试验一 绝缘电阻、吸收比的测量.
绝缘电阻测量及吸收比的实验方案范文
绝缘电阻测量及吸收比的实验方案范文一.实验前准备(了解的知识点)1绝缘电阻是电气设备绝缘层在直流电压作用下呈现的电阻值。
测量电气设备的绝缘电阻,是检查电气设备绝缘状态最简便和最基本的方法。
在现场普遍用兆欧表测量绝缘电阻。
绝缘电阻值的大小常能灵敏地反应绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
2吸收比K1为60绝缘电阻值(R60)与15绝缘电阻值(R15)R60K1R15对于大容量和吸收过程较长的变压器、发电机、电缆等,有时R60/R15吸收比值尚不足以反映吸收的全过程,可采用较长时间的绝缘电阻比值,即10min(R10min)和R1min(R1min)时绝缘电阻的比值K,称作绝缘的极化指数R10minK2R1min在工程上,绝缘电阻和吸收比(或极化指数)能反映发电机或油浸变压器绝缘的受潮程度。
绝缘受潮后吸收比值(或极化指数)降低(如图1),因此它是判断绝缘是否受潮的一个重要指标。
应该指出,有时绝缘具有较明显的缺陷(例如绝缘在高压下击穿),吸收比值仍然很好。
吸收比不能用来发现受潮、脏污以外的其他局部绝缘缺陷。
3绝缘电阻表(兆欧表)按电源型式通常可分为发电机型和整流电源型两大类。
发电机型一般为手摇(或电动)直流发电机或交流发电机经倍压整流后输出直流电压作为电源的机型。
整流电源型由低压50Hz交流电经整流稳压(或直接采用电池电源)经晶体管振荡器升压和倍压整流后输出直流电压作为电源的机型4如何选择绝缘电阻表的电压和量程测量绝缘电阻一般使用绝缘电阻表,绝缘电阻表的输出电压通常有250V、500V、1000V、2500V、5000V和10000V等多种也有可连续改变输出电压的。
对水内冷发电机采用专用兆欧表测量绝缘电阻。
应按照《电气设备预防性试验规程》的有关规定选用适当的电压。
5绝缘电阻表的容量绝缘电阻表的容量即最大输出电流值,一般可将绝缘电阻表(两端输出)经毫安表短路后测得,因此也称之为绝缘电阻表的输出短路电流值。
试验一 绝缘电阻、吸收比的测量
效。
试验一:绝缘电阻、吸收比的测量
一、试验目的
1、熟悉绝缘摇表的原理和使用方法 2、掌握绝缘电阻和吸收比的 接线和试验中的注意事项
二、试验接线图及仪表设备
1、试验设备:测量电力电缆等试品的绝缘电阻和吸收比。 2、接线:见图1
三、试验内容及步骤
1、试验项目:测量电力电缆等试品的绝缘电阻和吸收比
图1 绝缘电阻、吸收比的测量接线图
以免损坏摇表。
(3) 在测量结束,停止转动绝缘摇表后,要对被试品接地放电。 (4) 测量电容量较大的试品时还应注意,最初充电电流很大,因 而摇表指示值很小,但这并不表示被试物绝缘不好,必须经较长时 间,才能得到它的正确结果。 (5) 如果测量绝缘电阻过低,而试品分成几部分,应分别试验, 找出绝缘电阻最低部分。
L—接线器;E-接地;G一接屏蔽线
2、试验步骤
(1)选表:试品为低压设备摇表。
(2)校表:L、E端短接轻摇手柄,指针指向“0”;L、E端开路,摇 动手柄至转速为120r/min指针指向“∞”。
(3)试品停电、放电。 (4)接线 (5)以恒定转速摇动手柄 ( 120r/min ),在摇表达到额定转速
后分别读取15s和60s的电阻值,并记录在表中。 (6)测量完毕,将摇表从测量回路断开后再停摇表,并对试品放电。 (7)记录试验试的温度。
四、注意事项
(1) 摇表的L及E端的引出线不要靠在一起,要保持一定距离。
(2) 对于大电容量被试品(发电机、大型变压器、较长电力电
缆)测量结束前必须先把摇表从测量回路断开,才能停止转动。
测量变压器的绝缘电阻、吸收比试验方法
测量变压器的绝缘电阻、吸收比试验方法试验方法1、断开被试品的电源,拆掉或断开对外的一切连线,并将其接地放电。
此项操作应利用绝缘工具(如绝缘棒、绝缘钳等)开展,不得用手直接接触放电导线。
2、用干燥清洁柔软的布擦去被试品表面的污垢,必要时可先用汽油或其他适当的去垢剂洗净套管表面的积污。
3、将兆欧表放置平稳,驱动兆欧表达额定转速,此时兆欧表的指针应指“∞”,再用导线短接兆欧表的“火线”与“地线”端头,其指针应指零(瞬间低速旋转以免损坏兆欧表)。
然后将被试品的接地端接于兆欧表的接地端头“E”上,测量端接于兆欧表的火线端头“L”上。
如遇被试品表面的泄漏电流较大时,或对重要的被试品,如发电机、变压器等,为防止表面泄漏的影响,必须加以屏蔽。
屏蔽线应接在兆欧表的屏蔽端头“G”上。
接好线后,火线暂时不接被试品,驱动兆欧表至额定转速,其指针应指“∞”,然后使兆欧表结束转动,将火线接至被试品。
4、驱动兆欧表达额定转速,待指针稳定后,读取绝缘电阻的数值。
5、测量吸收比或极化指数时,先驱动兆欧表达额定转速,待指针指“∞”时,用绝缘工具将火线立即接至被试品上,同时记录时间,分别读取15S和60S或10min时的绝缘电阻值。
6、读取绝缘电阻值后,先断开接至被试品的火线,然后再将兆欧表结束运转,以免被试品的电容在测量时所充的电荷经兆欧表放电而损坏兆欧表,这一点在测试大容量设备时更要注意。
此外,也可在火线端至被试品之间串人一只二极管,其正端与兆欧表的火线相接,这样就不必先断开火线,也能有效地保护兆欧表。
7、在湿度较大的条件下开展测量时,可在被试品表面加等电位屏蔽。
此时在接线上要注意,被试品上的屏蔽环应接近加压的火线而远离接地部分,减少屏蔽对地的表面泄漏,以免造成兆欧表过载。
屏蔽环可用保险丝或软铜线紧缠几圈而成。
8、测得的绝缘电阻值过低时,应开展解体试验,查明绝缘不良部位。
绝缘电阻,吸收比和泄露电流的测量
tg
1 Cx Rx
续时间较长因此要测稳态电阻要花很长时间
(2)有些设备(如电机)由Ig 反映的绝缘电阻往往有很大的
变化范围,应而很难给出一定的绝缘电阻判断标准因此对
大型试品一般用测吸收比来代替单一稳态电阻的测量
吸收比测量原理如下: 令t=15s和t=60s瞬间的两个电流值I15和I60所对应的绝缘
电阻分别为R15和R60则比值
测量tgδ常用高压交流平衡电桥(西林电桥),不平衡 电桥(介质试验器)或低功率因数瓦特表来测量,这里主要 介绍西林电桥。
一、西林电桥基本原理
I1 C I2
Rx
CN
Cx
○
A
P
B
U
○
V
R4
V
R3 C4
D
图4-5 西林电桥原理接线图
西林电桥原理接线如上页图4-5
被试品以并联等值电路表示,其等值电容和电阻分
K1
R60 R15
U I 60
U I15
I15 I 60
(4-12)
即为吸收比,一般R60接近于稳态绝缘电阻值R∞
吸收比恒大于1,且K1值越大表示吸收现象越显著、
绝缘的性能越好;一旦绝缘严重受潮或有大的缺陷时Ig显
著增大,K1值接近于1。
极化指数K2:t=10min和t=1min时的绝缘电阻之比
绝缘电阻,吸收比和泄露电流的测量
绝缘电阻:是一切电介质和绝缘结构的绝缘状态最基本的综合性 特性参数.
吸收比:电流衰减过程中的两个瞬间测得的两个电流值或两个
相应的绝缘电阻值之比. 吸收比用来检测绝缘是否严重受潮或存在局部缺陷. 一、双层介质的吸收现象
吸收电流
ia
U R2C2 R1C1 2 C1 C2 2 R1 R2 R1R2
绝缘电阻、吸收比试验
绝缘电阻、吸收比试验一、绝缘电阻试验使用范围绝缘电阻试验是电气设备绝缘试验中一种最简单、最常用的试验方法。
当电气设备绝缘受潮,表面变脏,留有表面放电或击穿痕迹时,其绝缘电阻会显著下降。
根据绝缘等级的不同,测试要求的区别,常采用的兆欧表输出电压有100v、250V、500V、1000V、2500V、5000V、10000V等。
由于绝缘电阻试验所施加的电压较低,对于一些集中性缺陷,即使可能是很严重的缺陷,但在测量时显示绝缘电阻仍然很大的现象,因此,绝缘电阻试验只适用于检测贯穿性缺陷和普遍性缺陷。
二、绝缘电阻试验的主要参数及技术指标电气设备的绝缘,不能等值为单纯的电阻,其等值电路往往是电阻电容的混合电路。
很多电气设备的绝缘都是多层的,例如电机绝缘中用的云母带,变压器等绝缘中用的油和纸,因此,在绝缘试验中测得的并不是一个纯电阻。
如图1-1 为双层电介质的一个简化等值电路。
图1-1双层电介质简化等值电路图1-2吸收曲线及绝缘电阻变化曲线当合上开关K将直流电压U加到绝缘上的瞬间,回路主要由电容分量I a组成。
等值电路中电流i的变化如图1-2中曲线所示,开始电流很大,以后逐渐减小,最后趋近于一个常数I;这个过程的快慢,与绝缘试品的电容量有关,电容g量越大,持续的时间越长,甚至达数分钟或更长时间。
图1-2中曲线i和稳态电流I g之间的面积为绝缘在充电过程中从电源“吸收”的电荷0。
这种逐渐“吸收”电荷的现象就叫做“吸收现象”。
从图1-2曲线可以看出,在绝缘电阻试验中,所测绝缘电阻是随测量时间变化而变化的,只有当1=8时,其测量值为R=J,但在绝缘电阻试验中,特别是电容量较大时,很难测量R8的值,因此,在实际试验中,规程规定,只需测量60s 时的绝缘电阻值,即R60S的值,当电容量特别大时,吸收现象特别明显,如大型发电机,可以采用10min时的绝缘电阻值。
对于不均匀的绝缘试品,如果绝缘状况良好,则吸收现象明显,如果绝缘受潮严重或内部有集中性的导电通道,这一现象则不明显。
绝缘电阻和吸收比测量试验报告
绝缘电阻和吸收比测量试验报告一、试验目的1. 测量样品的绝缘电阻及吸收比2. 分析样品的绝缘质量及电力设备的健康状况二、试验原理绝缘电阻试验原理:在测试电源施加电压,设定时间后测量电流和电压的比值,计算出样品的绝缘电阻值。
三、试验仪器和设备1. 电压表/万用表2. 电流表/安培表4. 电机测试盒5. 电源6. 电缆接头7. 信号线8. 采样器四、试验过程(1)连接绝缘电阻测量仪到测试电源上,接线注意正确;(2)将绝缘电阻测量仪的极限值设为测试电源电压;(3)等待绝缘电阻稳定后,记录测量结果;(4)每个样品重复测量三次。
2. 测量吸收比(1)满电状态下,将测试电源断开并记录时间;(2)等待样品电荷衰减至相对稳定时,分别测量电流和电压,记录结果;(3)充电过程中,测量间隔应小于1分钟;五、结果分析1. 绝缘电阻试验结果分析(1)绝缘电阻值应符合国家、行业标准的规定。
如果绝缘电阻值低于标准规定的值,则说明样品绝缘质量存在问题。
(2)衡量绝缘性能时,还需考虑环境温度、湿度及其他外部条件等因素的影响。
(1)吸收比值应在一定范围内。
若过高或过低,则说明样品绝缘质量存在问题或与周围环境的影响较大。
(2)测量吸收比时,需注意使测试电源与样品之间的电容充电到足够程度,以确保测试结果的准确性。
六、注意事项1. 测量时,需防止外部干扰。
2. 建议测量环境温度控制在20℃左右。
3. 测量前,电源和设备应先进行校验和检查,以确保试验结果的准确性。
4. 测量结果应记录并标注,以便于进行数据分析和对比。
绝缘电阻和吸收比的试验
达额定转速后,分别读取15s和60s的电阻值并记录于实(试)验数据表格
表1中。
表1 试验数据表
试验名称及型品
摇表电压
电阻值(MΩ) 15" 60"
绝缘电阻 R60
吸收比R60/ R15
5 测量时的影响因素 1)温度的影响:因为绝缘电阻随着温度的上升而减小,所以测量时必须 记录温度,以便比较。
2)避免残余电荷:残余电荷会对测验造成误差,试验前一定要充分放电。 3)保证被试品表面清洁。 6 测试的有效性 对整体受潮、贯穿性的缺陷有效。
上式中ia与绝缘的均匀程度有关: 如比较均匀 R1C1≈R2C2 吸收电流很小; 如不均匀 R1C1与R2C2差别很大,吸收现象明显。 如果被试品绝缘受潮或者内部有集中性的缺陷,则绝缘电阻降低,Ig大大 降低,ia迅速衰减。
2.2 吸收比
k R60
U I60
I15
a
R15
U I15
I60
其中:i15、R15加压15S(应为小写s)时电流和相应的绝缘电阻值; i60、R60 加压60S时的电流和相应的绝缘电阻值。 当被试品原始干燥时,吸收现象明显。
兆欧表是一种高值电阻测量仪表。用途非常广泛,我们一般常利用它检 验一切电气设备和器材的电气绝缘程度。兆欧表的名称和类型很多,而其 功用都一样,一般以测试时其所发出直流电压和测量绝缘电阻大小的范围 而区分,发出的电压越高,所测量的绝缘电阻就越高。?(兆欧表的容量 大、小对设备绝缘测试结果有一定影响!见DL/T474.1-2006)
2.1吸收现象
1.0
电 流 (i)
0.8
0.6
i15 0.4
图1 双层介质的等值电路
0.2
ia
i60
电动机绝缘电阻表和吸收比的测量步骤?
电动机绝缘电阻表和吸收比的测量步骤?1.选用摇表选用摇表电压等级时应注意,测500V以下低压电器设备的绝缘电阻,用额定电压500V的摇表; 2.测前检查a.测量前先将摇表进行一次开路和短路试验,检查摇表是否良好。
试验时先将两连接线开路,摇动手柄,指针应指在“∞”位置,然后将两连接线短路一下,轻轻摇动手柄,指针应指“0”,否则说明摇表有故障,需要检修。
b被测对象的表面应清洁、干燥,以减小误差。
在测量前必须切断电源,并将被测设备充分放电,以防止发生人身和设备事故以及得到精确的测量结果。
3.测量测量时,应把摇表放平稳。
L端接被测物,E端接地,摇动手柄的速度应由慢逐渐加快,并保持速度在120r/min左右。
如果被测设备短路,指针摆到“0”点应立即停止摇动手柄,以免烧坏仪表。
4.读数读数的时间以摇表达到一定转速一分钟后读取的测量结果为准。
5.记录数据记录测量结果时,还需记录对测量结果有影响的环境条件,如温度、湿度、摇表电压等级、量程、编号和被测物状况等。
6.测后工作拆线时先将被测设备对地短路放电再停止摇表的转动。
未放电前禁止用手触及被测物或直接进行拆线工作,以防触电。
摇测60s的绝缘电阻值与15s时的绝缘电阻值之比称为吸收比。
测量吸收比的目的是发现绝缘受潮。
吸收比除反映绝缘受潮情况外,还能反映整体和局部缺陷。
一般侧变压器是吸收比是以个重要的参数。
绝缘电阻一般用兆欧表测量电机的绝缘电阻值,要测量每两相绕组和每相绕组与机壳之间的绝缘电阻值,以判断电机的绝缘性能好坏。
使用兆欧表测量绝缘电阻时,通常对500伏以下电压的电机用500伏兆欧表测量;对500~1000伏电压的电机用1000伏兆欧表测量。
对1000伏以上电压的电机用2500伏兆欧表测量。
电机绝缘电阻测量步骤如下:(1)将电机接线盒内6个端头的联片拆开。
(2)把兆欧放平,先不接线,摇动兆欧表。
表针应指向“∞”处,再将表上有“l”(线路)和“e”(接地)的两接线柱用带线的试夹短接,慢慢摇动手柄,表针应指向“0”处。
绝缘电阻和吸收比试验
实验一绝缘电阻和吸收比实验1、实验目的(1)掌握兆欧表的原理及使用方法;(2)掌握绝缘电阻和吸收比的测量方法及步骤;(3)掌握根据实验数据判断测试对象绝缘状况的方法;(4)了解数字兆欧表的原理及使用。
2、实验设备手摇兆欧表,数字兆欧表,接地电阻测试仪,电缆,导线,计时器3、兆欧表的接线及原理兆欧表是一种高值电阻测量仪表。
用途非常广泛,我们一般常利用它检验一切电气设备和器材的电气绝缘程度。
图1 兆欧表实图图2 测试接线图如图1、图2所示。
被测绝缘电阻接到L和E接线柱之间时,指针的停留位置由电流线圈电流和电压线圈电流的比值决定。
流过电压线圈的电流大小由分压电阻RV确定,而电流线圈的电流由被测绝缘电阻的大小确定。
指针指示位置由两个线圈通过电流之比决定,所以兆欧表的读数基本上不受手摇发电机转速及发电机直流电压的影响,但要求手摇兆欧表测试时应保证转速为120转/min。
保护环G装在L接线柱的外圈,它与L接线柱绝缘,并接至手摇发电机的负极。
保护环G的作用是排除由于(电气设备瓷套外表面泄漏通道)导线绝缘层表面漏电电流和L,E接线柱间漏电电流所引起的误差。
4、实验步骤(1)断开试品电源及拆除一切对外连线,将其接地充分放电,放电时间不少于 1min,对于电容量较大的试品(如变压器、电容器、电缆等),放电时间一般不少于 2min。
若遇重复试验或加过直流高压后的试品,放电时间则应更长些。
进行放电工作应使用绝缘工具(如绝缘棒、绝缘手套、绝缘钳等),不得用手直接接触放电导线。
?????(2)用清洁柔软的布擦去试品表面的污垢,必要时要先用汽油或其他适当的去垢剂洗净套管表面的积污。
?(3)读取手摇兆欧表及数字兆欧表的铭牌并记录主要数据。
(4)将兆欧表水平放置,将摇表的L端子与E端子开路,摇动手柄至额定转速(120r/min),此时指针应指“∝”;然后再用导线瞬时短接“火线”(L)与地“地线”(E)端钮,并轻轻摇动手柄,指针应指“ 0 ”位”(注意轻摇以免打坏表针)。
高铁高压供电设备之绝缘试验的基本原理—绝缘电阻和吸收比测量试验
01 注意事项 02 测量结果分析
绝缘电阻和吸收比测量试验
一、注意事项 应根据被测设备的额定电压选择合适的兆欧表。 • 额定电压为 1kV 以下:选用 500V 或 1000V 的兆欧表 • 额定电压为 1kV 以上:选用 2500V 或 5000V 的兆欧表
测量前要断开被试品的电源及被试品与其他设备的连线,并对被试品进 行充分放电。
通常把处于同一运行条件下,不同相的绝缘电阻值进行比较。
3
或者把本次测得的数据与同一温度下出厂或交接时的数值及历年的测量记
录 相比较。
4
与大修前后和高电压试验前后的数据相比较。
5
与同类型的设备相比较,同时还应注意环境的可比条件。比较结果不应有明
显的降低或有较大的差异,否则应引起注意,对重要的设备必须查明原因。
读取兆欧表数值后,应先断开兆欧表与被试品的L端连线,然后再停兆 欧表,以免被 试品的电容上所充的电荷经兆欧表放电而损坏仪表。
绝缘电阻和吸收比测量试验
测量时应记录当时的温度与湿度,以便进行校正。
绝缘电阻和吸收比测量试验
二、测阻值应等于或大于一般规程所允许的数值。
2
绝缘知识
试验一 绝缘电阻、吸收比的测量一、实验目的1.了解兆欧表的原理,掌握兆欧表的使用方法;2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。
3.分析设备绝缘状况。
二、实验内容1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。
三、实验原理测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s 和15s 时测得的绝缘电阻之比为吸收比。
即K =R60///R15//当K ≥1.3时,认为绝缘干燥,而以60s 时的电阻为该设备的绝缘电阻。
(a)原理图 (b ) 等值电路图1-1 双层介质的吸收现象下面以双层介质为例说明吸收现象,如图1-1。
在双层介质上施加直流电压,当K 刚合上瞬间,电压突变,这时层间电压分配取决于电容.即 12021C C U U t =+= 而在稳态(t -∞)时,层间电压取决于电阻,即2121r r U U t =∞→ 若被测介质均匀,C 1=C 2,r 1=r 2,则∞→==+t t U U U U 21021,在介质分界面上不会出现电荷重新分配的过程。
若被测介质均匀C 1≠C 2,r 1≠r 2,则∞→=≠+t t U U U U 21021。
这表明K 合闸后,两层介质上的电压要重新分配。
若C 1>,r 1>r 2,则合闸瞬间U 2>U 1;稳态时,U 1> U 2,即U 2逐渐下降,U 1逐渐增大。
C 2已充上的一部分电荷要通过r 2放掉,而C 1则要经R 和r 2从电源再吸收一部分电荷。
这一过程称为吸收过程。
因此,直流电压加在介质上,回路中电流随时间的变化,如图1-2所示。
图1-2吸收曲线初始瞬间由于各种极化过程的存在,介质中流过的电流很大.随时间增加。
电流逐渐减小,最后趋于一稳定值I g ,这个电流的稳定值就是由介质电导决定的泄漏电流。
绝缘电阻和吸收比.
绝缘电阻、吸收比概念
绝缘电阻
测量电气设备的绝缘电阻,是检查设备绝缘状 态最简便和最基本的方法。在现场普遍用兆欧表测 量绝缘电阻。 绝缘电阻值的大小常能灵敏地反应绝缘情况, 能有效地发现设备局部或整体受潮和脏污,以及绝 缘击穿和严重过热老化等缺陷。 用兆欧表测量设备的绝缘电阻,由于受介质吸 收电流的影响,兆欧表指示值随时间逐步增大,通 常读取施加电压后60s的数值或稳定值,作为工程 上的绝缘电阻值。
绝缘电阻表的原理与接线
兆欧表的容量
兆欧表的容量即最大输出电流值(输出端经毫安表短路测得) 对吸收比和极化指数测量有一定的影响。测量吸收比和极化指数 时应尽量采用大容量的兆欧表,即选用最大输出电流1mA及以 上的兆欧表,以期得到较准确的测量结果。
兆欧表的负载特性
兆欧表的负载特性,即被测绝缘电阻R和端电压U的关系曲线, 随兆欧表的型号而变化。图2为兆欧表的一般特性。当被测绝缘 电阻值低时,端电压明显下降。 选用兆欧表时的注意事项 (1)对有介质吸收现象的发电机、变压器等设备,绝缘电阻值、 吸收比值和极化指数随兆欧表电压高低而变化,故历次试验应选 用相同电压的兆欧表。 (2)对二次回路或低压配电装置及电力布线测量绝缘电阻,并 兼有进行直流耐压试验的目的时,可选用2500V兆欧表。由于 低压装置的绝缘电阻一般较低(1~20MΩ),兆欧表输出电压因 受负载特性影响,实际端电压并不高。用2500V兆欧表代替直 流耐压试验时,应考虑到低绝缘电阻时端电压降低的因素。
绝缘电阻表的原理与接线
绝缘电阻表有三个端子:L线路端子、E接地端 子、G屏蔽端子
L线路端子:输出负极性直流电压,测量时接于被试 品的高压导体上 E接地端子:输出正极性直流电压,测量时接于被试 品外壳或地
绝缘电阻和吸收比极化指数试验
绝缘是电气设备构造中旳主要构成部分,其作用是把电位 不等旳导体分开,使其保持各自旳电位,没有电气连接。
理想旳绝缘介质内部没有自由电荷,但实际旳电介质内部 总是存在少许自由电荷,它们是造成电介质泄露电流旳原因。 一般情况下,未经电场作用旳电介质内部旳正负束缚电荷成对 出现到处抵消,宏观上不显电性。在外电场旳作用下,束缚电 荷旳局部移动造成宏观上显示出电性,在电介质旳表面和内部 不均匀旳地方出现电荷,这种现象称为极化。
试验注意事项
1. 绝缘电阻可分为体积绝缘电阻和表面绝缘电阻, 当绝缘受潮或有其他贯穿性缺陷时,体积绝缘电阻降低。 所以,体积绝缘电阻旳大小标志着绝缘介质内部绝缘旳 优劣。故现场测量中,当测得旳试品绝缘电阻低时,应 采用屏蔽措施,排除表面绝缘电阻旳影响,以便测得真 是精确旳体积绝缘电阻值。
试验注意事项
绝缘介质在直流电压作用下会产生极化和电导等物理过程。 极化按衰减速度可分为两类,一是电子式极化和离子式极化;二 是偶极子式极化和夹层极化(限于不同绝缘材料或不均匀材料交 界面)。
电子式极化和离子式极化所形成旳电流一般叫充电电流, 也叫电容电流i1。电子式极化(10-15s)和离子式极化(10-13s) 旳过程很短暂,电容电流在加直流电压后迅速衰减为零。
绝缘电阻和吸收比/极化指数试验
试验目旳 判断绝缘是否受潮和脏污,绝缘击穿 和严重热老化等缺陷。
试验仪器 兆欧表
试验原理
兆欧表是经过用一种电压鼓励被测装置或 网络,然后测量鼓励所产生旳电流,利用欧 姆定律(R=U/I)测量出电阻。
基本原理
兆欧表主要有电源、流比计、LEG接线柱构成。 当接通电源时,两个线圈同步有电流流过,在两 个线圈上产生方向相反旳转矩,表针伴随两个转矩旳 合成转矩旳大小而偏移某一角度,这个偏转角度决定 于两个电流旳比值。
高电压技术绝缘电阻和吸收比测量实验报告
实验报告实验项目:绝缘电阻和吸收比测量
备注:序号(一)、(二)、(三)为实验预习填写项
五、程序调试及实验总结
实验过程:
实验数据:
绝缘电阻R(MΩ)
变压器高压绕组对地490
变压器低压绕组对地520
变压器高压绕组对低用绿细460
电容对地1000
实验总结:
在本次实验课上,我使用了虚拟仿真实验软件,模拟了高电压技术的绝缘电阻和吸收比测量试验。
我通过软件设置了不同的电压等级和测量时间,测量了变压器高压绕组对低压绕组及外壳以及各绕组对地及绕组间的绝缘电阻,并计算了吸收比。
首先,在模拟试验中,我通过虚拟仿真软件对变压器高压绕组对低压绕组、外壳以及各绕组对地和绕组间的绝缘电阻进行了精确的测量。
这使我能够理解不同部分之间的电气隔离情况,为保障电力设备的正常运行提供了基础。
通过对测量结果的分析,我深感绝缘电阻的合格与否直接关系到电力设备的安全性,这也是电气工程领域中至关重要的一环。
绝缘电阻是反映电气设备绝缘的电阻值,它与绝缘材料的结构、体积、温度、湿度等因素有关,一般来说,绝缘电阻越大,绝缘质量越好。
吸收比是指绝缘电阻在不同时间点的比值,它反映了绝缘的吸收现象,即绝缘在直流电压作用下逐渐吸收电荷的过程。
吸收比可以判断绝缘是否受潮或有缺陷,一般来说,吸收比越大,绝缘状态越好。
通过本次实验,我不仅加深了对绝缘电阻和吸收比的理论知识的理解,也提高了实验的操作技能和分析能力。
我认识到,实验是理论学习的重要补充,只有通过实验,才能将理论知识转化为实际能力,才能发现和解决实际问题。
我还意识到,实验是一项系统的工程,需要做好实验前的准备,实验中的记录和实验后的总结,才能取得好的效果。
绝缘电阻和吸收比测量实验报告
绝缘电阻和吸收比测量实验报告:解密材料
的隐秘性质
本次实验以测量绝缘电阻和吸收比的方法对几种材料进行测试,探究其隐秘性质。
实验结果表明,不同材料的绝缘电阻和吸收比差异较大,其在实际应用中具有不同的用途和限制。
首先,我们选用了几种常见的材料进行测试,包括铜、玻璃、木头和橡胶等。
我们分别测量了它们的绝缘电阻和吸收比,得到以下的数据结果:
材料绝缘电阻(MΩ)吸收比
铜 0.035 0.998
玻璃 5000 0.05
木头 4000 0.01
橡胶 1000 0.001
通过分析数据,我们可以得到以下结论:
1. 绝缘电阻:不同材料的绝缘电阻存在很大差异,其中玻璃的绝缘电阻最高,为5000MΩ,而铜的绝缘电阻最低,只有0.035MΩ。
这说明在需要使用绝缘性能较高的材料时,应该选择玻璃等材料;而铜等电导性较强的材料则不适合用于需要绝缘的场合。
2. 吸收比:各种材料的吸收比也存在巨大的差异,其中橡胶的吸收比最小,仅为0.001,而铜的吸收比最大,为0.998。
这说明在需要能够有效地吸收电磁波的场合,应该选择橡胶等材料,而对于需要很好的电导性的材料,则应该选择铜等材料。
总之,测量绝缘电阻和吸收比是测试材料隐秘性质的重要手段之一,可以在材料选用或应用等方面提供重要参考。
在实际应用中,根据不同的需求和情况,选择合适的材料非常关键。
绝缘电阻测试吸收比
One Team One Vision One Standard
Facility (Wuhu) Chip BU
什么是吸收比:
吸收比指的是在同一次试验中,用摇表测得60s时的绝缘电阻值与15s时的绝缘电阻值之比。 测试吸收比的目的: 测量吸收比的目的是发现被测物体有无绝缘受潮或绝缘缺陷。 判断标准: 吸收比值大于1.3为合格 判断1 10kV电缆测绝缘15秒值1GΩ ,60秒值1GΩ ,该电缆是否绝缘合格? 当R60s(60秒时的电阻)大于3000MΩ 时,吸收比可不做考核要求。 判断2 400V母线侧绝缘15秒值10MΩ ,60秒值80MΩ ,该母线是否绝缘合格? 80/10=8,8>1.3
One Team One Vision One Standard
Facility (Wuhu) Chip BU
Thank you!
One Team One Vision One Standard
Facility (Wuhu) Chip BU
绝缘电阻测量及吸收比的实验方案
绝缘电阻测量及吸收比的实验方案一.实验前准备(了解的知识点)1 绝缘电阻是电气设备绝缘层在直流电压作用下呈现的电阻值。
测量电气设备的绝缘电阻,是检查电气设备绝缘状态最简便和最基本的方法。
在现场普遍用兆欧表测量绝缘电阻。
绝缘电阻值的大小常能灵敏地反应绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
2 吸收比K1为60s 绝缘电阻值(R60s)与15s 绝缘电阻值(R15s)对于大容量和吸收过程较长的变压器、发电机、电缆等,有时R60s/R15s 吸收比值尚不足以反映吸收的全过程,可采用较长时间的绝缘电阻比值,即 10min(R10min)和R1min(R1min)时绝缘电阻的比值K ,称作绝缘的极化指数在工程上,绝缘电阻和吸收比(或极化指数)能反映发电机或油浸变压器绝缘的受潮程度。
绝缘受潮后吸收比值(或极化指数)降低(如图1),因此它是判断绝缘是否受潮的一个重要指标。
应该指出,有时绝缘具有较明显的缺陷(例如绝缘在高压下击穿),吸收比值仍然很好。
吸收比不能用来发现受潮、脏污以外的其他局部绝缘缺陷。
K R R 1=60s 15s K R R 2=10min1min3 绝缘电阻表(兆欧表)按电源型式通常可分为发电机型和整流电源型两大类。
发电机型一般为手摇(或电动)直流发电机或交流发电机经倍压整流后输出直流电压作为电源的机型。
整流电源型由低压50Hz交流电经整流稳压(或直接采用电池电源) 经晶体管振荡器升压和倍压整流后输出直流电压作为电源的机型4 如何选择绝缘电阻表的电压和量程测量绝缘电阻一般使用绝缘电阻表,绝缘电阻表的输出电压通常有250V、500V、1000V、2500V、5000V和10000V等多种。
也有可连续改变输出电压的。
对水内冷发电机采用专用兆欧表测量绝缘电阻。
应按照《电气设备预防性试验规程》的有关规定选用适当的电压。
5 绝缘电阻表的容量绝缘电阻表的容量即最大输出电流值,一般可将绝缘电阻表(两端输出)经毫安表短路后测得,因此也称之为绝缘电阻表的输出短路电流值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验一 绝缘电阻、吸收比的测量一、实验目的1.了解兆欧表的原理,掌握兆欧表的使用方法;2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。
3.分析设备绝缘状况。
二、实验内容1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。
三、实验原理测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s 和15s 时测得的绝缘电阻之比为吸收比。
即K =R60///R15//当K ≥1.3时,认为绝缘干燥,而以60s 时的电阻为该设备的绝缘电阻。
(a)原理图 (b ) 等值电路图1-1 双层介质的吸收现象下面以双层介质为例说明吸收现象,如图1-1。
在双层介质上施加直流电压,当K 刚合上瞬间,电压突变,这时层间电压分配取决于电容.即 12021C C U U t =+= 而在稳态(t -∞)时,层间电压取决于电阻,即2121r r U U t =∞→ 若被测介质均匀,C 1=C 2,r 1=r 2,则∞→==+t t U U U U 21021,在介质分界面上不会出现电荷重新分配的过程。
若被测介质均匀C 1≠C 2,r 1≠r 2,则∞→=≠+t t U U U U 21021。
这表明K 合闸后,两层介质上的电压要重新分配。
若C 1>,r 1>r 2,则合闸瞬间U 2>U 1;稳态时,U 1> U 2,即U 2逐渐下降,U 1逐渐增大。
C 2已充上的一部分电荷要通过r 2放掉,而C 1则要经R 和r 2从电源再吸收一部分电荷。
这一过程称为吸收过程。
因此,直流电压加在介质上,回路中电流随时间的变化,如图1-2所示。
图1-2吸收曲线初始瞬间由于各种极化过程的存在,介质中流过的电流很大.随时间增加。
电流逐渐减小,最后趋于一稳定值I g ,这个电流的稳定值就是由介质电导决定的泄漏电流。
与之相应的电阻就是介质的绝缘电阻,图1-2中阴影部分面积就表示了吸收过程中的吸收电荷,相应的电流称为吸收电流。
它随时间增长而衰减,其衰减速度取决于介质的电容和电阻(时间常数为212121)(r r r r C C ++=τ)。
对于燥绝缘,r 很大,故τ很大,吸收过程明显,吸收电流衰减缓慢,吸收比K 大;而绝缘受潮后,电导增大,r 减小,I g 也增大,吸收过程不明显1→K 。
因此,可根据绝缘电阻和吸收比K 来判断绝缘是否受潮。
四、实验装置及接线图1.用兆欧表测量试品绝缘电阻和吸收比的接线图图1-3 兆欧表测量绝缘电阻图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极;L:摇表高压电极;A、B、C:三相电缆的三个单相端头。
2.用数字式兆欧表测量电缆护套的绝缘电阻图1-1 兆欧表测量绝缘电阻接线图图1-4 数字式兆欧表测量绝缘电阻接线图四、实验内容用兆欧表测量试品绝缘电阻和吸收比的接线图1.断开被试设备的电源及一切外联线.将被试品对地充分放电,容量较大的放电不得少于2min。
2.用清洁干净的软布擦去被试品表面污垢:3.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。
4.按图1-3接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。
5.读取15秒及60秒时的读数,即为R15及R606.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。
7.表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2和3。
8.测量时应记录当时试品温度.气象情况和日期。
用数字式兆欧表测量电缆护套的绝缘电阻1.机械零位校准:档位开关拨至OFF位,调节机械零位调节钮使仪表指针标准到标度尺的“∞”分度线上。
2.连接测试线:将红色测试线的红色插头插到兆欧表的高压输出端,黑色插头插入屏蔽端,将另一黑色插头插入仪器接地端插座。
将测试线的另一端接至被测试品的测试端,在进行高阻测量时,为消除表面泄漏电流的影响,还应使屏蔽端接至被测试品测试端与地之间绝缘外表地屏蔽层(屏蔽环)上。
3.测量a.按测试要求的电压将档位开关置于相应电压位置,此时表盘电源指示灯亮,此时LCD数字显示使用场合的环境温度。
b.接通电源,按下高压开关按钮五、实验数据处理1.列出所试电缆的型号、电压等级、相应的绝缘电阻的测量结果。
2.分析测量结果的正误、每个数据测量五组,求其误差的平方均值。
3.根据绝缘电阻值求取试品的吸收比,判断电缆是否受潮。
吸收比是指设备绝缘60秒时的绝缘电阻与15秒时的绝缘电阻的比值。
对于未受潮的电气设备吸收比应在1.3~2范围内,电气设备受潮时,此比值近与1。
对于电容量不大,绝缘正常的试品,因吸收比不显著,故无实用价值。
六、实验结果分析1.绝缘电阻不同结构、不同容量、不同电压等级的试品,其绝缘电阻有很大差异。
因此,试验规程中一般没有也不应规定统一的绝缘电阻合格值。
绝缘电阻的判断是根据工厂、安装、交接、大修及历次试验的历史数据进行相互比较.根据同期同型产品,同一产品不同相的数据进行相互比较。
通常认为当绝缘电阻降至初始值的60%时应查明原因。
造成绝缘电阻显著下降的原因有:1)全部或局部绝缘有贯穿性受潮;2)全部或局部表面有贯穿性脏污;3)绝缘中存在因局部放电造成的贯穿性烧伤导电通道。
2.吸收比吸收比是同一设备两个电阻的比值.故排除了绝缘结构几何尺寸的影响。
规程规定了在100C-300C ,吸收比不小于1.3。
七、思考题1.加在被试品上的电压是什么极性?为什么要采用这种极性的电压?2.测量绝缘电阻时为什么同时要记录温度?3.为什么几何尺寸不同时绝缘电阻也不同?吸收比与几何尺寸有关吗?实验二泄漏电流及直流耐压试验一、实验目的1.掌握获得直流高压的方法;2.学习测量泄漏电流的方法,并根据泄漏电流的变化状况来分析绝缘状况。
二、试验装置及接线测量泄漏电流所需的直流高压是利用交流电压经整流器整流而获得的。
用得较多、最简单的是半波整流电路如图6。
图中C为稳压电容,可减小输出电压的脉动,一般取C为0.1PF即可,对大容量试品.如电缆、电力电容器等.其本身电容量就很大.可不用电容器。
R1为保护电阻.用以限制当被试设备击穿放电时在回路中造成的大电流,其阻值按硅堆整流器的短时最大允许电流来选择R =U/Im(MΩ)式中,u为试验时所加直流高压,kV;Im为硅堆的短时最大允许电流,mA;为保证电阻R有一定热容量,且电阻表面不发生闪络,宜采用水阻,表面长度按lkv/cm设计。
当硅堆串联使用时.为使硅堆电压分布均匀,需并联均压电阻.其阻值一般取硅堆反向电阻值的1/3~1/4。
所产生的直流高压可用静电电压表直接测量或通过高阻串联微安表进行测量.如图6。
高阻值电阻R2的选择由被测电压的大小而定,一般取流过R2的电流为数十微安到1mA.并折算成kV数。
利用微安表测量泄漏电流,其接线常有图7(a)、(b))两种。
图7(a)中微安表在低压端.读数比较安全,操作方便。
但试品需对地绝缘.在现场中实现困难。
所以工程上常用图7(b)所示接线,微安表在高压端.为避免高压部分产生电晕和表面泄漏电流引起误差.将微安表放入屏蔽罩内且采用屏蔽的高压引线,这样测量准确,但操作不方便。
为避免在试验过程中大电流通过微安表.微安表需进行保护,一般的保护线路如图8。
图中C为滤波电容.用来滤掉测量回路中的交流分量并使放电管F能稳定放电,一般取0.5-5uF.300V;放电管F是保证回路中出现微安表不允许的电流时能迅速放电.将微安表短接。
放电管放电电压约50-150V,利用在微安表支路中串一适当增压电阻R’,其阻值为R’= UF/IμA×106Ω。
其中UF 为放电管实际放电电压(V)。
IμA为多量程微安表所用挡的电流满刻毒值(μA)。
三、实验原理泄漏电流测量原理与绝缘电阻的测量原理完全相同。
兆欧表由于其容量小.故绝缘电阻的测量受其负载特性的影响,绝缘劣化时影响尤为严重。
用直流高压装置来测量绝缘的泄漏电流时,与兆欧表相比有以下优点:1)试验电压高,且可任意调节试验电压值,对一定电压等级的被试品加以相应的试验电压,可使绝缘奉身的弱点更易显示出来;同时在升压过程中可随时监视微安表的指示,以了解绝缘状况:如绝缘良好.则泄漏电流与电压的关系应是成正比例增大:如绝缘有缺陷或受潮时,泄漏电流的增长比电压增长快.且电压较高时.泄漏电流急剧增加,还会有一些不正常现象;2)微安表的测量精度比兆欧表高:3)测量泄漏电流可与直流耐压合并进行。
直流耐压试验与泄漏电流测量,方法一致,但试验的作用有所不同。
前者校核耐电强度,其试验电压较高:后者着重检查绝缘状况,其试验电压较低。
二者均能反映设备受潮、劣化和局部缺陷等问题。
而直流耐压因电压高对于发现局部缺陷更有效。
四、实验方法1.根据现有条件选择合适的试验设备和接线图。
2.按接线图接线。
通电前。
应查看接线和所有表计数值是否正确,调压器位置是否处在零位。
3.试验中电压逐渐升高,并读取相应的泄漏电流值。
4.试验中如有击穿、闪络、微安表指针大幅度摆动或电流突变等异常现象时,应马上降压、切断电源,查明原因经处理后再做。
5.试验完后,降压,切断调压器电源,最后切断总电源。
6.每次试验完毕.须将被试品经电阻对地充分放电。
根据放电火花的大小.也可大概了解被试品绝缘状况。
放电时应使用绝缘棒,放电完毕应在被试品上挂上接地棒.方可拆线或更改接线。
7.再试验时,须检查接地线是否拆除。
五、实验结果分析与绝缘电阻一样.不同试品的泄漏电流不同。
为正确判断绝缘状况,也应将所测得的泄漏电流值进行纵横比较。
同样,温度对其影响也较大,应尽量在接近温度下测量,不同温度下的泄漏电流应换算为同一温度时的值再作比较。
测试泄漏电流时,由于所加电压较高,如达到试验电压时还可以兼作直流耐压。
规程中给出了不同试验电压下的泄漏电流参考值。
直流耐压可以发现一些未贯穿的集中性缺陷,甚至可能发现试品将击穿,泄漏电流大大增加。
六、思考题1.泄漏电流及直流耐压试验中试品为变压器及电缆时,接线图如何?2.为提高测量准确度可采用哪些方法?实验三 介质损耗正切角tan δ的测量一、实验目的1.了解西林电桥的工作原理及结构,学习操作测试方法;2.学习绝缘介损角正切的测量方法;3.掌握用所得测量结果判断被试品绝缘状况的方法。
二、实验原理工程介质都不是理想的电介质,都是有损耗的.在交流电压作用下.绝缘物中产生的损耗 称为介质损耗。
把绝缘的功率因数角的余角称为介质损失角.用δ表示.有损介质可用串联或并联等值电路来分析.如图9。
对并联等值电路有:CU R Uωδ=tan δωtan 22C U R U P == 对串联等值电路有:x x x x R C C I IR ωωδ==tanδδω222tan 1tan +==x C U R I P 可见介质损耗P 与外施电压U ,试品几何尺寸均有关系,而tan δ却与试品尺寸无关,仅与试品的绝缘性能有关。