人教版 八年级下册数学第十六章 二次根式 二次根式的概念和性质教案

合集下载

(完整版)新人教版八年级数学下册第16章二次根式教案

(完整版)新人教版八年级数学下册第16章二次根式教案

课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。

(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。

如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。

思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。

3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案

人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案
-利用多媒体教学资源,如动画和图表,增强直观想象。
-设计分层次练习,从基础到提高,逐步突破难点。
-引导学生通过自主探索和合作交流,构建数学模型,提高数学建模能力。
-在教学中注重教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平方根的情况?”(例如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
-详细讲解二次根式的性质,结合图形和实际例子,使学生直观理解。
-以典型例题形式,展示二次根式的化简和运算过程,指出易错点,强调运算规则。
-设计具有挑战性的问题,让学生在实际情境中应用二次根式,识别难点,培养解决问题的能力。
-通过小组讨论和互动,激发学生的学习兴趣,促进数学表达和交流能力的提升。
4.教学策略:
在新课讲授环节,我采用了案例分析的教学方法,让学生通过解决实际问题来体会二次根式的应用。从实践活动的表现来看,学生们对此表现出较高的兴趣,但在小组讨论中,部分学生仍然显得不够积极主动。针对这一问题,我计划在接下来的课程中,多鼓励学生发表自己的观点,培养他们的团队协作能力和沟通能力。
此外,在学生小组讨论环节,我发现有些学生在解决问题时思路不够清晰,容易陷入思维定势。为了帮助学生打破思维局限,我将在以后的课堂中,适时给予他们提示和引导,培养他们的问题分析能力和创新意识。

三、教学难点与重点
1.教学重点:
-二次根式的定义及其性质的理解和掌握。
-二次根式的化简和运算方法的运用。
2.教学难点:
-对二次根式性质的深入理解,特别是乘法法则和除法法则的应用。

人教版八年级数学下册16.1二次根式(教案)

人教版八年级数学下册16.1二次根式(教案)
人教版八年级数学下册16.1二次根式(教案)
一、教学内容
本节课选自人教版八年级数学下册第16.1节,主题为“二次根式”。教学内容主要包括以下两个方面:
1.二次根式的概念与性质:理解二次根式的定义,掌握二次根式的性质,如乘除法则、平方差公式等。
2.二次根式的化简与运算:学会化简二次根式,掌握二次根式的加减乘除运算方法,并能解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如$\sqrt{a}$的表达式,其中$a$为非负实数。它是解决非整数平方问题的重要工具,广泛应用于数学和实际生活。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算矩形的对角线长度,通过二次根式的应用,我们可以轻松解决这一问题。
(5)实际应用:运用二次根式解决实际问题,如计算面积、体积等。
2.教学难点
(1)理解二次根式的定义:部分学生可能对根号下的数必须为非负实数这一点理解不透彻,需要通过实例进行解释。
(2)掌握二次根式的性质:乘除法则、平方差公式等性质的理解和运用是难点,如$\sqrt{a^2}=|a|$,学生容易忽略绝对值符号。
(4)二次根式的化简方法,如:$\sqrt{18}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}$;
(5)二次根式的加减运算,如:$\sqrt{3}+\sqrt{5}$,$\sqrt{3}-\sqrt{5}$等;
(6)运用二次根式解决实际问题。
二、核心素养目标
1.培养学生的数学抽象能力:通过二次根式的学习,使学生能够从具体问题中抽象出数学表达式,理解数学符号的含义,提高数学表达与交流能力。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的定义和性质这两个重点。对于难点部分,如二次根式的化简和运算,我会通过举例和比较来帮助大家理解。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

人教版八年级数学下册第16章 二次根式 教案

人教版八年级数学下册第16章 二次根式 教案

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.理解二次根式的概念.2.≥0)的意义解答具体题目.自学指导:阅读教材第2页至3页,完成下列的问题.知识探究平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根.思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为S 的正方形的边长为__________;(2)要修建一个面积为6.28 m 2的圆形喷水池,它的半径约为__________m ;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t 2如果用含有h 的式子表示t ,则t=__________...开平方时,被开方数a 的取值范围是a ≥0(为什么?)自学反馈(1)下列式子,哪些是二次根式?哪些不是二次根式?1x 、、1x y +≥0,y ≥0).判断二次根式的依据是一个形式一个条件,二者缺一不可.(2)当a 是怎样的实数时,下列各式在实数范围内有意义?a≥1a≥-3 2a≤3a≥0a≤0任意实数a>3任意实数任意实数二次根式中求字母的取值范围的依据是:被开方数大于等于零.活动1 小组讨论例1 当x?解:x≥2.例2当x11x+在实数范围内有意义?解:x≥-32且x≠-1.有二次根式的要考虑二次根式的被开方数大于等于零,有分母的要考虑分母不为零.例3已知,求xy的值.解:2 5 .当被开方数互为相反数时被开方数只能为零.活动2 跟踪训练1.要画一个面积为18的长方形,使它的长宽之比为3∶2,它的长宽应取多长?解:长:2.用代数式表示:(1)面积为S的圆的半径.(2)面积为S且两条邻边的比为2∶3的长方形的长和宽.解:(2)3.教材第3页上框练习.活动3 课堂小结1.二次根式的概念.2.二次根式的判断方法.3.怎样求二次根式的被开方数中字母的取值范围.第2课时 二次根式的性质1.≥0)是一个非负数.2.理解二次根式的两个性质)2=a(a ≥0)≥0).3.会运用上述两个性质进行有关计算和化简.自学指导:阅读教材第3页至4页,完成下列的问题.知识探究(—)当a>0a ;当a=00概括:≥0)是一个非负数.知识探究(二)根据算术平方根的意义填空:)2=4;)2=2;2=13;)2=0.概括:一般地:2=a (a ≥0)知识探究(三)=2;=0.01;23=0.=a (a ≥0)二次根式的三个性质:≥0)是一个非负数;)2=a(a ≥0);≥0).自学反馈1.计算:2 )2 2 )2 解:(1)32;(2)45;(3)56;(4)74. 2.化简:解:(1)3;(2)4;(3)5;(4)3.3.代数式的概念:用基本运算符号(基本运算符号包括加、减、乘、除、开方等)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.活动1 小组讨论例1 计算:(1) 2 (2)2解:(1)1.5;(2)20.例2 化简:( 2 (2解:(1)16;(2)5.一个非负数的算术平方根的平方等于它本身.一个负数的平方的算术平方根等于这个负数的相反数.例3 =0,求a2013+b2013的值.解:≥00,∴a=-1,b=1.∴a2013+b2013=0.二次根式本身具有非负性.活动2 跟踪训练1.计算:2)2解:(1)3;(2)18.2.说出下列各式的值:解:(1)0.3;(2)17;(3)-π;(4)-10.3.计算:22解:(1)5;(2)0.2;(3)0.6;(4)2 3 .4.教材第4页下框练习.活动3 课堂小结二次根式的性质:≥0)是一个非负数.2=a(a≥0)=a(a≥0)16.2 二次根式的乘除第1课时二次根式的乘法1.≥0,b≥0)并运用它进行计算.2.(a≥0,b≥0)并运用它进行解题和化简.自学指导:阅读教材第6页至7页,并完成预习内容.知识探究请同学们完成填空:=6,=6;=20,=20;=60,=60.参考上面的结果,用“>、<或=”填空.归纳:(a≥0,b≥0)反过来(a≥0,b≥0)自学反馈1.计算:解:.2.化简:解:(1)12;;(3)3|xy|;.活动1 小组讨论例1计算:×解:例2 化简:解:(2)36;;.(1)开方后可以移到根号外的因数或因式叫开得尽方的因数或因式.例3 计算:解:;;14写成7×2,同样(2)中写成10=5×2,方便开方.例4判断下列各式是否正确,不正确的请予以改正:=4.解:(1)不正确.(2)不正确..带分数的整数部分和分数部分是相加的关系,而不是相乘的关系.活动2 跟踪训练1.计算:解:(2)6;2.化简:解:(1)77;(2)15;3.和cm,则这个长方形的面积为4.教材第7页下框练习.活动3 课堂小结掌握二次根式的乘法规定和积的算术平方根的性质:≥0,b≥0)(a≥0,b≥0)及应用.第2课时 二次根式的除法1.≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.自学指导:阅读教材第8页至10页,并完成预习内容.知识探究请同学们完成填空:对二次根式的除法规定:两个二次根式相除,根指数不变,被开放数相除.自学反馈1.计算:解:(1)2;(2)2.下面利用这个规律来计算和化简一些题目.2.化简:解:(1)8;(2)83b a ;.活动1 小组讨论例1 计算:解:;(1)除了用除法公式外,还可进行分母有理化.例2 化简:解:. 例3 计算:(可以用两种方法计算)解:(1)5;(2)3(3)a.观察上面各小题的最后结果,比如等,这些二次根式有哪些特点: (1)被开方数的因数是整数,因式是整式;(2)被开方数不含能开得尽方的因数或因式.满足以上两点的二次根式,就叫做最简二次根式.在二次根式的运算中,一般要把最后结果化为最简,且结果的分母中不含二次根式.活动2 跟踪训练1.化简:解:(1)2;. 2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.解:6.5cm.3.教材第10页的中框练习.活动3 课堂小结1.二次根式的除法规定.2.逆用法则.3.最简二次根式的概念.16.3 二次根式的加减第1课时二次根式的加减1.使学生知道怎样将根式化为最简二次根式.2.使学生通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.自学指导:阅读教材第12页至13页的部分,完成以下问题.知识探究1.合并同类项:(1)2x+3x (2)2x2-3x2+5x2解:(1)5x;(2)4x2.这几道题你是运用什么知识做的?加减法则2.化简:(1(2(3解:(1;(2)(3)3.如何进行二次根式的加减计算?先化简,再合并.自学反馈计算:解:;;;活动1 小组讨论例1 计算:解:;.比较二次根式的加减与整式的加减,你能得出什么结论?例2计算:解:进行二次根式的加减运算时,必须先将其化简,是被开方数相同的二次根式才可合并. 活动2 跟踪训练1.下列计算是否正确?为什么?解:(1)不正确.此式结果为.(2)不正确.此式结果为5.(3)正确.2.计算:(6)a解:;;;(6)17a(7)0;. 3.教材第13页下框练习.计算结果中的二次根式必须是最简二次根式.活动3 课堂小结怎样进行二次根式的加减计算.第2课时 二次根式的混合运算1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.自学指导:阅读教材第14页的部分,完成以下问题.知识探究1.计算:(1)(2x+y)·zx (2)(2x 2y+3xy 2)÷xy解:(1)2x 2z+xyz ;(2)2x+3y.2.计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2解:(1)4x 2-9y 2;(2)8x 2+2.思考:如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以整式中的运算规律也适用于二次根式.3.计算:))·) 2解:(1)43;(3)-6;在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.活动1 小组讨论例1 计算:)÷解:;(2)2-32例2 计算:-5) )解:;(2)2.活动2 跟踪训练1.计算:)2)2解:+;;(4)a-b;(5)9;(6)4;在进行二次根式加减混合运算时能用乘法公式的,运用公式会使计算简便.2.已知+1,,求下列各式的值:(1)x2+2xy+y2(2)x2-y2解:(1)12;这类计算的简便方法是先变形,再代入求值.3.教材第14页下框练习.活动3 课堂小结1.如何计算二次根式加减混合运算.2.计算结果中的二次根式必须是最简二次根式.。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

人教版数学八年级下册16章《二次根式》单元整体教学设计

人教版数学八年级下册16章《二次根式》单元整体教学设计
3.互动评价:鼓励学生互相批改、评价,共同进步。
(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。

人教版八年级数学下册第16章二次根式(教案)一

人教版八年级数学下册第16章二次根式(教案)一
-二次根式的估算:估算二次根式的值需要学生具备一定的数感和近似计算能力,这对于一些学生来说是一个边长为\(\sqrt{4}\)的正方形和一个边长为\(\sqrt{-4}\)的虚构图形,通过比较正方形的实际存在来说明二次根式非负性的重要性。
-教学难点2举例:对比\(\sqrt{8}\)和\(\sqrt{6}\),解释为什么\(\sqrt{8}\)可以化简为\(2\sqrt{2}\),因为8是2的平方的倍数,而6则不是任何整数的平方的倍数,因此不能化简。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a(a≥0)的表达式,它是表示非负数平方根的一种数学表达方式,对于解决实际问题和某些数学问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在几何中的应用,例如计算非整数边长的正方形面积。
三、教学难点与重点
1.教学重点
-二次根式的概念:强调根号下的数必须是非负数,以及二次根式的书写规范。
-二次根式的性质:掌握二次根式的非负性、乘除法运算法则,如\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)。
-二次根式的化简:学会将二次根式化简至最简形式,如\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)。
3.增强学生数学建模素养,培养学生运用二次根式解决实际问题的能力,如对二次根式的估算,使学生能够将数学知识应用于生活实际。
4.培养学生直观想象能力,通过二次根式的图形表示,使学生能够形象地理解二次根式的概念及其运算规律,提高数学思维品质。
5.培养学生数学抽象素养,使学生能够从具体的二次根式实例中抽象出一般性规律,形成数学的一般概念。

人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计

人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计

人教版数学八年级下册16.1第2课时《二次根式的性质》教学设计一. 教材分析人教版数学八年级下册16.1第2课时《二次根式的性质》是初中数学的重要内容,主要让学生了解和掌握二次根式的性质。

教材通过引入实际问题,引导学生探究二次根式的性质,从而培养学生的抽象思维能力和解决问题的能力。

本节课的内容为后续学习二次根式的运算和应用打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。

同时,学生已经学习了二次根式的概念和简单的运算。

但学生在理解和运用二次根式的性质方面还存在一定的困难,因此,教师在教学过程中要注重引导学生理解和运用二次根式的性质。

三. 教学目标1.理解二次根式的性质,并能熟练运用。

2.培养学生的抽象思维能力和解决问题的能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.二次根式的性质及其运用。

2.引导学生理解和运用二次根式的性质。

五. 教学方法1.情境导入:通过实际问题引入二次根式的性质,激发学生的学习兴趣。

2.自主探究:引导学生独立思考,探究二次根式的性质。

3.合作交流:分组讨论,让学生在讨论中理解和掌握二次根式的性质。

4.巩固练习:设计有针对性的练习,让学生在实践中运用二次根式的性质。

5.总结提升:引导学生总结二次根式的性质,并展望后续学习。

六. 教学准备1.准备相关的实际问题,用于导入新课。

2.准备PPT,展示二次根式的性质及相关例题。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考二次根式的性质。

例如:一个正方形的对角线长度为8,求正方形的边长。

2.呈现(10分钟)教师通过PPT展示二次根式的性质,引导学生理解和掌握。

例如:二次根式√a的性质有:(1)√a2=a(a≥0);(2)√a⋅√b=√ab(a≥0,b≥0);(3)√a√b =√ab(a≥0,b>0)。

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《二次根式》一. 教材分析人教版数学八年级下册第16.1节《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。

本节内容为后续学习二次根式的应用和二次方程等知识打下基础。

教材通过引入二次根式,让学生体会数学与实际生活的联系,培养学生的数学应用能力。

二. 学情分析学生在学习本节内容前,已掌握了实数、有理数和无理数的基本知识,具备一定的代数运算能力。

但学生对二次根式这一概念的理解和应用尚存困难,因此,在教学过程中,要注重引导学生通过实例认识二次根式,感悟数学与生活的联系,激发学习兴趣。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算,提高学生的数学运算能力。

3.培养学生的数学思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.情境教学法:通过生活实例引入二次根式,让学生感受数学与生活的联系。

2.启发式教学法:引导学生探究二次根式的性质和运算方法,培养学生的独立思考能力。

3.小组合作学习:学生进行小组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示二次根式的概念、性质和运算方法。

2.练习题:准备适量练习题,巩固学生对二次根式的理解和应用。

七. 教学过程1.导入(5分钟)利用生活实例,如求物体长度、面积等,引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的定义,让学生通过实例理解二次根式。

3.操练(15分钟)让学生进行二次根式的基本运算,如加减乘除,巩固学生对二次根式的掌握。

4.巩固(10分钟)出示练习题,让学生独立解答,检查学生对二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的性质,如二次根式的乘除法、化简等,引导学生运用性质解决问题。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确二次根式的概念、性质和运算方法。

人教版八年级数学下册教案第十六章二次根式

人教版八年级数学下册教案第十六章二次根式

2013-2014年八年级下册教案设计第十六章二次根式备课人:黄亚明 黄靓 审核人:郝永昌16.1.1 二次根式教案序号:1 时间:2014年2月15日教学内容二次根式的概念及其运用 教学目标(a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1(a≥0)的式子叫做二次根式的概念;2(a ≥0)”解决具体问题.教学过程 一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知,都是一些正数的算术平方根.像这样一些正数的a ≥0)•”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少? 3.当a<0有意义吗?老师点评:例1.下列式子,哪些是二次根式,(x>0、、、(x ≥0,y•≥0). 分析方数是正数或0.1x1x y+x>0、x≥0,y≥0);、、.例2.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥三、巩固练习教材P5练习1、2、3.四、应用拓展例3.当x+在实数范围内有意义?分析:+在实数范围内有意义,中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1+在实数范围内有意义.例4(1)已知+5,求的值.(答案:2)(2)=0,求a2004+b2004的值.(答案:)五、归纳小结(学生活动,老师点评)本节课要掌握:1(a≥0”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P5 1,2,3,42.选用课时作业设计.1x1x y+131311x+11x+11x+23010xx+≥⎧⎨+≠⎩323211x+xy25教学反思: 第一课时作业设计 一、选择题1.下列式子中,是二次根式的是( ) A .BCD .x2.下列式子中,不是二次根式的是()A BCD .3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .D .以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________. 3.负数________平方根. 三、综合提高题 1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x +x 2在实数范围内有意义? 3. 4.有意义的未知数x 有( )个. A .0 B .1 C .2 D .无数5.已知a 、b =b+4,求a 、b 的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1(a ≥0) 2 3.没有三、1.设底面边长为x ,则0.2x 2=1,解答:1x152.依题意得:,∴当x>-且x ≠0时,+x 2在实数范围内没有意义.3. 4.B5.a=5,b=-42300x x +≥⎧⎨≠⎩320x x ⎧≥-⎪⎨⎪≠⎩32x 13备课人:黄亚明 黄靓 审核人:郝永昌16.1.2 二次根式(2)教案序号:2 时间:2014年2月16日 星期一 教学内容1(a ≥0)是一个非负数;2)2=a (a≥0). 教学目标(a ≥0)是一个非负数和()2=a (a ≥0),并利用它们进行计算和化简.(a ≥0)是一个非负数,用具体)2=a (a≥0);最后运用结论严谨解题. 教学重难点关键1(a ≥0)2=a (a ≥0)及其运用.2(a ≥0)是一个非负数;•用探究的方法导)2=a (a ≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a ≥0叫什么?当a<0有意义吗? 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)(a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______)2=_______2=______2=_______;2=______2=_______)2=_______.是4是一个平方等于4的)2=4.)2=22=92=32=)2=,)2=0,所以例1计算122.()2324.()2分析)2=a(a≥0)的结论解题.2 =,(2 =32)2=32·5=45,2=)2=.三、巩固练习计算下列各式的值:)2)22)2( 2四、应用拓展例2计算12(x≥0)223)24)2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4)2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+113722325622724=22-(2)∵a 2≥02=a 2(3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0=a 2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0)2=4x 2-12x+9例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3五、归纳小结 本节课应掌握:1(a ≥0)是一个非负数;2)2=a (a ≥0);反之:a=)2(a ≥0). 六、布置作业1.教材P5 5,6,7,82.选用课时作业设计.教学反思:第二课时作业设计 一、选择题1的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.()2=________.2_______数. 三、综合提高题 1.计算(12(2)-2(3)()2 (4)(2 (5)2.把下列非负数写成一个数的平方的形式: (1)5(2)3.4 (3)(4)x (x ≥0) 3=0,求xy 的值. 4.在实数范围内分解下列因式:(1)x 2-2(2)x 4-93x 2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(12=9(2)-2=-3 (3)()2=×6= (4)(2=9×=6 (5)-6 2.(1)5=)2 (2)3.4=2(3)=2 (4)x=)2(x ≥0)3. x y =34=81 4.(1)x 2-2=()()(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)()(12161214322316103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩备课人:黄亚明 黄靓 审核人:郝永昌16.1.3 二次根式(3)教案总序号:3 时间:2014年2月17日 教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题.教学重难点关键1a (a≥0).2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程一、复习引入老师口述并板书上两节课的重要内容;1(a ≥0)的式子叫做二次根式; 2(a ≥0)是一个非负数;3.)2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知(学生活动)填空:=_______=______;=________=_______. (老师点评):根据算术平方根的意义,我们可以得到:=0.01===0=. 1102337例1 化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0=-a,即使-a>a,a<0综上,a<0例3当x>2.五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P 5习题16.1 3、4、6、8. 2.选作课时作业设计.教学反思:第三课时作业设计 一、选择题1). A .0 B .C .4D .以上都不对 2.a ≥0比较它们的结果,下面四个选项中正确的是(). ABCD .二、填空题1.=________.2是一个正整数,则正整数m 的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下: 甲的解答为:原式=a+(1-a )=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995-a │=a ,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值) 3. 若-3≤x ≤2时,试化简│x-2│。

人教版数学八年级下册16.2二次根式的乘除(教案)

人教版数学八年级下册16.2二次根式的乘除(教案)
2.教学难点
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。

人教版八年级下册 第十六章 二次根式的概念及其性质教案

人教版八年级下册  第十六章 二次根式的概念及其性质教案
27
例 9 合并下列各式中的同类二次根式:
(1) 2 2 1 3 1 2 3 ; (2) 3 xy a xy b xy 23
变式练习:1.判断下列各组中的二次根式是不是同类二次根式:
A. 32, 50, 2 1 ; 18
B. 4x3,2 2x, 8x2 x 0;
C. 3x, 3a2x3 a 0, xy2 y 0
A.它是一个正数 C.是最简二次根式 21.下列二次根式中,最简二次根式是
B.是一个无理数 D.它的最小值是 3
() ()
A. 3a 2
B. 1 3
C. 153
能力提升
22.若 x y y2 4y 4 0 ,求 xy 的值。
D. 143
23. 当 a 取什么值时,代数式 2a 1 1取值最小,并求出这个最小值。
6.若 x 在实数范围内有意义,则 x 为( )。
A.正数 B.负数 C.非负数
D.非正数
7.化简下列各式
(1) 4x2 (x 0)
(2) x4
(3) (a 3)2 (a 3)
8. ( 4)2 =
9. a、b、c 为三角形的三条边,则 (a b c)2 b a c ________.
10. 已知 2<x<3,化简: (x 2)2 x 3
课后作业 【基础巩固】
1.下列各式中 15 、 3a 、 b2 1 、 a2 b2 、 m2 20 、 144 ,二次根式的个数是( ).
A.4 B.3 C.2 D.1
2.(- 3 )2=________.
3.使式子 x 4 有意义的条件是
① a 0(a 0) ②( a )2= a ( a ≥0);

a(a 0) a 2 |a| 0(a 0)

人教版八年级下册数学第十六章《二次根式》教案

人教版八年级下册数学第十六章《二次根式》教案

16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。

重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。

难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。

教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的概念与性质 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论:0(0)a a ≥≥,()2(0)a a a =≥,
2(0)a a a =≥,并利用它们进行计算和化简.
重点难点:
● 重点:0(0)a a ≥≥;
()2(0)a a a =≥,2(0)a a a =≥及其运用. ● 难点:利用
0(0)a a ≥≥,()2(0)a a a =≥,2
(0)a a a =≥解决具体问题. 学习策略: 对于本节的学习,要着重从理解二次根式的概念入手,逐步深入,处理好以下三个方面:
● 把握二次根式有意义的条件及其性质.
● 理解二次根式与算术平方根的联系与区别.
● 逐步感受数系的变化,注重知识体系的纵横联系,养成严密的数学思想.
二、学习与应用
(一)平方根的概念:如果2x a =,那么 平方根.
(二)算术平方根的概念:一个正数的 叫做这个数的算术平方根.
(三)平方根的性质:一个正数有 个平方根,且它们是互为 ;0的平方根是 ;在实数范围内,负数 平方根.
“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾——复习
学习新知识之前,看看你的知识贮备过关了吗?
知识点一:二次根式的概念
一般地,我们把形如 的式子叫做二次根式,“
”称
为 .
要点诠释:
二次根式的两个要素:①根指数为 ;②被开方数为 数. 知识点二:二次根式的性质
(一)............................(0)a a ≥≥;
(二)()2............................(0)a a =≥;
(三)............................2............................(0)||(0)a a a a ≥⎧==⎨
<⎩; (四)积的算术平方根的性质:............................(00)ab a b =≥≥,;
(五)商的算术平方根的性质:
............................(00)a a b b =≥>,. 要点诠释:
二次根式a (a≥0)的值是非负数,其性质()2(0)a a a =≥可以正用亦可逆用,
正用时去掉根号起到化简的作用;逆用时可以把一个非负数写成完全平方的形式,有
利于在实数范围内进行因式分解.
知识点三:代数式
形如5,a ,a+b ,ab ,s
t
,x 3,(0)a a ≥这些式子,用基本的 (基本运算包括加、减、乘、除、乘方、开方)把 连接起来
的式子,我们称这样的式子为代数式(algebraic expression).
类型一:二次根式的概念
知识要点——预习和课堂学习
认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听
课学习。

若有其它补充可填在右栏空白处。

经典例题-自主学习
认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反
三。

若有其它补充可填在右栏空白处。

例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x
、x (x>0)、0、42、2-、1
x y +、x y +(x≥0,y≥0).
思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正
数或0.
解:
例2.当x 是多少时,31x -在实数范围内有意义?
解:
总结升华:

举一反三:
【变式1】x 是怎样的实数时,下列各式实数范围内有意义?
(1)2(1)x +; (2)1
1x -;
解:
【变式2】当x 是多少时,23x ++1
1x +在实数范围内有意义?
思路点拨:要使23x ++11x +在实数范围内有意义,必须同时满足23x +中的
2x+3≥0和1
1x +中的x+1≠0.
解:
类型二:二次根式的性质
例3.计算:
(1)()27 (2)232⎛⎫
⎪ ⎪⎝⎭ (3)()235 (4)2
72⎛⎫
⎪ ⎪⎝⎭
(5)2()a b (b≥0) (6)22(35)(53)-
思路点拨:我们可以直接利用()2a a =(a≥0)的结论解题.
解:
举一反三:
【变式1】计算:
(1)()21(0)x x +≥; (2)()2
2a ;
(3)()2
221a a ++; (4)()2
24129x x -+.
思路点拨:
(1)因为x≥0,所以x+1>0;
(2)a 2≥0;
(3)a 2+2a+1=(a+1)2≥0;
(4)4x 2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2(0)a a a =≥的重要结论解题.
解:
例4.化简: (1)9; (2)2(4)-; (3)25; (4)2(3)- .
思路点拨:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用
2(0)a a a =≥去化简.
解:
☆例5.填空:当a≥0时,2a = ;当a<0时,2a = ,•并根据这一性
质回答下列问题.
(1)若2a =a ,则a 可以是什么数?
(2)若2a =-a ,则a 可以是什么数?
(3)2a >a ,则a 可以是什么数?
思路点拨:∵2a =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,
应变形,使“( )2”中的数是正数,因为,当a≤0时,2a =,那么-a≥0.
(1)根据结论求条件;
(2)根据第二个填空的分析,逆向思想;
(3)根据(1)、(2)可知2||a a =,而||a 要大于a ,只有什么时候才能保证呢?
解:
类型三:二次根式性质的应用
例6.当x=-4时,求二次根式12x -的值.
思路点拨:二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同.
解:
☆☆例7.(1)已知y=2x -+2x -+5,求x y
的值. (2)若1a ++1b -=0,求20082008a b +的值.
解:
☆☆例8.在实数范围内分解因式:
(1)x 2-5; (2)x 3-2x ;
解:
三、总结与测评
要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们
巩固学习效果,弥补知识缺漏,提高学习能力。

(一)如何判断一个式子是否是二次根式?
总结规律和方法——强化所学
认真回顾总结本部分内容的规律和方法,熟练掌握技能技巧。

(1)必须含有次根号,即根指数为;
(2)被开方数可以是数也可以是代数式但必须是的,否则在实数范围内.
(二)如何确定二次根式在实数范围内有意义?
要使二次根式在实数范围内有意义必须满足被开方数为数.要确定被开方数中所含字母的取值范围,可根据题意列出不等式,通过解不等式确定字母的取值范围.当二次根式作为分母时要注意分母不能为.。

相关文档
最新文档