中考数学圆综合题(含答案)

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

备战中考数学圆的综合综合题含详细答案

备战中考数学圆的综合综合题含详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠3∠3,求⊙O 的半径。

【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,∴AB=DE.∵DF∥CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF,∴tan∠AEB= tan∠ADF=3DG平分∠ADC,∴∠ADG=∠CDG.∵AD∥BC,∴∠ADG=∠CED,∠NDC=∠DCE.∵∠ABC=∠NDC,∴∠ABC=∠DCE.∵AB∥DG,∴∠ABC=∠DEC,∴∠DEC=∠ECD=∠EDC,∴ΔCDE是等边三角形,∴AB=DE=CE.∵∠GBC=∠GDC=60°,∠G=∠DCB=60°,∴ΔBGE是等边三角形,BE= GE=53.∵tan∠AEB= tan∠ADF=43,设HE=x,则AH=43x.∵∠ABE=∠DEC=60°,∴∠BAH=30°,∴BH=4x,AB=8x,∴4x+x=53,解得:x=3,∴AB=83,HB=43,AH=12,EC=DE=AB=83,∴HC=HE+EC=383+=93.在Rt△AHC中,AC=222212(93)AH HC+=+=343.作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=AC AP,∴3432129sin603ACAP===︒,∴⊙O的半径是129.3.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π5.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.6.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×3=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH ∽△OBC 可知:BC HB OC BC = ∵AB=8,∴BC 2=HB•OC=4HB , ∴HB=24BC , ∴OH=OB-HB=4-24BC ∵CB=CH ,∴OH+HC=4−24BC +BC , 当∠BOC=90°,此时BC=42 ∵∠BOC <90°, ∴0<BC <42,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.8.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围; ②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.10.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析 (2) EC=172AE=132【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AE=BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵AE=BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x =72,∴CF =FE =172,∴EC CF =2,AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

2023年九年级中考数学高频考点专题训练 圆的综合题(含解析)

2023年九年级中考数学高频考点专题训练 圆的综合题(含解析)

2023年中考数学高频考点专题训练--圆的综合题1.已知:△ABC内接于△O,直径AM平分△BAC.(1)如图1,求证AB=AC;(2)如图2,弦FG分别交AB、AC于点D、E,AE=BD,当△ADE+△DEC=90°时,连接CD,直径AM分别交DE、CD、BC于N、H、R,若CD△AB,求证:△NDC=△ACB;(3)在(2)的条件下,若DE长为√2,求△ACH的面积.2.在平面直角坐标系xOy中,对于点P,Q和图形G,给出如下定义:若图形G上存在一点C,使△PQC=90°,则称点Q为点P关于图形G的一个“直角联络点”,称Rt△PCQ为其对应的“联络三角形”.如图为点P关于图形G的一个“直角联络点”及其对应的“联络三角形”的示例.(1)已知点A(4,0),B(4,4)①在点Q1(2,2),Q2(4,﹣1)中,点O关于点A的“直角联络点”是;②点E的坐标为(2,m),若点E是点O关于线段AB的“直角联络点”,直接写出m的取值范围;(2)△T的圆心为(t,0),半径为√10,直线y=﹣x+2与x,y轴分别交于H,K两点,若在△T上存在一点P,使得点P关于△T的一个“直角联络点”在线段HK 上,且其对应的“联络三角形”是底边长为2的等腰三角形,直接写出t的取值范围.3.对于平面直角坐标系xOy中的点P和△C,给出如下定义:若△C上存在一个点M,使得PM = MC,则称点P为△C的“等径点”.已知点D (12,13),E(0,2√3),F (−2,0).(1)当△O的半径为1时,①在点D,E,F中,△O的“等径点”是;②作直线EF,若直线EF上的点T(m,n)是△O的“等径点”,求m的取值范围.(2)过点E作EG△EF交x轴于点G,若△EFG上的所有点都是某个圆的“等径点”,求这个圆的半径r的取值范围.4.问题背景:如图①,在四边形ADBC中,△ACB=△ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE 是等腰直角三角形,所以CE= √2CD,从而得出结论:AC+BC= √2CD.简单应用:(1)在图①中,若AC= √2,BC=2 √2,则CD=.(2)如图③,AB是△O的直径,点C、D在△上,AD̂= BD̂,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,△ACB=△ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD 的长(用含m,n的代数式表示)(4)如图⑤,△ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= 1 3AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.5.如图,等边三角形ABC中,AB= 2√3,AH△BC于点H,过点B作BD△AB交线段AH的延长线于点D,连结CD. 点E为线段AD上一点(不与点A,D重合),过点E作EF△AB交BC于点F,以EF为直径作△O. 设AE的长为x.(1)求线段CD的长度.(2)当点E在线段AH上时,用含x的代数式表示EF的长度.(3)当△O与四边形ABDC的一边所在直线相切时,求所有满足条件的x的值. 6.如图1,⊙O是ΔABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=8,AD=6,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC 之间的数量关系并证明.7.问题探究(1)如图1,在△ABC中,BC=8,D为BC上一点,AD=6,则△ABC面积的最大值是。

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图AB是O的直径点C是BD的中点过点C的切线与AD的延长线交于E连接CD AC.(1)求证:CE AE⊥(2)若CD AB∥1DE=求O的面积.2.如图ABC内接O点A为BC的中点D为BC边上一点DAC ACE∠=∠AE是O的切线112AF BD AB===连接CF.(1)求证:CE CF=(2)当点A 到弦BC 的距离为1时 求AE 的值.3.如图1 已知AB 是O 的直径 弦CD AB ⊥于点E 点P 是线段DC 延长线上的一点 连结PA 交O 于点F 连接DF 交AB 于点G 连接AD 和CF .(1)求证:PFC AFD ∠=∠.(2)若91AE BE ==, 且CF CD = 求DF 的长.(3)如图2 连接OF OD , 若四边形FODC 为平行四边形 求PFC DFA S S △△的值(直接写出答案).4.如图 在平面直角坐标系中 AB OC ∥(0,A ()4,0C - 且2AB =.以BC为直径作1O 交OC 于点D 过点D 作直线DE 交线段OA 于点E 且30EDO ∠=︒.(1)求证:DE 是1O 的切线(2)若线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切 求点P 的坐标.5.如图 以ABC 的边AB 为直径作O 交AC 于D 且OD BC ∥ O 交BC 于点E .(1)求证:CD DE =(2)若12AB = 4=AD 求CE 的长度.6.如图 四边形ABCD 是O 的内接四边形 点F 是CD 延长线上的一点 且AD 平分BDF ∠ AE CD ⊥于点E .(1)求证:AB AC =.(2)若9BD = 1DE = 求CD 的长.7.已知:A B C 三点不在同一直线上.(1)若点A B C 均在半径为R 的O 上(i )如图① 当45A ∠=︒ 1R =时 求BOC ∠的度数和BC 的长(ii )如图① 当A ∠为锐角时 求证:sin 2BC A R= (2)若定长线段BC 的两个端点分别在MAN ∠的两边AM AN (B C 均与A 不重合)滑动 如图① 当60MAN ∠=︒ 2BC =时 分别作BP AM ⊥ CP AN ⊥ 交点为P 试探索在整个滑动过程中 P A 两点间的距离是否保持不变?请说明理由.8.已知矩形ABCD 3AB = 3AD = 点O 是AD 的中点 以AD 为直径作圆 点A '是圆上的点.(1)如图1 连接A B ' 若A B '是圆O 的切线①求证:AB A B '=①设A O '与BC 交于点F 求OF 的长.(2)若动点G 从点B 向C 运动 连接OG 作四边形AOGB 关于直线GO 对称图形四边形A OGB '' 如图2.求点G 在运动过程中线段A B ''扫过的面积.9.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形其中这个角叫做美角.∠的度数(1)如图1 若四边形ABCD是圆美四边形.求美角BAD(2)在(1)的条件下若O的半径为4.①求BD的长①连接CA若CA平分BCD∠如图2 请判断BC CD AC之间有怎样的数量关系并说明理由.10.如图点E为正方形ABCD的边BC上的一点O是ABE的外接圆与AD交于点F ∠=∠.G是CD上一点且DGF AEB(1)求证:FG是O的切线(2)若4AB=1DG=求O半径的长.11.如图在菱形ABCD中点P在对角线AC上且PA PD=O是PAD的外接圆.(1)求证:AB是O的切线(2)若18tan2AC BAC=∠=,求O的直径.(请用两种方法作答)12.已知 AB 为O 的直径 弦CD 与AB 交于点E 点A 为弧CD 的中点.(1)如图1 求证:AB CD ⊥(2)如图2 点F 为弧BC 上一点 连接BF BD 2FBA DBA ∠=∠ 过点C 作CG AB ∥交BF 于点G 求证:12CG AB =.(3)如图3 在(2)的条件下 连接DF 交OE 于点L 连接LG 若4FG = tan GLB =∠ 求线段LF 的长.13.已知O 为ABC 的外接圆 O 的半径为6.(1)如图AB是O的直径点C是AB的中点.①尺规作图:作ACB∠的角平分线CD交O于点D连接BD(保留作图痕迹不写作法):①求BD的长度.(2)如图AB是O的非直径弦点C在AB上运动60ACD BCD∠=∠=︒点C在运动的过程中四边形ADBC的面积是否存在最大值若存在请求出这个最大值若不存在请说明理由.14.如图以AB为直径的O与AH相切于点A点C在AB左侧圆弧上弦CD AB⊥交O于点D连接AC AD点A关于CD的对称点为E直线CE交O于点F交AH 于点G.(1)求证:CAG AGC∠=∠(2)当点E在AB上连接AF交CD于点P若25EFCE=求DPCP的值(3)当点E在射线AB上2AB=四边形ACOF中有一组对边平行时求AE的长.15.圆内接四边形若有一组邻边相等 则称之为等邻边圆内接四边形.(1)如图1 四边形ABCD 为等邻边圆内接四边形 AD CD = 60ADC ∠=︒ 则ABD ∠=________(2)如图2 四边形ABCD 内接于O AB 为O 的直径 10AB = 6AC = 若四边形ABCD 为等邻边圆内接四边形 求CD 的长(3)如图3 四边形ABCD 为等邻边圆内接四边形 BC CD = AB 为O 的直径 且48AB =.设BC x = 四边形ABCD 的周长为y 试确定y 与x 的函数关系式 并求出y 的最大值.参考答案:1.(1)证明:连接OC①OC CE ⊥①90OCE ∠=︒①点C 是BD 的中点①CD BC =①DAC CAB ∠=∠①OA OC =①CAB OCA ∠=∠①OCA DAC ∠=∠①OC AD ∥①180AEC OCE ∠+∠=︒①90AEC ∠=︒①CE AE ⊥.(2)解:连接OD①CD AB ∥ OC AE ∥①四边形AOCD 是平行四边形①OA OC =①平行四边形AOCD 是菱形①AD CD OA ==①AD OA OD ==①ADO △是等边三角形①60OAD ∠=︒①CD AB ∥①60CDE OAD ∠=∠=︒①30DCE ∠=︒①2212CD DE ==⨯=①2OA CD ==①O 的面积为:224ππ⨯=.2.(1)证明:如图 连接OA 交BC 于点M①点A 为BC 的中点①,OA BC AB AC ⊥=①AE 与O 相切①AE OA ⊥①,AE BC EAC ACB ABD∠=∠=∠∥又①BD AF =①()SAS ABD CAF ≌①AD CF =①DAC ACE ∠=∠①CE AD ∥①四边形ADCE 为平行四边形①AD CE =①CE CF =(2)解:如图①112AF BD AB ===①2AB AC ==①BM CM =①点A 到弦BC 的距离为1 即1AM =在Rt ABM 中 222A A M B M B -= ①22213BM -①|31DM BM BD =-=313231CD DM MC ∴=+==由(1)可知四边形ADCE 为平行四边形 ①231AE CD ==.3.(1)解:①弦CD AB ⊥于点E ①12CB DB CB DB CD ===, ①AB 是O 的直径①AB AB AB CB AB DB =-=-,即AC AD AFD ADC =∠=∠,①四边形ADCE 是O 的内接四边形①180AFC ADC ∠+∠=︒180PFC AFC ∠+∠=︒PFC ADC ∴∠=∠①PFC AFD ∠=∠(2)解:如图:连接OE OC OC ,,与FD 相交于一点H①91AE BE ==, ①1911052AB AE BE OC AB =+=+===, ①弦CD AB ⊥于点E①2CD CE =在Rt OCE 中 ()22222OC OE CE OB BE CE =+=-+即()222551CE =-+解得3CE =①236CD =⨯=①CF CD =①62H CF CD OC FD DF F =⊥==,,设5OH x HC x ==-,在Rt OFH △中 222FH OF OH =-在Rt CFH △中 222FH CF CH =-即2222OF OH CF CH -=-①()2225365x x -=-- 解得75x =①482225DF FH ==== (3)解:如图 连接BF①四边形FODC 为平行四边形 且易知OF OD =①四边形FODC 为菱形①四边形ADCE 是O 的内接四边形①180180FAD FCD FCD PCE ∠+∠=︒∠+∠=︒, ①FAD PCE ∠=∠①由(1)知PFC AFD ∠=∠①PFC DFA ∽ ①FC PF PC FA DF DA== ①AB 是O 的直径①90AFB ∠=︒①四边形FODC 为菱形①FC OF OF CD =,①CD AB ⊥①OF AB ⊥①45AF BF FAB FBA =∠=∠=︒,①()()222222222AF BF AF AB OF CF +==== ①22FC FA ①212PFC DFA S FC S FA ⎛⎫== ⎪⎝⎭ 4.(1)证明:连接1O D BD 如图①(0,3A ()4,0C -23OA ∴= 4OC =. ①以BC 为直径作1O 交OC 于点D90BDC ∴∠=︒.,AB OC OC OA ⊥∥AB OA ∴⊥①四边形ABDO 为矩形2,OD AB BD OA ∴====2CD OC OD ∴=-=4BC ∴112O C O D ∴==1O CD ∴为等边三角形1160O CD O DC ∴∠=∠=︒30EDO ∠=︒1118090O DE O DC EDO ∴∠=︒-∠-∠=︒1O D DE ∴⊥1O D 为1O 的半径DE ∴是1O 的切线(2)解:①线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切①点P 到y 轴的距离等于PC .过点P 作PF y ⊥轴于点F PH x ⊥轴于点H 如图则PF PC =.由(1)知:60BCD ∠=︒12CH PC ∴= PH =.PF y ⊥轴 PH x ⊥轴 OA OC ⊥①四边形PHOF 为矩形OH PF PC ∴==142OC CH OH PC PC ∴=+=+= 83PC 83PF OH ∴== 84333PH == ①点P 的坐标为8433⎛- ⎝⎭.5.(1)证明:①四边形ABED 内接于O 180DEB A ∴∠+∠=︒又180DEB DEC ∠+∠=︒DEC A ∴∠=∠OD BC ∥C ADO ∴∠=∠①OA OD =①CAO ADO ∠=∠①C DEC ∠=∠①CD DE =(2)解:如图所示 连接AE①AB 为直径①90AEB ∠=︒90CAE C ∴∠+∠=︒ 90AED DEC ∠+∠=︒ 由(1)CD DE = C DEC ∠=∠CAE AED ∴∠=∠①AD DE =①AD DC =①28AC AD ==由(1)可得BAC ADO ∠=∠ C ADO ∠=∠ 则C BAC ∠=∠①12AB BC ==设CE x = 则12BE x =-2222AC CE AB BE -=-()222281212x x ∴-=-- 解得:83x = ①83CE =.6.(1)证明:①AD 平分BDF ∠∴ADF ADB ∠=∠ ①四边形ABCD 是O 的内接四边形∴180ABC ADC ∠+∠=︒180ADC ADF ∠+∠=︒ABC ADF ADB ∴∠=∠=∠ACB ADB ∠=∠ACB ABC ∴∠=∠AB AC ∴=.(2)解:过点A 作AG BD ⊥于点G90AGD ∴∠=︒①AD 平分BDF ∠∴ADF ADB ∠=∠AE CD ⊥90AED ∴∠=︒在AGD △和AED △中90AGD AED ADF ADBAD AD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS AGD AED ∴≌1GD DE ∴== AG AE =在Rt AEC △和Rt AGB △中AE AGAB AC =⎧⎨=⎩()Rt Rt HL AEC AGB ∴≌CE BG ∴=又9BD = 1DE =918BG BD GD ∴=-=-=8∴=CE817CD CE ED =-=-=7CD ∴=.7.(1)(i )证明:①A B C 均在O 上 ①224590BOC A ∠=∠=⨯︒=︒①1OB OC ==在Rt BOC 中 根据勾股定理 ①2BC =(ii )证法一:如图① 连接EB 作直径CE 则E A ∠=∠ 2CE R =①90EBC ∠=︒ ①sin sin 2BCA E R ==证法二:如图①.连接OB OC 作OH BC ⊥于点H 则12A BOC BOH ∠=∠=∠ 12BH BC = ①12sin sin 2BC BH BC A BOH OB R R=∠===.(2)如图① 连接AP 取AP 的中点K 连接BK CK 在Rt APC △中 12CK AP AK PK === 同理得:BK AK PK ==①CK BK AK PK ===①点A B P C 都在K 上①由(1)(ii )可知sin 60BC AP ︒=①2sin 60AP ==︒ 故在整个滑动过程中 P A 两点间的距离不变.8.(1)①①矩形ABCDAD = 点O 是AD 的中点①90AO DO A ==∠=︒①BA 是圆O 的切线①A B '是圆O 的切线。

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

中考数学 圆的综合 综合题及详细答案

中考数学 圆的综合 综合题及详细答案

中考数学圆的综合综合题及详细答案一、圆的综合1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.3.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴3;连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.4.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.33【答案】(Ⅰ)60°;(Ⅱ)【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∠APB=30°,∴∠APO=12∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴AP=3OA=3,OP=2OA=2,∴OP=2OC,而S△OPA=12×1×3,∴S△AOC=12S△PAO=3,∴S△ACP=33,∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.6.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;(3)先利用AC2=PA•AE计算出AE=134,则PE=AP-AE=34,再证△APF为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP∽△CEP,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB和PC看作方程x2-4x+3=0的两实数解,再解此方程即可得到PB和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图 O 是ABC 的外接圆 AB 是O 的直径 FH 是O 的切线 切点为F FH BC ∥ 连接AF 交BC 于E 连接BF .(1)证明:AF 平分BAC ∠(2)若ABC ∠的平分线BD 交AF 于点D 4EF = 6DE = 求tan EBF ∠的值.2.如图① OA 是O 的半径 点P 是OA 上一动点 过P 作弦BD ⊥弦AC 垂足为E连结AB BC CD DA .(1)求证:BAO CAD ∠=∠.(2)当OA CD ∥时 求证:AC BC =.(3)如图① 在(2)的条件下 连结OC .①若ABC 的面积为12 4cos 5ADB求APD △的面积. ①当P 是OA 的中点时 求BD AC 的值.3.如图 ABC 内接于O AB ,是①O 的直径 过点C 作O 的切线交AB 的延长线于点D BE CD ⊥ EB 的延长线交O 于F CF ,交AB 于点G BCF BCD ∠=∠.(1)求证:BE BG =(2)若1BE = 求O 的半径.4.如图 O 是ABC 的外接圆 AB 是O 的直径 BD 是O 的切线 连接AD 交O 于点E 交BC 边于点F 若点C 是AE 的中点.(1)求证:ACF BCA ∽△△(2)若1CF = 2BF = 求DB 的长.5.如图1 锐角ABC 内接于O 点E 是AB 的中点 连结EO 并延长交BC 于D 点F 在AC 上 连结AD DF BAD CDF ∠=∠.(1)求证:DF AB .(2)当9AB = 4AF FD ==时①求tan CDF ∠的值①求BC 的长.(3)如图2 延长AD 交O 于点G 若::1:4:3GC CA AB = 求BED DFC S S△△的值.6.如图 AB 为O 的直径 弦CD AB ⊥于点E 连接AC BC .(1)求证:CAB BCD ∠=∠(2)若4AB = 2BC = 求CD 的长.7.如图 四边形ABCD 内接于O BC 为O 的直径 O 的切线AP 与CB 的延长线交于点P .(1)求证:PAB ACB ∠=∠(2)若12AB = 4cos 5ADB求PB 的长.8.在Rt ABC 中 90BCA ∠=︒ CA CB = 点D 是ABC 外一动点(点B 点D 位于AC 两侧) 连接CD AD .(1)如图1 点O 是AB 的中点 连接OC OD 当AOD △为等边三角形时 ADC ∠的度数是______(2)如图2 连接BD 当135ADC ∠=︒时 探究线段BD CD DA 之间的数量关系 并说明理由(3)如图3 O 是ABC 的外接圆 点D 在AC 上 点E 为AB 上一点 连接CE DE 当1AE = 7BE =时 直接写出CDE 面积的最大值及此时线段BD 的长.9.如图 AB 为O 的直径 AB AC = BC 交O 于点DAC 交O 于点E 45BAC ∠=︒.(1)求EBC ∠的大小(2)若O 的半径为2 求图中阴影部分的面积.10.如图 点C 是弧AB 的中点 直线EF 与O 相切于点C 直线AO 与切线EF 相交于点E 与O 相交于另一点D 连接AB CD .(1)求证:AB EF ∥(2)若3DEF D ∠=∠ 求DAB ∠的度数.11.如图1 BC 是O 的直径 点A 在O 上 AD ①BC 垂足为D AE AC = CE 分别交AD AB 于点F G .(1)求证:FA FG =(2)如图2 若点E 与点A 在直径BC 的两侧 AB CE 的延长线交于点G AD 的延长线交CG 于点F .①问(1)中的结论还成立吗?如果成立 请证明 如果不成立 请说明理由①若2tan3BAD∠=求cos BCE∠.12.如图1四边形ABCD内接于O连结BD AC交于点G点E是AB上一点连结CE交BD于点F且满足ACD ACF∠=∠.(1)求证:ACE ABD∠=∠(2)若点C是BD的中点①求证:CE CD=②若34CFCD=3tan4BDC∠=时求EFFD的值.(3)如图2当点F是BG的中点时若2AB=3AC=求CG的值.13.如图 四边形OABC 中90OAB OCB ∠=∠=︒ BA BC =.以O 为圆心 以OA 为半径作O .(1)求证:BC 是O 的切线(2)连接BO 形延长交O 于点D 延长AO 交O 于点E 与BC 的延长线交于点F ①补全图形①若AD AC = 求证:OF OB =.14.如图 在ABC 中 AB AC = AO BC ⊥于点O OE AB ⊥于点E 以点O 为圆心 OE 为半径作圆O 交AO 于点F .(1)求证:AC 是O 的切线(2)若60AOE =︒∠ 3OE = 在BC 边上是否存在一点P 使PF PE +有最小值 如果存在请求出PF PE +的最小值.15.如图1 在O 中 P 是直径AB 上的动点 过点P 作弦CD (点C 在点D 的左边) 过点C 作弦CE AB ⊥ 垂足为点F 连接BC 已知BE ED =.(1)求证:FP FB =.(2)当点P 在半径OB 上时 且OP FB = 求FPFC 的值.(3)连接BD 若55OA OP ==. ①求BD 的长.①如图2 延长PC 至点G 使得CG CP = 连接BG 求BCG 的面积.参考答案:1.(1)解:连接OF 如图所示:FH 是O 的切线OF FH ∴⊥①FH BC ∥OF BC ∴⊥BF CF ∴=BAF CAF ∴∠=∠AF ∴平分BAC ∠(2)解:如图作出ABC ∠的平分线BD 交AF 于点DABD CBD ∠=∠ BAF CAF CBF ∠=∠=∠ 且FBD CBD CBF ∠=∠+∠ BDF ABD BAF ∠=∠+∠FBD BDF ∴∠=∠4610BF DF EF DE ∴==+=+= AB 是O 的直径90AFB ∴∠=42tan 105EF EBF BF ∴∠===.2.(1)解:延长AO 交圆O 与F 连接BF .①90ABF ∠=︒①BD AC ⊥与E①90AED ABF ∠=∠=︒又AOE AFB ∠=∠①ABF AED ∽①BAF EAD ∠=∠即BAO CAD ∠=∠.(2)连接CF①AF 是O 的直径①90ACF ∠=︒①90AFC FAC ∠+∠=︒①OA CD ∥①FAC ACD ∠=∠①BD AC ⊥与E①90AED ∠=︒①90CDE ACD ∠+∠=︒①AFC CDE ∠=∠又①AFC CBA ∠=∠ CDE CAB ∠=∠①CBA CAB ∠=∠①AC BC =.(3)①①4cos 5ADB①45DE AD = ①45DE AD =①2235AE AD DE AD =- ①ACB ADB①45CE BC = 设4CE a = 则5BC a AC == ①223BE BC CE a -①5BC AC a ==①AE AC EC a =-=①53AD a = 43DE a = ①OP CD ①14OE AE DE CE == ①13PE a = 53PD a = ①211552236APD SPD AE a a a =⋅=⨯⨯= ①11531222ABC S AC BE a a =⋅=⨯⨯= 解得:22415a = ①25524466153APD S a ==⨯=. ①过点O 作OH AC ⊥于H①22AC AH CH ==①PE AC ⊥①PE OH ∥①P 是OA 的中点①E 是AH 的中点设AE k = 则2AH k = 4AC k= 3CE k = 4BC AC k ==①BE①ADB ACB ∠=∠ AED BEC∠=∠①AED BEC ∽ ①AEDEBE CE =①AE CEDE BE ⋅===①BD =①74BD AC k ==故BDAC3.(1)证明:如图 连接OC①CD 是①O 的切线①OC CD ⊥①90OCB BCD ∠+∠=︒①OC OB =①OCB OBC ∠=∠①BCF BCD ∠=∠①90BCF OBC ∠+∠=︒①90BGC ∠=︒ 即BG CF ⊥①BCF BCD ∠=∠,BE CF ⊥①BE BG =(2)解:①AB 是O 的直径 CF AB ⊥①BC BF =①BC BF =①BCF F ∠=∠①BE CD ⊥ BCF BCD ∠=∠①30BCF BCD F ∠=∠=∠=︒①60OBC ∠=︒①1BE =①2BC =①60OB OC OBC =∠=︒,①OBC △为等边三角形①2OB BC ==即O 的半径为2.4.(1)解:①AB 是O 的直径①090ACB FCA ∠=∠=①点C 是AE 的中点①AC EC =①CAE CBA ∠=∠①ACF BCA ∽△△(2)ACF BCA ∵∽△△2AC CF CB =⋅∴1CF = 2BF =23AC CF CB =⋅=∴AC ∴090ACB ∠=AB ∴==1sin 2CA ABC AB ∴∠=== 30CAE CBA =︒∠=∠∴903060BAC ∴∠=︒-︒=︒603030BAD ∴∠=︒-︒=︒BD 是O 的切线 90ABD ∴∠=︒tan D B B BA D A ∠==∴2DB ∴=5.(1)证明:①点E 是AB 的中点 且DE 过圆心①AB DE ⊥①AD BD =①B BAD ∠=∠有①BAD CDF ∠=∠①B CDF ∠=∠①DF AB . (2)①DFAB ①CDF CBA △△∽①DF CF BA CA=即:494CF CF=+ 解得:165CF = 又①AF FD =①CAD FDA ∠=∠①DF AB①FDA BAD CDF ∠=∠=∠①CAD CDF ∠=∠又C C ∠=∠①CDF CAD ∽ ①=CD CA CF CD①2161657645525CD CF AC ⎛⎫=⋅=⨯+= ⎪⎝⎭ ①245CD = ①CDF CBA △△∽①DC DF BC BA= 即24459BC = ①545BC = ①5424655BD BC DC =-=-= ①1922AE AB == 在ADE 中222293762DE AD AE ⎛⎫=-=- ⎪⎝⎭①3772tan tan 92DE CDF EAD AE ∠=∠=== 综上 17tan CDF ∠ 545BC =. (3)①::1:4:3GC CA AB =①它们所对圆心角度数比为1:4:3.根据同弧所对圆周角为原心角的一半 可知它们所对的圆周角度数比为1:4:3 即1::1:4:3B C ∠∠∠=设1∠=α 则4B α∠= 3C α∠=则14ADB C α∠=∠+∠=①AD BD =①4BAD B α∠=∠=①4ADB BAD B α∠=∠=∠=①ADB 为等边三角形①460α=︒①15α=︒①345C α∠==︒过点E 作EM BC ⊥交BC 于M 过点A 作⊥AP BC 交BC 于P 过点F 作FN BC ⊥交BC 于N设2BD m =①=60B ∠︒ 90BED ∠=︒①1cos6022BE BD m m =⋅︒=⨯= sin sin 60EM BE B m m =⋅=⋅︒==①211222BED S EM BD m =⋅=⋅=同理sin 2sin 602AP AB B m m =⋅=⨯︒== ①45C PAC ∠=∠=︒①PC AP == ①12PD BD m ==①)1CD PC PD m =-=①45C NFC ∠=∠=︒设FN CN n ==①DF AB60FDN B ∠=∠=︒ ①3tan 60FN DN ==︒ 又①CD DN NC =+ 即)331m n =+ 解得:()233n m = ①)()211953313322DFC S DC FN m m -=⋅=⨯⨯= ①2253332953BED DFC S m S -+△△. 6.(1)证明:①直径AB CD ⊥①BC BD =.①A BCD ∠=∠(2)解:连接OC①直径AB CD ⊥①CE ED =.①直径4AB =①2CO OB ==①2BC =①OCB 是等边三角形①60COE ∠=︒①30OCE ∠=︒ ①112OE OC == 在Rt COE △中①CE①2CD CE ==7.(1)证明:如图 连接OA①AP 为O 的切线①OA AP ⊥①90OAP ∠=︒①90OAB PAB ∠+∠=︒①OA OB =①OAB OBA ∠=∠①90OBA PAB①BC 为O 的直径①90ACB OBA ∠+∠=︒①PAB ACB ∠=∠(2)由(1)知PAB ACB ∠=∠ 且ADB ACB ∠=∠ ①ACB PAB ADB ∠=∠=∠ ①4cos cos cos 5ACB PAB ADB ∠=∠=∠= 在Rt ABC 中 3tan 4AB ACB AC ∠== ①12AB =①16AC =①2220BC AB AC +=①10OB =过B 作BF AP ⊥于F①ADB FAB ∠=∠ 4cos 5ADB①4cos 5FAB ∠=①3sin 5FAB ∠= ①在Rt ABF 中 36sin 5BF AB FAB =⋅∠=①OA AP BF AP ⊥⊥,,①BF OA ∥ ①PBF POA ∽①BF PB OA PO ①3651010PB PB =+①1807PB = 故PB 的长为1807. 8.(1)解:90BCA ∠=︒ BC AC = 点O 是AB 的中点 90COA ︒∴∠= 12CO AB OA == AOD 是等边三角形OD OA ∴= 60ODA DOA ∠=∠=︒OC OD ∴= 906030COD COA DOA ∠=∠-∠=︒-︒=︒ ()()11180180307522ODC COD ∴∠=︒-∠=⨯︒-︒=︒ 7560135ADC ODC ODA ∴∠=∠+∠=︒+︒=︒故答案为:135︒(2)解:线段BD CD DA 之间的数量关系为:BD DA =+ 理由如下: 过点C 作CH CD ⊥交AD 的延长线于点H 如图2所示:则180********CDH ADC ∠=︒-∠=︒-︒=︒ DCH ∴△是等腰直角三角形CH CD ∴= HD90BCA ∠=︒ACH BCD ∴∠=∠()ACH BCD SAS ∴≌BD AH HD DA AD ∴==+=+ (3)解:连接OC 如图3所示:90BCA ∠=︒ BC AC =ACB ∴是等腰直角三角形45ABC ∴∠=︒ O 是ABC 的外接圆O ∴是AB 的中点OC AB ∴⊥ ()()111174222OC OA AB AE BE ===+=⨯+= 413OE OA AE ∴=-=-=在Rt COE △中 由勾股定理得:2222435CE OC OE ++ CE 是定值∴点D 到CE 的距离最大时 CDE 面积的面积最大 AB 是O 的直径过点O 作ON CE ⊥于N 延长ON 与O 的交点恰好是点D 时 点D 到CE 的距离最大 CDE 面积的面积最大1122OCE S OC OE CE ON =⋅=⋅431255OC OE ON CE ⋅⨯∴===4OD OC ==128455DN OD ON ∴=-=-=此时 在直角CNO 中 222212164()55CN OC ON =-=-=在直角CND △中 222216885()()55CD CN DN +=+=在直角ABD △中 222228BD AB AD AD =-=- 由(2)知 8581022BD CD AD AD AD =+==2228108()AD AD ∴-=+610AD ∴=8108106101410BD AD ∴+=即CDE 面积的面积最大值为4 此时 1410BD .9.(1)解:①AB 为O 的直径①90AEB ∠=︒又①45BAC ∠=︒①=45ABE ∠︒.又①AB AC =①67.5ABC C ∠=∠=︒①22.5EBC ∠=︒.(2)解:连接OE 如图所示:①45ABE BAE ∠=∠=︒①AE BE =①OA OB =①OE AB ⊥①2OA OB OE ===①OBE OBE S S S =-阴影扇形29021223602π⨯⨯=-⨯⨯2π=-.10.(1)证明:连接OC 如图①直线EF 与O 相切于点C①OC EF ⊥.①点C 是AB 的中点①OC AB ⊥.①AB EF ∥.(2)解:①OC EF ⊥①90OCE ∠=︒.①90DEF EOC ∠+∠=︒.①2EOC D ∠=∠ 3DEF D ∠=∠①590D ∠=︒.①18D ∠=︒.①331854DEF D ∠=∠=⨯︒=︒.①AB EF ∥①54DAB DEF ∠=∠=︒.11.(1)证明:BC 为直径90BAC ∴∠=︒90ACE AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACE ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=(2)解:①(1)中的结论成立理由如下: BC 为直径90BAC ∴∠=︒即:=90GAC ∠︒90ACG AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACG ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=①如图2 过点G 作GM BC ⊥交CB 的延长线于点M90GMB ADB ∴∠=∠=︒又ABD GBM ∠=∠GBM ABD ∴∽ ∴BMMGBD DA = ∴BM BDMG DA =90BAD ABD ∠+∠=︒90BAD DAC ∠+∠=︒ABD DAC ∴∠=∠ACE ABD ∠=∠DAC ACE ∴∠=∠AF CF ∴=又AF GF =CF GF ∴=∴点F 为CG 的中点2tan 3BD BAD AD ∠== ∴23BMBD MG DA ==90ADB ADC ∠=∠=︒ABD CAD ∴∽ ①23BDAD AD CD ==设2BD x = 则3AD x =①233x x x CD= 解得:92CD x =AD BC ⊥ GM BC ⊥AD GM ∴∥①点D 为CM 的中点29CM CD x ∴==92DM CD x ∴== BM DM BD ∴=-52x = ①23BM MG = 32MG BM ∴=154x = CG ∴22MG CM +()221594x x ⎛⎫+ ⎪⎝⎭394x = cos BCE ∴∠CM CG =. 9394xx = 1213=. 12.(1)①ACD ACF ∠=∠ ACD ABD ∠=∠ ①ACE ABD ∠=∠(2)①①点C 是BD 的中点①BAC DAC ∠=∠ BC DC =①BAC DAC DBC ∠=∠=∠①BEC BAC ACE ∠=∠+∠ ABC ABD DBC ∠=∠+∠ ①BEC ABC ∠=∠①CE BC =①CE CD =②延长CE 交O 于点P 连接PB 连接CO 交BD 于点M由①得BAC DAC DBC ∠=∠=∠ BC DC = ①CM BD ⊥ ①12DM BM BD ==①BAC BPC ∠=∠①DBC DPC ∠=∠①BCF PCB ∠=∠①CBF CPB ∽ ①CB CF CP CB = ①34CF CD = 设3CF k = 4DC CE CB k === 则EF k = ①434k k CP k= 则163PC k = ①43PE PC CF EF k =--=①在Rt CMD 中 3tan 4CM BDC DM ∠== 设BDC ∠的对边为3CM m = 则4DM m = ①由勾股定理得5CD m = ①44cos 55DM m BDC CD m ∠=== ①4cos 5DM BDC DC ∠==①165DM k = 由12DM BM BD == ①3225BD DM k ==①BPF CDF ∠=∠ PBF DCF ∠=∠ ①BPF CDF ∽ ①PF BF DF CF= 设DF y = 由4733PF PE EF k k k =+=+= 325BF BD DF k y =-=- ①732353k k y y k-= 解得15y k = 275y k = ①155EF k DF k ==或5775EF k DF k == 综上可知EF DF 的值为15或57(3)过F 作FH AB ∥ 交AC 于点H同理FHG CHF ∽ ①FH HC HG FH= ①点F 是BG 的中点则设AH HG a == ①FH HC HG FH = 即131a a -= 整理得2310a a -+= 解得:135a +=(舍去) 235a -=①325CG a =-13.(1)证明:如图 连接BO90OAB OCB ∠=∠=︒ BA BC = BO BO =①()Rt Rt HL ABO CBO ≌①AO CO =CO ∴是O 的半径又①90BCO ∠=︒①BC 是O 的切线(2)①解:依照题意画出图形 如图所示①证明:①Rt Rt ABO CBO ≌ ①AOB BOC ∠=∠①AOD COD ∠=∠①AD AC =①AOC AOD ∠=∠①120AOC AOD COD ∠=∠=∠=︒ ①60AOB BOC ∠=∠=︒①90BCO ∠=︒①30OBC ∠=︒①60AOB OBC F ∠=∠+∠=︒①30F OBC ∠=︒=∠①OB OF =.⊥与点D如图14.(1)证明:过点O作OD AC⊥=AO BCAB AC∠∴平分BACAO⊥OE AB⊥OD AC∴=OD OEOE是圆的半径OD∴是圆的半径这样AC经过半径OD的外端且垂直于半径OD∴是O的切线AC(2)解:在BC边上存在一点P使PF PE+有最小值.延长AO交O于点G连接EG交BC于点P连接PF则此时PF PE+最小连接EF过点E作EH AO⊥于点H如图∠=︒OE OFAOE60=∴为等边三角形OEF∴===3EF OE OF⊥EH OF1322OH HF OF ∴=== 39322GH OG OH ∴=+=+= 在Rt EHO 中sin EH AOE OE ∠=EH OE ∴=在Rt EHG △中EG BC FG ⊥ OG OF = PG PF ∴=PE PF PE PG EG ∴+=+==∴在BC 边上存在一点P 使PF PE +有最小值.PF PE +的最小值为 15.(1)①BE ED = ①BCE DCE ∠=①CE AB ⊥①90CFP CFB ∠=∠=︒ 在CPF 和CBF 中 DCE BCE CF CFCFP CFB ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA CPF CBF ≌ ①FP FB =.(2)由(1)得 FP FB = ①OP FB =①OP FB FP ==设3OA a =①OP FB FP a === ①2OF OP PF a =+= 连接OE①在Rt OFE △中 ()()225FE OE OF a - ①AB 为O 的直径 CE AB ⊥ ①5CF EF a == ①55FP FC a ==(3)①连接OE 如图①AB 为O 的直径 CE AB ⊥ ①CB BE =①BE ED =①BE ED CB == ①CB BE BE BD +=+ ①CE BD =①CE BD =①55OA OP == ①1OP =①FP FB = 5FP FB OP ++= ①2FP FB ==①3OF =在Rt OFE △中 FE =①4FE =①12CF FE CE == ①8CE = ①8BD = ①①CG CP = FP FB = ①点F 点C 是线段PB GO 的中点 ①CF 为PGB △的中位线 ①12CF GB = 12CF GB ∥ ①4CF = ①8GB = ①CF AB ⊥ ①BG AB ⊥ ①BCG 中BG 边上的高等于BF 的长①BCG 的面积为:1182822BG BF ⨯=⨯⨯=.。

中考数学《圆的综合题》专项练习题及答案

中考数学《圆的综合题》专项练习题及答案

中考数学《圆的综合题》专项练习题及答案一、单选题1.如图,在一块正三角形飞镖游戏板上画一个正六边形(图中阴影部分),假设飞镖投中游戏板上的每一点是等可能的(若投中边界或没有投中游戏板,则重投1次),任意投掷飞镖1次,则飞镖投中阴影部分的概率为()A.13B.49C.12D.232.如图,AB为⊙O的直径,弦DC垂直AB于点E,⊙DCB=30°,EB=3,则弦AC的长度为()A.3 √3B.4√3C.5√3D.6√33.如图,AB是⊙O的弦,半径OC⊙AB于点D,且AB=6cm,OD=4cm。

则DC的长为()A.cm B.1cm C.2cm D.5cm4.如图,四边形ABCD内接于⊙ O,AB为⊙ O的直径,∠ABD=20∘,则∠BCD的度数是()A.90°B.100°C.110°D.120°5.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则⊙ABD=()A.⊙ACD B.⊙ADB C.⊙AED D.⊙ACB6.如图,在⊙O中,弦AB⊙CD,若⊙ABC=40°,则⊙BOD=()A.20°B.40°C.50°D.80°7.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个8.已知如图,PA、PB切⊙O于A,B,MN切⊙O于C,交PB于N;若PA=7.5cm,则⊙PMN的周长是()A.7.5cm B.10cm C.15cm D.12.5cm9.若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为()A.20厘米B.19.5厘米C.14.5厘米D.10厘米10.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形(阴影部分)围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.5√3cm C.8cm D.3√5cm11.如图,△ABC内接于⊙O,∠B=65o,∠C=70o,若BC=2√2,则弧BC长为()A.πB.√2πC.2πD.√2π12.如下图,点B,C,D在⊙O上,若⊙BCD=130°,则⊙BOD的度数是()A.96°B.98°C.102°D.100°二、填空题13.如图,在扇形AOB中,OA=4,⊙AOB=90°,点P是弧AB上的动点,连接OP,点C是线段OP的中点,连接BC并延长交OA于点D,则图中阴影部分面积最小值为.14.如图,在边长为√2的正方形ABCD中,分别以四个顶点为圆心,以边长为半径画弧,分别与正方形的边和对角线相交,则图中阴影部分的面积为(结果保留π).15.如图,⊙ABC的顶点A,B,C均在⊙O上,若⊙ABC+⊙AOC=90°,则⊙AOC的大小是.16.如图:⊙O为⊙ABC的内切圆,⊙C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径为.17.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan⊙ACG=.18.如图,菱形ABCD中,已知AB=2,∠DAB=60°将它绕着点A逆时针旋转得到菱形ADEF,使AB与AD重合,则点C运动的路线CE⌢的长为.三、综合题19.如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:(1)⊙P=⊙BAC(2)直线CD是⊙O的切线.20.如图,以△ABC的边AB为直径的⊙O交AC于点F,点E是BF⌢的中点,连接BE并延长交AC于点D,若∠CBD=12∠CAB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos∠BAC=25,求CD的长.21.如图,⊙O是⊙ABC的外接圆,AC是O的直径,BD=BA=12,BC=5,BE⊙DC,交D的延长线于点E,BD交直径AC于点F.(1)求证:⊙BCA=⊙BAD.(2)求证:BE是⊙O的切线.(3)若BD平分⊙ABC,交⊙O于点D,求AD的长.22.如图,⊙OAB中,OA=OB=10cm,⊙AOB=80°,以点O为圆心,半径为6cm的优弧弧MN分别交OA,OB于点M,N.(1)点P在右半弧上(⊙BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求A T的长.23.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.⌢的中点,CE⊥AB于点E,BD交CE于点F.24.如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD﹦5,AC﹦12,求⊙O的半径和CE的长.参考答案1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】C10.【答案】D11.【答案】A12.【答案】D13.【答案】4π−8√3314.【答案】4-π15.【答案】60°16.【答案】0.817.【答案】118.【答案】2√33π19.【答案】(1)解:证明:∵AB是⊙O的直径∴⊙ACB=90°∴⊙ACP=90°∴⊙P+⊙CAP=90°∵AP⊙O是切线∴⊙BAP=90°即⊙CAP+⊙BAC=90°∴⊙P=⊙BAC;(2)解:∵CD是Rt⊙PAC斜边PA的中线∴CD=AD∴⊙DCA=⊙DAC连接OC∵OC=OA∴⊙OCA=⊙OAC∴⊙DCO=⊙DAO=90°∴CD是⊙O的切线.20.【答案】(1)证明:连接AE,如图所示:∵AB是⊙O的直径∴∠AEB=90°∴∠BAE+∠ABE=90°.∵点E为弧BF的中点∴EF⌢=EB⌢∴∠BAE=∠DAE=12∠CAB.又∵∠CBD=12∠CAB∴∠BAE=∠CBD∴∠CBD+∠ABE=90°∴AB⊥CB∴BC是⊙O的切线.(2)解:∵∠BAE=∠DAE,∠AED=∠AEB=90°∴∠ADE=∠ABE∴AD=AB=2×2=4.∵cos∠BAC=2 5∴在Rt△ABC中即4AC=25,得AC=10∴CD=AC−AD=10−4=6.21.【答案】(1)证明:∵BD=BA ∴∠BDA=∠BAD.∵∠BCA=∠BDA∴∠BCA=∠BAD.(2)证明:连结OB,如图∵∠BCA=∠BAD又∵∠BCE=∠BAD∴∠BCA=∠BCE∵OB=OC∴∠BCO=∠CBO∴∠BCE=∠CBO∴OB//ED.∵BE⊥ED∴EB⊥BO.∴BE是⊙O的切线.(3)解:∵AC是⊙O的直径∴∠ABC=90°∴AC=√AB2+BC2=√122+52=13.∵∠BDE=∠CAB∴△BED∽△CBA∴BDAC=DEAB,即1213=DE12∴DE=14413∴BE=√BD2−DE2=6013∴CE=√BC2−BE2=2513∴CD=DE−CE=119 13∵BD平分⊙ABC ∴∠CBD=∠ABD∴AD=CD=119 13.22.【答案】(1)证明:∵⊙AOB=⊙POP′=80°∴⊙AOB+⊙BOP=⊙POP′+⊙BOP即⊙AOP=⊙BOP′在⊙AOP 与⊙BOP′中 OA=OB ⊙AOP=⊙BOP OP=OP′∴⊙AOP⊙⊙BOP′ ∴AP=BP′(2)解:∵A T 与弧相切,连结OT .∴OT⊙A T在Rt⊙AOT 中,根据勾股定理得,A T= √OA 2−OT 2 ∵OA=10,OT=6 ∴AT=823.【答案】(1)1 (2)1424.【答案】(1)证明:∵AB 是 ⊙O 的直径∴∠ACB =90° ∴∠A +∠ABC =90° 又∵CE ⊥AB ∴∠CEB =90° ∴∠BCE +∠ABC =90° ∴∠BCE =∠A∵C 是 BD ⌢ 的中点 ∴CD⌢=CB ⌢ ∴∠DBC =∠A ∴∠DBC =∠BCE ∴CF =BF(2)解:∵CD⌢=CB ⌢,CD =5 ∴∠DBC =∠BDC∴BC=CD=5∵∠ACB=90°∴AB=√AC2+BC2=√122+52=13∴AO=6.5∵∠BCE=∠A,∠ACB=∠CEB=90°∴△CEB⊙ △ACB∴CE=AC⋅BCAB=12×513=6013故⊙O的半径为6.5,CE的长是6013.第11页共11。

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =AH HC =34,∵AH =33,∴HC =43,在Rt △HOC 中,∵OC =r ,OH =r ﹣33,HC =43,∴222(33)(43)r r -+=,∴r =2536,∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =,∴33432536EM =,∴EM =2538. 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=,AC BD ∴=,DCB DAB ∠=∠,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴∽DBE ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331n n + .6.如图1,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过O 点作OF ⊥AB 交⊙O 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG(1)判断CG 与⊙O 的位置关系,并说明理由;(2)求证:2OB 2=BC •BF ;(3)如图2,当∠DCE =2∠F ,CE =3,DG =2.5时,求DE 的长.【答案】(1)CG 与⊙O 相切,理由见解析;(2)见解析;(3)DE =2【解析】【分析】(1)连接CE ,由AB 是直径知△ECF 是直角三角形,结合G 为EF 中点知∠AEO =∠GEC =∠GCE ,再由OA =OC 知∠OCA =∠OAC ,根据OF ⊥AB 可得∠OCA +∠GCE =90°,即OC ⊥GC ,据此即可得证;(2)证△ABC ∽△FBO 得BC AB BO BF =,结合AB =2BO 即可得; (3)证ECD ∽△EGC 得EC ED EG EC =,根据CE =3,DG =2.5知32.53DE DE =+,解之可得.【详解】解:(1)CG 与⊙O 相切,理由如下:如图1,连接CE ,∵AB 是⊙O 的直径,∴∠ACB =∠ACF =90°,∵点G 是EF 的中点,∴GF =GE =GC ,∴∠AEO =∠GEC =∠GCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OF ⊥AB ,∴∠OAC +∠AEO =90°,∴∠OCA +∠GCE =90°,即OC ⊥GC ,∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,∴∠OAE =∠F ,又∵∠B =∠B ,∴△ABC ∽△FBO , ∴BC AB BO BF=,即BO •AB =BC •BF , ∵AB =2BO ,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5, ∴32.53DE DE =+,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.7.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,3 ,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=123 ,3, 在Rt △DEP 中,∵37∴22(7)(3)- =2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=17 ,∴AE=577∵BE ∥DF , ∴△ABE ∽△AFD , ∴BE AE DF AD= ,即5757125DF = , 解得DF=12,在Rt △BDH 中,BH=123, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯-3﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 260233604π⋅⋅=-⨯22233π=. 【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.9.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)6334π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×32=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.10.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=42. ∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴PN=PK=C 2,∴NF=b c 2-,CK=a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b +,又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a c b c (a b 222222=⨯+⨯++-)×c 2,化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴2==, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.11.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC的长为145.【解析】【分析】(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan∠ABD34=,cos∠ABD=45,再求出DF、BF,然后即可求出BC.【详解】(1)证明:连接AD,∵DE⊥AB,AB是⊙O的直径,∴AD AE=,∴∠ADE=∠ABD,∵弦BD平分∠ABC,∴∠DBC=∠ABD,∵∠DBC=∠DAC,∴∠ADE=∠DAC,∴AG=GD;(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,∴∠DBC=∠ABD=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=30°,∴∠DFG=∠FAB+∠DBA=60°,∵DE⊥AB,∴∠DGF=∠AGH=90°﹣∠CAB=60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD =22AB BD -=8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.12.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF为CD的垂直平分线,得CF=DF,∠CDF=∠DCF,由∠CDO=∠OCD,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD⊥DF,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB,FB=OB= OC =2,在直角三角形OCE中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF是⊙O的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3∠==sin COEOC2∴CF3==∴CD=2 CF23【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.13.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=,继而求得67.5ADQ AQD ∠=∠=,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,即可证得Rt DCF ∽Rt GED ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,四边形BCDE 是正方形,45DBA ∴∠=,90DCB ∠=,即DC AB ⊥,C 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=,90ADB ∴∠=,即BD AD ⊥,BD 为半径,AD ∴是B 的切线;()2BD BG =,BDG G ∴∠=∠,//CD BE ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=, 9067.5ADQ BDG ∴∠=-∠=,9067.5AQB BQG G ∠=∠=-∠=, ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=,67.5BFD BDF ∴∠=∠=,22.5GDB ∠=, 在Rt DEF 与Rt GCD 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,Rt DCF ∴∽Rt GED ,CF CD ED EG∴=, 又CD DE BC ==,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.如图1,D 是⊙O 的直径BC 上的一点,过D 作DE ⊥BC 交⊙O 于E 、N ,F 是⊙O 上的一点,过F 的直线分别与CB 、DE 的延长线相交于A 、P ,连结CF 交PD 于M ,∠C =12∠P . (1)求证:PA 是⊙O 的切线;(2)若∠A =30°,⊙O 的半径为4,DM =1,求PM 的长;(3)如图2,在(2)的条件下,连结BF 、BM ;在线段DN 上有一点H ,并且以H 、D 、C 为顶点的三角形与△BFM 相似,求DH 的长度.【答案】(1)证明见解析;(2)PM =43﹣2;(3)满足条件的DH 的值为632- 或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线.(2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD =3DM =3 ,∴OD =OC ﹣CD =4﹣3 ,∴AD =OA+OD =8+4﹣3 =12﹣3 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为62- 或1211+. 【点睛】 本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.。

2023年中考数学专题专练--圆的综合题

2023年中考数学专题专练--圆的综合题

2023年中考数学专题专练--圆的综合题1.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长2.如图,⊙O的两条弦AB、CD交于点E,OE平分⊙BED.(1)求证:AB=CD;(2)若⊙BED=60°,EO=2,求DE﹣AE的值.3.如图,AC是O的直径,PA切O于点A,点B是O上的一点,且30APB∠=︒.BAC∠=︒,60(1)求证:PB是O的切线;(2)若O的半径为2,求弦AB及PA,PB的长.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC⊙BD,交AD于点E,连结BC.(1)求证:AE=ED ;(2)若AB=8,⊙CBD=30°,求图中阴影部分的面积.5.如图,四边形ABCD 中,AB⊙CD ,点O 在BD 上,以O 为圆心的圆恰好经过A 、B 、C 三点,⊙O 交BD 于E ,交AD 于F ,且弧AE=弧CE ,连接OA 、OF.(1)求证:四边形ABCD 是菱形; (2)若⊙AOF =3⊙FOE ,求⊙ABC 的度数.6.如图,ABC 中, AB AC = ,以 AB直径作O ,交 BC 于点D ,交 AC 于点E.(1)求证: BD DE = .(2)若 50BAC ∠=︒ ,求 AE 的度数.7.如图,在⊙ABC 中,AB=BC ,⊙ABC=90°,D 是AB 上一动点,连接CD ,以CD 为直径的⊙M交AC 于点E ,连接BM 并延长交AC 于点F ,交⊙M 于点G,连接BE .(1)求证:点B在⊙M上.(2)当点D移动到使CD⊙BE时,求BC:BD的值.(3)当点D到移动到使0CG=时,求证:AE²+CF²=EF².308.如图,已知O是等腰⊙ABC的外接圆,且AB=AC,点D是AB上一点,连结BD并延长至点E,连结AD,CD.(1)求证:DA平分⊙EDC.(2)若⊙EDA=72°,求BC的度数.9.如图,⊙ABC内接于⊙O,⊙B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+ 3,BC=2 3,求⊙O的半径.10.如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作⊥交AE的延长线于点C.DC AE(1)求证:CD是⊙O的切线.AC ,求阴影部分的面积.(2)若911.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且⊙ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE·CP的值.12.如图,⊙ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且⊙DBC=⊙A=60°,连接OE并延长与⊙O相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.13.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且⊙CAD=60°,DC=DE.求证:(1)A B=AF;(2)A为⊙BEF的外心(即⊙BEF外接圆的圆心).14.如图,在平行四边形ABCD中,⊙D=60°,对角线AC⊙BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2 3,求AM的长(结果保留π).15.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE⊙CO.(1)求证:BC是⊙ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.16.如图,PA、PB是⊙O的切线,CD切⊙O于点E,⊙PCD的周长为12,⊙APB=60°.求:(1)PA的长;(2)⊙COD的度数.17.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB ;(2)若AB=10,BC=6,求CD 的长.18.已知:如图,⊙O 是⊙ABC 的外接圆, AB AC ∧∧= ,点D 在边BC 上,AE⊙BC ,AE=BD .(1)求证:AD=CE ;(2)如果点G 在线段DC 上(不与点D 重合),且AG=AD ,求证:四边形AGCE 是平行四边形.19.如图,在Rt⊙ABC 中,⊙ACB=90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若CF=2,DF=4,求⊙O 直径的长.20.如图,以⊙ABC 的边AB 为直径画⊙O ,交AC 于点D ,半径OE⊙BD ,连接BE ,DE ,BD ,设BE 交AC 于点F ,若⊙DEB=⊙DBC .(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.答案解析部分1.【答案】(1)证明:过点O作OE⊙AB于E,则CE=DE,AE=BE.∴AE-CE=BE-DE即AC=BD(2)解:连接OC,OA由(1)可知,OE⊙AB且OE⊙CD,∴OE=6∴CE=22228627OC OE--=22221068OA OE-=-=∴AC=AE-CE=8-2 72.【答案】(1)证明:过点O作AB、CD的垂线,垂足为M、N,如图1,∵OE平分⊙BED,且OM⊙AB,ON⊙CD,∴OM=ON,∴AB=CD(2)解:如图2所示,由(1)知,OM=ON,AB=CD,OM⊙AB,ON⊙CD,∴DN=CN=AM=BM,在Rt⊙EON与Rt⊙EOM中,∵OE OE OM ON=⎧⎨=⎩,∴Rt⊙EON⊙Rt⊙EOM(HL),∴NE=ME,∴CD﹣DN﹣NE=AB﹣BM﹣ME,即AE=CE,∴DE﹣AE=DE﹣CE=DN+NE﹣CE=CN+NE﹣CE=2NE,∵⊙BED=60°,OE平分⊙BED,∴⊙NEO= 12⊙BED=30°,∴ON=12OE=1,在Rt⊙EON中,由勾股定理得:NE= 223OE ON-=,∴DE﹣AE=2NE=2 3 3.【答案】(1)证明:连接OB.∵OA=OB,∴⊙OBA=⊙BAC=30°.∴⊙AOB=180°-30°-30°=120°.∵PA切⊙O于点A,∴OA⊙PA,∴⊙OAP=90°.∵四边形的内角和为360°,∴⊙OBP=360°-90°-60°-120°=90°.∴OB⊙PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)解:连接OP;∵PA、PB是⊙O的切线,∴PA=PB,⊙OPA=⊙OPB= 12⊙APB=30°.在Rt⊙OAP中,⊙OAP=90°,⊙OPA=30°,∴OP=2OA=2×2=4,∴PA= 22OP OA-=2242-=2 3.∵PA=PB,⊙APB=60°,∴PA=PB=AB=2 3.4.【答案】(1)证明:∵AB是圆O的直径,∴⊙ADB=90°,∵OC⊙BD,∴⊙AEO=⊙ADB=90°,即OC⊙AD,∴AE=ED(2)解:连接AC、OD由(1)得OC⊙AD,∴AC CD=∴AC=CD∵⊙CBD=30°∴⊙COD=60°∴⊙AOC=⊙COD=60°∴⊙AOD=120°∵AB=8∴OA=OD=4∴BD=4∴OE=12OC=2∴21204163603 AODSππ︒⨯⨯==︒扇形∴22228443 AD AB BD=--=∵OC⊙AD∴1432432AODS∆=⨯=∴16-433S=阴影.5.【答案】(1)证明:∵AE EC=, ∴⊙CBD=⊙ABD,∵CD⊙AB,∴⊙ABD=⊙CDB,∴⊙CBD=⊙CDB,∴CB=CD,∵BE是⊙O的直径,∴AB AE BC CE+=+,∴AB BC=,∴AB=BC=CD,∵CD⊙AB,∴四边形ABCD是菱形;(2)解:∵⊙AOF=3⊙FOE,设⊙FOE=x,则⊙AOF=3x,⊙AOD=⊙FOE+⊙AOF=4x,∵OA=OF,∴⊙OAF=⊙OFA= 12(180-3x)°,∵OA=OB,∴⊙OAB=⊙OBA=2x,∴⊙ABC=4x,∵BC⊙AD,∴⊙ABC+⊙BAD=180°,∴4x+2x+ 12(180-3x)=180,x=20°,∴⊙ABC=80°.6.【答案】(1)证明:连接AD、DE,∵AB为直径,∴AD⊙BC,∵AB=AC,∴⊙ABC为等腰三角形,∴⊙BAD=⊙DAE,∴BD DE=;(2)解:⊙BAC=50°,∴⊙B=(180°-⊙A)÷2=65°,∴AD弧所对的圆周角为65°,∵⊙DAE=12⊙A=25°,∴⊙ADE=65°-⊙DAE=40°,∵⊙ADE为圆周角,∴ ⊙ADE所对的弧AE的度数为80°. 7.【答案】(1)证明:∵CD为⊙M的直径∴CM=DM= 12CD∵⊙ABC=90°∴BM=CM=DM= 12CD∴点B在⊙M上(2)解:如图,连接DE,∵CD为⊙M的直径,CD⊙BE ∴⊙DEC=90°, BD DE=,∴⊙DEA=90°, BD=DE ,∵AB=BC,⊙ABC=90°,∴⊙A=⊙ACB=45° ,∴⊙ADE=180°-⊙A-⊙AED=45°,∴⊙ADE=⊙A=45°,∴AE=DE ,∴AE=DE=DB,∴AD= 222+=,AE DE BD∴AB=AD+BD= 21)BD,∴BC=AB= 21)BD∴BC:BD= 21(3)证明:如图,连接EM,∵⊙EMB=2⊙ECB,由(2)知⊙ECB=45°,∴ ⊙EMB=90°,∴ ⊙EMF=90°,∴ EM²+MF²=EF² ,∵0CG=,30∴⊙CMG=30°,∴⊙DME=60°,∵DM=EM,∴⊙DME是等边三角形.∴DE=EM,⊙CDE=60°,由(2)知AE=DE,∴AE=ME ,∵⊙AEC=90°,⊙CDE=60°,∴⊙DCE=30°,∴⊙DCE=⊙CMG=30°∴CF=MF , ∵ EM²+MF²=EF² ∴ AE²+CF²=EF².8.【答案】(1)解:∵四边形ABCD 内接于O ,∴⊙ADB+⊙ACB =180° ∵⊙ADB+⊙ADE =180°, ∴⊙ACB =⊙ADE. ∵AB =AC , ∴⊙ABC =⊙ACB. 又∵⊙ABC =⊙ADC ,∴⊙ADC =⊙ADE ,即DA 平分⊙EDC ;(2)解:由(1)得⊙ADE =⊙ACB =⊙ABC =72°, ∴18036BAC ACB ABC ∠=︒-∠-∠=︒, ∴272BOC BAC ∠=∠=︒, ∴BC 的度数为72°.9.【答案】(1)证明:连接OA ,∵⊙B=60°,∴⊙AOC=2⊙B=120°, 又∵OA=OC ,∴⊙OAC=⊙OCA=30°, 又∵AP=AC , ∴⊙P=⊙ACP=30°,∴⊙OAP=⊙AOC ﹣⊙P=90°, ∴OA⊙PA , ∴PA 是⊙O 的切线;(2)解:过点C 作CE⊙AB 于点E . 在Rt⊙BCE 中,⊙B=60°,BC=2 3,∴BE=12BC= 3,CE=3,∵AB=4+3,∴AE=AB ﹣BE=4, ∴在Rt⊙ACE 中,AC= 22AE CE + =5,∴AP=AC=5. ∴在Rt⊙PAO 中,OA=33, ∴⊙O 的半径为33. 10.【答案】(1)证明:连接OD ,如图所示:∵四边形BDEO 是平行四边形, ∴//OE BD OE BD OD OB ===, , ∴⊙ODB 是等边三角形, ∴⊙OBD=⊙BOD=60°, ∴⊙AOE=⊙OBD=60°, ∵OE=OA ,∴⊙AEO 也为等边三角形, ∴⊙EAO=⊙DOB=60°, ∴AE⊙OD , ∴⊙ODC+⊙C=180°, ∵CD⊙AE ,∴⊙C=90°, ∴⊙ODC=90°, ∵OD 是圆O 的半径, ∴CD 是⊙O 的切线.(2)解:由(1)得⊙EAO=⊙AOE=⊙OBD=⊙BOD=60°,ED⊙AB , ∴⊙EAO=⊙CED=60°,∵⊙AOE+⊙EOD+⊙BOD=180°, ∴⊙EOD=60°,∴⊙DEO 为等边三角形, ∴ED=OE=AE ,∵CD⊙AE ,⊙CED=60°, ∴⊙CDE=30°, ∴2ED CE AE == , ∵9AC = ,∴36CE AE OE ED ====, , ∴2233CD ED CE =-=, 设⊙OED 的高为h , ∴sin 6033h OE =⋅︒=, ∴21=6933602OEDED OED n r S S SED h ππ-=-⋅=-弓形扇形, ∴(1273=693622CED EDS SS CE CD ππ-=⋅--=-阴影弓形 . 11.【答案】(1)证明:如图, PD 是⊙ O 的切线.证明如下:连结 OP ,60ACP ∠=∴120AOP ∠= ,OA OP = ,∴30OAP OPA ∠=∠= , PA PD = ,∴30PAO D ∠=∠= , ∴90OPD ∠= , ∴PD 是⊙ O 的切线. (2)证明:连结 BC ,AB 是⊙ O 的直径,∴90ACB ∠= , 又C 为弧 AB 的中点,∴45CAB ABC APC ∠=∠=∠=4AB = ,∴sin 4522AC AB ==,C C CAB APC ∠=∠∠=∠∴CAE ∆ ⊙ CPA ∆ , ∴CA CECP CA= , ∴22(22)8CP CE CA ⋅===12.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点, ∴BE =DE ,OE⊙BD , 12BF BD =,∴⊙BOE=⊙A,⊙OBE+⊙BOE=90°,∵⊙DBC=⊙A,∴⊙BOE=⊙DBC,∴⊙OBE+⊙DBC=90°,∴⊙OBC=90°,即BC⊙OB,∴BC是⊙O的切线;(2)解:∵OB=6,⊙DBC=⊙A=60°,BC⊙OB,∴OC=12,∵⊙OBC的面积=12OC•BE=12OB•BC,∴BE=633312OB BCOC⨯⨯==,∴BD=2BE=6 3,即弦BD的长为6 3.13.【答案】(1)证明:⊙ABF=⊙ADC=120°﹣⊙ACD=120°﹣⊙DEC =120°﹣(60°+⊙ADE)=60°﹣⊙ADE,而⊙F=60°﹣⊙ACF,因为⊙ACF=⊙ADE,所以⊙ABF=⊙F,所以AB=AF.(2)证明:四边形ABCD内接于圆,所以⊙ABD=⊙ACD,又DE=DC,所以⊙DCE=⊙DEC=⊙AEB,所以⊙ABD=⊙AEB,所以AB=AE.∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.14.【答案】(1)证明:连接OB,∵四边形ABCD 是平行四边形, ∴⊙ABC =⊙D =60°, ∵AC⊙BC , ∴⊙ACB =90°, ∴⊙BAC =30°, ∵BE =AB , ∴⊙E =⊙BAE ,∵⊙ABC =⊙E+⊙BAE =60°, ∴⊙E =⊙BAE =30°, ∵OA =OB ,∴⊙ABO =⊙OAB =30°, ∴⊙OBC =30°+60°=90°, ∴OB⊙CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形, ∴BC =AD =23,过O 作OH⊙AM 于H ,则四边形OBCH 是矩形, ∴OH =BC =2 3,∴OA =sin 60OH=4,⊙AOM =2⊙AOH =60°,∴AM的长度=604180π⋅⨯=43π.15.【答案】(1)证明:∵DE是切线,∴OC⊙DE,∵BE⊙CO,∴⊙OCB=⊙CBE,∵OC=OB,∴⊙OCB=⊙OBC,∴⊙CBE=⊙CBO,∴BC平分⊙ABE.(2)在Rt⊙CDO中,∵DC=8,OC=0A=6,∴OD= 22CD OC+=10,∵OC⊙BE,∴DCCE=DOOB,∴8CE=106,∴EC=4.8.16.【答案】(1)解:∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6.(2)解:∵⊙P=60°,∴⊙PCE+⊙PDE=120°,∴⊙ACD+⊙CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴⊙OCE=⊙OCA=12⊙ACD;同理:⊙ODE=12⊙CDB,∴⊙OCE+⊙ODE=12(⊙ACD+⊙CDB)=120°,∴⊙COD=180﹣120°=60°. 17.【答案】(1)证明:连接OC∵CD与⊙O相切于C点∴OC⊙CD又∵CD⊙AE∴OC//AE∴⊙OCB=⊙E∵OC=OB∴⊙ABE=⊙OCB∴⊙ABE=⊙E∴AE=AB(2)连接AC∵AB为⊙O的直径∴⊙ACB=90°∴221068 AC=-=∵AB=AE,AC⊙BE∴EC=BC=6∵⊙DEC =⊙CEA, ⊙EDC =⊙ECA ∴⊙EDC⊙⊙ECA∴DC EC AC EA= ∴6248105EC CD AC EA =⋅=⨯= . 18.【答案】(1)证明:在⊙O 中,∵AB AC ∧∧=∴AB=AC ,∴⊙B=⊙ACB ,∵AE⊙BC ,∴⊙EAC=⊙ACB ,∴⊙B=⊙EAC ,在⊙ABD 和⊙CAE 中, AB CA B EAC BD AE =⎧⎪∠=∠⎨⎪=⎩,∴⊙ABD⊙⊙CAE (SAS ),∴AD=CE ;(2)解:连接AO 并延长,交边BC 于点H ,∵AB AC ∧∧= ,OA 为半径,∴AH⊙BC ,∴BH=CH ,∵AD=AG ,∴DH=HG ,∴BH ﹣DH=CH ﹣GH ,即BD=CG ,∵BD=AE ,∴CG=AE ,∵CG⊙AE ,∴四边形AGCE 是平行四边形.19.【答案】(1)解:如图,连接OD 、CD ,∵AC 为⊙O 的直径,∴⊙BCD 是直角三角形,∵E 为BC 的中点,∴BE=CE=DE ,∴⊙CDE=⊙DCE ,∵OD=OC,∴⊙ODC=⊙OCD,∵⊙ACB=90°,∴⊙OCD+⊙DCE=90°,∴⊙ODC+⊙CDE=90°,即OD⊙DE,∴DE是⊙O的切线(2)解:设⊙O的半径为r,∵⊙ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为620.【答案】(1)证明:∵AB是⊙O的直径,∴⊙ADB=90°,∴⊙A+⊙ABD=90°,∵⊙A=⊙DEB,⊙DEB=⊙DBC,∴⊙A=⊙DBC,∵⊙DBC+⊙ABD=90°,∴BC是⊙O的切线(2)证明:连接OD,∵BF=BC=2,且⊙ADB=90°,∴⊙CBD=⊙FBD,∵OE⊙BD,∴⊙FBD=⊙OEB,∵OE=OB,∴⊙OEB=⊙OBE,∴⊙CBD=⊙OEB=⊙OBE= 13⊙ADB=1390°=30°,∴⊙C=60°,∴AB= 3BC=2 3,∴⊙O的半径为3,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积= 1333 3362ππ⨯-=。

中考数学 圆的综合 综合题含答案解析

中考数学 圆的综合 综合题含答案解析

中考数学 圆的综合 综合题含答案解析一、圆的综合1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.2.如图,已知△ABC 中,AB=AC ,∠A=30°,AB=16,以AB 为直径的⊙O 与BC 边相交于点D ,与AC 交于点F ,过点D 作DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线;(2)求CE 的长;(3)过点B 作BG ∥DF ,交⊙O 于点G ,求弧BG 的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD ,OD ,由AB 为⊙O 的直径,可得AD ⊥BC ,再根据AB=AC ,可得BD=DC ,再根据OA=OB ,则可得OD ∥AC ,继而可得DE ⊥OD ,问题得证;(2)如图2,连接BF ,根据已知可推导得出DE=12BF ,CE=EF ,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE 为⊙O 的切线,可得ED 2=EF•AE ,即42=CE•(16﹣CE ),继而可求得CE 长;(3)如图3,连接OG ,连接AD ,由BG ∥DF ,可得∠CBG=∠CDF=30°,再根据AB=AC ,可推导得出∠OBG=45°,由OG=OB ,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度. 【详解】(1)如图1,连接AD ,OD ;∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴BD=DC ,∵OA=OB ,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴∠ODE=∠DEA=90°,∴DE 为⊙O 的切线;(2)如图2,连接BF ,∵AB 为⊙O 的直径,∴∠AFB=90°,∴BF ∥DE ,∵CD=BD ,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE , ∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴»BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.3.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92 DE=.【解析】【分析】(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=22AD BD+=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD.如图1,设∠BDC=α,∠ADC=β,则∠CAB=∠BDC=α,∵点C为弧ABD中点,∴¶AC=¶CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,∵∠CAB=∠CDB,∴∠ACE=∠ADC,∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;(3)如图2,连接OC,∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18, ∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2)25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形==90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.5.如图,△ABC 内接于⊙O ,弦AD ⊥BC 垂足为H ,∠ABC =2∠CAD .(1)如图1,求证:AB =BC ;(2)如图2,过点B 作BM ⊥CD 垂足为M ,BM 交⊙O 于E,连接AE 、HM ,求证:AE ∥HM; (3)如图3,在(2)的条件下,连接BD 交AE 于N ,AE 与BC 交于点F ,若NH =25,AD =11,求线段AB 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AB 的长为10.【解析】分析:(1)根据题意,设∠CAD=a ,然后根据直角三角形的两锐角互余的关系,推导出∠BAC=∠ACB ,再根据等角对等边得证结论;(2)延长AD 、BM 交于点N ,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN ,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得MH∥AE;(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,∴∠BAC=90°-2a+a=90°-a∴∠BAC=∠ACB.∴AB=BC(2)证明:延长AD、BM交于点N,连接ED.∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN∴∠N=∠DEN=∠BAN∴DE=DN,BA=BN又∵BH⊥AN,DM⊥EN∴EM=NM,HN=HA,∴MH∥AE(3)连接CE.∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC∴∠BDA=∠BDM,∴△BDM≌△BDH,∴DH=MH,∠MBD=∠HBD,∴BD⊥MH又∵MH∥AE,∴BD⊥EF,∴△FNB≌△ENB,同理可证△AFH≌△ACH,∴HF=HC,又∵FN=NE∴NH∥EC,EC=2NH,又∵NH=25∴EC=45∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,∴AC=EC=5设HD=x,AH=11-x,∵∠ADC=2∠CAD,翻折△CHD 至△CHG,可证CG=CD=AGAH=CD+DH,CD=AH-DH=11-x-x=11-2x又∵AC 2-AH 2=CD 2-DH 2,∴(45)2-(11-x)2=(11-2x)2-x 2∴x 1=3,x 2=272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CH a BH DH==,∴BH=6 ∴AB=22226810BM AH +=+= 点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.6.如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)若半圆O 的半径为6,求¶AC 的长.【答案】(1)直线CE 与半圆O 相切(2)4π【解析】试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题.试题解析:(1)直线CE 与半圆O 相切,理由如下:∵四边形OABC 是平行四边形,∴AB ∥OC.∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE ,∴直线CE 与半圆O 相切.(2)由(1)可知:∠COF=60°,OC=OF ,∴△OCF 是等边三角形,∴∠AOC=120°∴¶AC 的长为1206180π⨯⨯=4π.7.已知:AB 是⊙0直径,C 是⊙0外一点,连接BC 交⊙0于点D ,BD=CD,连接AD 、AC .(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C 作CF ⊥AB 于点F,交⊙0于点E,延长CF 交⊙0于点G.过点作EH ⊥AG 于点H ,交AB 于点K,求证AK=2OF ;(3)如图3,在(2)的条件下,EH 交AD 于点L,若0K=1,AC=CG,求线段AL 的长.图1 图2 图3【答案】(1)见解析(2)见解析(3)12105 【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论. (3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠= ,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°.∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD .(2)连接BE .∵BG =BG ,∴∠GAB =∠BEG .∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF .∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°.∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α.∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°.∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM=12AG . 在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α.设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m 65,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD=45°,∴HL=AH,AL=2AH= 1210.58.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD , ∵MC=MN , ∴∠MCN=∠MNC , ∵∠MNC+∠CND=90°, ∴∠MCN+∠NCD=90°, 即MC ⊥CD .∴直线CD 是⊙M 的切线.考点:切线的判定;坐标与图形性质.9.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F . (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π【解析】 【分析】(1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题. 【详解】 (1)连接OD .∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)连接OE,OE交AD于K.∵¶¶AE DE=,∴OE⊥AD.∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE26023360π⋅⋅=-⨯22233π=-.【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.10.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,(1)求证:△PCM为等边三角形;(2)若PA=1,PB=2,求梯形PBCM的面积.【答案】(1)见解析;(2153 4【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°, ∠BAC=∠BPC=60°, ∵CM ∥BP , ∴∠BPC=∠PCM=60°, ∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形, ∴∠PCA+∠ACM=∠BCP+∠PCA , ∴∠BCP=∠ACM , 在△BCP 和△ACM 中,BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩, ∴△BCP ≌△ACM (SAS ), ∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3, 在Rt △PMH 中,∠MPH=30°, ∴PH=332,∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)×332=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.11.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高. (2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.如图,AB为⊙O的直径,BC为⊙O的弦,过O点作OD⊥BC,交⊙O的切线CD于点D,交⊙O于点E,连接AC、AE,且AE与BC交于点F.(1)连接BD,求证:BD是⊙O的切线;(2)若AF:EF=2:1,求tan∠CAF的值.【答案】(1)证明见解析;(2)3 3.【解析】【分析】(1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论. 【详解】证明:(1)∵OC=OB ,OD ⊥BC , ∴∠COD=∠BOD , 在△COD 与△BOD 中,OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩, ∴△COD ≌△BOD , ∴∠OBD=∠OCD=90°, ∴BD 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,AC ⊥BC , ∵OD ⊥CB , ∴AC ∥DE , 设OD 与BC 交于G , ∵OE ∥AC ,AF :EF=2:1, ∴AC :EG=2:1,即EG=12AC , ∵OG ∥AC ,OA=OB , ∴OG=12AC , ∵OG+GE=12AC+12AC=AC , ∴AC=OE ,∴AC=12AB , ∴∠ABC=30°,∴∠CAB=60°,∵¼¼CE BE=,∴∠CAF=∠EAB=12∠CAB=30°,∴tan∠CAF=tan30°=33.【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.13.如图,已知△ABC,AB=2,3BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是»DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x=-+45; (3) BD的长是11+5.【解析】【分析】(1)过点A作AH⊥BC,垂足为点H.构造直角三角形,利用解直角三角形和勾股定理求得AD的长度.联结DF,点D、F之间的距离y即为DF的长度,在Rt△ADF中,利用锐角三角形函数的定义求得DF的长度,易得函数关系式.(2)由勾股定理求得:22AH DH+.设DF与AE相交于点Q,通过解Rt△DCQ和Rt△AHC推知12DQCQ=.故设DQ=k,CQ=2k,AQ=DQ=k,所以再次利用勾股定理推知DC的长度,结合图形求得线段BD的长度,易得答案.(3)如果四边形ADCF是梯形,则需要分类讨论:①当AF∥DC、②当AD∥FC.根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A作AH⊥BC,垂足为点H.∵∠B =45°,AB 2∴·cos 1BH AH AB B ===. ∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+.联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒. 在Rt △ADF 中,90DAF ∠=︒,∴2442cos ADDF x x ADF==-+∠∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF . ∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQDCQ CQ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==, ∵35k =5k =,∴2253DC DQ CQ =+=.∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =. ②当AD ∥FC 时,45ADF CFD ∠=∠=︒. ∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠. ∴ABD ∆∽DFC ∆.∴AB ADDF DC=. ∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x xx +=-,整理得 210x x --=,解得 152x ±=(负数舍去). 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+5. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.14.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C . (1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)作辅助线,连接OD ,由DF 为⊙O 的切线,可得OD ⊥DF ,又BF ⊥DF ,AC ∥BF ,所以OD ∥AC ,∠ODB=∠C ,由OB=OD 得∠ABD=∠ODB ,从而可证∠ABC=∠C ;(2)连接OG ,OD ,AD ,由BF ∥OD ,»GD =60°,可求证»BG =»»GD AD ==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论. 【详解】 (1)连接OD , ∵DF 为⊙O 的切线, ∴OD ⊥DF . ∵BF ⊥DF ,AC ∥BF , ∴OD ∥AC ∥BF . ∴∠ODB=∠C . ∵OB=OD ,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»GD AD==»BG.∵»GD=60°,∴»BG=»»GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.15.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求»BD的长度;(3)若DE=4,AE=8,求线段EG的长.【答案】(1)证明见解析(2)π(3)213【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)易得∠BOD=60°,再由弧长公式求解即可;(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.试题解析:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB =x0∴∠P+∠DAF+∠DAB =3x o=90O∴x0=300∴∠BOD=60°,∴»BD的长度=(3)解:连接DG,如图2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,∴DG=2222-=-=6,108CG CD∴EG=2222+=+=213.DG DE64。

中考数学圆的综合(大题培优 易错 难题)含详细答案

中考数学圆的综合(大题培优 易错 难题)含详细答案

中考数学圆的综合(大题培优易错难题)含详细答案一、圆的综合1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.圆地概念集合形式地概念:1. 圆可以看作是到定点地距离等于定长地点地集合;2.圆地外部:可以看作是到定点地距离大于定长地点地集合;3.圆地内部:可以看作是到定点地距离小于定长地点地集合轨迹形式地概念:1.圆:到定点地距离等于定长地点地轨迹就是以定点为圆心,定长为半径地圆;(补充)2.垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线);3.角地平分线:到角两边距离相等地点地轨迹是这个角地平分线;4.到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线;5.到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线.二.点与圆地位置关系1.点在圆内⇒d r<⇒点C在圆内;2.点在圆上⇒d r=⇒点B在圆上;3.点在圆外⇒d r>⇒点A在圆外;三.直线与圆地位置关系1.直线与圆相离⇒d r>⇒无交点;2.直线与圆相切⇒d r=⇒有一个交点;3.直线与圆相交⇒d r<⇒有两个交点;四.圆与圆地位置关系外离(图1)⇒无交点⇒d R r>+;A外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五.垂径定理垂径定理:垂直于弦地直径平分弦且平分弦所对地弧.推论1:(1)平分弦(不是直径)地直径垂直于弦,并且平分弦所对地两条弧; (2)弦地垂直平分线经过圆心,并且平分弦所对地两条弧;(3)平分弦所对地一条弧地直径,垂直平分弦,并且平分弦所对地另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论. 推论2:圆地两条平行弦所夹地弧相等.即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六.圆心角定理图4图5BD圆心角定理:同圆或等圆中,相等地圆心角所对地弦相等,所对地弧相等,弦心距相等. 此定理也称1推3定理,即上述四个结论中,只要知道其中地1个相等,则可以推出其它地3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七.圆周角定理1.圆周角定理:同弧所对地圆周角等于它所对地圆心地角地一半. 即:∵AOB ∠和ACB ∠是弧AB 所对地圆心角和圆周角 ∴2AOB ACB ∠=∠2.圆周角定理地推论:推论1:同弧或等弧所对地圆周角相等;同圆或等圆中,相等地圆周角所对地弧是等弧;即:在⊙O 中,∵C ∠.D ∠都是所对地圆周角 ∴C D ∠=∠推论2:半圆或直径所对地圆周角是直角;圆周角是直角所对地弧是半圆,所对地弦是直径.即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上地中线等于这边地一半,那么这个三角形是直角三角形.即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形地推论:在直角三角形中斜边上地中线等于斜边地一半地逆定理.八.圆内接四边形BABAO圆地内接四边形定理:圆地内接四边形地对角互补,外角等于它地内对角. 即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九.切线地性质与判定定理(1)切线地判定定理:过半径外端且垂直于半径地直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 地切线 (2)性质定理:切线垂直于过切点地半径(如上图) 推论1:过圆心垂直于切线地直线必过切点. 推论2:过切点垂直于切线地直线必过圆心. 以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个.十.切线长定理 切线长定理:从圆外一点引圆地两条切线,它们地切线长相等,这点和圆心地连线平分两条切线地夹角.即:∵PA .PB 是地两条切线 ∴PA PB = PO 平分BPA ∠十一.圆幂定理(1)相交弦定理:圆内两弦相交,交点分得地两条线段地乘积相等. 即:在⊙O 中,∵弦AB .CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦地一半是它分直径所成地两条线段地比例中项.即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆地切线和割线,切线长是这点到割线与圆交点地两条线段长地比例中项.即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆地两条割线,这一点到每条割线与圆地交点地两条线段长地积相等(如上图). 即:在⊙O 中,∵PB .PE 是割线 ∴PC PB PD PE ⋅=⋅十二.两圆公共弦定理圆公共弦定理:两圆圆心地连线垂直并且平分这两个圆地地公共弦.如图:12O O 垂直平分AB . 即:∵⊙1O .⊙2O 相交于A .B 两点 ∴12O O 垂直平分AB 十三.圆地公切线两圆公切线长地计算公式:DBA(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 . 十四.圆内正多边形地计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:2OD BD OB =;(2)正四边形同理,四边形地有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形地有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五.扇形.圆柱和圆锥地相关计算公式 1.扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应地圆地半径 l :扇形弧长 S :扇形面积2012数学中考圆综合题1.如图,△ABC 中,以BC 为直径地圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆地切线;lO(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆地直径.2如图,已知AB 是⊙O 地弦,OB =2,∠B =30°,C 是弦AB 上地任意一点(不与点A.B 重合),连接CO 并延长CO 交于⊙O 于点D,连接AD .(1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 地度数;(3)当AC 地长度为多少时,以A.C.D 为顶点地三角形与以B.C.O 为顶点地三角形相似?请写出解答过程.3. 如图右,已知直线PA 交⊙0于A.B 两点,AE 是⊙0地直径.点C 为⊙0上一点,且AC 平分∠PAE,过C 作CD ⊥PA,垂足为D. (1)求证:CD 为⊙0地切线;(2)若DC+DA=6,⊙0地直径为l0,求AB 地长度. 1. (1)证明:连接OC,∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC,∵CD ⊥PA,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE,∴∠DAC=∠CAO. ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°. 又∵点C 在⊙O 上,OC 为⊙0地半径,∴CD 为⊙0地切线.(2)解:过0作0F ⊥AB,垂足为F,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O 地直径为10,∴DF=OC=5,∴AF=5-x,在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =.由AD<DF,知05x <<,故2x =.从而AD=2, AF=5-2=3.∵OF ⊥AB,由垂径定理知,F 为AB 地中点,∴AB=2AF=6. 4.(已知四边形ABCD 是边长为4地正方形,以AB 为直径在正方形内作半圆,P 是半圆上地动点(不与点A.B 重合),连接PA.PB.PC.PD .(1)如图①,当PA 地长度等于 ▲ 时,∠PAB =60°; 当PA 地长度等于 ▲ 时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴.AD 边所在直线为y 轴,建立如图所示地直角坐标系(点A 即为原点O ),把△PAD.△PAB.△PBC 地面积分别记为S 1.S 2.S 3.坐标为(a ,b ),试求2 S 1 S 3-S 22地最大值,并求出此时a ,b 地值.5.6.(11金华)如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF地两边相交于A .B 和C .D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 地长; (3)若以图中已标明地点(即P .A .B .C .D .O )构造四边形,则能构成菱形地四个点为 ▲ ,能构成等腰梯形地四个点为 ▲ 或 ▲ 或 ▲ .(1)∵PG 平分∠EPF ,∴∠DPO =∠BPO ,∵OA//PE ,∴∠DPO =∠POA ,∴∠BPO =∠POA ,∴P A =OA ; ……2分 (2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1分∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知P A =OA = 10 ,∴AH =PH -P A =2x -10,∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分解得10x =(不合题意,舍去),28x =, ∴AH =6, ∴AB=2AH=12; ……1分 (3)P .A .O .C ;A .B.D.C 或 P .A.O.D 或P .C.O.B . 7.(芜湖市)(本小题满分12分)如图,BD 是⊙O 地直径,OA ⊥OB ,M 是劣弧AB ⌒上一点,过点M 点作⊙O 地切线MP 交OA 地延长线于P 点,MD 与OA 交于N 点.(1)求证:PM =PN ;(2)若BD =4,P A = 32AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 地长.8.(黄冈市)(6分)如图,点P 为△ABC 地内心,延长AP 交△ABC 地外接圆于D,在AC 延长线上有一点E,满足AD 2=AB ·AE,求证:DE 是⊙O 地切线.P A B CO D EFG第21H PABC O DE FG(证明:连结DO,∵AD 2=AB ·AE,∠BAD =∠DAE,∴△BAD ∽△DAE, ∴∠ADB =∠E. 又∵∠ADB =∠ACB,∴∠ACB =∠E,BC ∥DE, 又∵OD ⊥BC,∴OD ⊥DE,故DE 是⊙O 地切线)9.(义乌市)如图,以线段AB 为直径地⊙O 交线段AC 于点E ,点M 是AE 地中点,OM 交AC 于点D ,60BOE ∠=°,1cos 2C =,23BC =(1)求A ∠地度数;(2)求证:BC 是⊙O 地切线; (3)求MD 地长度. (解:(1)∵∠BOE =60° ∴∠A =12∠BOE = 30°(2)在△ABC 中 ∵1cos 2C = ∴∠C =60°…1分 又∵∠A =30°∴∠ABC =90°∴AB BC ⊥……2分 ∴BC 是⊙O 地切线(3)∵点M 是AE 地中点 ∴OM ⊥AE 在Rt △ABC 中 ∵23BC =∴AB =tan 60233BC ︒==6 ∴OA =32AB = ∴OD =12OA =32 ∴MD =32)10. (兰州市)(本题满分10分)如图,已知AB 是⊙O 地直径,点C 在⊙O 上,过点C 地直线与AB 地延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC 是⊙O 地切线; (2)求证:BC=21AB ;(3)点M 是弧AB 地中点,CM 交AB 于点N,若AB=4,求MN ·MC 地值. 解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB∵AB 是⊙O 地直径 ∴∠ACO+∠OCB=90° ∴∠PCB+∠OCB=90°,即OC ⊥CP ∵OC 是⊙O 地半径 ∴PC 是⊙O 地切线(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB ∴∠CBO=∠COB∴BC=OC ∴BC=21AB(3)连接MA,MB∵点M 是弧AB 地中点 ∴弧AM=弧BM ∴∠ACM=∠BCM∵∠ACM=∠ABM ∴∠BCM=∠ABM∵∠BMC=∠BMN ∴△MBN ∽△MCB∴BM MNMC BM = ∴BM 2=MC ·MN∵AB 是⊙O 地直径,弧AM=弧BM ∴∠AMB=90°,AM=BM∵AB=4 ∴BM=22 ∴MC ·MN=BM 2=811.(本题满分14分)OB ACE M D如图(1),两半径为r 地等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,分别交1O 和2O 于A B ,两点,连结NA NB ,.(1)猜想点2O 与1O 有什么位置关系,并给出证明;(2)猜想NAB △地形状,并给出证明; (3)如图(2),若过M 地点所在地直线AB 不垂直于MN ,且点A B ,在点M 地两侧,那么(2)中地结论是否成立,若成立请给出证明. 4. (1)2O 在1O 上证明:2O 过点1O ,12O O r ∴=.又1O 地半径也是r ,∴点2O 在1O 上.(2)NAB △是等边三角形 证明:MN AB ⊥,90NMB NMA ∴∠=∠=.BN ∴是2O 地直径,AN 是1O 地直径,即2BN AN r ==,2O 在BN 上,1O 在AN 上.连结12O O ,则12O O 是NAB △地中位线.1222AB O O r ∴==.AB BN AN ∴==,则NAB △是等边三角形.(3)仍然成立.证明:由(2)得在1O 中MN 所对地圆周角为60.在2O 中MN 所对地圆周角为60. ∴当点A B ,在点M 地两侧时,在1O 中MN 所对地圆周角60MAN ∠=,在2O 中MN 所对地圆周角60MBN ∠=,NAB ∴△是等边三角形.12.如图12,已知:边长为1地圆内接正方形ABCD 中,P 为边CD 地中点,直线AP 交圆于E 点.图(1)图(2)(1)求弦DE 地长.(2)若Q 是线段BC 上一动点,当BQ 长为何值时,三角形ADP 与以Q C P ,,为顶点地三角形相似. 1)如图1.过D 点作DF AE ⊥于F 点.在Rt ADP △中, AP ==1122ADP S AD DP APDF ==△DF ∴=AD 地度数为9045DEA ∴∠=DE ∴=(2)如图2.当Rt Rt ADP QCP △∽△时有AD DP QCCP=得:1QC =.即点Q 与点B 重合,0BQ ∴=如图3,当Rt Rt ADP PCQ △∽△时,有AD PD PCQC=得14QC =,即34BQ BC CQ =-=∴当0BQ =或34BQ =时,三角形ADP 与以点Q C P ,,为顶点地三角形相似. 13..(本小题满分10分)如图,⊙O 是Rt △ABC 地外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 地切线,ED ⊥AB 于F , (1)判断△DCE 地形状;(2)设⊙O 地半径为1,且OF =213-,求证△DCE ≌△OCB 6. 解:(1)∵∠ABC =30°,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD =90°,∴∠DCE =180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED =90°-∠BAC =30°.故△CDE 为等腰三角形. (2)证明:在△ABC 中,∵AB =2,AC =AO =1,∴BC =2212-=3.OF =213-,∴AF =AO +OF =213+. 又∵∠AEF =30°,∴AE =2AF =3+1. ∴CE =AE -AC =3=BC .而∠OCB =∠ACB -∠ACO =90°-60°=30°=∠ABC ,故△CDE ≌△COB .14(08湖北襄樊24题)8.(本小题满分10分)E图12第6题图E 5题图1E5题图2E 5题图3如图14,直线AB 经过O 上地点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,.(1)求证:直线AB 是O 地切线;(2)试猜想BC BD BE ,,三者之间地等量关系,并加以证明;(3)若1tan 2CED ∠=,O 地半径为3,求OA 地长. (1)证明:如图3,连接OC . OA OB =,CA CB =,OC AB ∴⊥. AB ∴是O 地切线.(2)2BC BD BE =. ED 是直径,90ECD ∴∠=. 90E EDC ∴∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠, BCD E ∴∠=∠.又CBD EBC ∠=∠,BCD BEC ∴△∽△ BC BD BE BC∴=.2BC BD BE ∴=. (3)1tan 2CED ∠=,12CD EC ∴=. BCD BEC △∽△,12BD CD BC EC ∴==.设BD x =,则2BC x =. 又2BC BD BE =,2(2)(6)x x x ∴=+.解之,得10x =,22x =.0BD x =>,2BD ∴=. 325OA OB BD OD ∴==+=+=.15 如图14,直线AB 经过O 上地点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,.(1)求证:直线AB 是O 地切线;(2)试猜想BC BD BE ,,三者之间地等量关系,并加以证明; (3)若1tan 2CED ∠=,O 地半径为3,求OA 地长. 4 解:(1)证明:如图3,连接OC . OA OB =,CA CB =,OC AB ∴⊥.AB ∴是O 地切线.(2)2BC BD BE =. ED 是直径,90ECD ∴∠=.90E EDC ∴∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠,BCD E ∴∠=∠.又CBD EBC ∠=∠,BCD BEC ∴△∽△.BC BD BE BC∴=.2BC BD BE ∴=. (3)1tan 2CED ∠=,12CD EC ∴=.BCD BEC △∽△,12BD CD BC EC ∴==.设BD x =,则2BC x =.又2BC BD BE =,2(2)(6)x x x ∴=+.解之,得10x =,22x =.0BD x =>,2BD ∴=.325OA OB BD OD ∴==+=+=.5 ⊙O 地半径OD 经过弦AB (不是直径)地中点C ,过AB 地延长线上一点P 作⊙O 地切线PE ,E 为切点,PE ∥OD ;延长直径(5题) P E D K H GC AB FOAG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K . (1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,求KE 地长.5 解:(1)∵AC =BC ,AB 不是直径,∴OD ⊥AB ,∠PCO =90°(1分)∵PE ∥OD ,∴∠P =90°,∵PE 是切线,∴∠PEO =90°,(2分)∴四边形OCPE 是矩形.(3分)(2)∵OG =OD ,∴∠OGD =∠ODG .∵PE ∥OD ,∴∠K =∠ODG .(4分)∵∠OGD =∠HGK ,∴∠K =∠HGK ,∴HK =HG .(5分) (3)∵EF =2,OF =1,∴EO =DO =3.(6分)∵PE ∥OD , ∴∠KEO =∠DOE ,∠K =∠ODG .∴△OFD ∽△EFK ,(7分)∴EF ∶OF =KE ∶OD =2∶1,∴KE =6.(8分) 6 如图,直角坐标系中,已知两点O(0,0) A(2,0),点B 在第一象限且△OAB 为正三角形,△OAB 地外接圆交y 轴地正半轴于点C,过点C 地圆地切线交X 轴于点D . (1)求B C ,两点地坐标;(2)求直线CD 地函数解析式;(3)设E F ,分别是线段AB AD ,上地两个动点,且EF 平分四边形ABCD 地周长. 试探究:AEF △地最大面积? 6 (1)(20)A ,,2OA ∴=.作BG OA ⊥于G ,OAB △为正三角形,1OG ∴=,3BG =.(13)B ∴,.连AC ,90AOC ∠=,60ACO ABO ∠=∠=,23tan 303OC OA ∴==.2303C ⎛⎫∴ ⎪ ⎪⎝⎭,.(2)90AOC ∠=,AC ∴是圆地直径,又CD 是圆地切线,CD AC ∴⊥.30OCD ∴∠=,2tan 303OD OC ==.203D ⎛⎫∴- ⎪⎝⎭,.设直线CD 地函数解析式为(0)y kx b k =+≠,则233203b k b ⎧=⎪⎪⎨⎪=-+⎪⎩,解得3233k b ⎧=⎪⎨=⎪⎩.∴直线CD 地函数解析式为2333y x =+. (3)2AB OA ==,23OD =,423CD OD ==,233BC OC ==,∴四边形ABCD 地周长2363+.设AE t =,AEF △地面积为S ,则333AF t =+-,133sin 603243S AF AE t t ⎛⎫==+- ⎪ ⎪⎝⎭. 233393733434632S t t t ⎡⎤⎛⎫⎛⎫+⎢⎥=+-=--++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.∴当936t +=时,max733128S =+. 点E F ,分别在线段AB AD ,上,023203233t t ⎧⎪∴⎨+-+⎪⎩≤≤≤≤,解得1323t +≤≤. 936t +=满足1323t +≤≤,AEF ∴△地最大面积为733128+. 7 如图(18),在平面直角坐标系中,ABC △地边AB 在x 轴上,且OA OB >,以AB 为直径地圆过点C .若点C 地坐6题(第6题)标为(02),,5AB =,A.B 两点地横坐标A x ,B x 是关于x 地方程2(2)10x m x n -++-=地两根. (1)求m .n 地值;(2)若ACB ∠平分线所在地直线l 交x 轴于点D ,试求直线l 对应地一次函数解析式; (3)过点D 任作一直线l '分别交射线CA .CB (点C 除外)于点M .N .则11CM CN+地是否为定值?若是,求出该定值;若不是,请说明理由. 7 解:(1)以AB 为直径地圆过点C ,90ACB ∴∠=,而点C 地坐标为(02),,由CO AB ⊥易知AOC COB △∽△,2CO AO BO ∴=,即:4(5)AO AO =-,解之得:4AO =或1AO =.OA OB >,4AO ∴=,即41A B x x =-=,.由根与系数关系有:21A B A B x x m x x n +=+⎧⎨=-⎩,解之5m =-,3n =-.(2)如图(3),过点D 作DE BC ∥,交AC 于点E ,易知DE AC ⊥,且45ECD EDC ∠=∠=,在ABC △中,易得AC BC ==AD AE DE BC DB EC∴=∥,, AD AEDE EC BD DE =∴=,, 又AED ACB △∽△,有AE AC ED BC =,2AD ACDB BC ∴==,553AB DB ==,,则23OD =,即203D ⎛⎫- ⎪⎝⎭,,易求得直线l 对应地一次函数解析式为:32y x =+. 解法二:过D 作DE AC ⊥于E ,DF CN ⊥于F ,由ACD BCD ABC S S S +=△△△,求得DE = 又1122BCD S BD CO BC DF ==△求得5233BD DO ==,.即203D ⎛⎫- ⎪⎝⎭,,易求直线l 解析式为:32y x =+. (3)过点D 作DE AC ⊥于E ,DF CN ⊥于F .CD 为ACB ∠地平分线,DE DF ∴=.由MDE MNC △∽△,有DE MDCN MN=由DNF MNC △∽△, 有DF DN CM MN =1DE DF MD DNCN CM MN MN∴+=+=, 即11110CM CN DE +== 8 如图,在ABC △中90ACB ∠=,D 是AB 地中点,以DC 为直径地O 交ABC △地三边,交点分别是G F E ,,点.GE CD ,地交点为M ,且ME =,:2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 地直径CD 地长.8 (1)连接DFCD 是圆直径,90CFD ∴∠=,即DF BC ⊥90ACB ∠=,DF AC ∴∥. BDF A ∴∠=∠.在O 中BDF GEF ∠=∠,GEF A ∴∠=∠. 2分(2)D 是Rt ABC △斜边AB 地中点,DC DA ∴=,DCA A ∴∠=∠, 又由(1)知GEF A ∠=∠,DCA GEF ∴∠=∠.图(3)l '第25题图又OME EMC ∠=∠,OME ∴△与EMC △相似OM ME ME MC∴=2ME OM MC ∴=⨯4分又4ME =,296OM MC ∴⨯==:2:5MD CO =,:3:2OM MD ∴=,:3:8OM MC ∴=设3OM x =,8MC x =,3896x x ∴⨯=,2x ∴= ∴直径1020CD x ==.。

相关文档
最新文档