球磨机的工作原理及球磨机的研磨体的运动分析上

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 球磨机工作原理及研磨体运动的基本状态

1.1.1 球磨机工作原理

球磨机的主要工作部分是一个装在两个大型轴承上并水平放置的回转圆筒,筒体用隔仓板分成几个仓室,在各仓内装有一定形状和大小的研磨体。研磨体一般为钢球、钢锻、钢棒、卵石、砾石和瓷球等。为了防止筒体被磨损,在筒体内壁装有衬板。

图1 磨机粉磨物料的作用

当球磨机回转时,研磨体在离心力和与筒体内壁的衬板面产生的摩擦力的作用下,贴附在筒体内壁的衬板面上,随筒体一起回转,并被带到一定高度(如图1所示),在重力作用下自由下落,下落时研磨体像抛射体一样,冲击底部的物料把物料击碎。研磨体上升、下落的循环运动是周而复始的。此外,在磨机回转的过程中,研磨体还产生滑动和滚动,因而研磨体、衬板与物料之间发生研磨作用,使物料磨细。由于进料端不断喂入新物料,使进料与出料端物料之间存在着料面差能强制物料流动,并且研磨体下落时冲击物料产生轴向推力也迫使物料流动,另外磨内气流运动也帮助物料流动。因此,磨机筒体虽然是水平放置,但物料却可以由进料端缓慢地流向出料端,完成粉磨作业。

1.1.2研磨体运动的基本状态

球磨机筒体的回转速度和研磨体的填充率对于粉磨物料的作用影响很大。当筒体以不同转速回转时,筒体内的研磨体可能出现三种基本状态,如图7.2所示。

图7.2(a),转速太慢,研磨体和物料因摩擦力被筒体带到等于动摩擦角的高度时,研磨体和物料就下滑,称为“倾泻状态”,对物料有研磨作用,但对物料的冲击作用很小,因而使粉磨效率不佳;图7.2(c),转速太快,研磨体和物料在其惯性离心力的作用下

图7.2 筒体转速对研磨体运动的影响

(a)低转速;(b)适宜转速;(c)高转速

贴附筒体一起回转(作圆周运动),称为“周转状态”,研磨体对物料起不到冲击和研磨作用;图7.2(b),转

速比较适宜,研磨体提升到一定高度后抛落下来,称为“抛落状态”,研磨体对物料较大的冲击和研磨作用,粉磨效率高。

实际上,研磨体的运动状态是很复杂的,有贴附在磨机筒壁向上的运动;有沿筒壁和研磨体层向下的滑动;有类似抛射体的抛落运动;有绕自身轴线的自转运动以及滚动等。所谓研磨体对物料的基本作用,正是上述各种运动对物料的综合作用的结果,其中主要的可以归结为冲击和研磨作用。

分析研磨体粉碎物料的基本作用,目的是为确定研磨体的合理运动状态,这是正确选择与计算磨机的适宜工作转速、需用功率、生产能力以及磨机机械计算的依据。

1.2球磨机内研磨体的运动分析

球磨机的粉磨作用,主要是研磨体对物料的冲击和研磨。为了进一步了解磨机操作时研磨体对物料作用的实质,以便确定磨机的工作参数,如适宜的工作转速、功率消耗、生产能力、研磨体装填量以及掌握影响磨机粉磨效率的各项因素、筒体受力情况与强度计算等,都必须对研磨体在磨机内的运动状态加以分析研究。

1.2.1基本假设

研磨体运动的实际状态是很复杂的,为了使问题分析简单化,作如下基本假设:

(1) 当磨机在正常工作时,研磨体在筒体内按所在位置的运动轨迹只有两种:一种是一层层地以筒体横断面几何中心为圆心,按同心圆弧轨迹随着筒体回转作向上运动;另一种是一层层地按抛物线轨迹降落下来;

(2) 研磨体与筒壁间及研磨体层与层之间的相对滑动极小,具体计算时略去不计;

(3)磨机筒体内物料对研磨体运动的影响略去不计;

(4) 研磨体作为一质点,因此最外层研磨体的回转半径,可以用筒体的有效内径表示。

研磨体按圆弧随筒体回转作向上运动,当达到某一高度时,开始离开圆弧轨迹而沿抛物线轨迹下落,此瞬时的研磨体中心称为脱离点,各层研磨体脱离点的连线称为脱离点轨迹,如图7.3中AB线。当研磨体以抛物线轨迹降落后,到达降落终点,此瞬时的研磨体中心点称为降落点,各层研磨体降落点的连线称为降落点轨迹,如图7.3中的CD线。

图7.3 研磨体层示意图 7.4 磨体内研磨体所受作用力

1.2.2研磨体运动的基本方程式

取紧贴筒体衬板内壁的最外层研磨体作为研究对象,研磨体以质点A表示

如图7.4所示。

研磨体在随筒体作圆弧轨迹向上运动的过程中,当达到某一位置时,其离心力Pc小于或等于它本身重力的径向分力Gcosα,研磨体就离开圆弧轨迹,开始抛射出去,按抛物线轨迹运动。由此可见,研磨体在脱离点开始脱离应具备的条件为

Pc≤Gcosα (1)

Gg·v2R≤Gcosα又v=πRn30代入上式中,得

cosα≥π2Rn2900g

由于π2g≈1

所以

cosα≥Rn2900 (7.2)

式中:Pc——离心力,N;

G——研磨体的重力,N;

v——研磨体运动的线速度,m/s;

R——筒体的净空半径,m;

α——研磨体脱离角;

g——重力加速度,m/s2;

n——筒体转速,r/min。

公式(7.2)为磨机内研磨体运动基本方程式,从此方程式中可以看出:研磨体脱离角与筒体转速及筒体有效半径有关,而与研磨体质量无关。

1.2.3研磨体运动脱离点轨迹

当磨机在一定转速下工作时,研磨体运动的基本方程式(7.2)代表任一层研磨体脱离点三个量间的关系,它有着普遍意义。

图7.5 脱离点和降落点轨迹

把式(7.2)改写成

Rcosα=900n2=R1cosα=Ricosαi=常数 (7.3)

式中:R1、Ri及α1、αi代表意义参阅图7.5。

从图中看出:OO1E是直角三角形,直角边OO1=R1,夹角为α1的直角三角形,其斜边大小如果不改变,保持恒量时(即OE=2Rt=常数),这个三角形的顶点O1的轨迹是一个圆。

故2Rt=Rcosα=900n2=常数

因此,这个圆的半径为

相关文档
最新文档