初二数学上学期期末试卷
初二数学上期末试卷及解析

一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且a+b+c=10,a+c=8,则b的值为()A. 1B. 2C. 3D. 4解析:由a+c=8,得b=10-(a+c)=2。
故选B。
2. 若x²+4x+4=0,则x的值为()A. 2B. -2C. 1D. -1解析:由x²+4x+4=(x+2)²=0,得x=-2。
故选B。
3. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
故选A。
4. 若x=1+√2,y=1-√2,则x+y的值为()A. 0B. 2C. -2D. 4解析:由x=1+√2,y=1-√2,得x+y=2。
故选B。
5. 若m、n、p是等比数列的前三项,且m+n+p=12,n²=4,则m的值为()A. 2B. 3C. 4D. 6解析:由n²=4,得n=±2。
由m+n+p=12,得m+p=10。
若n=2,则m+p=10,得m=8,p=2。
若n=-2,则m+p=10,得m=6,p=4。
由等比数列的性质,得m/p=n/m,即m²=np。
若n=2,则m²=4,得m=±2。
若n=-2,则m²=-8,无实数解。
故选A。
6. 若x²-2x+1=0,则x的值为()A. 1B. -1C. 0D. 2解析:由x²-2x+1=(x-1)²=0,得x=1。
故选A。
7. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
八年级数学上册期末考试卷(含答案)

八年级数学上册期末考试卷(含答案)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在平面直角坐标系中,点P (2,﹣3)关于y 轴对称的点的坐标是( )A. (﹣2,﹣3)B. (﹣2,3)C. (2,3)D. (2,﹣3) 2. 下列四个函数中,y 随x 的增大而减小的是( )A. 3y x =B. 12y x =+C. 1y x =-+D. 12y x =- 3. 下列命题中,假命题是( )A. 直角三角形的两个锐角互余B. 等腰三角形的两底角相等C. 面积相等的两个三角形全等D. 有一个角是60︒的等腰三角形是等边三角形 4. 已知一次函数6y kx =+的图象经过(2,2)A -,则k 的值为( )A. 4-B. 1-C. 1D. 45. 下列条件中,不能确定ABC 的形状和大小的是( )A. 5AB =,6BC =,7AC =B. 5AB =,6BC =,45B ∠=︒C. 5AB =,4AC =,45B ∠=︒D. 5AB =,4AC =,90C ∠=︒6. 小芳有长度分别为4cm 和8cm 的两根木条,桌上有下列长度的四根木条,她要用其中的一根与原有的两根木条钉成一个首尾相接的三角形木框,则这根木条的长度为( )A. 3cmB. 5cmC. 12cmD. 17cm7. 如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,25DAC ∠=︒,则BAE ∠的度数为( )A. 55︒B. 75︒C. 105︒D. 115︒8. 如图,P 是ABC 的三条角平分线的交点,连接PA 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A. 1S <23S S +B. 1S =23S S +C. 1S >23S S +D. 无法确定1S 与(23S S +)的大小9. 若直线3y mx =-和2y x n =+相交于点(2,3)P -,则方程组32y mx y x n =+⎧⎨=-⎩的解为( ) A. 23x y =-⎧⎨=⎩ B. 23x y =-⎧⎨=-⎩ C. 23x y =⎧⎨=⎩D. 23x y =⎧⎨=-⎩ 10. 如图,PBC 的面积为215cm ,PB 为ABC ∠的角平分线,过点A 作AP BP ⊥于P ,则ABC 的面积为( )A. 225cmB. 230cmC. 232.5cmD. 2 35cm二、填空题:本大题共8个小题,每小题3分,共24分.请把答案填在答题卷的相应位置.11. 在函数y =x 的取值范围是_________.12. 如图,在平面直角坐标系中,AB 平行于x 轴,点A 坐标为(5,3),B 在A 点的左侧,AB a ,若B 点在第二象限,则a 的取值范围是_______.13. 如图,AD 垂直平分BC 于点D ,EF 垂直平分AB 于点F ,点E 在AC 上,若20BE CE +=,则AB =_______.14. 如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上,BE 平分NBA ∠,BE 的反向延长线与BAO ∠的平分线交于点C ,则ACB ∠的度数是_______.15. 已知一次函数132y x =-+,当34x -≤≤时,y 的最大值是_______. 16. 在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A ,(0,1)B ,则点C 的坐标为_______.17. 如图,AD 是等边ABC 底边上的中线,AC 的垂直平分线交AC 于点E ,交AD 于点F ,若9AD =,则DF 长为_______.18. 如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.三、解答题:本大题共6题,共46分.解答题应写出文字说明、演算步骤或证明过程.解答写在答题卷上的指定区域内.19. 如图,在ABC 中,AD 平分BAC ∠,AE BC ⊥.若40BAD ∠=︒,70C ∠=︒,求DAE ∠的度数.20. 在同一平面直角坐标系内画出一次函数14y x =-+和225y x =-的图象,根据图象回答下列问题: (1)求出方程组425y x y x =-+⎧⎨=-⎩的解; (2)当x 取何值时,12y y >?当x 取何值时,10y >且20y <?21. 如图,已知在ABC 中,AC BC AD ==,CDE B ∠=∠,求证:ADE BCD △≌△.22. 如图,在等腰ABC 和等腰ADE 中,AB AC =,AD AE =,BAC DAE ∠=∠且C E D 、、三点共线,作AM CD ⊥于M ,求证:BD DM CM +=.23. 如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.24. 已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题: (1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.参考答案与解析 一、1~5:ADCAC 6~10:BDADB二、11.32x ≥- 12. 5a >13.20 14.45︒ 15.9216.(3,2) 17.3 18.12a三、19.【详解】解:如图:AD 平分BAC ∠224080BAC BAD ∴∠=∠=⨯︒=︒70C ∠=︒30B ∴∠=︒AE BC ⊥于点E90AED ∴∠=︒903060BAE ∴∠=︒-︒=︒604020DAE BAE BAD ∴∠=∠-∠=︒-︒=︒.20.【详解】解:(1)如图所示:一次函数14y x =-+和225y x =-的图象相交于点(3,1)∴方程组425y x y x =-+⎧⎨=-⎩的解为31x y =⎧⎨=⎩; (2)由图可知,当3x <时,12y y >当 2.5x <时,10y >且20y <;21.【详解】证明:ADE CDE B BCD ∠+∠=∠+∠,CDE B ∠=∠,ADE BCD ∴∠=∠,AC BC =,A B ∴∠=∠,在ADE 和BCD △中A B AD BCADE BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ADE ∴≌BCD △(ASA) .22.【详解】证明:BAC DAE ∠=∠CAE BAD ∴∠=∠在△AEC 和△ADB 中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ADBBD CE ∴=在等腰ADE 中,AM DE ⊥DM EM ∴=BD DM CE EM CM ∴+=+=.23.【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =, (2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.24.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,60A AE AF ∠=︒=, ,∴AEF 为等边三角形,∴2AE AF EF x ===,60AEF ∠=︒,在BED 和BMD 中,BE BM EBD MBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴BED ≌BMD (SAS ),∴DM DE =,82BM BE x ==-,BED BMD ∠=∠,60DMN AEF ∴∠=∠=︒,在CND △和CFD △中,CN CFBM NCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴NCD ≌FCD (SAS ),∴ ,52DN DF CN CF x ===-,又DE DF =,∴DM DN DE x ===, 又60DMN ∠=︒,∴DMN 为等边三角形,∴MN DM x ==,∴(82)(52)7BC BM MN NC x x x =++=-++-=, 即2x =,∴24EF x ==.。
八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
初二上册数学期末考试试卷

初二上册数学期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.333...D. √42. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 90°D. 120°3. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x4. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 105. 一个数的平方根是它本身的数有几个?A. 0个C. 2个D. 3个6. 已知一个圆的半径为3,那么这个圆的面积是多少?A. 9πB. 18πC. 27πD. 36π7. 一个数的绝对值是它本身,这个数是正数还是负数?A. 正数B. 负数C. 非负数D. 非正数8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 109. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3 ≤ 710. 一个数的立方根是它本身,这个数是以下哪个?A. 0B. 1D. 8二、填空题(每题2分,共20分)11. 一个角的余角是45°,那么这个角的度数是________。
12. 一个数的平方是25,那么这个数是________或________。
13. 一个直角三角形的两个锐角的度数之和是________。
14. 一个数的绝对值是5,那么这个数是________或________。
15. 一个数的立方是-8,那么这个数是________。
16. 一个数的倒数是1/3,那么这个数是________。
17. 一个等腰三角形的底角是40°,那么顶角的度数是________。
18. 一个圆的周长是2πr,那么这个圆的半径是________。
八年级上学期期末考试数学试卷(含答案)

八年级上学期期末考试数学试卷(含答案)(满分:120分考试时长:120分钟)一、选择题(本大题共10小题,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0B.a>﹣3C.﹣3<a<0D.a<﹣33.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>24.关于一次函数y=﹣2x+b(b为常数),下列说法正确的是()A.y随x的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=3﹣2x相交于第四象限内一点5.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=36.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>27.在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C =90°中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个8.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°9.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使P A+PB 的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)10.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE =∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4二、填空题(本大题共6小题,共24分)11.函数l1:y1=﹣2x+4与l2:y2=﹣x﹣1的图象如图所示,l1交x轴于点A,现将直线l2平移使得其经过点A,则l2经过平移后的直线与y轴的交点坐标为.12.如图,已知,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB=°.13.如图,△ABC中,DE是AB的垂直平分线,交BC于D,交AB于E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是cm.14.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣2)﹣b>0的解集为.15.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是.16.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f,使得数对(x,y)和数z是对应的,此时把这种关系记作:f(x,y)=z.对于任意的数m,n(m>n),对应关系f由如表给出:(x,y)(n,n)(m,n)(n,m)f(x,y)n m﹣n m+n如:f(1,2)=2+1=3,f(2,1)=2﹣1=1,f(﹣1,﹣1)=﹣1,则使等式f(1+2x,3x)=2成立的x的值是.三、解答题(本大题共7小题,共66分)17.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.18.△ABC的三个顶点的坐标分别为A(0,﹣2),B(4,﹣3),C(2,1).(1)在所给的平面直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出B′的坐标.19.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数.21.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨(x>14),应交水费为y元,请写出y与x之间的函数关系式;22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析1-5.A CCBB 6-10.B CCDC11.(0,1)12.110 13.1414.x<4 15.9 16.﹣117.解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.18.解:(1)如图所示,△ABC即为所求.(2)如图所示,△A′B′C′即为所求,点B′的坐标为(﹣4,﹣3).19.证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠DFE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.20.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°.21.解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:(1)由图可知,A市和B市之间的路程是360km.(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇.(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
八年级上学期期末数学试卷 (含解析)

八年级(上)期末数学试卷一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a94.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.105.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±206.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°二、填空题(共8小题).9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).11.(3分)若分式的值为0,则x=.12.(3分)分解因式:xy4﹣6xy3+9xy2=.13.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.参考答案一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9解:a2•a3=a5,故选:A.4.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.10解:由题意得,a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.5.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±20解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选:D.6.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.解:原式=÷=•=,故选:A.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.二、填空题(每小题3分,共24分)9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为1×10﹣6.解:0.00 000 1=1×10﹣6,故答案为:1×10﹣6.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).11.(3分)若分式的值为0,则x=﹣1.解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.12.(3分)分解因式:xy4﹣6xy3+9xy2=xy2(y﹣3)2.解:原式=xy2(y2﹣6y+9)=xy2(y﹣3)2,故答案为:xy2(y﹣3)213.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为4.解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PA=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=8.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.18.(6分)解不等式组:,并写出它的所有整数解.解:解不等式>﹣1,得:x>﹣2,解不等式2x+1≥5(x﹣1),得:x≤2,所以不等式组的解集为﹣2<x≤2,则不等式组的整数解为﹣1、0、1、2.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.解:原式=•﹣=﹣=,∵x2+2x﹣8=0,∴x2+2x=8,∴原式==.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.解:(1)∵∠ACB=90°,BE⊥CE,∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵AC=BC,∴△ACD≌△CBE;(2)∵△ACD≌△CBE,∴AD=CE,CD=BE,∵AD=12,DE=7,∴BE=CD=CE﹣DE=12﹣7=5.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.解:(1)如图所示:(2)如图所示:(3)B1(2,1),S△A1B1C1=3×4﹣×4×2﹣×1×2﹣×3×2,=12﹣4﹣1﹣3,=4.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(a+b)2=(a﹣b)2+4ab;∵a+b=7,ab=5,∴(a﹣b)2=(a+b)2﹣4ab=49﹣20=29;答:(a﹣b)2的值为29.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。
八年级(上学期)期末数学试卷(含答案解析)

八年级(上学期)期末数学试卷(含答案解析)(时间120分钟,满分150分)题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.下列等式正确的是()A. x3•x-1=x-3B. x3•x-1=x2C. x3÷x-1=x2D. x3÷x-1=x-32.下列长度的三条线段能组成三角形的是()A. 3,4,7B. 3,4,8C. 3,4,5D. 3,3,73.在平面直角坐标系xOy中,若△ABC在第一象限,则△ABC关于x轴对称的图形所在的位置是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若分式有意义,则x应满足的条件是()A. x≠0B. x≠-2C. x≥-2D. x≤-25.如图,在Rt△ABC中,∠ACB=90°,分别以其三边向外作正方形,过点C作CK⊥AB交ID于点K,延长EB交AG于点L,若点L是AG的中点,△ABC的面积为20,则CK的值为()A. 4B. 5C. 2D. 46.某同学把一块三角形的玻璃打碎成三块(如图所示),现要到玻璃店其配一块完全一样的玻璃,应带第()块去配.A. ①B. ②C. ③D. ①②③都不可以7.运用完全平方公式(a-b)2=a2-2ab+b2计算(x-)2,则公式中的2ab是()A. xB. -xC. xD. 2x8.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A. B. C. D.9.如图,你能根据面积关系得到的数学公式是()A. a2-b2=(a+b)(a-b)B. (a+b)2=a2+2ab+b2C. (a-b)2=a2-2ab+b2D. a(a+b)=a2+ab10.如图,在△ABC中,∠ACB=90°,作CD⊥AB于点D,以AB为边作矩形ABEF,使得AF=AD,延长CD,交EF于点G,作AN⊥AC交GF于点N,作MN⊥AN交CB的延长线于点M,MN分别交BE,DG于点H,P,若NP=HP,NF=2,则四边形ABMN的面积为()A. 8B. 9C. 10D. 11二、填空题(本大题共6小题,共24.0分)11.若a+b=3,则a2-b2+6b=______;若2x+5y-3=0,则4x•32y=______.12.分解因式:m3-2m2+m=______.13.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.14.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.15.如图,等边△ABC中,AD是BC边上的中线,且AD=4,E,P分别是AC,AD上的动点,则CP+EP的最小值等于______.16.如图,在Rt△ABC中,AB=AC,∠CBD=∠ABD,DE⊥BC,BC=10,则△DEC的周长= ______ .三、解答题(本大题共9小题,共86.0分)17.化简:(1+)(1-)+-2+×-()2.18.先化简,再求值:(x-2-),其中x=.19.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.20.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)21.如图,△ABC的周长为20,其中AB=8,(1)用直尺和圆规作AB的垂直平分线DE交AC于点E,垂足为D,连接EB;(保留作图痕迹,不要求写画法)(2)在(1)作出AB的垂直平分线DE后,求△CBE的周长.22.如图,在△ABC中,AC=BC=1,∠C=90°,E、F是AB上的动点,且∠ECF=45°,分别过E、F作BC、AC的垂线,垂足分别为H、G,两垂线交于点M.(1)当点E与点B重合时,请直接写出MH与AC的数量关系;(2)探索AF、EF、BE之间的数量关系,并证明你的结论;(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,请画出坐标系并利用(2)中的结论证明MH•MG=.23.元旦节前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价2元促销,降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍.(1)试问:降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,玫瑰的进价是5元/枝.试问;至少需要购进多少枝玫瑰?24.已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x2-(a+b+cd)x+(a+b)2009+(-cd)2008的值.25.如图,在等腰△ABC中,AB=AC,点D为直线BC上一点,连接AD,以AD为腰在AD的右侧作等腰△ADE,AD=AE,∠BAC=∠DAE=a,连接CE.(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE;(2)当a=60°,①如图2,求证:CE∥AB;②探究线段CE、AB、CD之间的数量关系,请直接写出结论.答案和解析1.【答案】B【解析】解:A.x3•x-1=x3-1=x2,故本选项不合题意;B.x3•x-1=x3-1=x2,故本选项合题意;C.x3÷x-1=x3-(-1)=x4,故本选项不合题意;D.x3÷x-1=x3-(-1)=x4,故本选项不符合题意.故选:B.分别根据同底数幂的乘法除法法则,根据法则逐一判断即可.本题主要考查了同底数幂的乘法除法法则,熟记相关运算法则是解答本题的关键.2.【答案】C【解析】解:根据三角形的三边关系,得,A、3+4=7,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+5>5,能组成三角形,符合题意;D、3+3<7,不能组成三角形,不符合题意.故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】D【解析】解:∵△ABC在第一象限,∴△ABC关于x轴对称的图形在第四象限,故选:D.根据关于x轴对称的点的横坐标相等,纵坐标互为相反数求解可得.本题主要考查关于x、y轴对称点的坐标,解题的关键是掌握点P(x,y)关于x轴的对称点P′的坐标是(x,-y),关于y轴的对称点P′的坐标是(-x,y).4.【答案】B【解析】解:由题意得:x+2≠0,解得:x≠-2,故选:B.根据分式有意义的条件即可求解.本题考查的是分式有意义的条件的内容,根据分式有意义,分母不为零来求解.5.【答案】B【解析】解:由题意可知,AC=IC,BC=DC,∠ACB=∠ICD=90°,∴△ACB≌△ICD(SAS),∴∠CAB=∠CIK,∠ABC=∠IDC,延长KC交AB于点P,则KP⊥AB,在Rt△ABC中,∠ACB=90°,∠CAB+∠CBA=90°,在Rt△ACP中,∠APC=90°,∠ACP+∠CAB=90°,∴∠ACP=∠CBA=∠IDC,∵∠ACP=∠KCD,∴∠KCD=∠IDC,∴KC=KD,同理可知,IK=KC,∴KD=IK=KC,∴KC=ID=AB,∵AD∥EL,∴△ACB∽△BAL,∴AC:BC=BA:AL=2:1,∵△ABC的面积为20,∴AC•BC=40,∴BC=2,AC=4,∴AB=10,∴CK=5.故选:B.由题意可知,AC=IC,BC=DC,∠ACB=∠ICD=90°,所以△ACB≌△ICD(SAS),所以∠CAB=∠CIK,∠ABC=∠IDC,延长KC交AB于点P,则KP⊥AB,易证KD=IK=KC,所以KC=ID=AB,因为AD∥EL,所以△ACB∽BAL,则AC:BC=BA:AL=2:1,又△ABC的面积为20,所以AC•BC=40,则可得BC=2,AC=4,所以AB=10,则CK=5.本题利用正方形性质,平行线的性质和三角形相似等,关键是根据三角形相似找出对应边成比例.6.【答案】C【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.【答案】B【解析】解:(x-)2=x2-2x×+=x2-x+,所以公式中的2ab是-x.故选:B.利用完全平方公式计算(x-)2即可得到答案.本题考查了完全平方公式,属于基础题,熟记公式(a-b)2=a2-2ab+b2即可解题.8.【答案】D【解析】解:∵甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,∴两队共同工作了半个月完成的工程量=(+)=+,故选:D.由题意甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,求出两队共同工作了半个月完成的工程量即可.本题考查了列代数式,熟知甲队和乙队的工作效率是解题的关键.9.【答案】C【解析】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:C.根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.10.【答案】C【解析】解:∵CD⊥AB,∠F=90°,∴∠ADC=∠F=90°,∵AN⊥AC,∠DAF=90°,∴∠FAN+∠DAN=∠DAC+∠DAN=90°,∴∠FAN=∠DAC.在△ADC和△AFN中,,∴△ADC≌△AFN(ASA),∴CD=FN=2,AC=AN.∵AN⊥AC,MN⊥AN,∴∠ACB=∠CAN=∠ANM=90°,∴四边形ACMN是矩形,∴四边形ACMN是正方形,∵∠CDB=∠DBE=90°,∴CG∥BE,又∵NP=PH,∴NG=GE,设NG=GE=x,则FG=2+x=AD,DB=GE=x,∵Rt△ACB中,CD⊥AB,∴△ADC∽△CDB,∴.∴CD2=AD×DB,∴22=(2+x)x,即x2+2x=4.四边形ABMN的面积=S正方形ACMN-S△ABC=AC2-=(AD2+CD2)-=(2+x)2+22-=x2+2x+6=4+6=10,故选:C.依据条件可判定△ADC≌△AFN(ASA),即可得到CD=FN=2,AC=AN,再根据四边形ACMN是矩形,即可得到四边形ACMN是正方形;设NG=GE=x,则FG=2+x=AD,DB=GE=x,根据△ADC∽△CDB,可得CD2=AD×DB,即可得出x2+2x=4,再根据四边形ABMN的面积=S正方形ACMN-S△ABC进行计算,即可得出结论.本题主要考查了矩形的性质,正方形的判定与性质以及相似三角形、全等三角形的综合运用,解决问题的关键是先判定四边形ACMN是正方形,四边形ABMN的面积=S正方形ACMN-S△ABC,然后利用整体代入方法求解.11.【答案】9 8【解析】解:∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3(a+b)=3×3=9;∵2x+5y-3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:9,8.把a2-b2+6b写成(a+b)(a-b)+6b=3(a-b)+6b=3(a+b),再把a+b=3代入即可求解;4x•32y=22x•25y=22x+5y,再把2x+5y=3代入即可求解.本题主要考查了平方差公式,同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.12.【答案】m(m-1)2【解析】解:m3-2m2+m=m(m2-2m+1)=m(m-1)2.故答案为m(m-1)2.先提取公因式m,再根据完全平方公式进行二次分解.完全平方公式:a2-2ab+b2=(a-b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.【答案】1【解析】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5-4=1,故答案为:1.根据勾股定理求出AB,根据全等得出BE=AC=4,即可求出答案.本题考查了全等三角形的性质和勾股定理的应用,能求出BE的长是解此题的关键,全等三角形的对应角相等,对应边相等.14.【答案】40【解析】解:∵AB=BC,∴∠ACB=∠BAC∵∠ACD=110°∴∠ACB=∠BAC=70°∴∠B=∠40°,∵AE∥BD,∴∠EAB=40°,故答案为40.首先利用∠ACD=110°求得∠ACB与∠BAC的度数,然后利用三角形内角和定理求得∠B的度数,然后利用平行线的性质求得结论即可.本题考查了等腰三角形的性质及平行线的性质,题目相对比较简单,属于基础题.15.【答案】4【解析】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=4,即EP+CP的最小值为4,故答案为:4.要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.16.【答案】10【解析】解:∵∠CBD=∠ABD,DE⊥BC,∠A=90°,∴△ABD≌△EBD,∴AB=BE,AD=DE.又∵AB=AC,∴CD+DE=CD+AD=AC=AB=BE,∴△DEC的周长=CD+DE+CE=BE+CE=BC=10.∴△DEC的周长=10.故填10.从已知条件开始思考,利用角的平分线上的点到角的两边的距离相等进行相等线段的转移,可得答案.本题考查了角平分线的性质;解题时主要利用了角的平分线上的点到角的两边的距离相等证明三角形全等,然后利用和差关系求值.17.【答案】解:原式=1-2+5-8+6-3×2=-1-3+6-6=-1-3.【解析】先利用平方差公式、二次根式的性质计算、化简,再计算加减即可.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则、平方差公式.18.【答案】解:原式=()÷=()÷=÷==2x-4当x=时,原式=【解析】先化简分式,然后将x=代入求值即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.【答案】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,,∴△ABC≌△EDB(SAS),∴∠A=∠E.【解析】直接利用平行线的性质结合全等三角形的判定方法得出答案.此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.20.【答案】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【解析】本题考查的是作图-基本作图,熟知角平分线的作法和性质是解答此题的关键.根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质及对顶角得出可知∠APQ=∠AQP,据此可得出结论.21.【答案】解:(1)如图,BE为所作;(2)∵DE是AB的垂直平分线,∴EA=EB,∴EB+EC=EA+EC=AC,∵△ABC的周长为20,∴AC+BC=20-AB=20-8=12,∴△CBE的周长=BE+EC+BC=AE+EC+BC=AC+BC=12.【解析】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).(1)利用基本作图作AB的垂直平分线;(2)根据垂直平分线的性质得到EA=EB,则EB+EC=AC,然后利用△ABC的周长为20得到AC+BC=12,从而得到△CBE的周长.22.【答案】解:(1)如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,即MH=AC.(2)AF、EF、BE之间的数量关系是EF2=AF2+BE2,证明如下:如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2;(3)如图,以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,设M(a,b),∵OA=OB=1,∴∠GAF=∠AFG=∠MFE=∠HEB=∠HBE=45°,∴△AGF和△EFM和△BEH都是等腰直角三角形,∴AG=GF=1-b,BH=EH=1-a,FM=ME=a+b-1,∴AF2=2(1-b)2,EF2=2(a+b-1)2,BE2=2(1-a)2,由(2)可知EF2=AF2+BE2,∴2(a+b-1)2=2(1-b)2+2(1-a)2,∴2ab=1,∴ab=,即MH•MG=.【解析】(1)当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而得出结论;(2)根据SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可得出答案;(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,设M(a,b),可得出AG=GF=1-b,BH=EH=1-a,FM=ME=a+b-1,由(2)的结论可得出a,b的等式,整理即可得出结论.此题是三角形综合题,考查了等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,坐标与图形的性质等知识,熟练掌握等腰直角三角形的性质及全等三角形的判定与性质是解题的关键.23.【答案】解:(1)设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,根据题意得:=×1.25,解得:x=8,经检验,x=8是原方程的解.答:降价后每枝玫瑰的售价是8元.(2)设购进玫瑰y枝,则购进康乃馨(180-y)枝,根据题意得:5y+6(180-y)≤1000,解得:y≥80.答:至少购进玫瑰80枝.【解析】(1)设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,根据数量=总价÷单价结合降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设购进玫瑰y枝,则购进康乃馨(180-y)枝,根据总价=单价×数量结合总价不多于1000元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵x的平方等于4,∴x=±2,∴x2-(a+b+cd)x+(a+b)2009+(-cd)2008=22-(0+1)×2+02009+(-1)2008=4-2+0+1=3,x2-(a+b+cd)x+(a+b)2009+(-cd)2008=(-2)2-(0+1)×(-2)+02009+(-1)2008=4+2+1=7,综上所述,代数式的值为3或7.【解析】根据相反数的定义求出a+b,根据倒数的定义求出cd的值,再根据有理数的乘方求出x,然后代入代数式进行计算即可得解.本题考查了代数式求值,相反数的定义,倒数的定义,是基础题,熟记概念与性质是解题的关键.25.【答案】证明:(1)∵∠BAC=∠DAE=a,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)①∵∠BAC=∠DAE=a,∴∠BAD=∠CAE,由(1)同理可证△BAD≌△CAE,∴∠ABD=∠ACE,∵α=60°,AB=AC,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ABC+∠BCE=60°+120°=180°,∴CE∥AB;②当点D在BC延长线上时,∵△BAD≌△CAE,∴CE=BD=BC+CD=AB+CD;当点D在BC上时,∵△BAD≌△CAE,∴CE=BD=BC-CD=AB-CD;当点D在线段CB的延长线上时,∵△BAD≌△CAE,∴CE=BD=CD-AB.综上所述:当点D在BC延长线上时,CE=AB+CD;当点D在BC上时,CE=AB-CD;当点D在线段CB的延长线上时,CE=CD-AB.【解析】(1)利用SAS即可证明△BAD≌△CAE;(2)①当α=60°,AB=AC,得△ABC是等边三角形,由(1)同理可证△BAD≌△CAE,可得∠ABC+∠BCE=60°+120°=180°,即可证明结论;②分三种情形:当点D在BC延长线上时,当点D在BC上时,或当点D在线段CB的延长线上时,分别根据全等三角形的性质得出CE=BD,从而解决问题.本题主要考查了全等三角形的判定与性质,等边三角形的判定与性质,平行线的判定等知识,证明△BAD≌△CAE是解题的关键,注意分三种情况.。
八年级(上学期)期末数学试卷(含答案解析)

八年级(上学期)期末数学试卷(含答案解析)(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.以下列各数为边长,能构成直角三角形的是()A. 1,2,2B. 1,,2C. 4,5,6D. 1,1,2.在如图所示的直角坐标系中,M,N的坐标分别为()A. M(2,-1),N(2,1)B. M(2,-1),N(1,2)C. M(-1,2),N(1,2)D. M(-1,2),N(2,1)3.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A. 甲.B. 乙C. 丙D. 丁4.若a<<b,且a与b为连续整数,则a与b的值分别为()A. 1;2B. 2;3C. 3;4D. 4;55.如图,直线a∥b,下列各角中与∠1相等的是()A. ∠2B. ∠3C. ∠4D. ∠56.估计3的运算结果应在()A. 14到15之间B. 15到16之间C. 16到17之间D. 17到18之间7.下列函数中经过第一象限的是()A. y=-2xB. y=-2x-1C.D. y=x2+28.下列命题错误的个数有()①实数与数轴上的点一一对应;②无限小数就是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个9.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A. 90B. 100C. 110D. 12110.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题共5小题,共15.0分)11.当a= ______ 时,代数式+1取值最小.12.将直线y=3x向上平移3个单位,得到直线______.13.如图,直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为______.14.点A(-2a,a-1)在x轴上,则A点的坐标是______,A点关于y轴的对称点的坐标是______.15.图(1)中的梯形符合条件时,可以经过旋转和翻折形成图案(2).三、解答题(本大题共7小题,共55.0分)16..17.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a= ______ ,b= ______ ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为______ ;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.18.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?19.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?20.在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出对称点A1、B1、C1的坐标;(3)在y轴上找一点Q,使QA+QB最小.21.(1)如图,在△ABC中,∠A=40°,∠B=70°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(2)计算:(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y22.如图:一次函数y=-x+3的图象与坐标轴交于A、B两点,点P是函数y=-x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.答案和解析1.【答案】B【解析】解:A、12+22≠22,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()2=22,符合勾股定理的逆定理,能构成直角三角形;C、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12≠()2,不符合勾股定理的逆定理,不能构成直角三角形.故选:B.根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.此题考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.2.【答案】D【解析】解:点M在第二象限,那么横坐标小于0,是-1,纵坐标大于0,是2,即M点的坐标为(-1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.先判断象限内点的坐标的符号特点,进而找相应坐标.本题主要考查了平面直角坐标系中各个象限内点的符号,注意先找横坐标,再找纵坐标.3.【答案】A【解析】解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.【答案】B【解析】解:∵4<7<9,∴2<<3,∵a<<b,且a与b是两个连续整数,∴a=2,b=3.故选:B.根据4<7<9,结合a<<b,且a与b为连续整数,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<<3.5.【答案】C【解析】解:∵a∥b,∴∠2=∠3,又∵∠2+∠1=180°,∠3+∠4=180°,∴∠1=∠4,故选:C.依据平行线的性质,即可得到∠2=∠3,再根据∠2+∠1=180°,∠3+∠4=180°,即可得到∠1=∠4.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.【答案】C【解析】解:3=12+3,∵,∴,∴,即3的运算结果应在16到17之间.故选:C.先进行二次根式的运算,然后再进行估算.本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系、正(反)比例函数的性质以及二次函数的性质,逐一分析四个选项中函数图象经过的象限是解题的关键.A、由k=-2,可得出正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、由k=-2、b=-1,可得出一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、由k=-2,可得出反比例函数y=-的图象在第二、四象限,C不符合题意;D、由a=1、b=0、c=2,可得出二次函数y=x2+2的图象经过第一、二象限,D符合题意.此题得解.【解答】解:A、∵k=-2,∴正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、∵k=-2,b=-1,∴一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、∵k=-2,∴反比例函数y=-的图象在第二、四象限,C不符合题意;D、∵a=1,b=0,c=2,∴二次函数y=x2+2的图象经过第一、二象限,D符合题意.故选:D.8.【答案】B【解析】解:①实数与数轴上的点一一对应,正确,不符合题意;②无限不循环小数就是无理数,故原命题错误,符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,符合题意.错误的有2个,故选:B.利用实数的性质、无理数的定义、三角形的外角的性质及平行线的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解实数的性质、无理数的定义、三角形的外角的性质及平行线的性质,难度不大.9.【答案】C【解析】【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.本题考查了勾股定理的应用,作出辅助线构造出正方形是解题的关键.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,OL=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.10.【答案】B【解析】解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】-【解析】解:∵代数式+1取值最小时,则取到最小,∴2a+1=0,解得:a=-.故答案为:-.根据二次根式的性质代数式+1取值最小,则取到最小,进而求出即可.此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.12.【答案】y=3x+3【解析】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函图象与平移变换,正确记忆平移规律“左加右减,上加下减”是解题关键.13.【答案】【解析】解:∵直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为,故答案为:.利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.【答案】(-2,0)(2,0)【解析】解:∵点A(-2a,a-1)在x轴上,∴a-1=0,解得:a=1,∴A(-2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(-2,0)、(2,0).根据x轴上的坐标特点:纵坐标为0可得a-1=0,解出a的值,进而可得A点坐标,再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了坐标轴上点的坐标特点,以及关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.【答案】底角为60°且上底与两腰相等的等腰梯形【解析】试题分析:利用等腰梯形的性质求解.从图得到,梯形的上底与两腰相等,上底角为360°÷3=120°,∴下底角=60°,∴梯形符合底角为60°且上底与两腰相等的等腰梯形条件时,可以经过旋转和翻折形成图案(2).16.【答案】解:原式=-2+2-2-2(-1)×1=-2+2-2-2+2-2.【解析】分别进行负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等运算,然后合并.本题考查了二次根式的混合运算,涉及了负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等知识掌握运算法则是解答本题关键.17.【答案】解:(1)36;9;(2)90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【解析】【分析】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)用样本估计总体,利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180-18-45-72-36=9(人).故答案是36;9;(2)书画社团”所对应的扇形圆心角度数是360°×=90°.故答案为90°;(3)见答案.18.【答案】解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.【解析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40-30)+60×(50-35)=1300(元).答:商场共计获利1300元.【解析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.本题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.20.【答案】解:(1)如图,△A1B1C1即为所求;(2)由图可得,A1(-1,2)B1(-3,1)C1(2,-1);(3)如图,Q点就是所求的点.【解析】(1)根据轴对称的性质,作出△ABC关于y轴的对称△A1B1C1;(2)根据△A1B1C1各顶点的位置,写出其坐标即可;(3)连接A1B,交y轴于点Q,则QA+QB最小.本题主要考查了轴对称的性质以及轴对称变换的运用,解决问题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵∠A=40°,∠B=70°,∴∠ACB=180°-40°-70°=70°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×70°=35°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°-90°-70°=20°,∴∠DCE=∠BCE-∠BCD=35°-20°=15°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°-90°-15°=75°;(2)(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y=x2•x3•(-8y3)+4x2y2•(-x3)•y=-8x5y3-4x5y3=-12x5y3.【解析】(1)由DF⊥CE可知,要求∠CDF的度数,只需求出∠FCD,只需求出∠BCE和∠BCD即可;(2)根据整式的混合运算的法则计算即可.本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质,还考查了整式的混合运算.22.【答案】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得∴当x0=2时,△OPM的面积有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴∴,将代入代入中,得∴P1(,);②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).【解析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。
八年级(上学期)期末数学试卷(含答案)

八年级(上学期)期末数学试卷(含答案)(时间90分钟,满分120分)一、选择题(本大题共16小题,共42.0分)1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2.分式在实数范围内有意义,则实数x的取值范围是()A. x>4B. x>-4C. x≠4D. x≠-43.小明作△ABC中AC边上的高线,下列三角板的摆放位置正确的是()A. B.C. D.4.下列各组线段中,能组成三角形的是()A. a=2,b=3,c=8B. a=7,b=6,c=13C. a=4,b=5,c=6D. a=2,b=1,c=15.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形6.下列运算正确的是()A. a2+a2=a4B. a3•a3=a9C. (ab)2=a2b2D. (a2)3=a57.下列说法正确的有()①平分弦的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.③一条弧所对的圆周角等于它所对的圆心角的一半.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.A. 1个B. 2个C. 3个D. 4个8.如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么x的值是()A. 30°B. 45°C. 50°D. 85°9.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BAC;④∠PEC=∠PEB,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有()A. 1个B. 2个C. 3个D. 4个11.等腰三角形的一腰长为6cm,底边长为6cm,则其底角为()A. 120°B. 90°C. 60°D. 30°12.若关于x的分式方程=无解,则m的值为()A. 2B. -2C. 3D. -313.如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A. ASAB. SSSC. SASD. AAS14.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()A. =B. =C. =D. =15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列结论正确的个数有()①EF=BE+CF;②设OD=m,AE+AF=n,则S△AEF=mn;③∠BOC=90°+∠A;④点O到∠BAC两边的距离相等;A. 1个B. 2个C. 3个D. 4个16.如图,在△ABC中,BC∥x轴,点A在x轴上,AB=AC=5,点M、N分别是线段BC与BA上两点(与三角形顶点不重合),当△BMN≌△ACO,时,反比例函数(k>0,x>0)的图象经过点M,则k的值是()A. 2B. 3C. 4D. 6二、填空题(本大题共4小题,共12.0分)17.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示______ m.18.等腰三角形一个角为50°,则此等腰三角形顶角为______.19.△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为______ ,△ABC的面积为______ .20.已知103=1000,113=1331,123=1728,133=2197,143=2744,153=3375,…,203=8000,213=9261,223=10648,233=12167,243=13824,253=15625,…,则______3=110592.三、解答题(本大题共6小题,共66.0分)21.计算:(1)(-1)2020+π0-2-2;(2)x5•x3-(x2)4+x8÷x.22.(1)计算:;(2)先化简,再求值:,其中3x2+3x-2=0.23.如图1所示,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN.(2)当MN=2BN时,求α的度数.(3)如图2,过P点作PQ⊥AB交AC于Q,连接BQ,判断△ABQ的形状并证明.24.作图并回答问题:(1)如图,在平面直角坐标系中,将坐标分别是(0,3),(1,0),(2,2),(3,0),(4,3)的五个点用线段依次连接起来得到图案①,请画出图案①;(2)若将上述各点的坐标进行如下变化:横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来得到图案②,请画出图案②;(3)图案②与图案①的位置关系是______;(4)如果某图案与图案①关于x轴对称,则由图案①得到该图案,图案①的上述五个点的坐标进行的变化是:______.25.学习“分式方程应用”时,老师出示例题:为防控“新型冠状病毒”,某药店分别用400元、600元购进两批单价相同的消毒液,第二批消毒液的数量比第一批多20瓶,请问药店第一批消毒液购进了多少瓶?唐唐和瑶瑶根据自己的理解分别列出了如图所示的两个方程.根据以上信息,解答下列问题:(1)唐唐同学所列方程中的x表示______,瑶瑶同学所列方程中的y表示______;(2)两个方程中任选一个,写出它的等量关系;(3)利用(2)中你所选择的方程,解答老师的例题.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF 与射线CA相交于点Q.(1)如图1,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图2,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当.BP=a,CQ=时,P,Q两点间的距离(用含a的代数式表示).答案和解析1.【答案】C【解析】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:分式在实数范围内有意义,故x+4≠0,解得:x≠-4.故选:D.直接利用分式有意义的条件得出答案.此题主要考查了分式有意义的条件,正确把握相关性质是解题关键.3.【答案】D【解析】解:作△ABC中AC边上的高线,即过B点作AC的垂线,垂线段为AC边上的高.故选:D.根据三角形高的定义进行判断.本题考查了三角形的高:三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.4.【答案】C【解析】解:A、2+3<8,不能构成三角形,故此选项不合题意;B、6+7=13,不能构成三角形,故此选项不合题意;C、5+4>6,能构成三角形,故此选项符合题意;D、1+1=2,不能构成三角形,故此选项不合题意.故选:C.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.5.【答案】C【解析】【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°,此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求多边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.6.【答案】C【解析】解:A.a2+a2=2a2,故本选项不合题意;B.a3•a3=a6,故本选项不合题意;C.(ab)2=a2b2,故本选项符合题意;D.(a2)3=a6,故本选项不合题意.故选:C.选项A根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项B根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘.本题考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,掌握幂的运算法则是解答本题的关键.7.【答案】B【解析】解:①平分弦的直径垂直于弦,错误,应该是平分弦(此弦非直径)的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.正确.③一条弧所对的圆周角等于它所对的圆心角的一半.正确.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,错误,弦所对的圆周角有两个,这两个角也可能互补.故正确的有②③.故选:B.根据垂径定理,三角形的外角的定义,圆周角定理一一判断即可.本题考查垂径定理,圆周角定理,三角形的外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】解:∵图中的两个三角形是全等三角形,∴第二个三角形中x是边长为3对应的角的度数,∵180°-85°-45°=50°,∴第一个三角形中边长为3对应的角的度数是50°,∴x=50°,故选:C.根据全等三角形的性质和三角形内角和,可以求得x的值.本题考查全等三角形的性质\三角形内角和,解答本题的关键是明确题意,利用全等三角形的性质解答.9.【答案】D【解析】解:∵AB=AC,PB=PC,∴AP⊥BC,AE平分∠BAC(三线合一),∵BP=PC,∠BPE=∠CPE=90°,PE=PE,∴△BPE≌△CPE,∴BE=EC,∠PEC=∠PEB,∴四个都正确,故选:D.根据等腰三角形的性质和全等三角形的判定与性质对各个选项进行分析,从而不难得到正确的结论.此题主要考查等腰三角形的性质及全等三角形的判定与性质的综合运用.10.【答案】A【解析】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=AD,∵BE=AD,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,,∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在△ABH和△DCF中,,∴△ABH≌△DCF(ASA),∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE的垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误;∵∠AHG=67.5°,∴∠ABH=22.5°,∵∠ABD=45°,∴∠ABH=ABD,∴BH平分∠ABE,故④正确;故选:A.此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.11.【答案】D【解析】解:如图,作AD⊥BC于D点.则BD=DC=3.∵AC=6,∴cos∠C==,∴∠C=30°.故选D.三角函数的定义和特殊角的三角函数值求解.此题的关键是作底边上的高,构造直角三角形,运用三角函数的定义问题就迎刃而解.这是解决等腰三角形问题时常作的辅助线.12.【答案】A【解析】解:将方程两边都乘以最简公分母(x-3),得:x-5=-m,∵当x=3时,原分式方程无解,∴-2=-m,即m=2;故选:A.将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.13.【答案】B【解析】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.由作图可得CO=DO,CE=DE,OE=OE,可利用SSS定理判定三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【答案】C【解析】【分析】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.【解答】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:=.故选:C.15.【答案】C【解析】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A;故③正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故②错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,∴点O到∠BAC两边的距离相等,故④正确.故选:C.由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得∠BOC=90°+A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF 正确;由角平分线的性质得出点O到△ABC各边的距离相等,正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=mn,错误.此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.16.【答案】C【解析】解:当△BMN≌△ACO时,可得BM=AC=5,过A作AD⊥BC于点D,如图,∵AB=AC,∴BC=2CD=2OA=6,∴CM=BC-BM=6-5=1,∵sin∠ACO=,∴OC=4,∴M点坐标为(1,4),∴k=1×4=4.故选:C.由△BMN≌△ACO可知BM=AC,过A作AD⊥BC,可求得CD、BC的长,从而可求得CM的长,可求得M 点的坐标,代入可求得k.本题主要考查反比例函数的综合应用,涉及反比例函数解析式、全等三角形的性质、等腰三角形的性质、勾股定理等知识点.在本题中求得M点的坐标是解题的关键,注意反比例函数中k=xy的灵活应用.本题所考查知识比较基础,难度不大.17.【答案】【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000835=8.35×10-9,故答案为8.35×10-9.18.【答案】50°或80°【解析】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°-50°×2=80°故答案为50°或80°.已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.19.【答案】12cm;8cm2【解析】【分析】此题主要考查了轴对称图形的性质,得出两图形全等是解题关键.利用关于直线对称图形的性质得出△ABC 和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.20.【答案】48【解析】解:∵103=1000,203=8000,303=27000,403=64000,503=125000,∴403<110592<503,∵110592=483,∴483=110592,故答案为:48.根据题目中的数据,可以发现数字的变化规律,从而可以确定110592处于哪两个整拾数之间,然后即可得到哪个数的立方是110592,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出所求的数字.21.【答案】解:(1)原式=1+1-=;(2)原式=x8-x8+x7=x7.【解析】(1)根据有理数的乘方的定义,任何非0数的0次幂定义1以及负整数指数幂的定义计算即可;(2)根据同底数幂的乘除法法则以及幂的乘方运算法则化简即可.本题主要考查了实数的运算以及整式的混合运算,熟记相关定义与运算法则是解答本题的关键.22.【答案】解(1)原式=--1+3-+2×=-+=;(2)原式=•-=-===由3x2+3x-2=0.得x2+x=.∴原式==.【解析】本题考查了实数运算与分式的化简求值,熟练掌握实数运算公式与分式混合运算法则是解题的关键.(1)先分别计算负指数幂、零指数幂、绝对值,三角函数值,然后算加减法;(2)先化简,然后将3x2+3x-2=0变形为x2+x=,代入求值即可.23.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)△ABQ是等腰三角形,理由如下:由(1)知:△APM≌△BPN,∴AP=PB,∵PQ⊥AB,∴PQ是线段AB的垂直平分线,∴QB=QA,∴△ABQ是等腰三角形.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)由全等三角形的性质可得AP=BP,由线段垂直平分线的性质可得BQ=AQ,可得结论.本题是三角形综合题,考查全等三角形的判定和性质,等腰三角形的性质,线段垂直平分线的性质,灵活运用这些性质解决问题是解题的关键.24.【答案】(1)如下图①即为所求;(2)如下图②即为所求;(3)关于y轴对称(4)横坐标保持不变,纵坐标分别乘以-1【解析】解:(1)见答案;(2)见答案;(3)图案②与图案①的位置关系是关于y轴对称.故答案为:关于y轴对称;(4)∵两图案关于x轴对称,∴横坐标保持不变,纵坐标分别乘以-1.故答案为:横坐标保持不变,纵坐标分别乘以-1.【分析】(1)在坐标系内描出各点,再顺次连接即可;(2)将(1)中各点的横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来即可;(3)根据两个图案中各点坐标的关系可得出结论;(4)根据关于x轴对称的点的坐标特点即可得出结论.本题考查的是作图-轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.25.【答案】第一批消毒液购进的数量消毒液的单价【解析】解:(1)x表示:第一批消毒液购进的数量,y表示:消毒液的单价,故答案为:第一批消毒液购进的数量;消毒液的单价;(2)选唐唐所列方程,等量关系:药店购进两批消毒液的单价相同;选瑶瑶所列方程,等量关系:第二批消毒液的数量比第一批多20瓶;(3)①选唐唐所列的方程,解:设第一批消毒液购进x瓶,由题意得,,去分母,得2(x+20)=3x,解得x=40,经检验x=40是原分式方程的解;答:药店第一批消毒液购进40瓶;②选瑶瑶所列方程.去分母,得600-400=20y.解得y=10,经检验y=10是原分式方程的解.所以,答:药店第一批消毒液购进40瓶.(1)根据题意即可得到结论;(2)根据药店购进两批消毒液的单价相同解答即可;(3)①解:设第一批消毒液购进x瓶,由题意得到方程为,②选瑶瑶所列方程.解方程即可得到结论.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】解:(1)∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°.∵AP=AQ,BP=CQ.∵E是BC的中点,BE=CE.在△BPE和△CQE中,∵BP=CQ,∠B=∠C,BE=CE,∴△BPE≌△CQE.(2)∵∠BEF=∠C+∠CQE,∠BEF=∠DEF+∠BEP,且∠DEF=∠C=45°,∴∠BEP=∠CQE.在△BPE和△CEO中,∵∠BEP=∠CQE,∠B=∠C,∴△BPE∽△CEQ.∴.又BE=CE,∴BE2=BP·CO.当BP=α,CQ=a时,BE2=a·.∴BE=,BC=.∵△ABC是等腰直角三角形,∴AB=AC=3 a.∴AP=AB-BP=2 a,AQ=CQ-AC=.∴P,Q两点间的距离PQ=.【解析】本题考查图形变换能力,需要学生在变换过程中抓住不变的因素,此题用到了全等三角形的证明,相似三角形的应用,勾股定理以及三角函数的相关知识.。
八年级(上学期)期末数学试卷及答案

八年级(上学期)期末数学试卷及答案(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.若a,b,c为△ABC的三边,下列条件不能判定△ABC是Rt△ABC的是()A. a:b:c=1:2:3B. a2-b2=c2C. ∠A-∠B=∠CD. ∠A:∠B:∠C=1:1:22.在抛物线上的点是()A. (0,-1)B.C. (-1,5)D. (3,4)3.某排球队6名场上队员的身高(单位:cm)是:180,182,184,186,190,194.现用一名身高为188cm的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A. 平均数变小,方差变小B. 平均数变小,方差变大C. 平均数变大,方差变小D. 平均数变大,方差变大4.下列实数中,与4最接近的是()A. 3.5B.C.D.5.如图,直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A. 23°B. 42°C. 65°D. 19°6.下列等式成立的是()A. +=B. =-2C. =2D. ÷=27.关于函数y=-x-3的图象,有如下说法:①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=-x+4的图象平行的直线.其中正确的说法有()A. 5个B. 4个C. 3个D. 2个8.下列四个命题中是真命题的是()A. 相等的角是对顶角B. 两条直线被第三条直线所截,同位角相等C. 实数与数轴上的点是一一对应的D. 垂直于同一条直线的两条直线互相平行9.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④4S△ADE=2AB2,其中正确的结论有()A. ①②③B. ①②C. ②③D. ①②③④10.如图,某农场秋收用收割机收割,在5台甲型收割机收割4天后,为加快收割进度又调来乙型收割机参加收割,直至完成8000亩的收割任务,收割亩数与收割天数之间的函数关系图象如图,下列说法错误的是()A. .每台甲收割机每天收割100亩B. 乙收割机每天收割1000亩C. a=8D. 乙收割机参与收割8天二、填空题(本大题共5小题,共15.0分)11.要使代数式有意义,则x的最大值是________.12.将直线y=2x+3向下平移5个单位长度后,所得直线解析式______ .13.一次函数y=x+2与y=-2x-3交于点C,则C点坐标为______.14.已知点P(-a+3b,3)与点Q(-5,a-2b)关于x轴对称,则a= ______ b= ______ .15.已知,如图,在矩形ABCD中,AB=4,将△BCD沿BD折叠,得到△BED,交AD于G点,BG=5,则BC=______.三、解答题(本大题共7小题,共55.0分)16.计算:(1);(2).17.在开展“童心向党”系列活动中,某校举办了一场“党史知识你我知”的知识竞赛,现分别从八年级、九年级各随机抽取了20名学生的成绩(单位:分,满分:100分),相关数据(成绩)整理统计如下:收集数据:八年级:92,98,96,93,96,92,60,92,78,92,86,84,81,84,78,92,74,100,64,92.九年级:93,88,89,96,72,75,95,90,86,95,95,96,100,94,93,68,86,80,78,91.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表中的a,b的值;(2)已知该校八、九年级各有学生760人,若规定知识竞赛成绩在80分及其以上为优秀,请估计该校知识竞赛成绩为优秀的学生人数;(3)根据表中的统计量,你认为哪个年级的知识竞赛成绩的总体水平更好,请说明理由.18.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽,问绳索长是多少?根据题意求出绳索长.19.甲、乙两人相距42千米,若相向而行,2小时相遇;若同向而行,乙14小时才能追上甲,求甲、乙两人的速度.20.已知:如图,在△ABC中,BC∥x轴,点A的坐标是(-4,3),点B的坐标是(-3,1)(1)画出△ABC关于y轴对称的△A′B′C′;(2)求以点A、B、B′、A′为顶点的四边形的面积.21.在△ABC中,点D是边AC上一点,分别过点A,D作AE⊥BC于点E,DF⊥BC于点F.(1)如图,若∠ABC<90°,点G是边AB上一点,且∠BEG=∠C,请判断∠AEG与∠CDF的数量关系,并说明理由;(2)若∠ABC>90°,点G是直线AB上一点,且∠BEG=∠C,请直接写出∠AEG与∠CDF的数量关系.22.如图,在平面直角坐标系中,点O为坐标原点,直线y=-x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且tan∠ABC=3.(1)求直线BC的解析式;(2)点P为第三象限直线BC上的一点,连接AP,过点B作BH⊥AP于点H,点Q为BH延长线上一点,且BQ=AP,设点P的横坐标为t,点Q的横坐标为d,求d与t之间的函数关系式;(3)在(2)的条件下,连接AQ,过点O作直线AQ的垂线交直线BC于点G,连接AG,若tan∠AGB=,求点P的坐标.答案和解析1.【答案】A【解析】解:A、∵12+22≠32,故不能判定△ABC是直角三角形;B、∵a2-b2=c2,∴b2+c2=a2,故能判定△ABC是直角三角形;C、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D、∵∠A:∠B:∠C=1:1:2,∴∠C=×180°=90°,故能判定△ABC是直角三角形.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可判定此三角形为直角三角形,由三角形内角和定理,只需判断其最大角等于90°即可判断这个三角形是直角三角形.依此可解此题.本题考查勾股定理的逆定理的应用以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.2.【答案】B【解析】3.【答案】A【解析】解:∵原数据的平均数为×(180+182+184+186+190+194)=186,新数据的平均数为×(180+182+184+186+190+188)=185,原方差:[(180-186)2+(182-186)2+(184-186)2+(186-186)2+(190-186)2+(194-186)2]=,新方差:[(180-185)2+(182-185)2+(184-185)2+(186-185)2+(190-185)2+(188-185)2]=,∴平均数减小、方差减小,故选:A.分别计算出原数据和新数据的平均数和方差,再进行比较即可得出答案.本题主要考查方差和平均数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.【答案】C【解析】解:∵=4,∴与4最接近的是:.故选:C.直接利用估算无理数的大小方法得出最接近4的无理数.此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.5.【答案】C【解析】解:过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠B=23°,∠2=∠D=42°,∴∠BED=∠1+∠2=23°+42°=65°.故选:C.首先过点E作EF∥AB,易证得AB∥EF∥CD,根据两直线平行,内错角相等,即可求得∠BED的值.此题考查了平行线的性质与判定.注意作已知直线的平行线,是常见辅助线,需要掌握.6.【答案】C【解析】解:∵不能合并,故选项A错误,∵,故选项B错误,∵,故选项C正确,∵,故选项D错误,故选:C.根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.7.【答案】B【解析】解:①将x=0代入y=-x-3得y=-3,故图象过(0,-3)点,正确;②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;③因为k=-1<0,所以y随x增大而减小,错误;④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;⑤因为y=-x-3与y=-x+4的k值(斜率)相同,故两图象平行,正确.故选:B.根据一次函数的性质和图象上点的坐标特征解答.本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.【答案】C【解析】解:A、相等的角不一定是对顶角,所以A选项为假命题;B、两条平行直线被第三条直线所截,同位角相等,所以B选项为假命题;C、实数与数轴上的点一一对应,所以C选项为真命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,所以D选项为假命题.故选:C.根据对顶角的定义对A进行判断;根据平行线的性质对B进行判断;根据实数与数轴上的点一一对应对C 进行判断;根据异面直线对D进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.【答案】B【解析】【分析】本题考查了菱形的性质的运用,等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,直角三角形的性质的运用,四边形的内角和定理的运用,解答时灵活运用等边三角形的性质求解是关键.由菱形的性质及等边三角形的性质就可以得出∠GDB=∠GBD=30°,得出∠GDC=∠GBC=90°,DG=BG,由四边形的内角和为360°就可以求出∠BGD的值,由直角三角形的性质就可以得出CG=2GD就可以得出BG+DG=CG,在直角三角形GBC中,CG>BC=BD,故△BDF与△CGB不全等,由三角形的面积关系可判断④,进而得出结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD.∠A=∠BCD.∵∠A=60°,∴∠BCD=60°,△ABD是等边三角形,∴△BDC是等边三角形.∠ADB=∠ABD=60°,∴∠CDB=∠CBD=60°.∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=360°-90°-90°-60°=120°,故①正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°.∴∠GCD=30°,∴CG=2GD=GD+GD,∴CG=DG+BG.故②正确.∵△GBC为直角三角形,∴CG>BC=BD,∴CG≠BD,∴△BDF与△CGB不全等.故③错误;∵S△ADE=S△ADB=×AB2,∴4S△ADE=AB2,故④错误∴正确的有:①②共两个.故选B.10.【答案】D【解析】解:每台甲收割机每天收割=100亩,故A不符合题意,乙收割机每天收割(5000-2000-1000)÷2=1000亩,故B不符合题意,观察图象可知:a-6=6-4,解得a=8,故C不符合题意,故选:D.根据图象信息,一一判断即可;本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【答案】【解析】解:∵代数式有意义,∴1-2x≥0,解得x≤,∴x的最大值是.故答案为:.根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.12.【答案】y=2x-2【解析】解:直线y=2x+3向下平移5个单位长度后:y=2x+3-5,即y=2x-2.故答案为:y=2x-2.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.13.【答案】(-2,1)【解析】解:解方程组得,,∴C(-2,1),故答案为:(-2,1).解方程组即可得到结论.本题考查了两直线平行与相交问题,解二元一次方程组,正确的求得方程组的解是解题的关键.14.【答案】-19;-8【解析】【分析】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可.【解答】解:∵点P(-a+3b,3)与点Q(-5,a-2b)关于x轴对称,∴,解得.故答案为-19;-8.15.【答案】8【解析】解:由图形的翻折可得,BC=BE,DE=CD,在△ABG和△DEG中,∵,∴△ABG≌△DEG(AAS),∴EG=AG,∵AG===3,∴BC=BE=BG+EG=BG+AG=5+3=8,故答案为:8.根据翻折得BC=BE,根据AAS证△ABG≌△DEG,得AG=EG,由勾股定理求AG,即可得出BC.本题主要考查图形的翻折,矩形的性质等知识点,熟练掌握翻折得性质和矩形的性质是解题的关键.16.【答案】解:(1)原式==.(2)原式==5.【解析】根据二次分式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用二次根式的性质以及分式方程的解法,本题属于基础题型.17.【答案】解:(1)八年级20名学生成绩由低到高排列为:60,64,74,78,78,81,84,84,86,92,92,92,92,92,92,93,96,96,98,100,所以中位数为a==92(分),九年级20名学生成绩中,95分出现次数最多共计3次,所以众数b=95(分).(2)20名学生八年级80分及以上有15人,九年有16人,所以该校识竞赛成绩为优秀的学生人数为=1178(人).答:该校识竞赛成绩为优秀的学生人数为1178人;(3)九年级的知识竞赛成绩的总体水平更好.理由:九年级的学生平均成绩高于八年级学生的平均成绩.【解析】(1)先把八年级20名学生成绩由低到高排列,其中第10和第11名学生成绩的平均数即为中位数,计算即可得出答案,九年级20名学生成绩中出现次数最多的数即为众数,计算即可得出答案;(2)分别计算八年级和九年级40名学生中成绩在80分及以上的人数,八年级和九年共有1520人,应用用样本估计总计的计算方法进行计算即可得出答案;(3)应用平均数进行比较即可得出答案.本题主要考查了用样本估计总体、众数、中位数,熟练应用用样本估计总体、众数、中位数的计算方法进行求解是解决本题的关键.18.【答案】解:设绳索长为x尺,根据题意得:x2-(x-4)2=82,解得:x=10,答:绳索长为10尺.【解析】设绳索长为x尺,根据勾股定理列出方程解答即可.本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】解:设甲每小时走x千米,乙每小时走y千米.则,解得.答:甲每小时走9千米,乙每小时走12千米.【解析】相向而行常用的等量关系为:甲走的路程+乙走的路程=甲乙相距的距离42,由于是乙追上甲,所以乙的速度较快.那么本题同向而行的等量关系为:乙走的路程=甲走的路程+甲乙相距的距离42.20.【答案】解:(1)如图所示;(2)∵点A的坐标是(-4,3),点B的坐标是(-3,1),∴A′(4,3),B′(3,1),∴AA′=|-4-4|=8,BB′=|-3-3|=6,梯形的高=3-1=2,∴S梯形ABB′A′=×(8+6)×2=14.【解析】(1)根据关于y轴对称的点的坐标特点画出图形即可;(2)先求出A′,B′的坐标,再根据梯形的面积公式即可得出结论.本题考查的是作图-轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.【答案】解:(1)∵AE⊥BC于点E,DF⊥BC于点F,∴∠DFC=∠AEB=90°,∴∠C+∠CDF=∠BEG+∠AEG=90°,∵∠BEG=∠C,∴∠AEG=∠CDF;(2)如图2,∵AE⊥BC于点E,DF⊥BC于点F,∴∠DFC=∠AEB=90°,∴∠C+∠CDF=∠BEG+∠AEG=90°,∵∠BEG=∠C,∴∠AEG=∠CDF;如图3,当点G在AB的延长线上时,∵∠AEC=∠DFC=90°,∴∠AEG=90°+∠BEG,∠C=90°-∠CDF,∵∠BEG=∠C,∴∠AEG=90°+90°-∠CDF,∴∠AEG+∠CDF=180°,综上所述,∠AEG与∠CDF的数量关系为相等或互补.【解析】(1)根据垂直的定义得到∠DFC=∠AEB=90°,根据余角的性质即可得到结论;(2)根据垂直的定义得到∠DFC=∠AEB=90°,根据余角的性质即可得到结论.本题考查了三角形的内角和定理,垂直的定义,正确的识别图形是解题的关键.22.【答案】解:(1)作AD垂直于BC于点D,由直线y=-x+6得点A(6,0),点B(0,6),∴AB=6.设BD长为m,则AD=BD•tan∠ABC=3m,在直角三角形ABD中由勾股定理得,=AB=6,即=6.解得m=或m=-(舍).∴BD=,AD=.设OC边长为a,则BC==,AC=6+a,∴BC•AD=AC•OB.即×=6(6+a).解得a=12或a=3.∵∠ABC为锐角,∴a<6,即a=3.∴点C坐标为(-3,0).设BC所在直线为y=kx+b,将(-3,0),(0,6)代入解析式得:,解得.∴y=2x+6;(2)作PT垂直于x轴于点T,QF垂直于y轴于点F,AP交y轴于点K.∵BQ⊥AP,∴∠QBF+∠BKH=90°.∵∠BKH+∠OAK=90°,∴∠QBF=∠OAK.又∵BQ=AP,∠ATP=∠BFQ=90°,∴△ATP≌△BFQ(AAS).∴PT=QF.∵点P在y=2x+6上,点P横坐标为t,∴点P坐标为(t,2t+6).∵点Q的横坐标为d,∴FQ=d=-(2t+6)=-2t-6.∴d与t之间的函数关系式为:d=-2t-6;(3)∵△ATP≌△BFQ,∴AT=BF.∵OA=OB,∴OT=OF.∵点P为第三象限直线BC上的一点,BC所在直线为y=2x+6,∴点P坐标为(t,2t+6),点Q坐标为(-2t-6,t).由(1)得AD=,∵tan∠AGB==,∴DG=AD=.∵BG=BD+DG=+=,BC==3,∴CG=BG-BC=.∵BG>BC,∴点G在第三象限.作GM垂直于x轴与点M,∵tan∠GCM=tan∠BCO===2,∴GM=2MC.∴GM2+MC2=5MC2=CG2.即5MC2=()2.解得MC=.∴x G=x M=-3-=-,y G=2×(-)=-.即点G坐标为(-,-).设直线OG的解析式为y=k1x,∴.∴k1=.∵OG⊥AQ,∴设直线AQ的解析式为y=x+b,∴将A(6,0)代入得:-×6+b=0.∴b=13.∴直线AQ的解析式为:y=-x+13.∵点Q坐标为(-2t-6,t),∴t=-(-2t-6)+13解得t=.∴2t+6=-.∴点P坐标为(,-).【解析】(1)作AD垂直于BC于点D,由AB长及tan∠ABC解出AD与BD的长,设OC边长为a,在直角三角形ABD中由勾股定理可得点C坐标,再通过待定系数法求解.(2)作PT垂直于x轴于点G,QF垂直于y轴于点F,通过证明△ATP≌△BFQ求解.(3)由tan∠AGB=及AD的长求出BG的长,再由点G所在解析式求出点G坐标,求出OG所在直线的解析式,进而通过待定系数法求出直线AQ的解析式,再将Q点坐标代入AQ解析式中得出t的值,P点坐标可得.本题考查一次函数综合应用,利用待定系数法确定函数关系式和利用相应线段表示点的坐标是解题的关键.第21页共21页。
2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个数是负数?A. 3B. 0C. 5D. 82. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1.25. 下列哪个数是负整数?A. 3B. 0C. 5D. 8二、判断题5道(每题1分,共5分)1. 一个数的绝对值总是非负的。
( )2. 分数和小数都可以表示为整数。
( )3. 任何两个整数相乘的结果都是整数。
( )4. 任何两个正数相加的结果都是正数。
( )5. 任何两个负数相加的结果都是负数。
( )三、填空题5道(每题1分,共5分)1. 一个数的绝对值是它本身的数是______。
2. 下列哪个数是分数?______。
3. 下列哪个数是整数?______。
4. 下列哪个数是负整数?______。
5. 一个数的绝对值总是非负的。
( )四、简答题5道(每题2分,共10分)1. 简述绝对值的概念。
2. 简述分数的概念。
3. 简述整数的概念。
4. 简述负整数的概念。
5. 简述小数的概念。
五、应用题:5道(每题2分,共10分)1. 计算:| 3 | + 2 = ?2. 计算:3/4 + 0.5 = ?3. 计算:0 + 1 = ?4. 计算:3 4 = ?5. 计算:5 2 = ?六、分析题:2道(每题5分,共10分)1. 分析:为什么一个数的绝对值总是非负的?2. 分析:为什么分数和小数都可以表示为整数?七、实践操作题:2道(每题5分,共10分)1. 实践操作:请用尺子和圆规在纸上画一个半径为5cm的圆。
2. 实践操作:请用尺子和圆规在纸上画一个边长为4cm的正方形。
八、专业设计题:5道(每题2分,共10分)1. 设计一个包含10个数的数列,其中前5个数是正整数,后5个数是负整数。
八年级上学期期末考试数学试卷(附带答案)

八年级上学期期末考试数学试卷(附带答案)一.单选题。
(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,沿x轴每秒1个单位长度的速度向右移动,且过点P的直线y=﹣x+b也随之平移,设移动时间为t秒,若直线与线段BM 有公共点,则t的取值范围是()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤5(第10题图)二.填空题。
初二数学上学期期末试卷

初二数学上学期期末试卷初二数学上学期期末试卷一、选择题1.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图像上的两个点,则y1与y2的大小关系是(。
)A。
y1<y2B。
y1=y2C。
y1>y2D。
不能确定2.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A的度数为(。
) A。
31°B。
62°C。
87°D。
93°3.以下列各组线段为边作三角形,不能构成直角三角形的是()4.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(-1,0),AC=2.将直角△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是(。
) A。
(-1,2)B。
(-4,2)C。
(3,2)D。
(2,2)5.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A。
12B。
13C。
14D。
156.下列根式中是最简二次根式的是()A。
√2/3B。
3C。
9D。
127.在平面直角坐标系中,点P(-3,2)关于x轴对称的点的坐标是()A。
(3,2)B。
(2,-3)C。
(-3,-2)D。
(-3,-2)8.下列四个图形中,是轴对称图形的是()A。
B。
C。
D。
9.满足下列条件的△ABC是直角三角形的是()A。
∠A:∠B:∠C=3:4:5B。
a:b:c=1:2:5C。
∠A=∠B=2∠CD。
a=1,b=2,c=310.点P(2,-3)所在的象限是()A。
第一象限B。
第二象限C。
第三象限D。
第四象限二、填空题11.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是(2,-3)。
12.如图,直线I:y=x+1与直线I2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为(x≤(n-1)/(1-m))。
初二数学期末试卷上册

一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2.5B. -2.3C. -2.7D. -2.12. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 23. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形4. 若x² - 4x + 3 = 0,则x的值为()A. 1B. 3C. 2D. 45. 已知直角三角形的两条直角边分别为3和4,则斜边的长度为()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 若a > b,则a - b的值()7. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为()8. 若a² + b² = 25,且a - b = 4,则ab的值为()9. 下列各式中,正确的是()A. (-2)³ = -8B. (-2)⁴ = 16C. (-2)⁵ = -32D. (-2)⁶ = 6410. 在△ABC中,∠A = 45°,∠B = 90°,∠C = 45°,则△ABC是()三、解答题(每题10分,共40分)11. 解方程:2x - 3 = 5x + 112. 已知a,b,c为三角形的三边,且a + b = 10,a + c = 12,b + c = 14,求三角形的三边长。
13. 在△ABC中,∠A = 60°,∠B = 45°,∠C = 75°,求sinB的值。
14. 已知一次函数y = kx + b(k≠0),当x = 1时,y = 2;当x = 2时,y = 4,求该一次函数的解析式。
四、应用题(每题15分,共30分)15. 某工厂生产一批产品,前5天每天生产100个,从第6天开始,每天比前一天多生产10个,求前10天共生产了多少个产品。
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.=±3 B.|﹣3|=﹣3 C.=3 D.﹣32=92.(3分)下列根式中,不是最简二次根式的是()A. B.C.D.3.(3分)若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍4.(3分)若分式的值为0,则x的值是()A.﹣1 B.1 C.±1 D.不存在5.(3分)不等式组的解在数轴上表示为()A.B.C.D.6.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°7.(3分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x8.(3分)下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等9.(3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为()A.B.C.D.10.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°二、填空题(每小题3分,共24分)11.(3分)16的算术平方根是.12.(3分)已知,且|a+b|=﹣a﹣b,则a﹣b的值是.13.(3分)分式方程的解是.14.(3分)化简二次根式的正确结果是.15.(3分)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.16.(3分)关于x的不等式组的解集为x<3,那么m的取值范围是.17.(3分)在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=.18.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…,则a2018的值为.三、解答题(共46分)19.(10分)(1)计算:|﹣3|﹣(2)计算:(2)﹣()20.(6分)先化简再求值:(),其中x=2.21.(6分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.22.(8分)已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE ⊥DF,点E、F在AC、BC上,求证:DE=DF.23.(8分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?24.(8分)如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.=±3 B.|﹣3|=﹣3 C.=3 D.﹣32=9【解答】解:A、原式=3,错误;B、原式=3,错误;C、原式=3,正确;D、原式=﹣9,错误,故选:C.2.(3分)下列根式中,不是最简二次根式的是()A. B.C.D.【解答】解:因为==2,因此不是最简二次根式.故选:B.3.(3分)若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【解答】解:∵==,∴分式的值不变,故选:B.4.(3分)若分式的值为0,则x的值是()A.﹣1 B.1 C.±1 D.不存在【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.5.(3分)不等式组的解在数轴上表示为()A.B.C.D.【解答】解:由不等式①,得2x>2,解得x>1,由不等式②,得﹣2x≤﹣4,解得x≥2,∴数轴表示的正确是C选项,故选:C.6.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C.7.(3分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x【解答】解:∵0<x<1,∴取x=,∴=2,x2=,∴x2<x<,故选:C.8.(3分)下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等【解答】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选:D.9.(3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为()A.B.C.D.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选:B.10.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.二、填空题(每小题3分,共24分)11.(3分)16的算术平方根是4.【解答】解:∵42=16,∴=4.故答案为:4.12.(3分)已知,且|a+b|=﹣a﹣b,则a﹣b的值是﹣1或﹣7.【解答】解:∵|a+b|=﹣a﹣b,∴a+b<0,∵,∴分两种情况:①当a<0,b<0时,此时a=﹣4,b=﹣3,a﹣b=﹣4﹣(﹣3)=﹣1;②当a<0,b>0,此时a=﹣4,b=3,a﹣b=﹣4﹣3=﹣7.故答案为:﹣1或﹣7.13.(3分)分式方程的解是x=﹣1.【解答】解:去分母得:x﹣1=2x,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣1.14.(3分)化简二次根式的正确结果是﹣a.【解答】解:∵有意义,∴﹣a3≥0,∴a≤0,∴=﹣a.故答案为:﹣a.15.(3分)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.16.(3分)关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.17.(3分)在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=9.【解答】解:∵直线MP为线段AB的垂直平分线(已知),∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NQ为线段AC的垂直平分线(已知),∴NA=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC(等量代换),又BC=9,则△AMN的周长为9.故答案为:918.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…,则a2018的值为﹣1.【解答】解:由题意可知:a1=,a2=1﹣2=﹣1,a3=1+1=2,a4=,故该数列是以,﹣1,2为一组进行循环,∴2018÷3=672 (2)∴a2018=﹣1故答案为:﹣1三、解答题(共46分)19.(10分)(1)计算:|﹣3|﹣(2)计算:(2)﹣()【解答】解:(1)原式=3﹣1+4﹣2=4;(2)原式=(2﹣10)﹣(5﹣3)=2﹣10﹣5+3=﹣3﹣7.20.(6分)先化简再求值:(),其中x=2.【解答】解:原式=×=×=当x=2时原式==.21.(6分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.22.(8分)已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE ⊥DF,点E、F在AC、BC上,求证:DE=DF.【解答】证明:连接CD.∵在等腰直角三角形ABC中,D是AB的中点.∴CD为等腰直角三角形ABC 斜边BC上的中线.∴CD⊥AB,∠ACD=∠BCD=45°,CD=BD=AD.又∵DE⊥DF∴∠EDC=∠FDB在△ECD和△FBD中∴△ECD≌△FDB(ASA)∴DE=DF23.(8分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.24.(8分)如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.【解答】(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠EFD=15°.。
八年级(上学期)期末数学试卷及答案解析

八年级(上学期)期末数学试卷及答案解析(时间90分钟,满分100分)一、选择题(本大题共10小题,共30.0分)1.在-1.4141,,π,,,3.14这些数中,无理数的个数为()A. 2B. 3C. 4D. 52.下列方程组中是二元一次方程组的是()A. B.C. D.3.点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (-3,-2)C. (3,-2)D. (2,-3)4.下列各组数,能够作为直角三角形的三边长的是()A. 4,6,8B. ,,C. 5,12,14D. 2,2,25.下列四个命题中,假命题有()(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A. 1个B. 2个C. 3个D. 4个6.在“百善孝为先”朗诵比赛中,晓晴根据七位评委所给的某位参赛选手的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 中位数C. 众数D. 方差7.菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=()A. B. C. D.8.如图,在△ABC中,DE∥AC,,DE=3,则AC的长为A. 3B. 4C. 6D. 99.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A. 10B. 16C. 18D. 2010.下列四个选项中,函数y=ax+a与y=ax2(a≠0)的图象表示正确的是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.已知|a-2|+(b+3)2=0,则b a=______.12.反比例函数与在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.13.在平面直角坐标系中,将点P(-1,2)向下平移2个单位长度,再向左平移1个单位长度得到点Q,则点Q的坐标为______.14.如图,在△ABC中,∠B=40°,∠C=60°,AD是△ABC的高,AE是△ABC的角平分线,则∠EAD的度数是______.15.如图,将Rt△ABC放置在平面直角坐标系中,C与原点重合,CB在x轴上,若AB=2,点B的坐标为(4,0),则点A的坐标为____.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为______ .三、解答题(本大题共8小题,共52.0分)17.按要求解答(1)解方程:2(x-2)2=8;(2)计算:.18.解方程组:.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点的坐标分别是A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,C1的坐标.20.如图,把△ABC先向上平移4个单位长度,再向右平移2个单位长度,得到△A'B'C'.(1)在图中画出△A'B'C';(2)求△ABC的面积.21.某中学八年级的篮球队有10名队员.在“二分球”罚篮投球训练中,这10名员各投篮50次的进球情况如下表:进球数423226201918人数112123针对这次训练,请解答下列问题:(1)求这10名队员进球数的平均数、中位数;(2)求这支球队投篮命中率______;(3)若队员小亮“二分球”的投篮命中率为55%,请你分析一下小亮在这支球队中的投篮水平.22.如图,在正方形ABCD中,点E、F分别是边AB、AD的中点,DE与CF相交于G,DE、CB的延长线相交于点H,点M是CG的中点.求证:(1)BM∥GH;(2)BM⊥CF.23.甲从学校A出发到相距14km的E地办事,到达距学校2km的B地时发现未带所需证件,打电话给在学校的乙,乙随即出发在C处追上甲后立即返回.当乙回到学校时,甲到达距E还有3km的D地.求学校到C地的距离.24.△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).(1)如图1,当点C与点O重合时,求直线BD的解析式;(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB的正切值.答案和解析1.【答案】B【解析】解:=2,故在-1.4141,,π,,,3.14这些数中,无理数有:,π,,共3个.故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:A、当a不是常数时,此方程组是三元二次方程组,故A错误;B、符合二元一次方程组的定义,故B正确;C、是分式方程组,故C错误;D、是三元一次方程组,故D错误.故选:B.分别根据二元一次方程组的定义对四个选项进行逐一分析即可.本题考查的是二元一次方程组的定义,二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.3.【答案】C【解析】解:点M(3,2)关于x轴对称的点的坐标为(3,-2).故选C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.【答案】D【解析】解:A、42+62≠82,不能构成直角三角形,故此选项不符合题意;B、()2+()2≠()2,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、(2)2+(2)2=(2)2,能构成直角三角形,故此选项符合题意.故选:D.欲判断是否是直角三角形的三边长,只需验证两小边的平方和是否等于最长边的平方即可.此题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.5.【答案】A【解析】解:(1)两条平行线被第三条直线所截,内错角相等,原命题是假命题.(2)如果∠1和∠2是对顶角,那么∠1=∠2,是真命题.(3)一个锐角的余角一定小于这个锐角的补角,是真命题.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补,是真命题;故选:A.根据平行线的性质、对顶角、补角进行判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.【答案】B【解析】解:去掉一个最高分和一个最低分对中位数没有影响,故选:B.根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.7.【答案】A【解析】解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,∴OB=,∴FB=,∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF==,∵点P为FD的中点,∴PB=DF=.故选:A.连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、PF的长,进而可得PB的长.本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.8.【答案】D【解析】解:∵DE∥AC∴△BED∽△BCA故选D.9.【答案】A【解析】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP 的面积不变.函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5.∴△ABC的面积为=×4×5=10.故选A.本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.解决本题应首先看清横轴和纵轴表示的量.10.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C、D错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】9【解析】解:∵|a-2|+(b+3)2=0,∴a-2=0,b+3=0,解得a=2,b=-3.∴b a=(-3)2=9.故答案为:9.先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.本题考查了非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.12.【答案】1【解析】试题分析:由于AB∥x轴,可知AB两点的纵坐标相等,于是可设A点坐标是(a,c),B点坐标是(b,c),于是可得=,即b=a,进而可求AB,据图可知△AOB的高是c,再利用面积公式可求其面积.由于AB∥x轴,设A点坐标是(a,c),B点坐标是(b,c),那么=,即b=a,∴AB=|a-b|=a,∵c=,∴S△AOB=AB•c=×a×=1,故答案是:1.13.【答案】(-2,0)【解析】解:平移后点Q的坐标为(-1-1,2-2),即(-2,0),故答案为:(-2,0).根据平移规律:横坐标右移加,左移减;纵坐标上移加,下移减即可得.此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.14.【答案】10【解析】解:∵∠B=40°,∠C=60°,∴∠BAC=180°-60°-40°=80°,∵AE为∠BAC角平分线,∴∠BAE=80°÷2=40°,∵AD为△ABC的高,∴∠ADB=90°,∴∠DAC=90°-∠C=90°-60°=30°,∴∠EAD=∠EAC-∠DAC=40°-30°=10°,即∠EAD的度数是10°,故答案为:10.首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据AE为角平分线,求出∠BAE的度数是多少;最后在Rt△DAC中,求出∠DAC的度数,即可求出∠EAD的度数是多少.此题主要考查了三角形的内角和定理,三角形高、中线的定义,解答此题的关键是明确:三角形的内角和是180°.15.【答案】(3,)【解析】解:作AC⊥OB于C,如图所示:∵点B的坐标为(4,0),∴OB=4,∵∠OAB=90°,AB=2,∴OA==2,∵△OAB的面积=OB•AC=OA•AB,∴AC===,∴OC==3,∴A(3,);故答案为:(3,).作AC⊥OB于C,由勾股定理求出OA=2,由△OAB的面积求出AC==,再由勾股定理求出OC即可.本题主要考查了坐标与图形性质,直角三角形的性质,三角形面积,勾股定理,熟练掌握勾股定理是解答此题的关键.16.【答案】(7,4)【解析】解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).直接利用位似图形的性质得出对应点坐标乘以2得出A、B两点坐标,再求中点即可.此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.17.【答案】解:(1)方程整理得:(x-2)2=4,开方得:x-2=2或x-2=-2,解得:x=4或x=0;(2)原式=9-3+2+2-=10-.【解析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则及方程的解法是解本题的关键.18.【答案】解一:①+②×3,得5 x=10,解得x=2.把x=2代入②得y=-1.∴原方程组的解是;解二:由②得:x=3+y③,把③代入①得 2(3+y)+3y=1,解得y=-1.把y=-1代入③得x=2.∴原方程组的解是.【解析】解一:①+②×3得到一个关于x的一元一次方程,求出x,把x的值代入②求出y即可;解二:由②得x=3+y③,把③代入①得到一个关于y的一元一次方程,求出y,把y的值代入③求出x即可.本题考查了解二元一次方程组,明确基本思想是消元,基本方法是代入法与加减法.是基础知识,需熟练掌握.19.【答案】解:(1)△ABC的面积为×3×5=;(2)如图所示,△A1B1C1即为所求;(3)由图知,A1(1,5),C1(4,3).【解析】(1)直接利用三角形的面积公式求解即可;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(3)结合图形可得答案.本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义与性质.20.【答案】解:(1)如图所示.(2).【解析】(1)利用点平移的坐标规律写出点A′、B′、C′的坐标,然后描点即可;(2)利用三角形面积公式求解.本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.【答案】解:(1)23.8,19.5;(2)47.6%;(3)若队员小亮投篮命中率为55%,小亮在这支球队中的投篮水平处于中上水平.【解析】解:(1)平均数为:=23.8;把这些数从小到大排列,则中位数是:=19.5;故答案为:23.8,19.5;(2)这支球队投篮命中率是:×100%=47.6%,故答案为:47.6%;(3)见答案.【分析】(1)进球数的平均数=进球总数÷人数,10个数据中位数应是第5个和第6个数的平均数;(2)根据投篮命中率=进球总数÷投球总数×100%解答即可;(3)根据投篮命中率和中位数进行解答即可.本题主要考查了平均数的求法以及中位数的求法,用到的知识点是:中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;平均数=总数÷个数.要学会用适当的统计量分析问题.22.【答案】证明:(1)∵正方形ABCD,∴∠A=∠EBH=90°,AD=BC,∵E是AB的中点,∴AE=BE,∵∠AED=∠BEH,∴△AED≌△BEH,∴AD=BH,∴BC=BH,即点B为CH的中点,又点M为CG的中点,∴BM为△CGH的中位线,∴BM∥GH.(2)∵四边形ABCD为正方形,∴AB=AD=CD,∠A=∠ADC=90°,又∵点E、F分别是边AB、AD的中点,∴AE=AB,DF=AD,∴AE=DF,∴△AED≌△DFC,∴∠ADE=∠DCF,∵∠ADE+∠CDE=90°,∴∠DCF+∠CDE=90°,∴∠CGH=90°,∵BM∥GH,∴∠CMB=∠CGH=90°,∴BM⊥CF.【解析】(1)根据正方形的性质得到∠A与∠EBH都为直角,边AD与BC的相等,再根据已知的点E为AB 的中点得到AE=BE,另加一对对顶角的相等,根据“ASA”证得三角形ADE与三角形BHE全等,根据全等三角形的对应边相等可得BH=AD,等量代换可得BH=BC,从而得到点B为CH的中点,再由已知的点M 为CG的中点,可得BM为三角形CGH的中位线,根据中位线定理即可得到BM与GH的平行;(2)根据正方形的性质得到正方形的四条边相等,∠A与∠DAC都为直角,又点E、F分别是边AB、AD的中点,可得AE=DF,根据“SAS”证得三角形AED与三角形DFC全等,根据全等三角形的对应角相等可得∠ADE与∠DCF的相等,又∠ADE+∠CDE=90°,根据等量代换可得∠DCF+∠CDE=90°,从而得到∠CGH为90°,最后由第一问得到的平行,根据两直线平行,同位角相等即可得到∠CMB为90°,即BM⊥CF.此题考查了正方形的性质,全等三角形的判定与性质以及平行线的判定与性质.是一道把三角形的知识与四边形知识综合在一起的一道证明题,是历年中考必考的题型,要求学生熟练掌握有关知识,结合图形,勇于探索,锻炼了学生发散思维能力.23.【答案】解:设学校到C地的距离为xkm,则B、C两地间的距离为(x-2)km,C、D两地间的距离为(x-2)km,根据题意得:x+(x-2)+3=14,解得:x=6.5.答:学校到C地的距离为6.5km.【解析】设学校到C地的距离为xkm,则B、C两地间的距离为(x-2)km,C、D两地间的距离为(x-2)km,根据A到E地的距离为14km,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【答案】解:(1)∵A(4,0),∴OA=4,∴等边三角形ABC的高就为2,∴B(2,-2).设直线BD的解析式为y=kx+b,由题意,得,解得:,∴直线BD的解析式为:y=x-;(2)作BE⊥x轴于E,∴∠AEB=90°.∵以AB为半径的⊙S与y轴相切于点C,∴BC⊥y轴.∴∠OCB=90°∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACO=30°,∴AC=2OA.∵A(4,0),∴OA=4,∴AC=8,∴由勾股定理得:OC=4.作BE⊥x轴于E,∴AE=4,∴OE=8,∴B(8,-4);(3)如图3,以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.∵△ABC是等边三角形,∴AC=BC=AB,∠ABC=∠ACB=∠BAC=60°,∴∠OEA=∠ABC=30°,∴AE=2OA.∵A(4,0),∴OA=4,∴AE=8.在Rt△AOE中,由勾股定理,得OE=4.∵C(0,),∴OC=2,在Rt△AOC中,由勾股定理,得AC=2.∵CE=OE-OC=4=2.∵BF⊥CE,∴CF=CE=,∴OF=2+=3.在Rt△CFB中,由勾股定理,得BF2=BC2-CF2,=28-3=25,∴BF=5,∴B(5,-3).过点B作BQ⊥x轴于点Q,∴BQ=3,OQ=5,∵D(10,0),∴DQ=5,∴tan∠ODB==.【解析】(1)先根据等边三角形的性质求出B点的坐标,直接运用待定系数法就可以求出直线BD的解析式;(2)作BE⊥x轴于E,就可以得出∠AEB=90°,由圆的切线的性质就可以而出B的纵坐标,由直角三角形的性质就可以求出B点的横坐标,从而得出结论;(3)以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.根据等边三角形的性质圆心角与圆周角之间的关系及勾股定理就可以点B的坐标,作BQ⊥x轴于点Q,根据正切值的意义就可以求出结论.本题考查了等边三角形的性质的运用,勾股定理的运用,待定系数法求一次函数的解析式的运用,圆周角与圆心角的关系定理的运用,切线的性质的运用及直角三角形的性质的运用,解答时灵活运用勾股定理求线段的值是关键.。
(完整版)初二上册期末数学试卷(含答案)

C第二、三、四象限
B第一、二、四象限
D第一、三、四象限
下,则所得的图形是
八年级数学试卷 第1页 (共8页)
一、选择题(本大题共8小题,每小题3分,共24分, 每小题仅有一个答案正确,请把你认为正确的答案前的字母填
入下表相应的空格 )
题号
1
2
3
4
5
6
7
8
答案
1.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是
冰雹雷阵雨
AB
晴大雪
CD
2.如图,小手盖住的点的坐标可能为
A
B(6,3)
C(5,2)
D(3,4)
第2题
3.
A4B
3D
2
4.下列图形中,单独选用一种图形不能进行平面镶嵌的图形是
A正三角形B正方形C正五边形D正六边形
5.顺次连结对角线互相垂直的等腰梯形四边中点得到的四边形是
A平行四边形B矩形C菱形D正 方 形 6.若点(a,y1)、(a1,y2)在直线ykx1上,且y1y2,则该直线所经过的象限是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上学期期末试卷一、选择题1.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定2.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒ 3.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,61 4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .156.下列根式中是最简二次根式的是( )A 23B 3C 9D 127.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2--8.下列四个图标中,是轴对称图形的是( )A .B .C .D .9.满足下列条件的△ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5B .a :b :c =1:2:3C .∠A =∠B =2∠CD .a =1,b =2,c =310.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题11.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.12.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.13.若点(1,35)P m m +-在x 轴上,则m 的值为________.14.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.15.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.16.已知22139273m ⨯⨯=,求m =__________.17.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.18.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).19.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
若BD=3,DE=5,则线段EC 的长为______.三、解答题21.(1)0451)(2)解方程:23(1)120x --=22.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题:(1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.23.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数.24.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =25.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B 的坐标为______;(2)△ABC 的面积为______;(3)判断△ABC 的形状,并说明理由.四、压轴题26.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标27.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C,且OC=3.图1 图2(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;28.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF29.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.30.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.2.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.3.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.5.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN ,∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6.B解析:B【解析】【分析】【详解】A 3,故此选项错误;BC ,故此选项错误;D =故选B .考点:最简二次根式.7.D解析:D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--.故选:D .【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.8.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.D解析:D【解析】【分析】根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.【详解】A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+)2=22,∴△ABC是直角三角形.故选:D.【点睛】此题主要考查利用三角形内角和定理和勾股定理判定直角三角形,熟练掌握,即可解题. 10.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.二、填空题11.(3,﹣2).【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【详解】设P(x ,y),∵点P 到x 轴的距离为2,到y 轴的距离为3,∴,∵点P解析:(3,﹣2).【解析】【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.【详解】设P(x ,y),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴32x y ==,, ∵点P 在第四象限内,即:00x y ><,∴点P 的坐标为(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.12.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.13.【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.14.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.解析:【解析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=1×10=5.2考点:1.勾股定理;2. 直角三角形斜边上的中线性质.15.50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.16.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.17.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.18.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y=-2x+1中k=-2<0,∴y 随x 的增大而减小,∵x1>x2,∴y1<y2解析:<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y =-2x +1中k =-2<0,∴y 随x 的增大而减小,∵x 1>x 2,故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.20.2【解析】【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF =∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即解析:2【解析】【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【详解】∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠FBC,∠EFC=∠BCF,∴∠DFB=∠DBF,∠CFE=∠ECF,∴BD=DF=3,FE=CE,∴CE=DE−DF=5−3=2.故选:C .【点睛】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题难度不大,是一道基础题.三、解答题21.(1)3;(2)3x =或1x =-.【解析】【分析】(1)根据实数的运算法则将每一项进行化简然后计算求解即可.(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.【详解】解:(1)01)原式21=+3=(2)解方程:23(1)120x --=2(1)4x -=12x -=±3x =或1x =-【点睛】本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.22.(1)y 1=50x ﹣50,y 2=﹣40x +200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米;(3)①160;②当1≤x ≤259时,s =250﹣90x ;当259<x ≤5时,s =90x ﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P 表达的意义可求m 的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y 1=kx+b ,∴02005k b k b =+⎧⎨=+⎩解得:5050k b =⎧⎨=-⎩∴甲的函数表达式为:y 1=50x ﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y 2=mx+200,∴0=5m+200∴m =﹣40,∴乙的函数表达式为:y 2=﹣40x+200,(2)由题意可得:505040200y x y x =-⎧⎨=-+⎩解得:2598009x y ⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米. (3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m =200﹣40×1=160, 故答案为160;②当1≤x ≤259时,s =200﹣40×1﹣(40+50)(x ﹣1)=250﹣90x ; 当259<x ≤5时,s =90x ﹣250; 图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键. 23.45【解析】【分析】设小明每小时加工零件x 个,则小华每小时加工(x-15)个, 根据时间关系,得30020015x x =- 【详解】 解:设小明每小时加工零件x 个,则小华每小时加工(x-15)个由题意,得30020015x x =- 解得:x =45 经检验:x =45是原方程的解,且符合题意.答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.24.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB ,然后利用“角角边”证明△ABE 和△ACD 全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE ,∴∠ADC=∠AEB (等边对等角),∵在△ABE 和△ACD 中,ABC ACB AEB ADC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.25.(1)(-2,-1);(2)5;(3)△ABC 是直角三角形,∠ACB=90°.【解析】【分析】(1)首先根据A 和C 的坐标确定坐标轴的位置,然后确定B 的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B 的坐标是(-2,-1).故答案是(-2,-1);(2)S △ABC =4×4-12×4×2-12×3×4-12×1×2=5, 故答案是:5; (3)∵AC 2=22+12=5,BC 2=22+42=20,AB2=42+32=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.四、压轴题26.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得:304k b b +=⎧⎨=⎩, 解得:434k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为443y x =-+; (2)连接OM ,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩, 解得:65125x y ⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M ; (3)∵FA=FB ,A (-2,0),B (0,4),∴F (-1,2),设G (0,n ),①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.29.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.30.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.。