201X中考数学复习第15课时二次函数的综合性问题
中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件
时,S有最大值,最大值为 ,此时点P的坐标为(3; =- m2+9m=- (m2-6m)=- (m-3)2+ .
∵- <0,∴ 当m=3
类型二面积问题
典例2 (2023·
湘潭)如图,二次函数y=x2+bx+c 的图象与x轴交于点
∴ 设M(t,-t2+2t+3)(0<t<3),则Q(t,-t+3).∴ MQ
=-t2+3t.过点Q作QD⊥OC,垂足为D,则易得△CDQ是等腰直
角三角形.∴ CQ= t.
∴ MQ+ CQ=-t2+3t+2t=-t2+5t=-
−
+ .∴
时,MQ+ CQ 有最大值,此时点M的坐标为
式,当x=1时求出y的值,从而求出点P的坐标,此时PA+PC的最
小值就是BC的长,利用勾股定理求解即可;(3) 由抛物线与直线
BC对应的函数解析式,分别设出点M,Q的坐标,过点Q作
QD⊥OC,垂足为D,将MQ+ 2CQ用含参数的代数式表示出来,
再结合二次函数的性质求解问题.
解:(1) ∵ 抛物线y=ax2+bx+3(a≠0)的对称轴是直线x=1,点A的坐标为(-
1,0),∴ 由抛物线的对称性,可知点B的坐标为(3,0).
(2) 由题意,可知抛物线对应的函数解析式为y=a(x+1)(x-
3)=a(x2-2x-3).∵ 抛物线y=ax2+bx+3(a≠0)与y轴交于点
C,
∴ 易得C(0,3).将C(0,3)代入y=a(x2-2x-3),得-3a=
3,解得a=-1.∴ 抛物线对应的函数解析式为y=-x2+2x+3.如图
中考数学——二次函数的综合压轴题专题复习含答案解析
中考数学——二次函数的综合压轴题专题复习含答案解析一、二次函数1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE、OE.∵在Rt△BCD中,∠CBD=90°,EC=ED,∴BE=12CD=CE.令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵C(0,﹣3),∴OB =OC ,又∵BE =CE ,OE =OE ,∴△OBE ≌△OCE (SSS ),∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3,得m =m 2﹣2m ﹣3,解得m =1132±, ∵点E 在第四象限,∴E 点坐标为(113+,﹣113+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S △ACQ =2S △AOC ,∴S △ACF =2S △AOC ,∴AF =2OA =2,∴F (1,0).∵A (﹣1,0),C (0,﹣3),∴直线AC 的解析式为y =﹣3x ﹣3.∵AC ∥FQ ,∴设直线FQ 的解析式为y =﹣3x +b ,将F (1,0)代入,得0=﹣3+b ,解得b =3,∴直线FQ 的解析式为y =﹣3x +3.联立22333y x x y x ⎧=--⎨=-+⎩, 解得11312x y =-⎧⎨=⎩,2223x y =⎧⎨=-⎩, ∴点Q 的坐标为(﹣3,12)或(2,﹣3).【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.3.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3k bb+=⎧⎨=⎩,解得:33kb=-⎧⎨=⎩,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,在平面直角坐标系中有抛物线y=a(x﹣2)2﹣2和y=a(x﹣h)2,抛物线y=a (x﹣2)2﹣2经过原点,与x轴正半轴交于点A,与其对称轴交于点B;点P是抛物线y=a(x﹣2)2﹣2上一动点,且点P在x轴下方,过点P作x轴的垂线交抛物线y=a(x﹣h)2于点D,过点D作PD的垂线交抛物线y=a(x﹣h)2于点D′(不与点D重合),连接PD′,设点P的横坐标为m:(1)①直接写出a的值;②直接写出抛物线y=a(x﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y=a(x﹣h)2经过原点时,设△PDD′与△OAB重叠部分图形周长为L:①求PDDD'的值;②直接写出L与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O、A、D、D′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1;②L =2(22)(02)21(221)4(24)2m m m m π⎧+<⎪⎨-++<<⎪⎩…; (3)h =±3 【解析】 【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值. 【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中, 得:0=a (0﹣2)2﹣2, 解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4 如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭,2222322m 22,PG m 22m 2422FH PH PF ===-+-=-+ ∵DD ′∥EGEG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG2212242222m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)L ⎧+<⎪∴=⎨+-+++<<⎪⎩…;(3)如图3,∵OADD ′为菱形 ∴AD =AO =DD ′=4, ∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.7.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F (1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG 垂直平分CD ∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2. ∵EG 关于y 轴对称, ∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG 设点E 的坐标为(n ,n +3), 点D 的坐标为(0,3)∴DE =22(33)n n ++-=22n ∵DE =DC =4, ∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3) 将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1). ∴EC =22(0)(31)k k -+++=22816k k ++. ∵EC =CD =4, ∴2k 2+8k +16=16, 解得k 1=0(舍去),k 2=﹣4. ∴点E 的坐标为(﹣4,﹣1) 将点E 上移1个单位长度得点G . ∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:257m m x ()-±-=即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.9.如图,菱形ABCD 的边长为20cm ,∠ABC =120°,对角线AC ,BD 相交于点O ,动点P 从点A 出发,以4cm /s 的速度,沿A →B 的路线向点B 运动;过点P 作PQ ∥BD ,与AC 相交于点Q ,设运动时间为t 秒,0<t <5.(1)设四边形PQCB 的面积为S ,求S 与t 的关系式;(2)若点Q 关于O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N ,当t 为何值时,点P 、M 、N 在一直线上?(3)直线PN 与AC 相交于H 点,连接PM ,NM ,是否存在某一时刻t ,使得直线PN 平分四边形APMN 的面积?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1) S=﹣231003t +0<t <5); (2) 307;(3)见解析. 【解析】 【分析】(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得3AM=AO+OM ,列方程可得t 的值;(3)存在,通过画图可知:N 在CD 上时,直线PN 平分四边形APMN 的面积,根据面积相等可得MG=AP ,由AM=AO+OM ,列式可得t 的值. 【详解】解:(1)如图1,∵四边形ABCD 是菱形, ∴∠ABD=∠DBC=12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°, ∵AB=20,∴OB=10,3 由题意得:AP=4t ,∴PQ=2t ,AQ=23t , ∴S=S △ABC ﹣S △APQ , =11··22AC OB PQ AQ -, =111020322322t t ⨯⨯-⨯⨯ , =﹣23t 2+1003(0<t <5); (2)如图2,在Rt △APM 中,AP=4t , ∵点Q 关于O 的对称点为M , ∴OM=OQ , 设PM=x ,则AM=2x , ∴AP=3x=4t , ∴x=3, ∴AM=2PM=3, ∵AM=AO+OM ,∴3=103+103﹣23t ,t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积, ∴S △APN =S △PMN ,过M 作MG ⊥PN 于G ,∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH ,∴3,∵AM=AO+OM ,同理可知:3﹣3,3333t ,t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.10.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中, 得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+, ∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.11.如图,直线y =﹣x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当12MQ NQ =时,求t 的值;(3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值. 【答案】(1)y =﹣x 2+3x +4;(2)t 的值为12;(3)当△PDM 是等腰三角形时,t =1或t ﹣1. 【解析】 【分析】(1)求直线y=-x+4与x 轴交点B ,与y 轴交点C ,用待定系数法即求得抛物线解析式. (2)根据点B 、C 坐标求得∠OBC=45°,又PE ⊥x 轴于点E ,得到△PEB 是等腰直角三角形,由PB =求得BE=PE=t ,即可用t 表示各线段,得到点M 的横坐标,进而用m 表示点M 纵坐标,求得MP 的长.根据MP ∥CN 可证MPQ NCQ V V ∽,故有12MP MQ NC NQ ==,把用t 表示的MP 、NC 代入即得到关于t 的方程,求解即得到t 的值. (3)因为不确定等腰△PDM 的底和腰,故需分3种情况讨论:①若MD=MP ,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP ,则∠DMP=∠MPD=45°,进而得AE=ME ,把含t 的式子代入并解方程即可;③若MP=DP ,则∠PMD=∠PDM ,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF 进而得CF=CD .用t 表示M 的坐标,求直线AM 解析式,求得AM 与y 轴交点F 的坐标,即能用t 表示CF 的长.把直线AM 与直线BC 解析式联立方程组,解得x 的值即为点D 横坐标.过D 作y 轴垂线段DG ,得等腰直角△CDG ,用DG 即点D 横坐标,进而可用t 表示CD 的长.把含t 的式子代入CF=CD ,解方程即得到t 的值. 【详解】(1)直线y =﹣x +4中,当x =0时,y =4 ∴C (0,4)当y =﹣x +4=0时,解得:x =4 ∴B (4,0)∵抛物线y =﹣x 2+bx +c 经过B ,C 两点 ∴1640004b c c -++=⎧⎨++=⎩ 解得:34b c =⎧⎨=⎩∴抛物线解析式为y =﹣x 2+3x +4(2)∵B (4,0),C (0,4),∠BOC =90° ∴OB =OC∴∠OBC =∠OCB =45° ∵ME ⊥x 轴于点E ,PBt ∴∠BEP =90°∴Rt △BEP 中,2PE sin PBE PB ∠==∴BE PE t ==, ∴4M P P x x OE OBBE t y PE t ===﹣=﹣,== ∵点M 在抛物线上∴2243445M y t t t t +++=﹣(﹣)(﹣)=﹣, ∴24MP MP y y t t +=﹣=﹣ , ∵PN ⊥y 轴于点N∴∠PNO =∠NOE =∠PEO =90° ∴四边形ONPE 是矩形 ∴ON =PE =t ∴NC =OC ﹣ON =4﹣t ∵MP ∥CN ∴△MPQ ∽△NCQ ∴12MP MQ NC NQ == ∴24142t t t -+=-解得:12142t t =,=(点P 不与点C 重合,故舍去) ∴t 的值为12(3)∵∠PEB =90°,BE =PE ∴∠BPE =∠PBE =45° ∴∠MPD =∠BPE =45°①若MD =MP ,则∠MDP =∠MPD =45° ∴∠DMP =90°,即DM ∥x 轴,与题意矛盾 ②若DM =DP ,则∠DMP =∠MPD =45° ∵∠AEM =90° ∴AE =ME∵y =﹣x 2+3x +4=0时,解得:x 1=﹣1,x 2=4 ∴A (﹣1,0)∵由(2)得,x M =4﹣t ,ME =y M =﹣t 2+5t ∴AE =4﹣t ﹣(﹣1)=5﹣t ∴5﹣t =﹣t 2+5t解得:t 1=1,t 2=5(0<t <4,舍去)③若MP =DP ,则∠PMD =∠PDM如图,记AM 与y 轴交点为F ,过点D 作DG ⊥y 轴于点G ∴∠CFD =∠PMD =∠PDM =∠CDF ∴CF =CD∵A (﹣1,0),M (4﹣t ,﹣t 2+5t ),设直线AM 解析式为y =ax +m ∴()2045a m a t m t t -+=⎧⎨-+=-+⎩ 解得:a tm t =⎧⎨=⎩ , ∴直线AM :y tx t += ∴F (0,t ) ∴CF =OC ﹣OF =4﹣t ∵tx +t =﹣x +4,解得:41tx t -=+, ∴41D x tt DG -=+==, ∵∠CGD =90°,∠DCG =45° ∴)2421t CD DG t -+==,∴)2441t t t -+﹣ 解得:21t =﹣综上所述,当△PDM 是等腰三角形时,t =1或21t =﹣. 【点睛】本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.12.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【答案】(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).【解析】 【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解; (2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V ,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)二次函数表达式为:()219y a x =-+, 将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:228y x x =-++…①, 则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -,∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V , 解得:1x =-或5(舍去5), 故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2或()17,2. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.13.已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s ≤<;②当154x =时,12S S ⋅取最大值2254. 【解析】 【分析】(1)由题意可知图像中0~2.5s 时,M 在AB 上运动,求出速度,2.5~7.5s 时,M 在BC 上运动,求出BC 长度;(2)①分别求出在C 点相遇和在B 点相遇时的速度,取中间速度,注意C 点相遇时的速度不能取等于;②过M 点做MH ⊥AC ,则125MH CM ==得到S 1,同时利用12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形=15,得到S 2,再得到12S S ⋅关于x 的二次函数,利用二次函数性质求得最大值 【详解】(1)5÷2.5=2/cm s ;(7.5-2.5)×2=10cm (2)①解:在C 点相遇得到方程57.5v= 在B 点相遇得到方程152.5v= ∴5=7.515=2.5vv⎧⎪⎪⎨⎪⎪⎩解得 23=5v v ⎧=⎪⎨⎪⎩。
2018中考数学复习第15课时二次函数的综合性问题课件
故可将其分割为Rt△ADE与直角梯形OBDE,分别求出其 面积再相加,即可得到四边形AOBD的面积. 解:∵点A(-3,0),点B(0,3),点C(1,0), ∴AO=3,OC=1,OB=3,∴AC=4, ∵BO⊥AC, 1 1 ∴S△ABC= AC· BO= ×4×3=6; 2 2 连接AD、DB,如解图②,∵点D(-1, 4),D解析式为y=x+3, 将A(-3,0),B(0,3)两点分别代入抛物线的解析式,得
-9-3b+c=0 c=3
解得 ,
b=-2 c=3 ,
∴抛物线的解析式为y=-x2-2x+3, 化为顶点式得y=-(x+1)2+4 , ∴抛物线顶点D的坐标为(-1,4), 令y=0,得-x2-2x+3=0,解得x1=-3,x2=1, ∴点C的坐标为(1,0);
当y=0时,x=-3 , 7
3 ∴点P的坐标为(- ,0); 7
(6)已知点P是第二象限内抛物线上一动点,设 点 P 的横坐标为 p ,△ ABP 的面积为 S ,求 S 关 于p的函数解析式;当 p为何值时,S有最大值, 最大值是多少? 【思维教练】 要求△ ABP 的面积,可构造平 例1题图⑥ 行于 y轴的边,即过点 P作 PP′∥y 轴交直线 AB 于点P′,则PP′将△ABP分成△APP′
(2)已知M是y轴上一点,连接AM、DM,若 AM=DM,且AM⊥DM,求点M的坐标; 【思维教练】由于点M是y轴上的坐标,则yM= OM,又由于AM⊥DM,可过D作y轴垂线DE, △AOM和△MED构成“一线三等角”的全等三 例1题图② 角形,即可得到OM长度,从而得到点M的坐 标.
解:如解图①,过点D作DE⊥y轴交于点E, ∵AM⊥DM,∴∠AMO+∠DME=90°, ∵∠MAO+∠AMO=90°,∴∠MAO=∠DME ,∵AM=MD,∠AOM=∠DEM=90°, ∴Rt△AMO≌Rt△MDE(AAS), ∴MO=DE=1, ∴点M的坐标为(0,1);
中考数学复习 第三单元 函数 第15课时 二次函数的实际应用数学课件
25 + 5 + = 0.5.
如图15-3记录了三次实验的数据.根据上述
= -0.2,
函数模型和实验数据,可以得到最佳加工时
解得 = 1.5,
间为(
)
= -2,
A.3.50分钟
即 p=-0.2t2+1.5t-2,
[解析]设售价定为x元/千克,则每千克获利(x-4.1)元.
∵价格每上涨0.1元,每天少卖出20千克,
∴每天的销售量为200-20(x-4.1)÷0.1=-200x+1020(千克).
设每天获利W元,则W=(-200x+1020)(x-4.1)
=-200x2+1840x-4182=-2(100x2-920x+2116)+4232-4182=-2(10x-46)2+50.
图15-1
2.某品牌钢笔每支进价8元,按10元1支出售
[答案] D
时每天能卖出20支,市场调查发现,如果每支 [解析]设每天的利润为w元,涨价x元.
涨价1元,每天就少卖出2支,为了每天获得最 由题意得,每天利润为:
大利润,其售价应定为(
)
w=(2+x)(20-2x)=-2x2+16x+40
A.11元
后 4 s 滑行 24 m.
7.春节期间,物价局规定某种蔬菜的最低价格为4.1元/千克,最高价格为4.5元/千克,
小王按4.1元/千克购入,若原价出售,则每天平均可卖出200千克,若价格每上涨0.1
元,则每天少卖出20千克,则蔬菜售价定为
中考数学总复习 第三单元 函数及其图象 课时15 二次函数的综合问题数学课件
x0≠1 且 x0≠4 且 x0≠-4 时,a≠
0 +4
0 -1
=1+
5
0 -1
不恒成立.综上所述,存在两个点 P1(-2,-15),P2(-7,0).
第十四页,共二十七页。
课堂互动黄冈] 当a≤x≤a+1时,函数y=x2-2x+1的最小
,∴y=
2 +1
,则点 Q 的坐标为 k+
,OA2=k2,AB2=1,∴
1
+
2
1
第四页,共二十七页。
2
2 +1
,
1
1+ 2
2
= 2 +1=
2
2 +1
=
图 15-1
.
1
2
,即
1
2
+
1
2
=
1
2
.
课前考点过关
命题点二
二次函数与几何综合问题
3. [2018·湘西] 如图15-2①,经过原点O的抛物线y=ax2+bx(a,b为常数,a≠0)与x轴相交于另一点A(3,0). 直线l:y=x在第一象限
(4)由(3)得 K 点坐标为(0,-2),则△MOK 为等腰直角三角形,
∴△M'OK'为等腰直角三角形,M'K'⊥直线 l',
∴当 M'K'=M'F 时,△M'FK'为等腰直角三角形,∴F 的坐标为(2,0)或(-2,-4).
中考数学复习第三单元函数第15课时二次函数的综合应用
的形状为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的
高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的
高度为
米.
图15-7
[答案] 1.95 [解析]如图,以点B为原点,建立直角坐标系. 根据题意,点A(0,1.6),点C(0.8,2.4),则设抛物线解析式为y=a(x-0.8)2+2.4. 将点A的坐标代入上式,得1.6=a(0-0.8)2+2.4,解得a=-1.25. ∴该抛物线的解析式为y=-1.25(x-0.8)2+2.4. ∵点D的横坐标为1.4, ∴y=-1.25×(1.4-0.8)2+2.4=1.95. 故灯罩顶端D距地面的高度为1.95米.
关系式是y=-x2+3x+4.请问:若不计其他因素,
水池的半径至少要
米,
才能使喷出的水流不至于落在池外.
图15-5
[答案]4 [解析]在y=-x2+3x+4中, 当y=0时,-x2+3x+4=0, ∴x1=4,x2=-1, 又∵x>0, ∴x=4, 即水池的半径至少要4米,才能使喷出的水流不至于落在池外.
2
3.[2018·绵阳]图15-4是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下
降2 m,水面宽度增加
m.
图15-4
[答案] (4 2-4)
[解析]如图所示,建立平面直角坐标系,横轴 x 通过 AB,纵轴 y 通过 AB 中点 O 且通过抛物线 顶点 C,O 为原点.则抛物线以 y 轴为对称轴,A(-2,0),B(2,0),C(0,2), 通过以上条件可设抛物线解析式为 y=ax2+2,代入 A 点坐标(-2,0),解得 a=-0.5, 所以抛物线解析式为 y=-0.5x2+2, 当水面下降 2 m 时,水面的宽度即为直线 y=-2 与抛物线相交的两点之间的距离, 把 y=-2 代入抛物线解析式得出:-2=-0.5x2+2, 解得:x=±2 2,故水面此时的宽度为 4 2 m, 比原先增加了(4 2-4)m.故答案为(4 2-4).
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。
②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。
③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。
④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。
交点情况与方程的解的情况同与x 轴相交时一样。
2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。
3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。
②当1−=x 时所对应的函数值为c b a y +−=。
③当2=x 时所对应的函数值为c b a y ++=24。
④当2−=x 时所对应的函数值为c b a y +−=24。
4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。
②若对称轴为直线1−=x 时,则02=−b a 。
③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。
④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。
练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。
中考专题15 二次函数的综合运用2
课堂精讲
例2 (2019·齐齐哈尔)综合与探究 如图,抛物线y=x2+bx+c与x轴交于A,B两点,
与y轴交于C点,OA=2,OC=6,连接AC和BC. (1)求抛物线的解析式; (2)点D在抛物线的对称轴上,当△ACD的周长最小
时,点D的坐标为________. (3)若点M是y轴上的动点,在坐标平面内是否存在
课堂精讲
(3)存在点 N,使以点 A,C,M,N 为顶点的四边
形是菱形.
∵A(-2,0),C(0,-6),
∴AC= 22+62=2 10.
①若 AC 为菱形的边长,如图 1,
则 MN∥AC 且 MN=AC=2 10.
∴N1(-2,2 10),N2(-2,-2 10),N3(2,0).
图1
课堂精讲
②若 AC 为菱形的对角线,如图 2, 则 AN4∥CM4,AN4=CN4. 设 N4(-2,n),∴-n= 22+(n+6)2,
解得 n=-130.∴N4-2,-130.
综上,点 N 坐标为(-2,2 10)或(-2,-2 10)或
(2,0)或-2,-130. 【方法归纳】本题考查了二次函数的图象与性质,轴
∴抛物线的解析式为 y=-23x2+43x+2, 对称轴 x=1. (2)存在点 M 使得以 B,C,M,N 为顶点的四边形是平行四边形, 设 N(1,n),M(x,y), ①四边形 CMNB 是平行四边形时, 12=3+2 x,∴x=-2.∴M-2,-130;
课堂精讲
②四边形 CNBM 时平行四边形时, 23=1+2 x,∴x=2.∴M(2,2); ③四边形 CNMB 时平行四边形时, 1+2 3=2x,∴x=4.∴M4,-130. 综 上 , M 点 的 坐 标 为 (2 , 2) 或 4,-130 或 -2,-130.
中考数学专题复习二次函数的综合题及答案解析
中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
中考数学二次函数的综合复习附详细答案
中考数学二次函数的综合复习附详细答案一、二次函数1.如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(32,﹣54). 【解析】 【分析】(1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32=交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】(1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (32528,-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2. 当y =0时,21322x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)∵顶点D的坐标为(325 28,-),∴抛物线的对称轴为x32=.∵抛物线y12=x2+bx﹣2与x轴交于A,B两点,∴点A与点B关于对称轴x32=对称.∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,y21322x=-x﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC与直线x32=交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:240bk b=-⎧⎨+=⎩,解得:122kb⎧=⎪⎨⎪=-⎩,∴y12=x﹣2.当x32=时,y1352224=⨯-=-,∴点M的坐标为(3524-,).【点睛】本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.2.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3), PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2, 解得n 1=0(不符合题意,舍),n 2=2, n 2﹣2n ﹣3=-3, P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=3+2(不符合题意,舍),n 3=3-2, n 2﹣2n ﹣3=2-42, P (3-2,2-42);综上所述:P (2,﹣3)或(3-2,2﹣42). 【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.3.如图,在平面直角坐标系中,直线483y x =-+与x 轴,y 轴分别交于点A 、B ,抛物线24y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.(1)求抛物线的解析式;(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似; (3)当△ADE 为等腰三角形时,求t 的值;(4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由. 【答案】(1)抛物线的解析式为228833y x x =-++; (2)t 的值为3011或5013; (3)t 的值为103或6017或258; (4)符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8). 【解析】(1)由B 、C 两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用△ADE ∽△AOB 和△AED ∽△AOB 即可求出t 的值;(3)过E 作EH ⊥x 轴于点H ,过D 作DM ⊥AB 于点M 即可求出t 的值;(4)分当AD 为边时,当AD 为对角线时符合条件的点F 的坐标.解:(1)A (6,0),B (0,8),依题意知36240{8a a c c -+==,解得2{38a c =-=, ∴228833y x x =-++. (2)∵ A (6,0),B (0,8),∴OA=6,OB=8,AB=10,∴AD=t ,AE=10-2t , ①当△ADE ∽△AOB 时,AD AE AO AB =,∴102610t t -=,∴3011t =; ②当△AED ∽△AOB 时,AE AD AO AB =,∴102610t t -=,∴5013t =; 综上所述,t 的值为3011或5013. (3) ①当AD=AE 时,t=10-2t ,∴103t =; ②当AE=DE 时,过E 作EH ⊥x 轴于点H ,则AD=2AH ,由△AEH ∽△ABO 得,AH=()31025t -,∴()61025t t -=,∴6017t =; ③当AD=DE 时,过D 作DM ⊥AB 于点M ,则AE=2AM ,由△AMD ∽△AOB 得,AM=35t ,∴61025t t -=,∴258t =; 综上所述,t 的值为103或6017或258. (4) ①当AD 为边时,则BF ∥x 轴,∴8F B y y ==,求得x=4,∴F (4,8); ②当AD 为对角线时,则8F B y y =-=-,∴2288833x x -++=-,解得2x =±∵x ﹥0,∴2x =+∴()28+-.综上所述,符合条件的点F 存在,共有两个1F (4,8),2(2F +,-8).“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.4.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),AC的解析式为y=5x-5,E点坐标为(12,-52),利用两直线垂直的问题可设直线EM1的解析式为y=-15x+b,把E(12,-52)代入求出b得到直线EM1的解析式为y=-15x-125,则解方程组511255y xy x-⎧⎪⎨--⎪⎩==得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=13+62x,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5), 当y=0时,x ﹣5=0,解得x=5,则B (5,0), 把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0), ∵B (5,0),C (0,﹣5), ∴△OCB 为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM ⊥BC ,∴△AMB 为等腰直角三角形, ∴AM=2AB=2×4=22, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ , ∴PQ=AM=22,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴222=4,设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5), 当P 点在直线BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4, 当P 点在直线BC 下方时,PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 15+41,m 25-41, 综上所述,P 点的横坐标为4或5+412或5-412; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.5.如图,已知抛物线经过原点O,顶点A(1,﹣1),且与直线y=kx+2相交于B(2,0)和C两点(1)求抛物线和直线BC的解析式;(2)求证:△ABC是直角三角形;(3)抛物线上存在点E(点E不与点A重合),使∠BCE=∠ACB,求出点E的坐标;(4)在抛物线的对称轴上是否存在点F,使△BDF是等腰三角形?若存在,请直接写出点F的坐标.【答案】(1)y=x2﹣2x,y=﹣x+2;(2)详见解析;(3)E(5524,);(4)符合条件的点F的坐标(17171,71,27【解析】【分析】(1)将B(2,0)代入设抛物线解析式y=a(x﹣1)2﹣1,求得a,将B(2,0)代入y =kx+2,求得k;(2)分别求出AB2、BC2、AC2,根据勾股定理逆定理即可证明;(3)作∠BCE=∠ACB,与抛物线交于点E,延长AB,与CE的延长线交于点A',过A'作A'H垂直x轴于点H,设二次函数对称轴于x轴交于点G.根据对称与三角形全等,求得A'(3,1),然后求出A'C解析式,与抛物线解析式联立,求得点E坐标;(4)设F(1,m),分三种情况讨论:①当BF=BD2122m+=②当DF=BD 24522m m-+=,③当BF=DF22145m m m+-+m=1,然后代入即可.【详解】(1)设抛物线解析式y=a(x﹣1)2﹣1,将B(2,0)代入,0=a(2﹣1)2﹣1,∴a=1,抛物线解析式:y=(x﹣1)2﹣1=x2﹣2x,将B(2,0)代入y=kx+2,0=2k +2, k =﹣1,∴直线BC 的解析式:y =﹣x +2;(2)联立222y x y x x =-+⎧⎨=-⎩, 解得1113x y =-⎧⎨=⎩,2220x y =⎧⎨=⎩,∴C (﹣1,3),∵A (1,﹣1),B (2,0), ∴AB 2=(1﹣2)2+(﹣1﹣0)2=2, AC 2=[1﹣(﹣1)]2+(﹣1﹣3)2=20, BC 2=[2﹣(﹣1)]2+(0﹣3)2=18, ∴AB 2+BC 2=AC 2, ∴△ABC 是直角三角形;(3)如图,作∠BCE =∠ACB ,与抛物线交于点E ,延长AB ,与CE 的延长线交于点A ',过A '作A 'H 垂直x 轴于点H ,设二次函数对称轴于x 轴交于点G .∵∠BCE =∠ACB ,∠ABC =90°, ∴点A 与A '关于直线BC 对称, AB =A 'B ,可知△AFB ≌△A 'HB (AAS ), ∵A (1,﹣1),B (2,0) ∴AG =1,BG =OG =1, ∴BH =1,A 'H =1,OH =3, ∴A '(3,1), ∵C (﹣1,3), ∴直线A 'C :1522y x =-+, 联立:215222y x y x x⎧=-+⎪⎨⎪=-⎩,解得13x y =-⎧⎨=⎩或5254x y ⎧=⎪⎪⎨⎪=⎪⎩,∴E (52,54); (4)∵抛物线的对称轴:直线x =1, ∴设F (1,m ),直线BC 的解析式:y =﹣x +2; ∴D (0,2) ∵B (2,0),∴BD =12x xBF ==DF ==①当BF =BD= m =∴F 坐标(11②当DF =BD=, m =∴F 坐标(1,1,2③当BF =DF, m =1,F (1,1),此时B 、D 、F 在同一直线上,不符合题意.综上,符合条件的点F 的坐标(111,1,2﹣【点睛】考查了二次函数,熟练掌握二次函数的性质是解题的关键.6.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.7.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.8.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=kx(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(ca,ba)与原点O的距离OP的取值范围.【答案】(1)不能,理由见解析;(2)t的值为﹣4、﹣2或2;(3)①证明见解析;2≤OP<2且OP≠1. 【解析】 【分析】(1)由和谐三组数的定义进行验证即可;(2)把M 、N 、R 三点的坐标分别代入反比例函数解析式,可用t 和k 分别表示出y 1、y 2、y 3,再由和谐三组数的定义可得到关于t 的方程,可求得t 的值; (3)①由直线解析式可求得x 1=﹣cb,联立直线和抛物线解析式消去y ,利用一元二次方程根与系数的关系可求得x 2+x 3=﹣b a ,x 2x 3=ca,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c =0,可得c =﹣(a+b),由a >2b >3c 可求得ba的取值范围,令m =ba,利用两点间距离公式可得到OP 2关于m 的二次函数,利用二次函数的性质可求得OP 2的取值范围,从而可求得OP 的取值范围. 【详解】(1)不能,理由如下:∵1、2、3的倒数分别为1、12、13, ∴12+13≠1,1+12≠13,1+13≠12, ∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t ,y 1),N(t+1,y 2),R(t+3,y 3)三点均在函数kx(k 为常数,k≠0)的图象上, ∴y 1、y 2、y 3均不为0,且y 1=k t ,y 2=1k t +,y 3=3k t +, ∴11y =t k ,21y =1t k +,31y =3t k +, ∵y 1,y 2,y 3构成“和谐三组数”, ∴有以下三种情况:当11y =21y +31y 时,则t k =1t k ++3t k +,即t =t+1+t+3,解得t =﹣4;当21y =11y +31y 时,则1t k +=t k +3t k +,即t+1=t+t+3,解得t =﹣2;当31y =11y +21y 时,则3t k +=t k +1t k+,即t+3=t+t+1,解得t =2;∴t 的值为﹣4、﹣2或2; (3)①∵a 、b 、c 均不为0,∴x 1,x 2,x 3都不为0,∵直线y =2bx+2c(bc≠0)与x 轴交于点A(x 1,0), ∴0=2bx 1+2c ,解得x 1=﹣c b, 联立直线与抛物线解析式,消去y 可得2bx+2c =ax 2+3bx+3c ,即ax 2+bx+c =0, ∵直线与抛物线交与B(x 2,y 2),C(x 3,y 3)两点, ∴x 2、x 3是方程ax 2+bx+c =0的两根, ∴x 2+x 3=﹣b a ,x 2x 3=c a, ∴21x +31x =2323x x x x +=b a c a-=﹣b c =11x ,∴x 1,x 2,x 3构成“和谐三组数”; ②∵x 2=1, ∴a+b+c =0, ∴c =﹣a ﹣b , ∵a >2b >3c ,∴a >2b >3(﹣a ﹣b),且a >0,整理可得253a b b a>⎧⎨>-⎩,解得﹣35<b a <12,∵P(c a ,ba), ∴OP 2=(c a )2+(b a )2=(a b a --)2+(b a )2=2(b a )2+2b a +1=2(b a +12)2+12, 令m =b a ,则﹣35<m <12且m≠0,且OP 2=2(m+12)2+12, ∵2>0,∴当﹣35<m <﹣12时,OP 2随m 的增大而减小,当m =﹣35时,OP 2有最大临界值1325,当m =﹣12时,OP 2有最小临界值12, 当﹣12<m <12时,OP 2随m 的增大而增大,当m =﹣12时,OP 2有最小临界值12,当m =12时,OP 2有最大临界值52, ∴12≤OP 2<52且OP 2≠1, ∵P 到原点的距离为非负数,∴2≤OP<10且OP≠1.2【点睛】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.9.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
中考二次函数的应用与综合问题
第15讲二次函数的应用与综合问题1.掌握二次函数与方程(组)、不等式(组)之间的关系,会利用二次函数的图象、性质解决方程(组)、不等式(组)的问题.2.掌握用二次函数模型解决实际问题3.会解决二次函数与其他知识的综合问题1.(2019•温州三模)抛物线y=x2与坐标轴交点的个数是()A.0B.1C.2D.3【思路点拨】解方程x2=0得抛物线与x轴的交点坐标为(0,0),计算当x=0时,y=x2=0得到抛物线与y轴的交点坐标为(0,0),从而可判断抛物线y=x2与坐标轴交点的个数.【解答】解:当y=0时,x2=0,解得x1=x2=1,则抛物线与x轴的交点坐标为(0,0),当x=0时,y=x2=0,则抛物线与y轴的交点坐标为(0,0),所以抛物线y=x2与坐标轴交点的个数是1.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2.(2019秋•镇海区校级期中)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为﹣3,1.【思路点拨】根据抛物线与直线的交点坐标的横坐标即可求解.【解析】解:因为抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),所以关于x的方程ax2=bx+c的解为x1=﹣3,x2=1,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣3,x2=1.故答案为﹣3、1.【点睛】本题考查了抛物线与直线交点坐标,解决本题的关键是两交点的横坐标就是方程的解.3.(2019春•西湖区校级月考)有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m2【思路点拨】设平行于墙的一边长为xm,苗圃园面积为Sm2,则根据长方形的面积公式写出面积的表达式,将其写成二次函数的顶点式,根据二次函数的性质及问题的实际意义,得出答案即可.【解答】解:设平行于墙的一边长为xm,苗圃园面积为Sm2,则S=x×(20﹣x)=﹣(x2﹣20x)=﹣(x﹣10)2+50 (8≤x≤15)∵﹣<0∴S有最大值,x=10>8时,S最大=50∵墙长为15m∴当x=15时,S最小S最小=15××(20﹣15)=37.5∴这个苗圃园面积的最大值和最小值分别为50m2,37.5m2.故选:C.【点睛】本题考查了二次函数在实际问题中的应用,正确地根据实际问题列出函数关系式,并明确二次函数的性质,是解题的关键.4.(2019秋•柯桥区期中)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c﹣a=n;③抛物线另一个交点(m,0)在﹣2到﹣1之间;④当x<0时,ax2+(b+2)x<0;⑤一元二次方程ax2+(b﹣)x+c=0有两个不相等的实数根其中正确结论的个数是()A.1个B.2个C.3个D.4个【思路点拨】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【解答】解:①因为抛物线的对称轴为x=1,即﹣=1,所以b=﹣2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=﹣2a,所以﹣a+c=n,所以②正确;③因为抛物线的顶点坐标为(1,n),即对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在﹣2到﹣1之间;所以③正确;④因为ax2+(b+2)x<0,即ax2+bx<﹣2x根据图象可知:把抛物线y=ax2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=ax2+bx(a≠0)的图象,所以当x<0时,ax2+bx<﹣2x,即ax2+(b+2)x<0.所以④正确;⑤一元二次方程ax2+(b﹣)x+c=0△=(b﹣)2﹣4ac因为根据图象可知:a<0,c>0,所以﹣4ac>0,所以△=(b﹣)2﹣4ac>0所以一元二次方程ax2+(b﹣)x+c=0有两个不相等的实数根.所以⑤正确.故选:D.【点睛】本题考查了二次函数与不等式、根的判别式、二次函数图象与系数的关系、抛物线与x轴的交点,解决本题的关键是综合运用以上知识.5.(2019•鄞州区模拟)如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A,B,若其对称轴为直线x=2,则OB﹣OA的值为4.【思路点拨】先A(x1,0),B(x2,0),可知x1、x2是方程ax2+bx+c=0的两个根,根据对称轴得:b =﹣4a,由根与系数的关系可计算OB﹣OA的值.【解答】解:设A(x1,0),B(x2,0),则x1、x2是方程ax2+bx+c=0的两个根,∵抛物线的对称轴是:x=2,∴﹣=2,∴b=﹣4a,由图可知:x1<0,x2>0,∴OB﹣OA=x2﹣(﹣x1)=x2+x1=﹣=﹣=4,故答案为:4.【点睛】本题考查了二次函数图象对称轴、一元二次方程根与系数的关系,属于基础题,关键是结合图象进行解题.1.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)1.抛物线与x轴的交点的横坐标是一元二次方程ax2+bx+c=0的解.2.若已知二次函数y=ax2+bx+c的函数值为s,求自变量x的值,就是解一元二次方程ax2+bx+c=s. 2.二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.3.利用二次函数解决实际问题的一般步骤:(1)设实际问题中的变量(2)建立变量与变量之间的函数关系(3)确定自变量的取值范围,保证自变量具有实际意义(4)利用函数的性质解决问题(5)写出答案【考点一二次函数与方程(组)】例1.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1【思路点拨】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.【解答】解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.【点睛】本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.【变式训练】1.(2019秋•温州期末)抛物线y=x2+6x+9与x轴交点的个数是()A.0B.1C.2D.3【思路点拨】根据b2﹣4ac与零的关系即可判断出二次函数y=x2+6x+9的图象与x轴交点的个数.【解答】解:∵b2﹣4ac=36﹣4×1×9=0∴二次函数y=x2+6x+9的图象与x轴有一个交点.故选:B.【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.2.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【思路点拨】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点睛】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.3.(2019秋•临海市期末)若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m﹣8,n),则n的值为()A.8B.12C.15D.16【思路点拨】由题意b2﹣4c=0,得b2=4c,又抛物线过点A(m,n),B(m﹣8,n),可知A、B关于直线x=﹣对称,所以A(﹣+4,n),B(﹣﹣4,n),把点A坐标代入y=x2+bx+c,化简整理即可解决问题.【解答】解:由题意b2﹣4c=0,∴b2=4c,又∵抛物线过点A(m,n),B(m﹣8,n),∴A、B关于直线x=﹣对称,∴A(﹣+4,n),B(﹣﹣4,n),把点A坐标代入y=x2+bx+c,n=(﹣+4)2+b(﹣+4)+c=﹣b2+16+c,∵b2=4c,∴n=16.故选:D.【点睛】本题考查抛物线与x轴的交点,待定系数法等知识,解题的关键是记住△=b2﹣4ac>0时,抛物线与x轴有2个交点,△=b2﹣4ac=0时,抛物线与x轴有1个交点,△=b2﹣4ac<0时,抛物线与x轴没有交点,属于中考常考题型.【考点二二次函数与不等式(组)】例2.(2019秋•萧山区期中)设函数y1=(x﹣2)(x﹣m),y2=,若当x=1时,y1=y2,则()A.当x>1时,y1<y2B.当x<1时,y1>y2C.当x<0.5时,y1<y2D.当x>5时,y1>y2【思路点拨】当y1=y2,即(x﹣2)(x﹣m)=,把x=1代入得,(1﹣2)(1﹣m)=3,则m=4,画出函数图象即可求解.【解答】解:当y1=y2,即(x﹣2)(x﹣m)=,把x=1代入得,(1﹣2)(1﹣m)=3,∴m=4,∴y1=(x﹣2)(x﹣4),抛物线的对称轴为:x=3,如下图:设点A、B的横坐标分别为1,5,则点A、B关于抛物线的对称轴对称,从图象看在点B处,即x=5时,y1>y2,故选:D.【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.【变式训练】1.(2019•拱墅区校级模拟)已知如图二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示)则能使y1<y2成立的x的取值范围是﹣2<x<8.【思路点拨】根据函数图象,写出抛物线在直线下方部分的x的取值范围即可.【解答】解:由图可知,﹣2<x<8时,y1<y2.故答案为:﹣2<x<8.【点睛】本题考查了二次函数与不等式组,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.2.(2019秋•新昌县校级月考)已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是()A.<x<2B.x>2或x<C.x<﹣2或x>D.﹣2<x<【思路点拨】联立y1=x2、y2=x+3并解得:x=﹣2或,y1<y2,此时直线在抛物线上方,即可求解.【解析】解:联立y1=x2、y2=x+3并解得:x=﹣2或,∵y1<y2,即直线在抛物线上方时,确定x的取值范围,此时,﹣2<x,故选:D.【点睛】本题考查的是二次函数与不等式(组),要求学生通过函数图象交点,比较函数值的大小,从而确定不等式的解值,而不是采取直接解不等式的方法求解.3.(2018•海宁市一模)如图,已知抛物线y1=x2﹣2x﹣3与x轴相交于点A、B(点A在B的左侧),与y 轴相交于点C,直线y2=kx+b经过点B,C(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.【思路点拨】(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.【解答】解:(1)抛物线y1=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x=3或1,即A的坐标为(﹣1,0),B的坐标为(3,0),C的坐标为(0,﹣3),把B、C的坐标代入直线y2=kx+b得:,解得:k=1,b=﹣3,即直线BC的函数关系式是y=x﹣3;(2)∵B的坐标为(3,0),C的坐标为(0,﹣3),∴当y1>y2时,x的取值范围是x<0或x>3.【点睛】本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.【考点三二次函数的实际应用】例3.(2019•东阳市模拟)地面上一个小球被推开后笔直滑行,滑行的距离s与时间t的函数关系如图中的部分抛物线所示(其中P是该抛物线的顶点),则下列说法正确的是()A.小球滑行6秒停止B.小球滑行12秒停止C.小球滑行6秒回到起点D.小球滑行12秒回到起点【思路点拨】根据函数图象结合s与t的关系式得出答案.【解答】解:如图所示:滑行的距离要s与时间t的函数关系可得,当t=6秒时,滑行距离最大,即此时小球停止.故选:A.【点睛】此题主要考查了二次函数的应用,正确数形结合分析是解题关键.【变式训练】1.(2019•柯桥区模拟)某汽车刹车后行驶的距离y(单位:m)与行驶的时间t(单位:s)之间近似满足函数关系y=at2+bt(a<0).如图记录了y与t的两组数据,根据上述函数模型和数据,可推断出该汽车刹车后到停下来所用的时间为()A.2.25s B.1.25s C.0.75s D.0.25s【思路点拨】直接利用待定系数法求出二次函数解析式,进而得出对称轴即可得出答案.【解答】解:将(0.5,6),(1,9)代入y=at2+bt(a<0)得:,解得:,故抛物线解析式为:y=﹣6t2+15t,当t=﹣=﹣==1.25(秒),此时y取到最大值,故此时汽车停下,则该汽车刹车后到停下来所用的时间为1.25秒.故选:B.【点睛】此题主要考查了二次函数的应用,正确得出函数解析式是解题关键.2.(2019•舟山)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)【思路点拨】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4中,便可求得h;(2)①由表格可知,m是p的一次函数,由待定系数法可解;②分别求出当10≤t≤25时和当25≤t≤37时的函数解析式即可;③分别求出当20≤t≤25时,增加的利润和当25<t≤37时,增加的利润,然后比较两种情况下的最大值,即可得结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得:0.3=(25﹣h)2+0.4解得:h=29或h=21,∵25≤t≤37∴h=29.(2)①由表格可知,m是p的一次函数,设m=kp+b把(0.2,0),(0.3,10)代入得解得∴m=100p﹣20.②当10≤t≤25时,p=t﹣∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4∴m=100[﹣(t﹣h)2+0.4]﹣20=(t﹣29)2+20∴m=③当20≤t≤25时,增加的利润为:600m+[100×30﹣200(30﹣m)]=800m﹣3000=1600t﹣35000当t=25时,增加的利润的最大值为1600×25﹣35000=5000元;当25<t≤37时,增加的利润为:600m+[100×30﹣400(30﹣m)]=1000m﹣9000=﹣625(t﹣29)2+11000∴当t=29时,增加的利润的最大值为11000元.综上,当t=29时,提前20天上市,增加的利润最大,最大值为11000元.【点睛】本题综合考查了待定系数法求二次函数和一次函数的解析式以及一次函数和二次函数的实际应用,难度较大.【考点四二次函数的综合题】例4.(2019•金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.【思路点拨】(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题.(3)如图3中,∵抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时m的值,即可判断.【解答】解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),根据图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,﹣(2﹣m)2+m+2=1,解得m=或(舍弃),当抛物线经过点F时,﹣(2﹣m)2+m+2=2,解得m=1或4(舍弃),∴当≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.【点睛】本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题,属于中考压轴题.【变式训练】1.(2018•舟山)已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.【思路点拨】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【解答】解:(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组,解得,∴点E(,),F(0,1).点M在△AOB内,1<4b+1<∴0<b<.当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2.【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.第15讲二次函数的应用与综合问题一、选择题1.(2019•镇海区一模)若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1B.x1=﹣1,x2=3C.x1=1,x2=3D.x1=﹣3,x2=1【思路点拨】先确定抛物线的对称轴为直线x=1,再根据抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而根据抛物线与x轴的交点问题得到方程ax2﹣2ax+c=0的解.【答案】解:抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的另一个交点坐标为(3,0),所以方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2.(2019•富阳区一模)已知二次函数y=2(x﹣1)(x﹣m﹣3)(其中m为常数),该函数图象与y轴交点在x轴上方,则m的取值范围正确的是()A.m>3B.m>﹣3C.m<3D.m<﹣3【思路点拨】题干中的二次函数解析式为交点式,由该函数图象与y轴交点在x轴上方,我们需要确定图象与y轴的交点,只要将其化为一般式,令常数项大于0即可.【答案】解:将y=2(x﹣1)(x﹣m﹣3)展开得,y=2x2﹣(2m+8)x+2m+6.∵该函数图象与y轴交点在x轴上方∴2m+6>0解得,m>﹣3.故选:B.【点睛】本题考查了二次函数解析式与图象的联系,通过解析式判断图象与坐标轴交点坐标的方法.3.(2019•慈溪市模拟)已知抛物线y=x2+mx+n与x轴只有一个公共点,且过点A(a,b),B(a﹣4,b),则b的值为()A.4B.2C.6D.9【思路点拨】根据抛物线y=x2+mx+n与x轴只有一个公共点,可知△=0,从而可以得到m与n的关系,再根据抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),可以得到a和m的关系,从而可以求得b的值.【答案】解:∵抛物线y=x2+mx+n与x轴只有一个公共点,∴△=m2﹣4×1×n=m2﹣4n=0,∴n=m2,∵抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),∴b=a2+ma+n,b=(a﹣4)2+m(a﹣4)+n,∴a2+ma+n=(a﹣4)2+m(a﹣4)+n,化简,得a=,∴b=a2+ma+n=()2+m×+m2=4,故选:A.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出b的值.4.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米【思路点拨】根据t=时,s=6和函数中的解析式,可以求得b的值,然后将函数解析式化为顶点式即可解答本题.【答案】解:把t=,s=6代入s=﹣6t2+bt得,6=﹣6×+b×,解得,b=15∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+,∴当t=时,s取得最大值,此时s=,故选:C.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,利用二次函数的顶点式解答.5.(2019•龙湾区一模)把一个足球垂直于水平地面向上踢,该足球距离地面的高度h(米)与所经过的时间t(秒)之间的关系为h=10t﹣t2(0≤t≤14).若存在两个不同的t的值,使足球离地面的高度均为a(米),则a的取值范围()A.0≤a≤42B.0≤a<50C.42≤a<50D.42≤a≤50【思路点拨】由题意可得方程10t﹣t2=a,由存在两个不同的t的值,使足球离地面的高度均为a,故△=b2﹣4ac>0,即可求出相应的范围【答案】解:∵a≥0,由题意得方程10t﹣t2=a有两个不相等的实根∴△=b2﹣4ac=102+4××a>0得0≤a<50又∵0≤t≤14∴当t=14时,a=h=10×14﹣×142=42所以a的取值范围为:42≤a<50故选:C.【点睛】本题主要考查二次函数的应用,解题的关键是根据题意得到相应的方程及将实际问题转化为方程问题.6.(2019•上城区一模)已知二次函数y=ax2+bx+c(a≠0)的图象过点(0,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点(,y)是函数图象上一点,则y>0;②若点(﹣),()是函数图象上一点,则y2>y1;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③【思路点拨】先根据抛物线经过的三点可判断抛物线开口向下,利用函数图象,当x=时,y>0,可对①进行判断;比较点()和()到对称轴的距离可对②进行判断;由于x=1,y>0;x=﹣1,y<0,则a+b+c>0,a﹣b+c<0,于是可对③进行判断.【答案】解:∵抛物线经过点(0,m)(2,m)(m>0),(x1,0)(﹣1<x1<0),∴抛物线开口向下,<﹣<1,∴当x=时,y>0,则①正确;∵点()到对称轴的距离比点()到对称轴的距离小,∴y1>y2,所以②错误;∵x=1,y>0;x=﹣1,y<0,即a+b+c>0,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2,则③正确.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.7.(2018秋•嘉兴期末)二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象经过A(﹣4,﹣4),B(6,﹣4)顶点为P,则下列说法中错误的是()A.不等式ax2+bx+c>﹣4的解为﹣4<x<6B.关于x的方程a(x+4)(x﹣6)﹣4=0的解与ax2+bx+c=0的解相同C.△P AB为等腰直角三角形,则a=﹣D.当t≤x≤t+2时,二次函数y=ax2+bx+c的最大值为at2+bt+c,则t≥0【思路点拨】根据抛物线的图象在y=﹣4的上方的自变量x的取值范围判断A的正误;根据抛物线与直线y=﹣4的交点坐标判断B的正误;求出C的坐标,再用待定系数法求a;根据0≤t<1时二次函数的最大值进行判断.【答案】解:由函数图象可知,二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象位于A(﹣4,﹣4),B(6,﹣4)两点之间部分在y=﹣4的上方,即不等式ax2+bx+c>﹣4的解为﹣4<x<6,故A正确;由题意知,当x=﹣4或6时,a(x+4)(x﹣6)﹣4=﹣4,又因二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象经过A(﹣4,﹣4),B(6,﹣4)有当x=﹣4或6时,y=ax2+bx+c=﹣4,所以a(x+4)(x﹣6)﹣4=ax2+bx+c,则关于x的方程a(x+4)(x﹣6)﹣4=0的解与ax2+bx+c=0的解相同,故B 正确;由题意得,P点的横坐标为:,则P点纵坐标为:a+b+c=a﹣2a+c=﹣a+c,若△P AB为等腰直角三角形,则点P到AB的距离等于AB的一半,有﹣a+c+4=(6+4),得c=1+a,则抛物线的解析式为:y=ax2+bx+x=ax2﹣2ax+a+1,把A(﹣4,﹣4)代入,得﹣4=16a+8a+a+1,解得a=﹣,故C 正确;由图象可知,当0≤t<1时,二次函数的最大值顶点的纵坐标>at2+bt+c,故D错误.故选:D.【点睛】本题主要考查了二次函数图象与系数的关系,采用数形结合的思想,熟练运用二次函数的图象与性质是解题的关键,有一定的难度.8.(2019•杭州模拟)关于x的二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0),在某次数学研究课上得到以下结论:①当k=1时,二次函数图象顶点为(0,﹣2);②当k<0时,二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象对称轴在直线x=左侧;③当k<0时,二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象在x轴上截得线段长小于;④当k>0时,点M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象上一点,若<x0<1,则y0<0;则以上研究正确的是()A.①③B.②③④C.①④D.①③④【思路点拨】①当k=1时y=2x2﹣2,则顶点为(0,﹣2);②当k<0时y=2kx2+(1﹣k)x﹣1﹣k的对称轴x==>,对称轴在x=的右侧;③当k<0时,y=2kx2+(1﹣k)x﹣1﹣k,,,则有|x1﹣x2|==小于;④M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k上的点,y0=2kx02+(1﹣k)x0﹣1﹣k=2k(x0﹣)2﹣,当<<1时,y的最小值为﹣<0,即y0<0;当>1时,当x=1时有y=2k﹣2,当x=时,y=∴>y0>2k﹣2,y0<0;当<时,<y0<2k﹣2,y0<0;【答案】解:①当k=1时y=2x2﹣2,则顶点为(0,﹣2);①正确;②当k<0时y=2kx2+(1﹣k)x﹣1﹣k的对称轴x==>,∴x>,对称轴在x=的右侧,∴②错误;③当k<0时,y=2kx2+(1﹣k)x﹣1﹣k,△=(3k+1)2≥0,,,∴|x1﹣x2|==<,∴③正确;④M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k上的点,∴y0=2kx02+(1﹣k)x0﹣1﹣k=2k(x0﹣)2﹣,∵<x0<1,k>0,∴当<<1时,y的最小值为﹣<0,即y0<0;当>1时,当x=1时有y=2k﹣2,当x=时,y=∴>y0>2k﹣2,∴y0<0;当<时,<y0<2k﹣2,∴y0<0;综上所述,y0<0;④正确;故选:D.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的性质,数形结合解题,灵活运用韦达定理是解题的关键.二、填空题9.(2018•临海市一模)已知一元二次方程(x﹣1)(x﹣3)=5的两个实数根分别为x1,x2.则抛物线y=(x﹣x1)(x﹣x2)+5与x轴的交点坐标为(1,0)、(3,0).【思路点拨】由一元二次方程(x﹣1)(x﹣3)=5的两个实数根分别为x1、x2,可得出抛物线y=(x﹣1)(x﹣3)﹣5与x轴交于点(x1,0)、(x2,0),即y=(x﹣1)(x﹣3)﹣5=(x﹣x1)(x﹣x2),变形后可得出y=(x﹣x1)(x﹣x2)+5=(x﹣1)(x﹣3),即抛物线y=(x﹣x1)(x﹣x2)+5与x轴的交点坐标为(1,0)、(3,0),此题得解.【答案】解:∵一元二次方程(x﹣1)(x﹣3)=5的两个实数根分别为x1、x2,∴抛物线y=(x﹣1)(x﹣3)﹣5与x轴交于点(x1,0)、(x2,0),∴y=(x﹣1)(x﹣3)﹣5=(x﹣x1)(x﹣x2),∴y=(x﹣x1)(x﹣x2)+5=(x﹣1)(x﹣3),∴抛物线y=(x﹣x1)(x﹣x2)+5与x轴的交点坐标为(1,0)、(3,0).故答案为:(1,0)、(3,0).【点睛】本题考查了抛物线与x轴的交点,根据二次函数的交点式直接找出抛物线与x轴的交点是解题的关键.10.(2018秋•下城区期末)已知函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过A(4,﹣4).若y2≤y1,则x的取值范围为x≤0或x≥4.【思路点拨】先A点坐标代入y2=mx+2得4m+2=﹣4,再求出m,则可判断二次函数图象的开口向上,易得函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),然后根据函数图象,写出直线不在抛物线上方所对应的自变量的范围即可.【解析】解:把A(4,﹣4)代入y2=mx+2得4m+2=﹣4,解得m=﹣,∵﹣(m+1)>0,∴二次函数图象的开口向上,∵函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),∴y2≤y1,则x的取值范围为x≤0或x≥4.故答案为x≤0或x≥4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.11.(2019•婺城区模拟)某一房间内A、B两点之间设有探测报警装置,小车(不计大小)在房间内运动,当小车从AB之间经过时(不包括A、B),将触发报警.现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(5,4),小车沿抛物线y=ax2﹣2ax﹣3a运动.若小车在运动过程中只触发一次报警,则a的取值范围是a=﹣1,a≤﹣或a≥.【思路点拨】先把抛物线解析式分解因式,得其与x轴的交点坐标及对称轴,再分别代入临界点的坐标。
中考数学复习第15课时 二次函数的综合性问题(Word版)测试及答案解析
第三单元 函数第十五课时 二次函数的综合性问题类型一 与函数有关的阅读理解题1. (10分)(2018原创)如图,在平面直角坐标系中,正方形OABC 的点A 、C 分别在x 轴、y 轴上,点B 在第一象限,且OA =3.定义:在正方形OABC 的边上及内部且横纵坐标均为整数的点称为好点.(1)若一次函数y =kx +b (k≠0)的图象经过的好点最多,求此一次函数的解析式; (2)若反比例函数y =mx (x >0)的图象正好经过点(1,3),求反比例函数图象上方和图象下方好点个数比;(3)二次函数y =a 1x 2+b 1x +c 1的图象经过O 、A 两点,顶点为D(h ,t ).若其图象与x 轴围成的图形中,恰好有4个好点(不含边界),求t 的取值范围.第1题图2. (10分)(2017南雅中学月考)如图,点P (x ,y 1)与Q (x ,y 2)分别是两个函数图象C 1与C 2上的任意一点,当a ≤x ≤b 时,有-1≤y 1-y 2≤1成立,则称这两个函数在a≤x ≤b 上是“相邻函数”,否则称它们在a ≤x ≤b 上是“非相邻函数”.(1)判断函数y =-2x +3与y =-x +2在0≤x≤2上是否为“相邻函数”,并说明理由;(2)若函数y =ax 与y =-2x +4在1≤x≤2上是“相邻函数”,直接写出a 的最大值与最小值;(3)若函数y=x2-(2a-1)x与y=x-2在1≤x≤2上是“相邻函数”,求a的取值范围.第2题图类型二二次函数与几何综合题3. (10分)(2017广东省卷)如图,在平面直角坐标系中,抛物线y=-x2+ax+b 交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)若(2)的条件下,求sin∠OCB的值.第3题图4. (10分)(2017湘潭)已知抛物线的解析式为y=-120x2+bx+5.(1)当自变量x≥2时,函数值y随x的增大而减少,求b的取值范围;(2)如图,若抛物线的图象经过点A(2,5),与x轴交于点C,抛物线的对称轴与x轴交于点B.①求抛物线的解析式;②在抛物线上是否存在点P,使得∠P AB=∠ABC?若存在,求出点P的坐标;若不存在,请说明理由.第4题图5. (10分)(2017眉山)如图,抛物线y =ax 2+bx -2与x 轴相交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,-83)是抛物线上另一点. (1)求a ,b 的值;(2)连接AC ,设点P 是y 轴上任一点,若以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标;(3)若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点,设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式.第5题图6. (10分)(2017湘西州)如图,已知抛物线y =-33x 2+bx +3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0). (1)求b 的值及点B 的坐标;(2)试判断△ABC 的形状,并说明理由;(3)一动点P从点A出发,以每秒2个单位的速度向点B运动,同时动点Q从点B出发,以每秒1个单位的速度向点C运动(当点P运动到点B时,点Q随之停止运动),设运动时间为t秒,当t为何值时△PBQ与△ABC相似?第6题图答案1. 解:(1)当一次函数的图象正好经过正方形OABC的对角线时,则经过的好点最多,∵正方形OABC中OA=3,点B在第一象限,点A、C分别在x轴和y轴上,∴点A(3,0),点B(3,3),点C(0,3),∴对角线OB所在直线解析式为y=x,对角线AC所在直线解析式为y=-x+3,∴当一次函数的图像经过的好点最多时,其解析式为y=x或y=-x+3;(2)∵点(1,3)在反比例函数的图像上,∴m=3×1=3,即反比例函数为y=3 x,又当x=3时,y=1,当x=2时,y=1.5,如解图①,在图象下方的好点有(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(0,2),(1,2),(0,3),共有10个,第1题解图①在图象上方的好点有(2,2)(2,3),(3,2),(3,3),共4个,∴反比例函数图象上方和图像下方的好点个数比为2∶5;(3)当a>0时,抛物线开口向上,抛物线与x轴所围图形中不存在好点,此时不合题意;当a<0时,∵抛物线过点O、A,∴抛物线对称轴为x=3 2,由此设抛物线的解析式为y=a(x-32)2+t,∵抛物线过点O(0,0),∴a(0-32)2+t=0,如解图②,当抛物线过点M(1,2)时,代入得a(1-32)2+t=2,第1题解图② 解得t =94,如解图③,当抛物线过点N (1,3)时,代入得a (1-32)2+t =3,第1题解图③ 解得t =278,结合解图可知,当抛物线与x 轴围成图形中好点恰好有4个,则94<t ≤278. 2. 解:(1)是相邻函数,理由如下: 令y 1=-2x +3,y 2=-x +2, 则y =y 1-y 2=-x +1. 当0≤x ≤2时,-1≤y ≤1,∴y =-2x +3与y =-x +2在0≤x ≤2上是相邻函数; (2)最大值为2,最小值为1; (3)令y 1=x 2-(2a -1)x ,y 2=x -2, 则y =y 1-y 2=x 2-2ax +2=(x -a )2+2-a 2 ①当a ≤1时,3-2a ≤y ≤6-4a , 故⎩⎨⎧3-2a≥-16-4a≤1,无解, ∴不是相邻函数;②当a ≥2时,6-4a ≤y ≤3-2a , 故⎩⎨⎧3-2a≤16-4a≥-1,无解, ∴不是相邻函数;③当1<a≤32时,-a 2+2≤y ≤6-4a ,故⎩⎨⎧-a 2+2≥-16-4a≤1,∴54≤a ≤32;④当32<a ≤2时,-a 2+2≤y ≤3-2a ,故⎩⎨⎧-a 2+2≥-13-2a≤1,∴32<a ≤3, 综上可得,54≤a ≤ 3.3. 解:(1)把A (1,0),B (3,0)代入 y =-x 2+ax +b 得⎩⎨⎧-1+a +b =0-9+3a +b =0,解得⎩⎨⎧a =4b =-3, ∴y =-x 2+4x -3;(2)如解图,过点P 作 PD ⊥x 轴于点D ,第3题解图∵P 为BC 的中点,PD ∥y 轴, ∴PD 为△BOC 的中位线, 又∵B (3,0), ∴点P 的横坐标为32,把x =32代入y =-x 2+4x -3得y =-(32)2+4×32-3=34, ∴P (32,34);(3)由(2)知PD 为△BOC 的中位线, ∴OC =2PD =2×34=32, 又∵OB =3,∴在Rt △BCO 中,BC =OC 2+OB 2=(32)2+32=454=352,∴sin∠OCB=OBBC=3352=255.4. 解:(1)∵a=-120<0,∴抛物线开口向下,当自变量x≥2时,函数值y随x的增大而减小,则抛物线的对称轴为x=-b2×(-120)=10b≤2,解得b≤1 5;(2)①将点A(2,5)代入抛物线解析式中,得5=-120×22+2b+5,解得b=1 10,故抛物线的解析式为y=-120x2+110x+5;②存在点P满足要求.理由如下:(i)如解图,当点P1在直线AB左侧时,∵∠P1AB=∠ABC,∴P1A∥BC,则点P1的纵坐标与点A的纵坐标相同为5,横坐标满足5=-120x2+110x+5,解得x1=2(舍),x2=0,故点P1的坐标为(0,5);第4题解图(ii)当点P 2在直线AB 右侧时,设线段AB 的中点为N , 直线AP 2与x 轴相交于点M , ∵∠P 2AB =∠ABC , ∴△ABM 是等腰三角形, ∴MN ⊥AB , ∵抛物线的对称轴为x =-1102×(-120)=1,∴点B 的坐标为(1,0),则点N 的坐标为(1+22,0+52),即(32,52), 设直线AB 的解析式为y =k 1x +b 1, 将点A 、B 的坐标代入, 得⎩⎨⎧2k 1+b 1=5k 1+b 1=0, 解得⎩⎨⎧k 1=5b 1=-5,故直线AB 的解析式为y =5x -5, 设直线NM 的解析式为y =k 2x +b 2, ∵MN ⊥AB ,∴k 2=-15,将k 2=-15与点N 的坐标代入y =k 2x +b 2,得52=-15×32+b 2,解得b 2=145,∴直线MN 的解析式为y =-15x +145,直线MN 与x 轴的交点为(14,0),即点M (14,0),设直线AM 的解析式为y =k 3x +b 3,将A 、M 两点的坐标代入,得⎩⎨⎧5=2k 3+b 30=14k 3+b 3,解得⎩⎪⎨⎪⎧k 3=-512b 3=356, 故直线AM 的解析式为y =-512x +356,将其与二次函数解析式联立,得-120x 2+110x +5=-512x +356,解得x 1=2(舍),x 2=253,故点P 2的横坐标为253,纵坐标为-512×253+356=8536,即P 2(253,8536),综上所述,点P 的坐标为(0,5)或(253,8536).5. 解:(1)把点A(3,0),M (1,-83)代入y =ax 2+bx -2,得⎩⎪⎨⎪⎧9a +3b -2=0a +b -2=-83, 解得⎩⎪⎨⎪⎧a =23b =-43; (2)设P 点的坐标为(0,m ),由(1)知抛物线y =23x 2-43x -2,得点C 的坐标为(0,-2),∴PC 2=(m +2)2,P A 2=32+m 2=m 2+9,AC 2=32+22=13,①当AP =AC 时,根据等腰三角形的对称性,得点P 与点C (0,-2)关于x 轴对称,∴点P (0,2);②当PC =P A 时,则PC 2=P A 2,∴(m +2)2=m 2+9,解得m =54,∴点P (0,54);③当PC =AC 时,则PC 2=AC 2,∴(m +2)2=13,解得m =-2±13,∴点P (0,-2+13)或(0,-2-13),综上所述,点P的坐标为(0,2)或(0,54)或(0,13-2)或(0,-2-13);(3)由抛物线y=23x2-43x-2得,对称轴为x=1,∵A(3,0),C(0,-2),∴直线AC的解析式为y=23x-2,第5题解图如解图,∵直线NH∥AC,∴设直线NH的解析式为y=23x+b,∵N(t,0),∴b=-23t,∴直线NH的解析式为y=23x-23t,当x=1时,y=23-23t,∴点H(1,23-23t),∴当t=1时,点H的坐标为(1,0),此时与点N重合,不能构成△ONH,∵点N在x轴正半轴上,且在抛物线内,∴分0<t <1和1<t <3两种情况进行讨论,(i)当0<t <1时,此时点H 在x 轴的上方,即23-23t >0,∴S =12·t ·(23-23t)=-13t 2+13t ,(ii)当1<t <3时,此时点H 在x 轴的下方,即23-23t <0,∴S =12·t ·[-(23-23t )]=13t 2-13t ,综上所述,S =⎩⎪⎨⎪⎧-13t 2+13t (0<t <1)13t 2-13t (1<t <3). 6. 解:(1)将点A (-3,0)代入抛物线y =-33x 2+bx +3, 得-33-3b +3=0,解得b =-233,∴抛物线的解析式为y =-33x 2-233x +3,令y =0,得-33x 2-233x +3=0,解得x 1=-3,x 2=1,∴点B 的坐标为(1,0);(2)△ABC 是直角三角形,理由如下:对于抛物线y =-33x 2-233x +3,令x =0,得y =3, ∴点C 的坐标为(0,3),在Rt △AOC 中,tan ∠CAO =CO AO =33,在Rt △COB 中,tan ∠BCO =BO CO =13=33, ∴∠CAO =∠BCO =30°,∴∠ACO =60°,∴∠ACB =∠ACO +∠BCO =60°+30°=90°,∴△ABC 是直角三角形;(3)在Rt △ABC 中,AB =4,∠BAC =30°,∴BC =12AB =2.∵点P 以每秒2个单位从A 到B ,点Q 从B 出发以每秒1个单位向C 运动, ∴当点Q 停止运动,则点P 恰好到达点B ,∴AP =2t ,BP =4-2t ,BQ =t ,CQ =2-t ,若△BPQ 与△ABC 相似,则∠PQB =90°或∠QPB =90°,①当∠PQB =90°时,易得AC ∥PQ ,∴PB BA =BQ CB ,即4-2t 4=t 2,解得t =1;②当∠QPB =90°,则△QPB ∽△ACB ,∴QB AB =PB BC ,即t 4=4-2t 2,解得t =85,综上所述,当t =1秒或t =85秒时,△PBQ 与△ABC 相似。
中考专题 二次函数综合性问题(教师版)
中考专题训练八—二次函数综合性问题一、方法技巧提炼1、面积问题面积问题是常考的一种类型,通常涉及给定面积求坐标、告诉面积的倍数、比值等关系求坐标、或者是简单一类的给定坐标求面积一类。
对于这一类型的题目,通常采用铅锤法进行处理,那么需要学生掌握铅锤法基本的解题思路和过程步骤,对于设坐标的运用要足够熟悉是解决问题的关键。
2、函数最值问题函数最值考察多数情况下与面积、长度、垂线段相关,解法基本上以铅锤法进行,所以在铅锤法的运用上,学生要足够熟悉。
另外会涉及如相似、切线法等思路解题,在有余力的情况下,可以进行学习。
3、图形的存在性问题常考图形的存在性包括等腰三角形、直角、等腰直角、平行四边形、菱形、正方形、梯形等,需要掌握每类存在性的基本解题思路是快速解决问题的关键,此部分通常在最后一问,有一定难度。
4、角度的存在性问题角度的存在性通常难度稍大,但有时会结合题目情况降低难度,如具备特殊性导致实际解题难度较小等情况。
一般分为特殊角、二倍角关系、角相等关系等情况。
在具体解题时,需要结合题目进行分析,优先寻找特殊性,再去落实解题步骤。
若出现在第三问直接写出点坐标的这种情况时,可适当给学生普及高中正切公式及倍角公式,便于过程快速计算。
5、相似问题相似问题考察相对少一些,由于难度相比更大,所以需要学生充分理解题意,快速找到相似图形,通过设点、表示等,利用相似转化为线段比值,再建立方程进行求解。
二、中考题型演练类型一二次函数面积问题例1如图,已知抛物线与x轴交于)05(,B两点,与y轴交于点A,)01-(,0(,C.若D是第一象限内抛物线上的一个动点(与点C,B不重)5DF⊥轴于点F,交直线于点E,连接BD,CD,合),过点D作x(1)求该抛物线所对应的函数解析式.(2)若10S,求点D的坐标.=∆DBC(3)设点D的横坐标为m,BCD∆的面积为S,求S关于m的函数关系式及自变量m的取值范围.当m为何值时,S有最大值?并求这个最大值.(4)若点G是抛物线上一点,且在直线BC下方,设点G的横坐标为n,BCG∆的面积为’S,求’S关于n的函数关系式及自变量n的取值范围.(5)直线BC能否把BCF∆分成面积之比为2:3的两部分?若能,请求出点D 的坐标;若不能,请说明理由.(6)若P 为该抛物线的顶点,抛物线上是否存在一个异于P 点的点Q ,使得QBC PBC S S ∆∆=,若存在,请求出点Q 的坐标;若不存在,请说明理由.(7)若P 为该抛物线的顶点,抛物线上是否存在一个异于P 点的点Q ,使得QBC PBC S S ∆∆=21,若存在,请求出点Q 的坐标;若不存在,请说明理由.解题点拨:(1)由两点式可求得抛物线的解析式; (2)利用铅垂法可解决问题;(3)利用铅垂法可以用含m 的式子来表示BCD ∆的面积,然后用配方法或公式法可得S 的最大值;(4)利用铅垂法可以用含n 的式子来表示BCG ∆的面积,和第(3)问一样;(5)结合图象可知BDE ∆和BFE ∆是等高的,由此可得出它们的面积比=EF DE :,分3:2:=EF DE 和2:3:=EF DE 两种情况考虑; (6)因为PBC ∆和QBC ∆是同底的,若面积相等,则高一定相等,故可利用同底等高转化为平行线之间的距离处处相等即可解决问题; (7)因为PBC ∆和QBC ∆是同底的,若QBC PBC S S ∆∆=21,则Q 点到直线BC 的距离等于P 点到直线BC 的距离的一半,可求得此时Q 点所在直线的解析式,然后和第(6)问类似.详细的解析过程:(1)∵抛物线经过)01-(,A ,)05(,B ,)50(,C ∴设0)5)(1(≠-+=a x x a y ,其中 ∴)50)(10(5-+=a ,解得1-=a∴抛物线的函数解析式为)5)(1(--+=x x y ,即54-2++=x x y (2)设直线BC 的函数关系式为0≠+=k b kx y ,其中,则有⎩⎨⎧=+=055b k b ,解得⎩⎨⎧-==15k b ,∴5-+=x y设)54(2++-m m m D ,,则)5(+-m m E ,,其中50<<m∴m m m m m DE 5)5(54-22+-=+--++= ∴10)(21=⋅-=∆DE x x S c B DBC∴10)5()05(212=+-⋅-m m ,解得4121==x x ,∴当10=∆DBC S 时,点D 的坐标为))或((5,48,1.(3)由(2)可知8125)25(25-)5()0-5(21)(2122+-=+-⨯=⋅-=m m m DE x x S c B ,其中50<<m∵025-<,∴当25=m 时,S 有最大值,8125max =S . (4)设)54(2++-n n n G ,,过点G 作x GH ⊥轴交直线BC 于点H , 则)5(+-n n H ,,其中50><n n 或∴n n n n n GH 5)54-(-5(22-=++=-=)n n n n GH x x S c B BCG 22525)5()0-5(21)(2122-=-⨯=⋅-=∆,其中50><n n 或 即n n S 225252-=,,其中50><n n 或(5)∵BDE ∆和BFE ∆是等高的,∴它们的面积比=EF DE :m m m m m DE 5)5(54-22+-=+--++=,5-+=m EF①3:2:=EF DE ,即3255-2=+-+m m m ,解得)(53221舍,==m m ∴此时D 的坐标为)(965,32 ②2:3:=EF DE ,即2355-2=+-+m m m ,解得)(52321舍,==m m ∴此时D 的坐标为)(435,23 综上所述,点D 的坐标为)(965,32或)(435,23. (6)∵P 为该抛物线的顶点,∴)9,2(P ∵QBC PBC S S ∆∆=且BC 同为底边∴Q 点到直线BC 的距离等于P 点到直线BC 的距离 ①过点P 作BC PM //交y 轴于点M ,交抛物线于点1Q ∵BC PM //,∴1-==BC PM k k又∵)9,2(P ,∴可以求得直线PM 的函数关系式为11+-=x y 联立方程⎩⎨⎧++-=+-=54112x x y x y ,解得)(9211舍⎩⎨⎧==y x ,⎩⎨⎧==8322y x ,故)8,3(1Q ②将直线BC 沿y 轴向下平移6个单位得到直线1-x y -=联立方程⎩⎨⎧++-=-=541-2x x y x y ,解得⎩⎨⎧==01-11y x ,⎩⎨⎧==7-622y x ,故)0,1-(2Q ,)7-,6(3Q 综上所述,当QBC PBC S S ∆∆=时,点Q 的坐标为)8,3(或)0,1-(或)7-,6(.。
2019年中考数学总复习课件:二次函数的综合问题
拓展 2 [2017· 柳州] 如图 17-2,抛物线 y=- x2- x+ 与 x 轴交于 A,C 两点(点 A 在点 C 的左边).直线
4 2 4 1 1 3
y=kx+b(k≠0)分别交 x 轴,y 轴于 A,B 两点,且除了点 A 之外,该直线与抛物线没有其他任何交点. (1)求 A,C 两点的坐标; (2)求 k,b 的值; (3)设点 P 是抛物线上的动点,过点 P 作直线 y=kx+b(k≠0)的垂线, 垂足为 H,交抛物线的对称轴于点 D,求 PH+DH 的最小值,并求此时点 P 的坐标.
p= 时,线段 PB 的长最短,最小值为 .
������ ������
������
������
课前考点过关
题组 基础关
4.[2017· 福建改编] 已知直线y=2x-2与抛物线y=ax2+ax-2a,其中a为常数,且a≠0.求证:不论a为何
值,直线与抛物线一定有公共点. 证明:把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0,所以Δ=(a-2)2-4a(-2a+2)=9a2-12a+4=(3a-2)2,因 为无论a为何值,(3a-2)2≥0,即Δ≥0,所以直线与抛物线一定有公共点.
C.10<t≤12 D.10≤t≤12
图17-1
课堂互动探究
探究一 二次函数与方程、不等式的综合问题
[答案] C [解析] 当-2≤x<2时,抛物线C1的表达式为y=-x2+4,其对称轴为直线x=0,所以若l与C1交于两点,此时 x1+x2=0,但x1,x2中必有一个负数,因此这种情况不符合题意;由旋转的特点和方式可知,当2<x≤6时,抛物 线C2的表达式为y=(x-4)2-4,其对称轴为直线x=4,所以若l与C2交于两点,此时x1+x2=8,又可求得 D1(0,4),A1(2,0),D2(4,-4),所以当2<x≤6时,2<x3≤4.当直线l为x轴时,与C1,C2有3个公共点,与题意不符,故舍 去.因此当2<x≤6时,x1+x2=8,2<x3≤4,故10<t≤12,选C.
中考数学复习 第15课时 二次函数的综合性问题课件
化为顶点(dǐngdiǎn)式得y=-(x+1)2+4 ,
∴抛物线顶点D的坐标为(-1,4),
令y=0,得-x2-2x+3=0,解得x1=-3,x2=1, ∴点C的坐标为(1,0);
第五页,共三十三页。
(2)已知M是y轴上一点,连接(liánjiē)AM、DM,若 AM=DM,且AM⊥DM,求点M的坐标; 【思维(sīwéi)教练】由于点M是y轴上的坐标,则yM= OM,又由于AM⊥DM,可过D作y轴垂线DE,△AOM 和△MED构成“一线三等角”的全等三角形,即可得到 例1题图② OM长度,从而得到点M的坐标.
∴当p=2 -
3时,S有最大值,最大值为
27
.
2
8
第十九页,共三十三页。
例2 如图,在平面直角坐标(zhí jiǎo zuò biāo)系 xOy中,抛物线与x轴交于点A(-1,0), B(3,0),与y轴交于点C,直线BC的解析式 为y=kx+3,抛物线的顶点为D,对称轴与 直线BC交于点E,与x轴交于点F.
将A(-3,0)、B(0,3)两点分别代入直线解析式,得
-3k+d=0 解得 k=1
d=3 ,
d=3 ,
∴直线AB的解析式为y=x+3,
将A(-3,0),B(0,3)两点分别代入抛物线的解析式,得
第四页,共三十三页。
-9-3b+c=0 解得 b=-2
c=3
,
c=3 ,
∴抛物线的解析式为y=-x2-2x+3,
解:存在.理由(lǐyóu)如下: ∵点G在x轴上,设点G的坐标为(g,0). (i)由EF⊥x轴,易得当点G与点F重合时,△BEG是以∠EGB为 直角的直角三角形,此时点G的坐标为(1,0); (ii)当GE⊥EB即∠GEB=90°时, ∵∠EBG=45°,∴∠EGB=45°, ∴EG=EB,
中考复习之二次函数中问题综合-几何旋转问题[1]
最短距离问题分析最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
一、“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。
2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。
(1)两个点都在直线外侧:mmABmAB mnmn(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点:n mAnnnm(一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:m n Am nm nmmmmA m(1)点A 、B 在直线m 同侧:(2)点A 、B 在直线m 异侧:过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值为AB ’如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知, B 与D 关于直线AC 对称.连结ED 交AC 于P ,则 PB PE +的最小值是___________;2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .B .C .3 DBAm A B E CBD 图1A D EPB C二次函数常见压轴y=322--x x (以下几种分类的函数解析式就是这个)和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标求面积最大 连接AC,在第四象限找一点P ,使得ACP ∆面积最大,求出P 坐标讨论直角三角连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标 或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.因动点产生的三角形相似问题例1.(2013•南平)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.例2.如图,直线3y x=-+与x轴,y轴分别相交于点B,点C,经过B C,两点的抛物线2y ax bx c=++与x轴的另一交点为A,顶点为P,且对称轴是直线2x=.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P B Q,,为顶点的三角形与ABC△相似,若存在,请求出点Q的坐标;若不存在,请说明理由.练习:如图,在直角坐标系中,O为原点,抛物线23y x bx=++与x轴的负半轴交于点A,与y轴的正半轴交于点B,tan∠ACO=31.(1)求抛物线的解析式;(2)若直线:(0)l y kx k=≠与线段BC交于点D(不与点B C,重合),则是否存在这样的直线l,使得以B O D,,为顶点的三角形与BAC△相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由.A BCPOxy2x=AOBCxy和最小差最大如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.面积问题:例题1:如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,3-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.yxBA FPx=1CO例题2:在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.例3:已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.讨论直角三角例1:已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.例2:如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.二次函数中四边形存在问题研究一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)例1.【08湖北十堰】已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:1.如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)27 3(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F . (1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.PEOFCDBAxyOCDBA 备用图yx二、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)例1.【09福建莆田】已知,如图抛物线23(0)=++>与y轴交于C点,与x轴交于A、By ax ax c a两点,A点在B点左侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三单元 函数
第15课时 二次函数的综合性问题
重难点精讲优练
例1 如图,已知抛物线y=-x2+bx+c与 直线AB相交于A(-3,0),B(0,3)两点,与 x轴的另一个交点为C.抛物线对称轴为直线l ,顶点为D,对称轴与x轴的交点为E. (1)求直线AB的解析式及点D、点C的坐标;
例2题图①
【思维教练】已知A,B点坐标,可将抛物线解析式设为 交点式,然后代入C点坐标,求解即可,而C点是直线y= kx+3与y轴的交点,只需令x=0,求出y的值即可求得C 点坐标.
例1题图①
【思维教练】要求直线AB的解析式,可先设其一般式, 将A、B点坐标代入即可求得;再分别代入y=-x2+bx +c求出待定系数,将解析式转化为顶点式即可求得点D 坐标,令y=0,解关于x的方程即可求出函数图象与x轴 交点的横坐标.
解:(1)设直线AB的解析式为y=kx+d(k≠0), 将A(-3,0)、B(0,3)两点分别代入直线解析式,得
于点E, ∴点E(-1,0),AE=2,OE=1,DE=4, ∴S四边形AOBD=S△ADE+S梯形OBDE=
A1 E·DE+ 1 (BO+DE)·OE=1 ×2×4+
2
2
2
×1 (3+4)×1= 1 5 ;
2
2
例1题解图②
(4)在x轴上方的抛物线上是否存在一点G,使得 S△ACG=2,若存在,求点G的坐标;若不存在, 说明理由; 【思维教练】观察图形可知△ACG的面积为 例1题图④ AC·yG,过点G作GG′⊥x轴交于点G′,设点G的 横 坐 标 为 g , 以 AC 为 底 , GG′ 为 高 即 可 得 到 S△ACG关于g的函数解析式,再令用g表示的
S△ACG为2,求解即可.
解:假设存在点G,使得S△ACG=2. 连接AG,GC,如解图③, ∵点G在x轴上 方的抛物线上,过点G作GG′⊥x轴交于点 例1题解图③ G′,设点G的坐标为(g,-g2-2g+3), 则-g2-2g+3>0,
∵S△ACG=
1 2
AC·GG=
1 2
×4×(-g2-2g+3),
解:如解图①,过点D作DE⊥y轴交于点E,
∵AM⊥DM,∴∠AMO+∠DME=90°,
∵∠MAO+∠AMO=90°,∴∠MAO=∠DME
,∵AM=MD,∠AOM=∠DEM=90°, ∴Rt△AMO≌Rt△MDE(AAS),
例1题解图①
∴MO=DE=1,
∴点M的坐标为(0,1);
(3)求△ABC的面积及四边形AOBD的面积; 【思维教练】要求△ABC的面积,可以以 AC为底,BO为高来计算;对于求不规则图 形的面积,常将所求图形分割成几个可以直 接利用面积公式计算的规则图形,通过规则 例1题图③ 图形的面积和或差计算求解.如本题中求四 边形AOBD的面积,因其形状不规则
故可将其分割为Rt△ADE与直角梯形OBDE,分别求出其
面积再相加,即可得到四边形AOBD的面积. 解:∵点A(-3,0),点B(0,3),点C(1,0),
∴AO=3,OC=1,OB=3,∴AC=4,
∵BO⊥AC,
∴S△ABC=
1 2
AC·BO= 1 2
×4×3=6;
连接AD、DB,如解图②,∵点D(-1, 4),DE⊥x轴
-3k+d=0 解得 k=1
d=3 ,
d=3 ,
∴直线AB的解析式为y=x+3, 将A(-3,0),B(0,3)两点分别代入抛物线的解析式,得
-9-3b+c=0,
∴抛物线的解析式为y=-x2-2x+3,
化为顶点式得y=-(x+1)2+4 ,
∴抛物线顶点D的坐标为(-1,4),
令y=0,得-x2-2x+3=0,解得x1=-3,x2=1, ∴点C的坐标为(1,0);
(2)已知M是y轴上一点,连接AM、DM,若 AM=DM,且AM⊥DM,求点M的坐标;
【思维教练】由于点M是y轴上的坐标,则yM= OM,又由于AM⊥DM,可过D作y轴垂线DE, △AOM和△MED构成“一线三等角”的全等三 例1题图② 角形,即可得到OM长度,从而得到点M的坐 标.
例1题解图⑤
∴即SS△ =A-BP=3 p21 2O-A9·PpP=′=-
1 2
3
×3×(-p2-3p)=- (p+ 3 )2+2 7 ,
3 2
p2- 9 p, 2
2
2
2
2
8
∵点P在第二象限的抛物线上,
∴-3< p<0,
3 ∵-
2
<0,3
27
∴当p=- 2 时,S有最大值,最大值为 8 .
例2 如图,在平面直角坐标系xOy中, 抛物线与x轴交于点A(-1,0),B(3,0), 与y轴交于点C,直线BC的解析式为y= kx+3,抛物线的顶点为D,对称轴与 直线BC交于点E,与x轴交于点F. (1) 求抛物线的解析式;
1
∴ 2×4×(-g2-2g+3)=2,解得g1=-1
+ 3 ,g2 =-1- 3 ,满足题意的点G有两个,坐标为(
-1+ 3,1),(-1- 3 ,1);
(5)在x轴上是否存在一点P,使得PB+PD的值
最小,若存在,求出点P的坐标;若不存在,
请说明理由;
【思维教练】作D关于x轴的对称点D′,连接
∴直线BD′解析式为y=7x+3, 当y=0时,x=-3 ,
7 ∴点P的坐标为(- 3 ,0);
7
(6)已知点P是第二象限内抛物线上一动点,设 点P的横坐标为p,△ABP的面积为S,求S关 于p的函数解析式;当p为何值时,S有最大值, 最大值是多少? 【思维教练】要求△ABP的面积,可构造平 例1题图⑥ 行于y轴的边,即过点P作PP′∥y轴交直线AB 于点P′,则PP′将△ABP分成△APP′
BD′,则BD′与x轴交点即为P点.
例1题图⑤
解:(5)存在.理由如下:如解图④,作点D
关于x轴的对称点D′,∴D′(-1,-4),连接
BD′交x轴于点P,此时PB+PD的值最小,为
BD′的长.
例1题解图④
设直线BD′解析式为y=kx+b(k≠0),则
, -k+ b=-4 解得 k=7
b= 3
b= 3
和△BPP′两部分,据此求出△ABP的面积,
结合二次函数性质求出其最大值即可.
解:(6)如解图⑤,∵点P在抛物线上,∴点
P 的 坐 标 为 (p , - p2 - 2p + 3) , 过 点 P 作
PP′∥y轴交直线AB于点P′,
则P′(p,p+3),则PP′=(-p2-2p+3)-(p
+3)=-p2-3p,