破解导数问题常用到的4种方法

合集下载

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。

下面是小编为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是: (1)先根据求导公式对函数求出函数的导数; (2)解出令函数的导数等于 0 的自变量; (3)从导数性质得出函数的单调区间; (4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是: (1)首先根据求导法则求出函数的导数; (2)令函数的导数等于 0,从而解出导函数的零点; (3)从导函数的零点个数来分区间讨论,得到函数的单调区间; (4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数 f(x)=x3+3x2+9x+a,分析 f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a 的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令 f’(x)>0,那么解得 x<-1 或者 x>3,也就是说函数在(- ∞ ,-1), (3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

高考数学复习讲义:破解导数问题常用到的4种方法

高考数学复习讲义:破解导数问题常用到的4种方法

(-∞,-a-1),(a,+∞),f(x)的极小值为 f(-a-1)=-a2,极大
值为 f(a)=1.当 a<0 时,f(x)的递增区间是(-∞,a),(-a-1,
+∞),递减区间是(a,-a-1),f(x)的极小值为 f(-a-1)=-a2,
极大值为 f(a)=1.
返回
[题后悟通] 求导后,若导函数中的二次三项式能因式分解需考虑首 项系数是否含有参数.若首项系数有参数,就按首项系数为 零、为正、为负进行讨论.可归纳为“首项系数含参数,先 证系数零正负”.
函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不
等式f(x)g(x)>0的解集是
()
A.(-3,0)∪(3,+∞)
B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)
返回
[解析] 利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待 解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数 F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x) 在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上 的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而 F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以 F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的 解集为(-3,0)∪(3,+∞),故选A.

f′(x)=0⇒x1=-a-3
a2-3,x2=-a+3
a2-3 .
x (-∞,x1) (x1,x2) (x2,+∞)

高考数学导数解题技巧

高考数学导数解题技巧

高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。

以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。

具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。

2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。

例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。

3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。

线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。

乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。

链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。

5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。

通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。

以上是一些常见的高考数学导数解题技巧。

通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。

导数求解的常用方法

导数求解的常用方法

导数求解的常用方法导数是微积分中的重要概念之一,它描述了函数在其中一点上的变化率。

求解导数的方法有很多,下面将介绍一些常用的方法。

1.通过定义求导:导数的定义是函数f(x)在点x0处的导数等于该点处的极限值,即:f'(x0) = lim (x→x0) ( f(x) - f(x0) ) / ( x - x0 )通过求解这个极限,可以得到函数在该点处的导数。

2.基本导数法则:基本导数法则包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等。

- 常数导数:对于常数c,其导数为0,即 d/dx (c) = 0。

- 幂函数导数:对于函数 f(x) = x^n,其中n为常数,其导数为d/dx (x^n) = n*x^(n-1)。

- 指数函数导数:对于函数 f(x) = a^x,其中a为常数,其导数为d/dx (a^x) = (ln(a))*a^x。

- 对数函数导数:对于函数 f(x) = log_a(x),其中a为常数,其导数为 d/dx (log_a(x)) = 1 / (ln(a)*x)。

- 三角函数导数:对于函数 f(x) = sin(x),其导数为 d/dx(sin(x)) = cos(x)。

通过使用这些基本导数法则,可以求解更复杂的函数的导数。

3.导数的性质:导数具有一些特殊的性质,包括和、差、积、商、复合函数的导数。

- 和差法则:对于两个函数f(x)和g(x),其和的导数等于各自导数的和,即 d/dx (f(x) + g(x)) = d/dx (f(x)) + d/dx (g(x));差的导数等于各自导数的差,即 d/dx (f(x) - g(x)) = d/dx (f(x)) - d/dx (g(x))。

- 积法则:对于两个函数f(x)和g(x),其积的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数与第二个函数的导数的乘积,即 d/dx (f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。

数学高二-选修2素材 四招破解求导方法2

数学高二-选修2素材 四招破解求导方法2

2.5 四招破解求导方法高中数学增加的导数内容拓展了学习和研究的领域,它易与数学各分支的知识网络交汇,但这些题目都与求导有关,如何求导呢?本文就专门谈谈求导的的方法以供参考.一.定义法用定义法求函数)(x f y =导数的一般步骤是:(1)求函数的改变量)()(x f x x f y -∆+=∆;(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(;(3)取极限得导数/y =()f x '=xy x ∆∆→∆0lim . 例1.求y=x 2在点x=1处的导数.分析:根据求函数在一点处的导数的方法的三个步骤,先求Δy ,再求xy ∆∆,最后求0lim →∆x xy ∆∆. 解:Δy=(1+Δx)2-12=2Δx+(Δx)2,xx x x y ∆∆+∆=∆∆2)(2=2+Δx ∴0lim →∆x x y ∆∆=0lim →∆x (2+Δx)=2. ∴y ′|x =1=2. 注意:(Δx)2括号别忘了写.说明:求函数的导数也主要是求极限的值,所以极限是求函数导数的基础,求极限的一些基本方法不能忘掉.例2. 已知y=x 3-2x+1,求y′,y′|x =2.解:Δy=(x+Δx)3-2(x+Δx)+1-(x 3-2x+1)=x 3+3x 2Δx+3x(Δx)2+(Δx)3-2x -2Δx+1-x 3+2x -1=(Δx)3+3x(Δx)2+(3x 2-2)Δx ,xy ∆∆=(Δx )2+3xΔx +3x 2-2,∴y ′=0lim →∆x x y ∆∆=0lim →∆x [(Δx )2+3xΔx +3x 2-2]=3x 2-2. 方法一:∵y ′=3x 2-2,∴y ′|x =2=3×22-2=10.方法二:Δy=(2+Δx)3-2(2+Δx)+1-(23-2·2+1)=(Δx)3+6(Δx)2+10Δxxy ∆∆=(Δx )2+6Δx +10,∴y ′|x =2=0lim →∆x x y ∆∆=0lim →∆x [(Δx )2+6Δx +10]=10. 说明:求函数在一点的导数,与求函数在一个区间上的导数,方法是一样的,也是三个步骤,只是把x 0换成x .如果题目中要求y ′,那么求y ′|x =2时用方法一简便,如果只要求y ′|x =2,用方法二比较简便.例3.设f(x)=⎪⎩⎪⎨⎧≤>0 0 1sin 22x x x xx ,问f(x)在x=0处的导数是否存在? 解:20000lim lim lim 0.0x x x y x x x x ---→→→∆-===∆-200011sin 0sin lim lim lim 01x x x x y x x x xx+++→→→-∆===∆ ∴0lim x y x -→∆=∆0lim x y x +→∆=∆0,即f(x)在x=0处的左右导数相等, ∴f(x)在x=0处导数存在,且f′(0)=0.说明:对于分段函数分段点处的导数,一般是求其左右两侧处的极限,看它们是否相等,如果相同就表示导数存在,否则就表示导数不存在.二.运用四则运算的求导法则求导仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,步步为营,使解决问题水到渠成.乘法法则可推广至有限个函数的乘积的情形,即每次只对一个函数求导并乘以其余函数,然后累加.例4.已知x x y ln 2=,求y '.解:)(ln ln )()ln (222'+'='='x x x x x x y xx x x 1ln 22+=x x x +=ln 2. 说明:理解和掌握求导法则和公式的结构规律是灵活进行求导运算的前提条件,运算过程出现失误,原因是不能正确理解求导法则,特别是商的求导法则.求导过程中符号判断不清,也是导致错误的因素.从本题可以看出,深刻理解和掌握导数运算法则,再结合给定函数本身的特点,才能准确有效地进行求导运算,才能充分调动思维的积极性,在解决新问题时举一反三,触类旁通,得心应手.四则运算的求导法则除了直接应用公式外,有时需要将表达式适当变形后再应用公式.求一些较复杂的函数的导数时,应先化简再求导.例5.求下列函数的导数(1)223231;(2)cos ;(3)(23)(32)y y x x y x x x x x=+=+=+- 解:/2/3/34(1).(2)(3)49y x x x x ----=+=--11/////2211(2).(2)sin 2(sin )(cos )cos ()y x x x x x x x x =+++⋅ 1122211sin 2cos sin cos x x x x x x x x -=+--1122211()sin (2)cos x x x x x x-=-+-. (3)因为 232(23)(32)6496y x x x x x =+-=-+-,所以/21889y x x =-+.点评:在可能的情况下,求导时应尽量少用甚至不用乘法的求导法则,先化简再求导,可减少运算量. 三.运用复合函数的求导法则求导求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。

数学导数解题技巧

数学导数解题技巧

数学导数解题技巧
数学导数是微积分中的重要概念,它描述了函数值随自变量变化的速率。

在解题过程中,掌握一些导数的解题技巧可以帮助我们更快速、准确地解答题目。

1. 理解导数的定义和性质:首先,要熟悉导数的定义和基本性质,包括导数的计算公式和法则。

这是解题的基础。

2. 求导法则:掌握求导的四则运算法则和复合函数求导法则。

这些法则可以帮助我们快速找到函数的导数。

3. 利用导数研究函数的单调性:通过求函数的导数,可以判断函数的单调性。

如果函数在某区间内单调递增或递减,那么它的导数在此区间内非负或非正。

4. 利用导数求极值:当函数的一阶导数等于0的点称为临界点。

在这些点附近,函数的值可能会发生极大或极小的变化。

因此,通过找出临界点,可以找到函数的极值点。

5. 利用导数研究曲线的凹凸性:通过求函数的二阶导数,可以判断曲线的凹凸性。

如果函数的二阶导数大于0,则曲线是凹的;如果二阶导数小于0,
则曲线是凸的。

6. 利用导数求切线方程:给定函数在某点的导数值即为该点处的切线的斜率。

利用这个性质,可以求出切线的方程。

7. 注意实际应用问题:导数在实际问题中有很多应用,如速度、加速度、边际成本、边际利润等。

在解题时要注意将实际问题转化为数学模型。

8. 多做练习题:要想熟练掌握导数的解题技巧,需要多做练习题。

通过不断的练习,可以加深对导数的理解,提高解题能力。

总之,掌握导数的定义和性质是解题的基础,而灵活运用求导法则、研究函数的单调性、极值、凹凸性和切线方程等技巧是提高解题能力的关键。

六招破解高考导数压轴题

六招破解高考导数压轴题

破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

导数题的十大解题技巧

导数题的十大解题技巧

导数题的十大解题技巧一、导数概念1、先了解基本的导数概念,掌握常用的求导法则,如链式规则、技术分解法之类的解题方法。

二、根据定义式求导数2、若检验某函数的连续性,则可以用极限的方法求出导数,考虑函数的不同取值求导数的变化。

三、图像的理解运用3、利用函数图像求取导数,判断函数的性质,进而探究关于函数的性质,例如凸凹形态等。

四、反比例函数求导4、利用反比例函数求导,了解反比例函数的导数特征,能快速求得反比例函数的导数的函数,有效提高解题效率。

五、指数函数求导5、利用指数函数求导,弄清楚指数函数的导数特点,掌握求取指数函数导数的方法,做到心中有数,有助于提高解题效率。

六、复合函数求导6、利用复合函数求导,它的求导需要利用到链式规则和技术分解法等方法,能够准确求取复合函数的导数,配合其他解题方式,可以准确解出复杂的复合函数的导数。

七、导数的几何意义7、根据函数的解析式对曲线进行分析,用导数的几何意义可以很好的分析函数的凹凸性,分别解决凸函数和凹函数的情况,利用几何图形可以直观的确定曲线的凹凸性。

八、极值点8、从求导的角度出发,考虑一元函数的极值点,掌握求极值点的基本方法,主要是求解一阶导数的极限即可,结合函数的定义域可以判断函数的极值点分布情况。

九、积分函数求导9、由于积分函数可以形成函数,而函数求导可以利用积分函数求导,根据求积分的原则可以对积分函数进行求导,如分部积分法、积分反演法等,考虑函数在定义域的变化,可以熟练掌握积分函数的求导方法。

十、椭圆函数求导10、考虑函数的特点,可以把椭圆函数拆分为有限多个单独的函数,再利用求导法则求取导数,合并求得得出椭圆函数的导数,熟练掌握椭圆函数的求导方法,可以有效提高解题的效率。

破解导数问题常用到的4种方法含解析

破解导数问题常用到的4种方法含解析

必备方法——破解导数问题常用到的4种方法1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎪⎫1k -1>F (0),即f ⎝ ⎛⎭⎪⎫1k -1-k k -1>-1,移项、整理得f ⎝ ⎛⎭⎪⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f xf x+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f xf x+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f xf x+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( )A .-501B .-502C .-503D .-504解析:选 C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造 F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C.4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( )A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f xx 2,则有F ′(x )=x 2f ′x -2xf x x 4=x [xf ′x -2f x ]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝ ⎛⎭⎪⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f cos A cos 2A >f sin B sin 2B,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.(2018·长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定 解析:选A 设g (x )=f xex,则g ′(x )=f xx-f xxx2=f x -f xex,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1e x 1<f x 2e x 2,所以e x 1f (x 2)>e x 2f (x 1).6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}.答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e xf (x )-2e x .因为F ′(x )=e x[f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x<3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3ex +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x+1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax.令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x=x -2x.所以u (x )≥u (2),+∞)递增. 因为x >1,所以g (x )>g (1)=0,所以原不等式成立.10.已知函数f (x )=ln(ax +1)+1-x1+x ,x ≥0,其中a >0.若f (x )的最小值为1,求a的取值范围.解:因为f ′(x )=ax 2+a -2ax +x +2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增,所以f (x )min =f (0)=1,满足题设条件.②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0, 2-a a 上递减,在( 2-aa,+∞ )递增.所以f (x )min =f ( 2-aa)<f (0)=1,不满足题设条件.综上,a ≥2.。

高考数学题型归纳之导数题型解题方法

高考数学题型归纳之导数题型解题方法

高考数学题型归纳之导数题型解题方法高考数学题型归纳之导数题型解题方法导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

要练说,先练胆。

说话胆小是幼儿语言发展的障碍。

不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆这个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。

二是注重培养幼儿敢于当众说话的习惯。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。

导数大题方法总结

导数大题方法总结

一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若 f(x)在 x =k 时取得极值,试求所给函数中参数的值;或者是 f(x)在(a , f(a)) 处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令 x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。

别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。

切线要写成一般式。

一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。

这一类题问法都比较的简单,一般是求 f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。

一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。

这类问题的方法是:首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。

往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。

这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。

导数的几种解法

导数的几种解法

导数的几种解法摘要:导数是微积分中的重要概念,它描述了函数在某一点处的变化率。

通过熟练掌握这些方法,我们可以计算各种函数的导数,并应用导数来分析函数的性质和解决实际问题。

求导在数学和科学的各个领域都有广泛应用,为我们理解变化规律、优化问题和建模提供了强大的工具。

持续学习和探索微积分的知识,将帮助我们更好地理解和应用求导技术。

为了求解导数,我们可以采用多种不同的方法和技巧,本文将介绍导数的几种常见解法。

关键词:高中数学;导数;常见解法引言:高中数学中,导数是一个重要的概念和计算方法。

对于函数的导数,有多种解法可以应用。

每种解法都有其独特的适用场景和计算方式,能够帮助我们更好地理解和运用导数的概念。

通过熟练掌握和灵活运用这些解法,我们可以更精确地求解函数的导数,进而应用到各种实际问题中,提高数学问题的解决能力。

一、基本求导方法导数是微积分中的重要概念,用于描述函数在某一点处的变化率。

在数学上,导数可以通过极限的概念来定义,表示函数在某一点附近的斜率。

几何上,导数可以解释为函数图像在某一点处的切线斜率。

物理上,导数可以表示物体在某一时刻的速度或加速度。

导数的计算可以采用多种方法,以下是几种基本的求导方法。

一种常见的方法是使用定义法求导。

根据导数的定义,导数可以通过极限的方式来计算。

具体来说,对于一个函数f(x),它在某个点x=a处的导数可以通过计算极限lim(h→0) [f(a+h) - f(a)] / h 来求得。

这种方法需要对极限的概念和计算方法有一定的了解,并且在具体计算时需要进行一系列的代数运算。

例如,对于函数f(x) = x^2,在x=2处的导数可以通过计算lim(h→0) [(2+h)^2 -2^2] / h来得到。

另一种常用的方法是利用常见的导数规则来求导。

导数规则是一些已知的函数导数的性质和规律,可以帮助我们快速计算复杂函数的导数。

常见的导数规则包括幂函数的导数、指数函数的导数、对数函数的导数等。

数学高考备考复杂函数的求导技巧

数学高考备考复杂函数的求导技巧

数学高考备考复杂函数的求导技巧复杂函数是数学高考备考中一个重要的考点,求导是解题的基础技巧之一。

本文将介绍一些求解复杂函数导数的技巧,帮助备考学生更好地应对数学高考。

一、基本方法求解复杂函数的导数时,常使用以下基本方法:1. 基本求导法则:熟练掌握常见函数的导数,如幂函数、指数函数、对数函数、三角函数等。

根据基本求导法则,可以快速求解复杂函数的导数。

2. 链式法则:若函数由两个复合函数构成,可利用链式法则求导。

链式法则的公式为:若 y=f(u),且 u=g(x),则 y=f(g(x)) 的导数为 dy/dx = f'(u)·g'(x)。

利用链式法则,可以逐步求解复杂函数的导数。

3. 对数导数法则:对于含有对数函数的复杂函数,可利用对数导数法则求导。

对数导数法则的公式为:若 y=log_a(u),则 y'=(1/u)·u'。

通过对数导数法则,可以将复杂函数化简为相对简单的表达式。

二、常见技巧在求解复杂函数导数时,还可以应用以下常见技巧:1. 加减法的求导:对于复杂函数中的加减法运算,可根据求导法则,将其拆分为多个简单函数的求导之和或之差。

2. 乘法的求导:对于复杂函数中的乘法运算,可利用乘法法则求导。

乘法法则的公式为:若 y=u·v,则 y'=u'·v+u·v'。

根据乘法法则,可以将复杂函数的导数化简为简单函数的求导。

3. 除法的求导:对于复杂函数中的除法运算,可应用除法法则求导。

除法法则的公式为:若 y=u/v,则 y'=(u'·v-u·v')/v^2。

通过除法法则,可以将复杂函数的导数转化为简单函数的导数。

4. 极限的求导:当复杂函数中存在极限运算时,可利用极限的性质求导。

如极限运算中的乘除法,可先求极限,再对求得的极限函数求导。

三、实例分析为了更好地理解求解复杂函数导数的技巧,以下给出两个实例分析:实例一:求解函数 y=(2x^3+3x^2+4x+5)·e^x 的导数。

导数求解的常用方法

导数求解的常用方法

导数求解的常用方法导数求解的常用方法摘要:导数的求解问题在高等数学中是一个重点,也是一个难点。

又因为它是后继某些章节的基础,所以要想学好这一部分,就应该系统地总结导数求解的方法。

常用的求导方法有定义法、公式法、导数的四则运算、复合函数求导、隐函数求导、参数方程求导以及高阶导数等。

关键词:函数求导方法导数的求解以及跟导数相关的命题在历年的考试中,无论是在自学考考还是在成人高考中,所占的比重都相当高。

这一部分也是后继内容如积分问题、微分方程问题、多元函数微积分等问题的必要基础。

因此学好这一部分是取得这门课程高分的关键!在以前的教学过程中,我发现很多学生对数学的学习很吃力,关键是没有找到学习这门课程的技巧和方法。

在此,我结合教学过程中学生经常出现的问题对导数的求解问题进行详细的介绍,以便帮助大家取得理想的成绩。

现在(主要以20XX年成人高考数学一以及20XX年4月份全国自学考试高等数学试题为例)就以上的各种方法进行详细的讨论。

一、定义法任何定义都是解决问题的基础,导数的定义同样也是。

导数的定义如下:设函数y=f(x)在点x 的某一邻域内有定义,若自变x在处x 的改变量为Δx(x ≠0,x +Δx仍在该邻域内)时,相应的函数有增量Δy=f(x +Δx)-f(x );如果Δy与Δx之比当Δx→0时,有极限=存在,则称这个极限为函数y=f(x)在点x 的导数。

并且说,函数y=f(x)在点x 可导,记作f′(x )。

[1]对于导数定义的应用,一般来说,是用来解决如分段函数或者是针对定义的灵活应用上。

以成考试题的选择题第3题为例,题目如下:上面的题目就是对定义的考察,在处理这个题目的时候,一定要深刻理解定义的表达,下面从定义着手解答。

解答过程如下:因此正确的选择项为A。

对于分段函数的求导问题,自学考试的填空题第9题:[解]首先要求出左、右导数,然后比较二者是否相等。

由已知条件知道:由于左右极限存在但不相等,所以函数在x 处导数不存在。

导数零点不可求的四种破解策略

导数零点不可求的四种破解策略

导数零点不可求的四种破解策略在数学中,导数就是用于描述函数改变率的概念。

直观上来说,导数可以理解为函数在其中一点上的斜率。

通常情况下,我们可以通过求导的方式来找到导数零点,也就是函数上的极值点。

但有时候,由于函数的复杂性或者特殊性,导数零点可能无法直接求得。

下面将介绍四种破解策略来应对这样的情况。

第一种策略是使用数值方法。

数值方法是一种通过近似计算来得到导数零点的方法。

其中,最常见的数值方法之一是牛顿法。

牛顿法是通过使用函数的切线来逼近导数零点的过程。

具体步骤如下:首先,取一个初始点;然后,计算该点处的切线斜率,得到一个新的点;再次计算新点处的切线斜率,得到一个更接近导数零点的新点;不断重复上述过程,直到达到所需的精度为止。

数值方法是一种有效的求导数零点的技巧,尤其适用于无法直接求导的函数。

第二种策略是使用图形方法。

图形方法是通过观察函数图像来找到导数零点的方法。

在图形方法中,我们可以使用计算机绘制函数图像,然后通过直观观察来找到导数为零的点。

这种方法尤其适用于简单的函数,或者具有明显特征的函数。

通过图形方法找到的导数零点可能不是精确值,但可以提供一个很好的近似解。

第三种策略是使用近似解析方法。

近似解析方法是一种通过进行适当近似来求解导数零点的方法。

其中,泰勒级数展开是一种常用的近似解析方法。

泰勒级数展开是将函数表示为一个无限级数的形式,通过截断级数,可以得到一个近似解析的形式。

利用泰勒级数展开,我们可以找到导数零点的近似解析解。

最后一种策略是使用符号计算方法。

符号计算是一种通过代数运算来进行精确计算的方法。

符号计算可用于求解导数为零的精确解。

通过使用符号计算软件,我们可以输入函数表达式,并对表达式进行求导、解方程等操作,以求得导数零点的精确解。

符号计算方法通常适用于简单的函数,或者具有明确表达式的函数。

综上所述,导数零点不可求的四种破解策略包括数值方法、图形方法、近似解析方法和符号计算方法。

根据具体问题的性质和要求,我们可以选择适用的方法来寻找导数零点,以得到所需的解。

导数题的十大解题技巧

导数题的十大解题技巧

导数题的十大解题技巧
导数题的十大解题技巧
一、熟练掌握基本形式的导数
解决导数问题,最基本的是要掌握几种常见函数的导数形式,如常用的多项式函数、三角函数、泰勒级数等。

二、熟练运用基本运算法则
基本运算法则是指对函数的加减乘除、乘方、链式法则等多项操作的计算公式。

三、利用倒数公式
在两函数相除时,可以利用倒数公式把除法变成乘法。

也就是相除的两个函数导数的乘积等于其一除以另一函数的倒数的导数。

四、运用链式法则
链式法则是求解复杂函数导数的有力工具。

它的做法是用函数的导数来求复合函数的导数,即将复杂函数分解为几个简单函数的组合。

五、会用技巧简化运算
解决导数问题,要熟悉几种常用的技巧,比如去项技巧、因式分解技巧、合并同类项技巧等,尽量减少计算量。

六、善于利用对称性
在有关导数的计算中,当函数具有对称性时,有时可以利用对称性把计算时间缩短。

七、多分类讨论
对于某种特殊情况的求导,要多分类考虑,把它们分开,分别求
解。

八、把不熟悉的形式改写成熟悉的形式
有时,在求解导数时,可以把不熟悉的函数形式改写成熟悉的形式,从而简化计算。

九、运用泰勒展开法
当函数形式太复杂时,可以用泰勒级数展开法来求解它的导数,其中,泰勒展开第N项的系数是函数的N次导数值。

十、加强练习熟练掌握
多进行练习,加强熟练掌握,能有效帮助学生解决导数问题。

函数的导数求解技巧与应用解析

函数的导数求解技巧与应用解析

函数的导数求解技巧与应用解析在数学中,函数的导数是解析、求极值和无穷小问题的基础。

因此,学会函数的导数求解技巧对于理解数学和应用数学知识都至关重要。

一、导数的概念导数,简单来说就是函数的变化率。

更为具体地说,如果一个函数f(x)在点x处的导数存在,那么它表示当自变量x在x处增量为dx时,函数f(x)的增量df/dx。

导数也可以理解为函数在某一点的切线的斜率。

导数的数学符号是f'(x),也可以写作dy/dx或y'。

这意味着如果一个函数y=f(x),那么它的导数就是函数的归纳性质。

导数的存在性是函数连续性的一个必要条件。

如果函数在某个点不存在导数,那么这个点就是间断点。

二、导数求解技巧导数的求解需要使用一些方法和规则。

下面是一些常用的导数求解技巧:1.普通函数求导在求一个函数的导数时,通常可以使用求导法则来帮助我们得出正确答案。

求导法则包括以下几个:一次函数的导数就是它的斜率,即f'(x)=k。

幂函数的导数是通过与自变量乘以变量的指数再减一来计算的,即f'(x)=nx^(n-1)。

求对数函数的导数需要使用链式求导法则。

这是因为对数函数是指数函数的反函数,因此必须对指数函数求导。

因此,f'(x)=(ln(x))'=1/x。

三角函数的导数被定义为这些函数的导数,即f'(x)=cos(x)、sin(x)、tan(x)。

2.链式求导法吸收链式求导法则是一种计算复杂函数导数的方式,既可用于解决特定问题,也可用于商业和科学计算。

它用于处理例如复合函数的解析式之类的问题。

如果一个函数g(x)是由函数f(x)和变量u(x)的复合构成的,那么它的导数为g'(x)=f'(u)*u'(x)。

这个公式描述了一个变量的导数,因为它表明了在u不断变化时,函数g在x处的导数是由u在x处的导数u'(x)和函数f在u(x)处的导数f'(u(x))的乘积所确定的。

导数题的十大解题技巧

导数题的十大解题技巧

导数题的十大解题技巧导数题的十大解题技巧一、熟练掌握导数的定义1、函数的导数:函数y=f(x)的导数,记作f′(x),表示函数y=f(x)在点x处的切线斜率。

2、数列的导数:数列y的极限导数,记作y′,表示数列y中趋势的变化率。

二、准确掌握导数的计算1、用法则:将函数代入法则(如指数函数法则,三角函数法则等)所给表达式中,可得出函数的导数;2、变量分离:将函数用变量分离法(如商式分解法,多项式分解法等)分解,再用法则进行求导;3、链式法则:将函数中的连续函数拆分,用累加法或链式法则进行求导;4、转换关系:将函数中的变量用等价关系(如t=sax,x=a/t)进行转换,使变量适合法则,再求导;5、隐函数法:将函数中的变量用隐函数(如x=f(t))进行表达,再求导;6、偏导法:将函数中的变量用偏导数(如y/t)表达,再求导。

三、理解利用导数性质1、函数的导数是函数表示的变化率;2、导数的正负性有助于判断函数的单调性;3、函数的极值点可判断导数的符号;4、函数尖峰和凹处的判断;5、导数判断函数的模式;6、可以用导数的特性求函数的拐点;7、用导数可以求函数的泰勒级数;8、可以用导数的递推来求函数的定义域;9、可以用导数求一些曲线的面积。

四、利用科学计算器快速完成计算1、熟悉科学计算器的使用功能,即可完成导数的运算;2、可按法则准确求函数的导数;3、可以快速判断函数的极值、拐点等;4、对于复杂函数,可以简化计算,提高效率。

五、熟悉求导方程的解法1、建立方程,移项,量化,变形,以达到最简形状;2、变换为通解方程,求其特解;3、使用科学计算器计算求得函数的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x)g(x)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一构造y=f(x)±g(x)型可导函数[例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有()A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0)C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)[解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.类型二构造f(x)·g(x)型可导函数[例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)[解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.类型三构造f(x)g(x)型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( ) A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab ) B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab ) C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab ) D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题. [方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x. (5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x-1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是( ) A .f (x )在R 上单调递减 B .f (x )在R 上单调递增 C .f (x )在R 上有最大值 D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e-x=3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x <f (x )x ,即F ⎝⎛⎭⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 答案:(0,1)分类讨论法解决含参函数单调性问题函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. [例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝⎛⎭⎫-23,-13内是减函数,求a 的取值范围. [解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增; ②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x )1212(2)因为f (x )在⎝⎛⎭⎫-23,-13内是减函数,所以⎝⎛⎭⎫-23,-13⊆(x 1,x 2). 所以f ′(x )=3x 2+2ax +1≤0在⎝⎛⎭⎫-23,-13上恒成立. 所以2a ≥-3x -1x 在⎝⎛⎭⎫-23,-13上恒成立,所以a ≥2. [题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”. [例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a (x 2+1)2·(x -a )⎝⎛⎭⎫x +1a . (1)a >0时f (x )的极小值为f (-(2)当a <0时,f (x )的极小值为f (-综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a-1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1. [题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”. [例3] 已知函数f (x )=ln(x +1)-axx +a (a >1),讨论f (x )的单调性.[解] f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增. [题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆]导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例] 函数f (x )=e x -e -x -2x ,设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x -e-2x-4x -4b e x +4b e -x +8bx ,所以g ′(x )=2(e x +e -x -2)(e x +e -x -2b +2). 因为e x +e -x ≥2e x ·e -x =2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x +e -x -2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0. 所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆]最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax >1,所以f (x )>1. 因为f ′(x )=a e -ax (1-x )2⎝⎛⎭⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎫-1-2a , 1-2a 上递减.所以当x ∈⎣⎡⎭⎫0,1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=sin xx,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [解题观摩] 由f (x )=sin xx ,得f ′(x )=x cos x -sin x x 2,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数. (1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立, 即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln xx 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e xx -ln x ,则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e x x -ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x ,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x 求导,得f ″(x )=1x -1x 2=x -1x 2.令f ″(x )=x -1x 2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x 在区间(1,+∞)上为增函数.因此f ′(x )min =f ′(1)=1>0,所以函数f (x )在(0,+∞)上单调递增.[课时跟踪检测]1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( ) A .f ⎝⎛⎭⎫1k <1k B .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-k k -1>-1,移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( ) A .-501 B .-502 C .-503D .-504解析:选C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C. 4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( ) A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x 2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B ,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ) A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2,所以e x 1f (x 2)>e x 2f (x 1). 6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}. 答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3e x +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x +1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax. 令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x =x -2x .所以u (x )≥u (2)=2(1-ln 2+a 因为x >1,所以g (x )>g (1)=0,所以原不等式成立. 10.已知函数f (x )=ln(ax +1)+1-x1+x,x ≥0,其中a >0.若f (x )的最小值为1,求a 的取值范围. 解:因为f ′(x )=ax 2+a -2(ax +1)(x +1)2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增, 所以f (x )min =f (0)=1,满足题设条件. ②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0,2-a a 上递减,在( 2-aa ,+∞ )递增.所以f(x)min=f( 2-a a )<f(0)=1,不满足题设条件.综上,a≥2.。

相关文档
最新文档