3. 耐磨性强:微晶玻璃的表面硬度较高,具有较强的耐磨性,不易被刮花。

4. 耐腐蚀性好:微晶玻璃能够抵抗多种化学物质的腐蚀,具有较好的耐候性。

5. 防紫外线:微晶玻璃能够有效阻挡紫外线的侵入,对室内物品起到保护作用。

三、微晶玻璃的应用1. 建筑领域:微晶玻璃常用于建筑的外墙、隔断、天花板等装饰材料。

其独特的纹理和光泽可以增加建筑的美观度和现代感。

2. 家居装饰:微晶玻璃可以用于制作家具、橱柜、灯具等家居装饰品。

其高透明度和耐磨性能使得家居空间更加明亮和耐用。

3. 电子产品:微晶玻璃常用于电子产品的显示屏、触摸屏等部件。

其高透明度和防紫外线特性可以提升电子产品的显示效果和使用寿命。

4. 汽车领域:微晶玻璃广泛应用于汽车的前挡风玻璃、车窗等部件。

其耐磨性和防紫外线特性可以保护驾乘人员的安全和健康。

微晶玻璃是一种具有独特纹理和光泽的玻璃材料,具有高透明度和耐磨性的特点。

它广泛应用于建筑、家居装饰、电子产品和汽车等领域,为这些领域的产品增添了美观度和实用性。

随着科技的不断发展,微晶玻璃的制备工艺和应用领域也在不断创新和拓展,为人们的生活带来了更多便利与美好。

微晶玻璃的概念及分类

微晶玻璃的概念及分类

微晶玻璃的概念及分类玻璃是一种无规则结构的非晶态固体。

从热力学观点出发,它是一种亚稳态,较之晶态结构具有较高的内能,在一定条件下可转变为结晶态;但从动力学观点来看,玻璃熔体在冷却过程中,粘度的快速增加抑制了晶核的形成和长大,使其来不及转变为晶态,最终将玻璃熔体的无定形结构保留下来,形成一种具有硬度、刚性和脆性的固体形态的过冷液体。

微晶玻璃(glass-ceramics)是由特定组成的母玻璃在可控条件下进行晶化热处理,在玻璃基质上生成一种或多种晶体,使原来单一、均匀的玻璃相物质转变成了由微晶相和玻璃相交织在一起的多相复合材料。

美国常将微晶玻璃称为微晶陶瓷,日本称为结晶化玻璃,我国多称微晶玻璃。

微晶玻璃和普通玻璃的区别在于:在结构方面,前者具有多相结构,包含晶体相和玻璃相,后者仅为均质的玻璃体;在透光性方面,前者既可制备成透明体,也可制成具有各种纹理和色泽的不透明体,而后者一般是透明体;在力学性能方面,前者具有韧性,抗折强度大、抗冲击能力强,而后者具有脆性,易碎。

按母玻璃的基础成分,一般可将微晶玻璃分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐系统和磷酸盐系统等五大类。

应用较广的是铝硅酸盐系统,低膨胀和高抗弯强度Li2O-Al2O3-SiO2系统透明微晶玻璃是其中重要的一种,人们对该系统微晶玻璃的研究也最为透彻。

此外,同属铝硅酸盐系统的CaO-Al2O3-SiO2系统硅灰石质烧结法建筑装饰用微晶玻璃、MgO-Al2O3-SiO2和CaO-Al2O3-SiO2系统的矿渣微晶玻璃也被深入研究和广泛应用。

按微晶玻璃的特征性能,又可分为耐热微晶玻璃、耐磨微晶玻璃、耐腐蚀微晶玻璃、压电微晶玻璃、生物微晶玻璃等。

从整体上看,微晶玻璃具有结构致密、机械强度高、耐磨、耐腐蚀、抗热震、抗冻、抗风化等许多优良性质,已被广泛用于建筑、化工、电子、电工、生物医学、机械工程、航天、军事等领域。

其中,将微晶玻璃应用于建筑装饰领域,是微晶玻璃研发和应用的一个重要方向。

微晶玻璃成分

微晶玻璃成分

微晶玻璃(Microcrystalline Glass)是一种特殊类型的玻璃材料,其组分可以根据具体制备工艺和应用而有所不同。

然而,一般来说,微晶玻璃的成分通常包括以下几种主要成分:
硅氧化物(SiO2):硅氧化物是玻璃的主要成分之一,它赋予玻璃强度和稳定性。

铝氧化物(Al2O3):铝氧化物可以改善玻璃的熔融性和物理性能。

锂氧化物(Li2O):锂氧化物的添加可以促进微晶玻璃的结晶,提高其耐热性和力学性能。

钙氧化物(CaO):钙氧化物通常被用作玻璃的网络调节剂,有助于控制玻璃的熔融性和稳定性。

镁氧化物(MgO):镁氧化物可以影响微晶玻璃的热膨胀系数和机械性能。

钠氧化物(Na2O)和钾氧化物(K2O):这些碱金属氧化物可以影响玻璃的熔融性、抗击热冲击性和电学性能。

其他氧化物:微晶玻璃的成分还可能包括少量的其他金属氧化物,以及特定添加剂,以实现特定的性能要求。

需要注意的是,不同制备工艺和厂家可能会使用不同的成分比例和添加剂,以获得特定的微晶玻璃性能。

因此,具体微晶玻璃的成分可能会有所变化。

微晶玻璃

微晶玻璃

微晶玻璃、光导纤维玻璃、激光玻璃、
光色玻璃、半导体玻璃、非线性光学玻璃、 磁功能玻璃、生物玻璃、机械功能玻璃以及 功能玻璃薄膜等。
12
第一节
微晶玻璃
微晶玻璃是指通过玻璃热处理来控制晶 体的生长发育而获得的一种多晶材料。它既
有玻璃的基本性能,也有陶瓷多晶体的特征。 Glass Ceramic
13
将加有成核剂的特定组成的基础玻 璃,在一定温度下热处理后,就会变成 具有微晶体和玻璃相均匀分布的复合材
21

堇青石
堇青石(Iolite)属斜方晶系,化学式为 Mg2Al4Si5O18 ,硬度为7.5 ~ 8,比重为2.57~2.61, 折射率为1.542 ~ 1.551,断口处呈油脂光泽。
22

堇青石的颜色很像蓝宝石,但是,由于常含有
水,所以又称为水蓝宝石。
由于堇青石具有蓝宝石的颜色及有光泽且价格 便宜,因此更被戏称为穷人家的蓝宝石。
16
若将晶体尺寸控制在一定范围内,则可制成 透明或半透明材料。 组成成分在Li2O--SiO2和Li2O--2SiO2区的微 晶,利用晶体与玻璃对氢氟酸侵蚀性能的差别, 通过光刻可以制成薄板电子元件。
17
微晶玻璃的发现是玻璃材料发展史上的一个新
的里程碑,它大大地丰富了玻璃结构的研究内容,
同时也开发了数以千计的微晶玻璃新材料。
60
Ag Nanoclusters
Coloration
Decoloration
61
2.氧化物成核剂
常用的氧化物成核剂有TiO2、ZrO2和P2O5。 它们易溶于硅酸盐玻璃,配位数较高,并且 阳离子的场强较大,在热处理过程中,容易从硅
56
微晶玻璃结晶过程中的核化与晶化多数属于非 均相核化的类型。

第六节-微晶玻璃

第六节-微晶玻璃
第六节 微晶玻璃
一、定义、结构、形成、特点、分类及用途
• 1.定义 微晶玻璃:具有微晶体的玻璃。又称
玻璃陶瓷 , 玻璃水晶 是综合陶瓷和玻璃技术发展起来的新材料,具有玻璃和陶瓷的双重性能。把加 有晶核剂或不加晶核剂的特定组成的玻璃,在有控条件下进行晶化热处理, 使原单一的玻璃相形成了有微晶相和玻璃相均匀分布的复合材料。
化工:防腐材料 国防:火箭头部的雷达 罩 美国 航空运输 国际上欧洲 日本 用途建筑:幕墙,高档装饰 材料 告诉切削车刀 轴承 活塞 工矿: 汽轮机零件 内燃机零件 材: ,优于天然石材 科研民用:微晶玻璃板 21世纪最新建筑装饰材料 电子工业:绝缘材料, 大规模集成电路的底板 ,微波炉耐热系列新型 材料(器皿)
玻璃:内部原子排列没有规则,是玻璃易碎的原因之一 微晶玻璃:象陶瓷一样,由晶体组成,原子排列有规律。 所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。
微晶玻璃历史
年代 50年代 60年代 70年代 80年代 90年代
微晶 玻璃
首次研 究成功
矿渣微晶玻璃(苏联) 人造玄武石(捷克斯洛伐 克) 人造蛋白石(美国) 缺点:无漂亮的外观
4.2~6. 0
6 5~3
5 ~5.5
600 130
130~57 0
2.7 2.7 2.7
0.08 10.0 0.10
0.05
0.08
0
0.028
62
1.6
0.19
89
80
4
2059
0.30
0.19
0.3 0.3 5
0.23
80~2 60 80~1 50
2.2~2. 3 2.1~2. 4

微晶玻璃

微晶玻璃

.1 绪论1.1 微晶玻璃的定义1.1.1 定义及特性微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。

玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。

从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。

微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。

微晶玻璃既不同于陶瓷,也不同于玻璃。

微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。

微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。

另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。

尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。

微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。

如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。

并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。

微晶玻璃

微晶玻璃

第三节 制备工艺
生产方法
• 压延法: 是将生料融成玻璃液,然后将玻璃液压 延,经热处理再切割成板材。 • 烧结法 是先将生料熔融成玻璃液,淬冷成碎料, 然后将碎料倒人模具铺平,放人窑炉中热处 理得到微晶玻璃板材。 • 两者各具优缺点,前者能连续流水生产、热 耗低,但品种单一;后者能做到品种多样, 但工艺复杂,对模具要求高,成品气泡多是 其主要的弱点。
实例——矿渣微晶玻璃:
• 矿渣微晶玻璃的主要原料是: 高炉矿渣(62%一78% 高炉矿渣(62%一78%) 硅石(22%一38% 硅石(22%一38%)和其他非铁冶金渣等。 • 一般需要由下列化合物组成: 二氧化硅40%一70%, 二氧化硅40%一70%, 三氧化二铝5%一15%, 三氧化二铝5%一15%, 氧化钙15%一35%, 氧化钙15%一35%, 氧化镁2%一12%, 氧化镁2%一12%, 氧化钠2%一12%, 氧化钠2%一12%, 晶核剂5%一10%。 晶核剂5%一10%。
烧结法原理:
• 目前建筑用微晶玻璃均采用烧结法; • 基本原理是:玻璃是一种处于一种亚稳状态的非晶态固 体, 从热力学观点看,在一定条件下,可以转化为结晶 态。 从动力学观点来看,玻璃熔体在冷却过程中,粘度 急剧增加,抑制晶核的形成和晶体长大,阻止了结晶体 的成长壮大。 建筑用微晶玻璃充分应用了热力学上的可能和动力 学上的抑制,在一定条件下,使这种相反相成的物理过 程,形成一个新的平衡,而获得的一种新材料。
这块玻璃究竟发生了什么变化?
在显微镜下观察到: 这块玻璃中析出了大量的 微小晶体,这就是后来大名 鼎鼎的微晶玻璃。
性能由此改变:
• 当玻璃中充满微小晶体后(每立方厘 米约十亿晶粒),玻璃固有的性质发 生变化,即由非晶形变为具有金属内 部晶体结构的玻璃结晶材料。 • 它近似于硬化后不脆不碎的凝胶,是 一种新的透明或不透明的无机材料, 即所谓的结晶玻璃、玻璃陶瓷或高温 陶瓷。

微晶玻璃

微晶玻璃

微晶玻璃的生产制备1.微晶玻璃概述新型微晶材料的开发研制最先起于美国,亚洲的日本紧随其后,成为目前世界上新型微晶材料的生产大国,此后西欧和亚太地区的经济发达国家不甘落后,也加紧开发研制。

而我国则起步于上世纪的八十年代初,经过二十年的开发,微晶材料的生产工艺基本上已趋于成熟,进入了实用阶段。

它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。

微晶玻璃是新型微晶材料的一种,它是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。

更具体说,它是在高达1500℃高温条件下,从含特殊成份的玻璃液中析出的特殊晶相及硅灰石晶体和玻璃相结合致密整体结晶材料。

其颜色多种多样。

生产方法可分为烧结法、压延法、浇铸法。

产品按配方可分为两大类,一类是矿渣类。

所用原料为矿渣、石英砂、长石、石灰石、萤石、白云石、滑石等;第二类为泥沙类。

所用原料为泥沙、石英砂、长石、纯碱、石灰石、白云石、重晶石、萤石等。

由于微晶玻璃是硅灰石相和玻璃相相结合的致密整体结晶材料,颜色上是以金属氧化物为着色剂,因而其表面特征既有陶瓷的特征,又与天然石材极其相似,加之材料形状多为板材,因而许多人又将其称作为微晶板材、微晶石材、微晶玉石、玻璃陶瓷、结晶化玻璃或人造石材等等。

由于其结构极为致密并用作表面装饰材料。

因此,又有人将其归为实体面材。

与建筑陶瓷及天然石材制品相比,由于微晶玻璃具有特定性能的晶相析出。

因而,在机械强度、表面硬度、热膨胀性能、耐酸碱及抗腐蚀等方面具有一些独特的优点。

1.1微晶玻璃的分类微晶玻璃可按不同的标准分类,从外观看,有透明微晶玻璃和不透明微晶玻璃;按微晶化原理可分为光敏微晶玻璃和热敏微晶玻璃;按照性能分为耐高温、耐热冲击、高强度、耐磨、易机械加工、易化学蚀刻、耐腐蚀、低膨胀、零膨胀、低介电损失、强介电性、强磁性和生物相容等种类;按基础玻璃组成可分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐及磷酸盐等五大类;按所用材料则分为技术微晶玻璃和矿渣微晶玻璃两类。

微晶玻璃

微晶玻璃

发展前景
近年来在我国, 近年来在我国,微晶玻璃板已大量用作建筑物的 在我国 装饰材料。 装饰材料。如代替大理石或花岗石等材料用作外 地板、楼面、楼梯踏板、贴柱、大厅柜台面、 墙、地板、楼面、楼梯踏板、贴柱、大厅柜台面、 电梯门边、卫生间台面、 电梯门边、卫生间台面、炊事案板等处的装饰材 料及结构材料,也用作阳台和门窗材料, 料及结构材料,也用作阳台和门窗材料,各种高 档家具、 档家具、高档珍贵工艺品制作及各种用途的其它 室内装饰材料。 室内装饰材料。 我国建筑装饰业现已步入黄金时期 建筑装饰业现已步入黄金时期, 我国建筑装饰业现已步入黄金时期,现代建筑业 的发展对高档装饰材料的需求量越来越大, 的发展对高档装饰材料的需求量越来越大,集多 种优良性能干一体、 种优良性能干一体、晶莹闪烁的新型高档微晶玻 璃装饰材料的市场需求量越来越大, 璃装饰材料的市场需求量越来越大,应用范围越 来越广, 来越广,它被誉为当今世界建筑装饰的新型顶尖 材料。专家预言,它将领导21 21世纪装饰材料新潮 材料。专家预言,它将领导21世纪装饰材料新潮 流。
5、化学化工材料上的应用
微晶玻璃的化学稳定性好,几乎不被腐蚀 的特性广泛地应用于化工上。如:Na2O- Al2O3-SiO2系霞石微晶玻璃随酸溶液的变 化存在一个极值区域,当碱溶液浓度较大 时,失重几乎与浓度变化无关。在控制污 染和新能源应用领域也找到了用途,如微 晶玻璃用于喷射式燃烧器中消除汽车尾气 中的碳氢化合物;在硫化钠电池中作密封 剂,在输送腐蚀性液体中作管道和槽等。
微 晶 玻 璃
高分子10-1班 高分子1010 541004010147 杨晶晶
微晶玻璃
微晶玻璃又称微晶玉石或陶瓷玻璃,是 综合玻璃,它的学名叫做玻璃陶瓷。微 晶玻璃和我们常见的玻璃看起来大不相 同。它具有玻璃和陶瓷的双重特性,普 通玻璃内部的原子排列是没有规则的, 这也是玻璃易碎的原因之一。而微晶玻 璃象陶瓷一样,由晶体组成,也就是说, 它的原子排列是有规律的。所以,微晶 玻璃比陶瓷的亮度高,比玻璃韧性强。

微晶玻璃特点及应用

微晶玻璃特点及应用

微晶玻璃特点及应用微晶玻璃是一种新型玻璃材料,具有许多独特的特点和广泛的应用。

下面将详细介绍微晶玻璃的特点以及应用。

微晶玻璃具有以下特点:1.高机械强度:微晶玻璃具有高硬度和强度,比普通玻璃更耐磨损,更不容易破碎。

2.超低温热膨胀系数:微晶玻璃的热膨胀系数非常低,可以在极端温度条件下仍然保持稳定。

3.优异的光学性能:微晶玻璃具有优异的透光性,可用于光学领域的高清透光窗,具有良好的平整度和清晰度。

4.优良的化学稳定性:微晶玻璃具有优异的抗酸碱性和化学稳定性,不易受到化学物质的侵蚀。

5.良好的热稳定性:微晶玻璃在高温条件下能够保持稳定,不易被热传导和热辐射。

6.可加工性强:微晶玻璃可以通过冷加工、热加工和化学加工等多种方法进行加工,可切割、打磨、磨削等,加工性能极佳。

7.防辐射性能好:微晶玻璃对电磁辐射、紫外线和其他有害辐射具有较好的屏蔽和防护效果。

微晶玻璃的应用十分广泛,下面将详细介绍几个主要的应用领域:1.光学技术领域:由于微晶玻璃具有良好的光学性能,可以广泛应用于光学仪器、光学系统和光学器件等领域。

例如,微晶玻璃可以用于高清晰摄像头的镜头保护膜,可以提供更加清晰、透光度更高的成像效果。

2.医疗领域:微晶玻璃具有优良的生物相容性,不会对人体产生刺激和毒性,因此广泛应用于医疗器械、医用耗材和生物芯片等领域。

例如,微晶玻璃可以用于人工关节、植入式医疗器械、光学传感器等医疗器械。

3.汽车工业:由于微晶玻璃具有高强度和耐磨损性,可以广泛应用于汽车领域。

例如,微晶玻璃可以用于汽车前挡风玻璃和侧窗玻璃,提供良好的视野和安全性能。

4.通信领域:微晶玻璃具有优异的抗辐射性能和低损耗特性,可以广泛应用于通信设备和光纤通信系统中。

例如,微晶玻璃可以用于通信光纤的保护层和连接器,提供更好的信号传输和稳定性能。

5.建筑装饰领域:由于微晶玻璃具有优秀的透光性和耐候性,可以应用于建筑装饰领域。

例如,微晶玻璃可以用于建筑物外墙、天窗和幕墙等,提供高透光度的装饰效果。

微晶玻璃的制备原理及其工艺过程

微晶玻璃的制备原理及其工艺过程

微晶玻璃的制备原理及其工艺过程微晶玻璃,又称微晶体玻璃,是一种特殊的玻璃材料,具有高透明度、优异的光学性能和优良的机械性能,被广泛应用于光学领域、电子行业和医疗装备等领域。

微晶玻璃的制备原理及其工艺过程对于生产高质量的微晶玻璃产品至关重要。

本文将对微晶玻璃的制备原理及其工艺过程进行详细介绍。

一、微晶玻璃的制备原理微晶玻璃的制备原理主要是通过将玻璃形成原料进行精细混合,然后在高温条件下熔融并快速冷却而得到的。

微晶玻璃是由大量微晶颗粒组成的非晶态玻璃材料,微晶颗粒的尺寸一般在纳米级别,因此微晶玻璃具有非常好的光学性能和机械性能。

微晶玻璃的制备原理主要包括以下几个方面:1.玻璃形成原料的选择:微晶玻璃的制备过程中,首先需要选择合适的玻璃形成原料。

通常情况下,玻璃形成原料包括硅酸盐、碱金属、碱土金属和其他助熔剂等成分。

这些成分在高温条件下能够熔融并形成玻璃状态,为后续的微晶玻璃制备奠定了基础。

2.精细混合:选定好玻璃形成原料后,需要对其进行精细混合。

混合的目的是为了使各种成分充分均匀地分布在玻璃中,以便在后续的熔融过程中得到高质量的微晶玻璃。

3.高温熔融:经过精细混合的玻璃形成原料将被置于高温熔炉中进行熔融。

熔融的温度通常在1000摄氏度以上,这样可以确保原料充分熔化并形成玻璃熔体。

同时,高温熔融也有利于微晶颗粒的形成。

4.快速冷却:熔融后的玻璃熔体会通过快速冷却的方式进行固化。

快速冷却可以有效地促进微晶颗粒的生成和分布,在一定程度上控制微晶颗粒的尺寸和分布均匀性,从而得到高质量的微晶玻璃产品。

二、微晶玻璃的制备工艺过程微晶玻璃的制备工艺过程主要包括原料配比、精细混合、熔融、成型和快速冷却等环节。

下面将对微晶玻璃的制备工艺过程进行详细介绍。

1.原料配比:首先确定微晶玻璃的配方,根据产品的要求,选择合适的硅酸盐、碱金属、碱土金属和其他助熔剂等成分,按照一定的配比进行混合。

2.精细混合:将各种原料进行精细混合,通常采用球磨机或高能球磨机进行混合。

微晶玻璃

微晶玻璃

1.1微晶玻璃简介1.1.1微晶玻璃微晶玻璃(glass-ceramics)又称玻璃陶瓷或结晶化玻璃[1],微晶玻璃是把加有晶核剂(或不加晶核剂)的特定组成的玻璃在一定条件下进行热处理,使原有单一的玻璃相形成了由微晶相和玻璃相均匀分布的复合材料[2]。

微晶玻璃的结构与性能,和陶瓷、玻璃均不同,微晶玻璃的性能由晶相和玻璃相的化学组分及他们的数量决定,所以它集中了两者的特点,成为一类特殊的材料,因其可用矿石、工业尾矿、冶金矿渣、粉煤灰等作为主要生产原料,且生产过程可以实现固体废弃物的整体利用和零排放,产品本身无放射性污染,故又被称为环保材料或绿色材料。

微晶玻璃具有原料来源广、制备工艺简单、可与金属焊接等诸多优点,可作为结构材料、光学材料、电学材料、建筑装饰材料等,广泛应用于建筑、医疗、航空、国防以及生活等各个领域。

尽管微晶玻璃发展己有50多年的历史,但有关各类微晶玻璃的研究开发和应用依然十分活跃,已成为新型陶瓷材料开发应用的研究重点之一。

[3]1.1.2微晶玻璃成分对微晶玻璃来说,它的结构由材料的组成和热处理工艺共同决定。

其中组成对玻璃析晶性能和主晶相的形成有着很大的影响,对微晶玻璃的内部结构起到决定性的作用。

随着成分的变化,微晶玻璃结构及性能发生改变。

实际上,玻璃成分是通过结构决定了性质,即成分、结构、性能间存在的总规律是:微晶玻璃成分通过对结构的影响而决定了其性能。

微晶玻璃不同于一般系统的玻璃,其结构中既存在玻璃相,亦存在有一定晶相,玻璃相结构和晶相性质共同作用决定了微晶玻璃的性能。

从玻璃形成条件看,其组分中必须含有可以形成玻璃的氧化物,如SiO2、B2O3和P2O5,同时还必须含有一定量的中间氧化物,如CaO和MgO等。

在研究中对料方调整按下列依据进行:(1)SiO2SiO2是构成微晶玻璃骨架网络的主要氧化物,它的含量不仅决定玻璃的主要化学性质和性能指标,而且对玻璃的粘度影响很大,是熔化、澄清及成形的关键性因素。

微晶玻璃和钢化玻璃 硬度

微晶玻璃和钢化玻璃 硬度

微晶玻璃和钢化玻璃硬度一、微晶玻璃和钢化玻璃都是现代建筑和家居装饰中常用的材料,它们在硬度上有着显著的特点。

硬度是材料抵抗划伤、磨损和变形的能力,对于玻璃来说,硬度的提高能够增强其耐久性和安全性。

本文将对微晶玻璃和钢化玻璃的硬度进行对比分析。

二、微晶玻璃的硬度微晶玻璃是一种以玻璃为基础,通过特殊的生产工艺制成的一种装饰材料。

微晶玻璃的硬度主要受到玻璃基体和表面涂层的影响。

1.玻璃基体硬度:微晶玻璃的玻璃基体硬度通常较高,一般在Mohs硬度测试中可达到6至7。

这使得微晶玻璃相对抗划伤和磨损。

2.表面涂层硬度:微晶玻璃的表面通常涂覆有一层特殊的保护涂层,这层涂层也具有一定的硬度,能够提高微晶玻璃的整体硬度。

然而,涂层的硬度因制造工艺和具体配方而异。

三、钢化玻璃的硬度钢化玻璃是通过加热玻璃至软化点,然后迅速冷却而制成的一种强化玻璃。

这种工艺使得钢化玻璃具有比普通玻璃更高的硬度和强度。

1.整体硬度:钢化玻璃的整体硬度较高,通常在Mohs硬度测试中可达到6.5至7。

这使得钢化玻璃相对抗划伤和磨损,比一般的玻璃更为耐用。

2.耐冲击性:钢化玻璃在制备过程中形成的表面压应力和内部张应力使得它在受到冲击时破碎成小颗粒,而非锋利的碎片,提高了安全性。

这也反映了其硬度和强度的优势。

四、硬度对比分析1.耐划伤性能:由于微晶玻璃和钢化玻璃的硬度都相对较高,它们在抵抗划伤方面都表现得比较优异,不容易被表面物体划伤。

2.耐磨损性能:两者在耐磨损性能上也有着较好的表现,不容易出现表面磨损现象,保持较长时间的美观。

3.安全性:在安全性方面,钢化玻璃由于其加工方式,在破碎时产生的小颗粒相对安全,而微晶玻璃的表现也在可控的范围内。

4.特殊用途:由于硬度的差异,微晶玻璃在一些特殊的装饰和艺术品制作中更为适用,而钢化玻璃在需要更高强度和安全性的场合更为常见,如建筑幕墙、车辆玻璃等。

五、微晶玻璃和钢化玻璃都是硬度较高的玻璃材料,在实际应用中具有广泛的用途。

微晶玻璃

微晶玻璃

玻璃,不必使用晶核剂。
6
应用领域
1、机械力学材料上的应用
利用微晶玻璃耐高温、抗热震、热膨胀性可调等力学和热学性能,广泛应用于 活塞、旋转叶片、炊具的制造上,同时也用在飞机、火箭、人造地球卫星的结构
材料上。
6
应用领域
1、机械力学材料上的应用
微晶玻璃具有很低的热膨胀系数及十分优越的耐热冲击性能,可以加工成不同 形状和尺寸。
性能均优于玻璃、瓷砖、花岗岩和大理石板材等。
微晶玻璃耐酸耐碱性、抗冻性、耐污性能优异,无 放射性污染,镜面效果良好,质轻可作为结构材料。
6
应用领域
无论是幕墙还是天花板结构,如今的建筑物 外壳不能简单地满足于提供保护功能。对涉及 保护以及提供遮荫的需求正变得越来越重要。
太阳能面板应用
曲面防火玻璃,阻隔火 焰、热气体和烟雾
6
应用领域
5、化学化工材料上的应用
微晶玻璃化学稳定性好,几乎不被腐蚀的特性广泛应用于化工上。在控制污染和 新能源应用领域也有用途,如微晶玻璃用于喷射式燃烧器中消除汽车尾气中的碳氢化
合物;在硫化钠电池中作密封剂;在输送腐蚀性液体中作管道等。
6
应用领域
6、建筑材料上的应用
建筑微晶玻璃作为新型绿色装饰材料,成为世界 上最具有发展前景的建筑装饰材料。其装饰效果和
6
应用领域
7、其他材料上的应用
泡沫微晶玻璃作为结构材料、热绝缘材料和纤维复合增韧微晶玻璃都得到了广泛 研究和应用。核工业方面,微晶玻璃被用于制造原子反应堆控制棒上的材料、反应
堆密封剂、核废料存储材料等方面。
7
案例赏析
瑞士纳沙泰尔 La Maladière 中心
一万多个在夹胶玻璃中的 LED,通 过电脑控制能呈现色彩变幻以及令 人惊叹的照明效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微晶玻璃摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。

同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。

关键词:微晶玻璃组成制备性能应用Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development.Keywords: Microcrystalline glass preparation property application trend1 前言微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。

微晶玻璃和我们常见的玻璃看起来大不相同。

它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。

而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。

所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。

但晶玻璃既不同于陶瓷,也不同于玻璃。

微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。

微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。

另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。

2分类及其组成目前,问世的微晶玻璃种类繁多,分类方法也有所不同。

通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等晶玻璃的组成在很大程度上决定其结构和性能。

按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。

2.1 硅酸盐微晶玻璃简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。

研究最早的光敏微晶玻璃和矿渣微晶玻璃属于这类微晶玻璃。

光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li2Si2O5),这种晶体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

二硅酸锂晶体比玻璃基体更容易被氢氟酸腐蚀,基于这种独特的性能,光敏微晶玻璃可以进行酸刻蚀加工成图案、尺寸精度高的电子器件,如磁头基板、射流元件等。

矿渣微晶玻璃中析出的晶体主要为硅灰石(CaSiO3)和透辉石[CaMg(SiO3)2]。

据研究,透辉石具有交织型结构,比硅灰石具有更高的强度、更好的耐磨耐腐蚀性。

2.2 铝硅酸盐微晶玻璃它包括Li2O-Al2O3-SiO2系统、MgO-Al2O3-SiO2系统、Na2O-Al2O3-SiO2系统、ZnO-Al2O3-SiO2系统。

Li2O-Al2O3-SiO2系统是一个重要的系统,因为从这个系统可以得到低膨胀系数的微晶玻璃。

当引入4%(质量分数)(TiO2+ZrO2)作晶核剂时,玻璃中能够析出大量的钛酸锆晶核。

在850℃左右热处理时,这些晶核上能够析出直径小于可见光(λ<0.4μm)的β-石英固熔体,这种超细晶粒结构使微晶玻璃材料透明。

MgO-Al2O3-SiO2系统的微晶玻璃具有优良的高频电性能、较高的机械强度(250~300MPa)、良好的抗热震性和热稳定性,已成为高性能雷达天线保护罩材料。

Na2O-Al2O3-SiO2系统中引入一定量的TiO2,可以获得以霞石(NaAlSiO4)为主晶相的微晶玻璃。

由于这类微晶玻璃具有很高的热膨胀系数(100×10-7℃-1左右),可以在材料表面涂一层膨胀系数较低的釉以强化材料。

ZnO-Al2O3-SiO2系统玻璃组成或热处理制度不一样,析出的晶体类型也不一样,在850℃以下,只析出透锌长石(ZnO·Al2O3·8SiO2),而在950~1000℃析出锌尖晶石(ZnO·Al2O3)和硅锌矿(2ZnO·SiO2)。

2.3 氟硅酸盐微晶玻璃它包括片状氟金云母型和链状氟硅酸盐型。

片状氟金云母晶体沿(001)面容易解理,而且晶体在材料内紊乱分布,使得断裂时裂纹得以绕曲或交叉,而不至于扩展,破裂仅发生于局部,从而可以用普通刀具对微晶玻璃进行各种加工。

云母晶体的相互交织将玻璃基体分隔成许多封闭或半封闭的多面体,增加了碱金属离子的迁移阻力。

同时,由于云母晶体本身是一种优良的电介质材料,因此云母型微晶玻璃具有优良的介电性能。

链状氟硅酸盐微晶玻璃中可析出氟钾钠钙镁闪石(KNaCaMg5Si8O22F2)及氟硅碱钙石[Na4K2Ca5Si12O30(OH,F)4]。

当主晶相为针状的氟钾钠钙闪石晶体时,这种晶体在材料中致密紊乱分布,形成交织结构,分布在方石英、云母及残余玻璃相中,可使断裂时裂纹绕过针状晶体产生弯曲的路径,因而具有较高的断裂韧性(3.2MPa·m1/2)和抗弯强度(150 MPa)。

由于其热膨胀系数高达115×10-7℃-1(0~100℃),可在材料表面施以低膨胀釉,使抗弯强度提高到200 MPa。

2.4 磷酸盐微晶玻璃氟磷灰石微晶玻璃已经从含氟的钙铝磷酸盐玻璃以及碱镁钙铝硅酸盐玻璃中制备出来,它具有生物活性,现已成功地被植入生物体中。

3 性能如前所述,玻璃是一种具有无规则结构的非晶态固体,或称玻璃态物质,从热力学观点出发,它是一种亚稳态,较之晶态具有较高的内能,在一定条件下可转变为结晶态(多晶体)。

对玻璃控制晶化而制得的微晶玻璃具有突破的力学、热学及电学性能。

3.1力学性质3.1.1强度:在室温下,微晶玻璃和普通陶瓷及玻璃一样,都是脆性材料,这意味着它们不具有可延性和可塑性,在荷重造成破坏之前,呈现完全弹性的状态。

和其他的脆性材料一样,它们具有较高的弹性,并以劈裂的形式断裂。

微晶玻璃之所以得到广泛应用,原因之一就是它的机械强度高,特别是抗弯强度高。

但微晶玻璃存在有易碎的玻璃相的组成,其机械强度在很大程度上,受到以下几个因素的影响:①结晶相的颗粒大小和体积分数;②界面的结合强度;③不同的弹性模量;④不同的热膨胀性能。

对于同一磨损条件下的微晶玻璃材料和基础玻璃来说,微晶玻璃的强度试验值要高于基础玻璃,这可以归纳为多因素的作用结果。

建立在临界应力概念上的机械强度理论认为:微晶玻璃材料的强度很大程度上来源于它的弹性模量(8×104~15×104MPa)大于玻璃的弹性模量(约6×104MPa)。

但是,实际上微晶玻璃与玻璃的强度比的倍数常常大于它们的弹性模量比的倍数,因此,另一合理的解释是微晶玻璃中的晶粒可以造成裂纹尖端的弯曲和可能的钝化,增加了破裂功,并且减缓甚至阻止了裂纹穿过晶相和玻璃相的界面,而在玻璃中则有一个不受阻碍的断裂路径。

微晶玻璃强度增加的原因主要是由于具有细晶、致密的微观结构。

脆性材料中的裂纹通常带来缺陷,例如夹杂物(包裹体)、内部气孔或是微裂纹。

机械强度将受到微晶玻璃的微观结构的影响3.1.2弹性与弹性模量:微晶玻璃的弹性模量比普通玻璃和某些普通陶瓷都高。

但是它比烧结纯氧化物陶瓷的弹性模量低。

玻璃的弹性模量和它的化学组成具有近似加和的关系。

多相陶瓷的弹性模量也是结晶相和玻璃相的各种性能的加和函数。

微晶玻璃的弹性模量基本上取决于晶相的弹性常数。

当然还必须考虑到,在玻璃相中能够促进高弹性模量值的氧化物的存在,特别是CaO、MgO和Al2O3对玻璃的弹性模量有显著的影响。

3.2热学性质3.2.1热膨胀系数和抗热冲击性能(抗热震性):微晶玻璃以能制得很大范围的热膨胀系数而著称。

一方面可以制得具有负的热膨胀系数材料,而另一方面又可以制得很高的正热膨胀系数的材料。

在这两者之间还有一些热膨胀系数几乎等于零的微晶玻璃材料。

更有实际意义的是微晶玻璃的热膨胀系数可以调整到和普通玻璃或普通陶瓷或某种金属或合金的热膨胀系数近似相仿。

对材料随着温度的变化而产生尺寸变化的研究是非常重要的。

例如,如果要求一种微晶玻璃具有高的抗热冲击能力,则要求其热膨胀系数必须尽可能的低,以便把材料中由温度应力造成的应变降至最低。

又例如要把微晶玻璃焊接到或者刚性连接到另一种材料上,如一种金属上时,则需要它们的热膨胀系数近似匹配,以防止这个接合件在加热或冷却时产生高应力。

在大型光学镜头应用中,随着温度的变化,微晶玻璃尺寸的稳定性是非常重要的,此时需要制备一种热膨胀系数接近零的微晶玻璃材料。

3.2.2抗热冲击性能(抗热震性):在低的热膨胀系数下,微晶玻璃具有良好的抗热冲击性能和较大的强度。

另外,由于玻璃相含量较少时,在晶粒之间存在较多的微气孔,这样材料在受热时,有一定的空间进行结构调整,在宏观性能上表现为热膨胀系数较低,因而抗热冲击性能较好。

与普通玻璃及陶瓷相比,微晶玻璃具有更高的机械强度,因此,具有更好的抗热冲击性能。

此外,微晶玻璃可以具有很低的热膨胀系数,使得其抗热冲击性能更为优异。

以β-锂辉石、β-锂霞石或β-石英固溶体为主晶相,具有热膨胀系数为5×10-7~10×10-7℃-1的微晶玻璃可以从700℃左右的温度急冷到0℃的冰水中而不破裂。

例如,规格为600mm×600mm×5mm的微晶玻璃盘,以β-锂辉石为主晶相,热膨胀系数为3.3×10-7℃-1(25~700℃),就可以从700℃冷却到0℃而不破坏。

高强度和第低的热膨胀系数以及较低的弹性模量使得微晶玻璃具有高的抗热冲击性,最大可高达1100℃。

3.3电学性质3.3.1电阻率:微晶玻璃具有很高的电阻系数,因此一直可用作绝缘材料。

一般来说,微晶玻璃与普通陶瓷和陶瓷相比,是良好的电绝缘材料。

相关文档
最新文档