复数的复习(习题课)1
复数的四则运算及几何意义习题课
题型四:求复数式中的实参数值
练习已知复数z满足|z|=1,且
(z - m ) = 2m (m < 0) ,求m的值.
2
m = 1-
2
题型五:证明复数的有关性质
例10 已知复数z满足|z|=1,求证: 1 z+ R. z
题型五:证明复数的有关性质 例12 求证:复数z为纯虚数的充要 条件是z2<0.
复数的概念与运算典型题型分析
题型一:复数的混合运算
3 - 4i 15 8 例1 计算: + i - (1 + i ) 1 + 2i
-17-3i 3 2z + (4z + 6)i 练习设复数z=1-i,求
的值.
- 3z
1 -i
求
1 例3 已知复数z满足 z + - i = 0 , 2 z z - z + 1
.
1 x
变式1:若复数z满足|z+1|+|z-1|=4,则复数z所对应的 点表示什么图形? 以(1,0),(-1,0)为焦点,长轴长为4的椭圆 变式2:若复数z满足|z+1|-|z-1|=1,则复数z所对应的 点表示什么图形? 以(1,0),(-1,0)为焦点,实轴长为1的双曲线的右支
变式3:你能给出下列方程所表示的图形的复数 表达形式吗?
解:由条件|z-4i|=|z+2|知复数z 对应的点到点A(0,4)与点 B(-2,0)的距离相等,所以复数 z对应的点的集合是线段AB的垂直 平分线.由平面解析几何知识得x,y 满足x+2y=3,所以由均值不等式得
2 x 4 y 2 2 x 4 y 2 2 x2 y 4 2
y 4
2、思考题: (1)你能写出线段Z1Z2的垂直平分线的复数表达形式吗? (2)你能写出抛物线y2=2px(p>0)的复数表达形式吗?
复数习题课
(3)复数的乘法法则:
(a bi)(c di) (ac bd) (bc ad)i
(4)除法法则:
a bi ac bd bc ad (a bi) (c di) c di c2 d 2 c2 d 2 i
a bi (a bi)(c di)
当 b 0时, z a bi 叫做虚数.
当 a 0且b 0 时,z bi 叫做纯虚数.
规定:两复数 a bi 与 c di (a, b, c, d R)
讲 课 人 :
相等的充要条件是 a c 且 b d .
邢
启 强
2
共轭复数:
定义:实部相等,虚部互为相反数
a+bi 的共轭复数记作 z, 即 z a bi
说明: 1 | z || z | z z
2 Z1 Z2 Z1 Z2
Z1 Z2 Z1 Z2
3. | z |2 z z a2 b2
讲
课
人
:
邢
启 强
3
复数的意义. 有序实数对(a,b)
复数z=a+bi 一一对应 直角坐标系中的点Z(a,b)
2 i 2 i (2 i)(2 i)
5
所以(1-i)2+a(1-i)+b=1+i,即-2i+a-ai+b=1+i,从而有: (a+b)+(-a-2)i=1+i.
a b 1 a 3
讲 课 人 :
a
2
1
b
4
.
邢
启 强
9
4.计算:(1+2 i )2
3 4i
5.计算(i-2)(1-2i)(3+4i) -20+15i 6.计算 (1 i)3 -2+2i 7.若 z C 且 (3 z)i 1 ,则 z -__3_-_i_ . 3
高中复数练习题及答案
高中复数练习题及答案精品文档高中复数练习题及答案1(已知z1,a,bi,z2,c,di,若z1,z2是纯虚数,则有A(a,c,0且b,d?0B(a,c,0且b,d?0C(a,c,0且b,d?0 D(a,c,0且b,d?02([,i],[,i]等于A(,2b,2bi B(,2b,2bi的值为,下列结论正确的是A(a,0?a,bi为纯虚数 B(b,0?a,bi为实数C(a,i,3,2i?a,3,b,,D(,1的平方等于i8,若复数,i不是纯虚数,则A(a,,1 B(a?,1且a?2C(a?,1 D(a?29,已知|z|,3,且z,3i是纯虚数,则z,A(,3i B(3iC(?3i D(4i10,若sin2θ,1,i是纯虚数,则θ的值为ππA(2kπ, B(2kπ44πkππC(2kπ?D.,以上k?Z) 12131415虚[答案]1,A ,A3,C ,B ,C ,D ,B ,B ,B 10,1 / 18精品文档B 11, 16i 12, 13,— 14, 1 15, ,11i16, [解析] 所以当a,6时,z为实数(所以当a????时,z为虚数(所以不存在实数a使得z为纯虚数(一、选择题3,i1(复数等于1,iA(1,2iB(1,2iC(2,iD(2,i 答案:C3,i4,2i解析:,2,i.故选C.21,i3,2i3,2i2(复数,2,3i2,3iA(0 B( C(,2iD(2i 答案:D3,2i3,2i13i,13i解析:,,,i,i,2i.132,3i2,3i13z,23(已知z是纯虚数,z等于1,iA(2i B(i C(,iD(,2i 答案:D解析:由题意得z,ai.( z,22,a,i?,2 / 18精品文档21,i则a,2,0,?a,,2.有z,,2i,故选D.(若f,x3,x2,x,1,则f, A(2i B(0 C(,2iD(,答案:B解析:依题意,f,i3,i2,i,1,,i,1,i,1,0,选择B.2,i5(复数z,在复平面内对应的点位于1,iA(第一象限 B(第二象限 C(第三象限 D(第四象限答案:D2,i13解析:zi,它对应的点在第四象限,故选D.1,i222,ib6(表示为a,biia11A(,B(, C(D.22答案:A3 / 18精品文档2,ib解析:,1,2i,把它表示为a,bi的形式,则2,故选A.ia27(设i是虚数单位,复数z,tan45?,i?sin60?,则z等于 13i B.,3i471,D.,44答案:B31解析:z,tan45?,i?sin60?,1,i,z2,,3i,故选B.248(3,i在复平面内对应的直线的倾斜角为ππA. B(,625π D.π6答案:D353,i对应的点为,所求直线的斜率为,,则倾斜角为,故选D.36a,bi9(设a、b、c、d?R,若c,diA(bc,ad?0B(bc,ad?0 C(bc,ad,0D(bc,ad,0 答案:Ca,biac,bdbc,adbc,ad4 / 18精品文档解析:因为i,所以由题意有,0?bc,ad,0. c,dic,dc,dc,dc,d110(已知复数z,1,2i,那么z55,i5512,55答案:D525512D.,i5B.11,2i121,i.故选D. z1,2i1,455解析:由z,1,2i知z,1,2i,于是z11(已知复数z1,3,bi,z2,1,2i是实数,则实数b的值为z21A( B(,C(0 D.6答案:Az13,bi,i解析:是实数,则实数b的值为6,故选A.z21,2i512(设z是复数,α表示满足zn,1的最小正整数n,则对虚数单位i,α, A( B( C(D(答案:B解析:α表示in,1的最小正整数n,因i4k,1,显5 / 18精品文档然n,4,即α,4.故选B.1313(若z,且4,a0x4,a1x3,a2x2,a3x,a4,则a2等于2213A(,,iB(,3,33i22C(6,33iD(,3,33i 答案:B4,r解析:?Tr,1,Crr,x由4,r,2得r,2,1322?a2,C2i),6?,i对应的点位于 A(第一象限B(第二象限 C(第三象限D(第四象限答案:B解析:??ABC为锐角三角形, ?A,B,90?,B,90?,A, ?cosB,sinA,sinB,cosA,?cosB,sinA,0,sinB,cosA,0, ?z对应的点在第二象限(2,bi15(如果复数的实部和虚部互为相反数,那么b等于1,2i22C(, D(26 / 18精品文档33答案:C2,bi解析:51,2i552,2b,4,b2由,,b553,1316(设函数f,,x5,5x4,10x3,10x2,5x,1,则f的值为221331A(,,i B.,i2222131,iD(,222答案:C解析:?f,,51313?f,),,5222213,,ω5221313,,ω,,,i.222217(若i是虚数单位,则满足2,q,pi的实数p,q7 / 18精品文档一共有 A(1对 B(2对 C(3对 D(4对答案:D22???p,q,q,??p,0,?p,0,222解析:由,q,pi得,2pqi,q,pi,所以?解得?或??2pq,p.?q,0,?q,,1,????p,2或?1q,?2,?p2,或?1q,?2因此满足条件的实数p,q一共有4对(总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特1别注意不要出现漏解现象,如由2pq,p应得到p,0或q22x2018(已知,6的展开式中,不含x的项是,那么正数p的值是xp27A(1 B( C( D(答案:C204128 / 18精品文档解析:由题意得:C62,,求得p,3.故选C.p27总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含x的项,即找常数项(,19(复数z,,lg,i在复平面内对应的点位于 A(第一象限 B(第二象限 C(第三象限 D(第四象限答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z,a,bi,与复平面上的,点Z对应,由z,,lg,i知:,,a,,lg,0,又2x,2x,1?2?2,1,1,0;,?,,0,即b,0.?应为第三象限的点,故选C.20(设复数z,i在映射f下的象为复数z的共轭复数与i的积,若复数ω在映射f下的象为,1,2i,则相应的ω为A(B(2,2i C(,2,i D(2,i 答案:A9 / 18精品文档解析:令ω,a,bi,a,b?R,则ω,[a,i],i, ?映射f下ω的象为[a,i]?i,,ai,,1,2i. ???b,1,,1,?b,0,??解得??ω,2. ?a,2.?a,2.??第?卷二、填空题1(已知z是复数,i是虚数单位,若z,2i,则z,________. 答案:,1,i2i解析:z,2i,z,,,1,i.1,i22(若复数z满足z,1,i,则其共轭复数z,________. 答案:i1,i2解析:zi,1,i?z,i.23(若复数z1,4,29i,z2,6,9i,其中i是虚数单位,则复数i的实部为________( 答案:,20解析:i,i,,20,2i,故i的实部为,20.1,ai24(在复平面内,复数对应的点位于虚轴上,则a,________.i答案:01,ai解析:a,i,由于它对应的点在虚轴上,则a,0.10 / 18精品文档i223344556625(i是虚数单位,则1,C16i,C6i,C6i,C6i,C6i,C6i,________. 答案:,8i22334455666233解析:1,C16i,C6i,C6i,C6i,C6i,C6i,,[],,,8i.三、解答题6(计算下列问题: 773;1,i1,i4,3i2,2i83112,.221,3i分析:对于复数运算,除了应用四则运算法则之外,对于一些简单算式是知道其结果,这样起点高,方便计算,达到迅1,i1,ia,bi11313速简捷、少出错的效果(比如2,?2i,,,i,i,i,,b,ai,3,1,)3,,1等等( ii22221,i1,i28?2i231,i231,i8解析:原式,[],[],3?i,3?,11 / 18精品文档i1,i1,ii,8,8,16,16i,,16i.2,2i83112,221,3i?1,i?133?,i12?12,?122???22?13[2]42213,[3]4,221333[]2213,1,422,1,8,83i,,7,83i.27(求同时满足下列两个条件的所有复数z;101,z,6;z12 / 18精品文档z的实部和虚部都是整数( 解析:设z,x,yi,222210xy则z,,i.zx,yx,yy,0,???10?1,z6,??xz1,6. ??x,y?1010由?得y,0或x2,y2,10,将y,0代入?得1,,x?6x?210,6矛盾,xx1?y?0.将x2,y2,10代入?得,x?3.2?x,1,?x,3,??又x,y为整数,??或???y,?3.y,?1.??故z,1?3i或z,3?i.3228(已知z1,,i,z2,,b,i且3z21,z2,0,求z1和z2.213 / 18精品文档解析:?3z21,z2,0, zz?2,,3,即3i. z1z1?z2,3iz1.当z2,3iz1时,得33,33b,i,3i[a,i],,3,ai.22由复数相等的条件,知b,a,1,????a,2,????b,1.b,2,,??2?22?z1,,3i,z2,,33,3i.3当z2,,3iz1时,得,3b,i3,2,3b,a,1,??由复数相等的条件,知?b,2.?2??a,,7,??1b,?7.10?已知a,b?,?此时适合条件的a,b不存在( ?z1,3,3i,z2,,33,3i.14 / 18精品文档高三复习:复数一、选择题1( [2014?重庆卷] 实部为,2,虚部为1的复数所对应的点位于复平面的A(第一象限 B(第二象限 C(第三象限 D(第四象限7,i2( [2014?天津卷] i是虚数单位,复数,,4i17311725A(1,i B(,1,Ii D(,,2525772i3( [2014?安徽卷] 设i是虚数单位,复数i3,, 1,iA(,i B(i C(,1 D(14( [2014?福建卷] 复数i等于A(,2,3i B(,2,3i C(2,3i D(2,3i5( [2014?广东卷] 已知复数z满足z,25,则z,A(,3,4i B(,3,4i C(3,4i D(3,4i6( [2014?广东卷] 对任意复数ω1,ω2,定义ω1*ω2,ω1ω2,其中ω2是ω2的共轭复数,对任意复数z1,z2,z3有如下四个命题:?*z3,,;?z1*,,;?*z3,z1*;?z1*z2,z2*z1. 则真命题的个数是A(1 B( C( D(41,i2?7( [2014?湖北卷] i为虚数单位,?, ?115 / 18精品文档,i?A(1 B(,1 C(i D(,i8( [2014?江西卷] 若复数z满足z,2i,则|z|,A(1 B( D.39( [2014?辽宁卷] 设复数z满足,5,则z,A(2,3i B(2,3i C(3,2i D(3,2i1,3i10( [2014?新课标全国卷?] 1,iA(1,2i B(,1,2iC(1,2i D(,1,2i111( [2014?全国新课标卷?] 设zi,则|z|, 1,i123A. B.D(22212( [2014?山东卷] 已知a,b?R,i是虚数单位,若a,i,2,bi,则2,A(3,4i B(3,4i C(4,3i D(4,3i,13( [2014?陕西卷] 已知复数z,2,i,则z?z的值为A( B. C( D.二、填空题2,2i14( [2014?四川卷] 复数,________( 1,i1,i15( [2014?浙江卷] 已知i是虚数单位,计算,________( 16( [2014?北京卷] 若i,,1,2i,则x,________(3,i17( [2014?湖南卷] 复数的实部等于16 / 18精品文档________( i18( [2014?江苏卷] 已知复数z,2,则z的实部为________(复数答案:一、选择题1(B2(A3(D4(B5(D6(B7(B8(C9(A10(B11(B12(A13(A二、填空题14(,2i1115(,i 216(2 17(,18(2117 / 18精品文档18 / 18。
2021高考数学 复数历年来高考习题荟萃(2020-2021)(含解析)(1)
zi,+2=2z设=2a+2bi在复平面内对应的.第四象限,故答案为D.对应的点的坐标是( ) ()(+为虚数单位1i iA .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i·(1+i) = i – 1,因此对应点(-1,1).选B 选B9.【2021山东】(1)复数z 知足(z-3)(2-i)=5(i 为虚数单位),那么z 的共轭复数为( D )A. 2+i C. 5+i10.【2021上海理】设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,那么________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩11.【2021四川理】2.如图,在复平面内,点A 表示复数z ,那么图中表示z 的共轭复数的点是( )(A )A (B )B (C )C (D )D 12.【2021全国新课改II 】设复数z 知足(1i )z = 2 i ,那么z =(A )1+ i(B )1 i(C )1+ i(D )1 i答案:A【解法一】将原式化为z =2i 1- i ,再分母实数化即可.【解法二】将各选项一一查验即可.13.【2021课标1】假设复数z 知足 (3-4i)z =|4+3i |,则z 的虚部为()A 、-4(B )-45(C )4(D )45【命题用意】此题要紧考查复数的概念、运算及复数模的计算,是容易题.【点评】此题考查复数代数形式的四那么运算及复数的大体概念,考查大体运算能力.先把Z 化成标准的(,)a bi a b R +∈形式,然后由共轭复数概念得出1z i =--. 10.【2021高考湖北文12】.若=a+bi (a ,b 为实数,i 为虚数单位),那么a+b=____________. 【答案】3【点评】此题考查复数的相等即相关运算.此题假设第一对左侧的分母进行复数有理化,也能够求解,但较繁琐一些.来年需注意复数的几何意义,大体概念(共轭复数),大体运算等的考查.11.【2021高考广东文1】设i 为虚数单位,那么复数34ii+= A. 43i -- B. 43i -+ C. 43i + D. 43i - 【答案】D12.【2102高考福建文1】复数(2+i )2等于 +4i +4i +2i +2i 【答案】A.【解析】i i i 43)22()14()2(2+=++-=+,应选A.13.【2102高考北京文2】在复平面内,复数103ii+对应的点的坐标为 A . (1 ,3) B .(3,1) C .(-1,3) D .(3 ,-1) 【答案】A14.【2021高考天津文科1】i 是虚数单位,复数534i i+-=(A )1-i (B )-1+i (C )1+i (D )-1-i【答案】C或,复数a+为纯虚数0,0b00b,应选B.=+(i为虚数单位年高考(山东理))假设复数)117i-i D.3--B.35i【解析】1iz i-=2021年高考(大纲理)【考点定位】此题要紧考查复数的代数运算在复平面内所对应的图形的面积为__8__.3416.(2021年高考(上海春))假设复数z 知足1(iz i i =+为虚数单位),那么z =1i -_______.34(江苏))设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),那么a b +的值为____. 7. 【考点】复数的运算和复数的概念.【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,因此=5=3a b ,,=8a b + .2020年高考复数1.【2020安徽理】 设 i 是虚数单位,复数aii1+2-为纯虚数,那么实数a 为 (A )2 (B) -2 (C) 1-2(D) 12A. 【命题用意】此题考查复数的大体运算,属简单题.【解析】设()aibi b R i1+∈2-=,那么1+(2)2ai bi i b bi =-=+,因此1,2b a ==.应选A. 2.【2020北京理】复数i 212i-=+ A. i B. i - C. 43i 55-- D. 43i 55-+【解析】:i 212ii -=+,选A 。
高一数学(人教B版)-复数的运算习题课-PPT课件
y
(4, 3)
Z
1 0 1
x
已知复数 z 满足 z 1,则 z (4 3i) 的最大、最小值为( )
A. 5,3
B. 6,4
C. 7,5
分析与解答:(思维方向:向量)
D. 6,5
y
(4, 3)
z (4 3i)
两个向量差的模
Z
向量 向量
根据复数减法几何意义的不等式:
类比多项式乘法计算
思想方法
几何意义
方程 类 数形 思想 比 结合
除法
分母实数化
几何意义
课后作业
1.求下列各式的值.
(1)( 2 i) (1 2 i) (1 3 i); (2) 5 3i 3 5i ;
1 2
3 2
i
.
分析与解答:
5
5
5
对于○3
1 1
i i
5
1 i 1 i
4 4
1 i4
1
i
4
4
2i 2
2i
2
4
1:
在实数集中,xR 都有(xm )n xmn (m,nR),而在复数 集中,仅对 m,nN有(xm )n xmn,盲目将实数集中的指
数运算法则推广到复数集,错误.
已知复数 z 满足 z 1,则 z (4 3i) 的最大、最小值为( )
A. 5,3
B. 6,4
C. 7,5
D. 6,5
分析与解答:(思维方向:代数)
z abi z 1
z = a2 b2
z (4 3i)
a2 b2 1
(a 4) (b 3)i
(a 4)2 (b 3)2
复数习题课(新新)
复 数 习 题【知识提要】复数减法几何意义的应用:1. 设复数21,z z 分别对应复平面上两点A 、B ,则21z z AB -=。
2. 设0z 对应的点为C ,以C 为圆心,r 为半径的圆:r z z =-0。
3. 设复数21,z z 分别对应复平面上两点A 、B ,线段AB 的中垂线;21z z z z -=-。
4. 设复数21,z z 分别对应复平面上两点A 、B ,以A 、B 为焦点,长轴长为2a 的椭圆: )2z ( 22121a z a z z z z <-=-+-。
5.设复数21,z z 分别对应复平面上两点A 、B ,以A 、B 为焦点,实轴长为2a 的双曲线: )2( 22121a z z a z z z z >-=---。
【练习】1.计算:________5312i i i i =-+- ; (2)i i i i 212)1()31(63+--++-=_2i____ . 2.复数ii m z 212+-=()R m ∈在复平面上对应的点不可能位于第__一___象限。
3.已知})65(13,2,1{22i m m m m M --+--= ,1{-=N ,3},}3{=N M ,则实数m=__________。
解:}3{=N M ,3)65(1322=--+--∴i m m m m ,即 3132=--m m 0652=--m m 1-=∴m._______ , ,91)2() 103(. 4的和等于则实数若y x i x i y i -=+-+-i i y x x y 91)10()23(::-=-+-原式化为解 根据复数相等的充要条件,有910123-=-=-y x x y , 解得 11==y x , 2=+∴y xi z z z z z z z ==+-211221 , , 022,..5则在第一象限且的两个根是方程已知. 6.已知5 4log 21≥+i x ,则实数x 的取值范围是_________ 。
第三章3.1 复数习题课
习题课 课时目标 1.进一步理解复数的概念.2.通过具体实例理解复平面的概念,复数的模的概念.1.复数的代数形式:____________ (a ,b ∈R ).2.复数相等的条件:a +b i =c +d i ⇔____________(a ,b ,c ,d ∈R ).3.复数z =a +b i (a ,b ∈R )对应向量OZ →,复数z 的模|z |=|OZ →|=____________.一、选择题1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( )A .3-3iB .3+iC .-2+2iD .2+2i2.若2+a i =b -i ,其中a ,b ∈R ,i 是虚数单位,则a 2+b 2等于( )A .0B .2C .52D .5 3.若点P 对应的复数z 满足|z |≤1,则P 的轨迹是( )A .直线B .线段C .圆D .单位圆以及圆内4.在复平面内表示复数z =(m -3)+2m i 的点在直线y =x 上,则实数m 的值为( )A .1B .1或3C .3D .95.在复平面内,O 为原点,向量OA →对应复数为-1-2i ,则点A 关于直线y =-x 对称点为B ,向量OB →对应复数为( )A .-2-iB .2+iC .1+2iD .-1+2i二、填空题6.若x 是实数,y 是纯虚数且满足2x -1+2i =y ,则x =________,y =________.7.下列命题:(1)两个复数不能比较大小;(2)若z =a +b i ,则当a =0,b ≠0时,z 为纯虚数;(3)x +y i =1+i ⇔x =y =1;(4)若实数a 与虚数a i 对应,则实数集与纯虚数集一一对应.其中正确命题的个数是________.8.若|log 3m +4i|=5,则实数m =________.三、解答题9.当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为 (1)实数?(2)虚数?(3)纯虚数?10.已知z =2a +1-2+(a -3)i 对应的点在第四象限,求a 的取值范围.能力提升11.求复数z 1=3+4i ,及z 2=-12-2i 的模,并比较它们模的大小.12.实数m 分别取何值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 的对应点:(1)在x 轴上方;(2)在直线x +y +5=0上.1.复数问题主要是利用实数化思想,转化为复数的实虚部应满足的条件.2.复数可以和复平面内的点、复平面内从原点出发的向量建立一一对应关系.习题课答案知识梳理1.a +b i 2.a =c ,b =d 3.a 2+b 2作业设计1.A [3i -2的虚部为3,3i 2+2i 的实部为-3,故所求复数为3-3i.]2.D [由已知a =-1,b =2,∴a 2+b 2=5.]3.D4.D [若表示复数z =(m -3)+2m i 的点在直线y =x 上,则m -3=2m ,即m -2m -3=0, ∴(m -3)(m +1)=0,∴m =3,∴m =9.]5.B [点A (-1,-2),设B (x ,y ),则⎩⎪⎨⎪⎧ y +2x +1=1-1+x 2+-2+y 2=0,解得⎩⎪⎨⎪⎧ x =2y =1,∴向量OB →对应的复数为2+i.]6.122i 解析 设y =b i (b ≠0),∴⎩⎪⎨⎪⎧ 2x -1=0b =2,∴x =12. 7.0解析 因为实数也是复数,而两个实数是可以比较大小的,故(1)错;(2)中没有注意到z =a +b i 中未对a ,b 加以限制,故(2)错;(3)中在x ,y ∈R 时可推出x =y =1,而此题未限制x ,y ∈R ,故(3)错;(4)中忽视了当a =0时,a i =0,即0在虚数集中没有对应,故(4)错.8.27或127解析 由题意得,(log 3m )2+16=25,即(log 3m )2=9,∴log 3m =±3,∴m =27或m =127. 9.解 (1)当⎩⎪⎨⎪⎧ m 2-2m =0m ≠0, 即m =2时,复数z 是实数;(2)当m 2-2m ≠0,即m ≠0,且m ≠2时,复数z 是虚数;(3)当⎩⎪⎨⎪⎧m 2+m -6m =0m 2-2m ≠0, 即m =-3时,复数z 是纯虚数.10.解 由题意得⎩⎨⎧ 2a +1-2>0,a -3<0,∴32<a <3. 11.解 |z 1|=32+42=5,|z 2|=⎝⎛⎭⎫-122+(-2)2=32. ∵5>32,∴|z 1|>|z 2|. 12.解 (1)由题意得m 2-2m -15>0,解得m <-3或m >5.(2)由题意得(m 2+5m +6)+(m 2-2m -15)+5=0,m =-3±414.。
复数习题课课件
二.复数的乘法法则:
(a+bi)(c+di)=ac+bci+adi+bdi2
=(ac-bd)+(bc+ad)i 显然任意两个复数的积仍是一个复数. 复数的乘法运算法则: 对于任意z1,z2,z3 ∈ C,有
z1∙z2= z2∙z1 , z1∙z2 ∙z3= z1∙(z2 ∙z3) , z1∙(z2 +z3)= z1∙z2 +z1∙z3
当堂检测
1.a 0是复数a bi(a, b R)为纯虚数的( ) A.充分非必要条件 C.充分必要条件 B.必要非充分条件 D.既不充分也不必要条件
2.设o是原点,向量OA, OB对应的复数分别为2 3i, 3 2i 那么向量BA对应的复数是() A. 5 5i B. 5 5i C.5 5i D.5 5i 2 3.当 m 1时,复数m(3 i ) (2 i )在复平面内 3 对应的点位于( )
4.若z 1 2i, 则z 2 2 z的值为 __________
1 z 5.若复数z满足 i则 z 1的值为 __________ 1 z 1 3 ( .( i) (1 i ) 计算: 1) 2 2 3 1 1 3 (2).( i )( i) 2 2 2 2 2i (3). 7 4i 5(4 i ) 2 (4). i(2 i)
复数z=a+bi (数)
y 一一对应
直角坐标系中的点Z(a,b) (形)
b
建立了平面直角坐标系来 z=a+bi 表示复数的平面——复平面 Z(a,b) x轴——实轴 y轴——虚轴 a x
0
这是复数的一种几何意义.
有序实数对(a,b)
(最新整理)复数运算习题
(完整)复数运算习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)复数运算习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)复数运算习题的全部内容。
复数运算习题一.选择题(共13小题)1.(2016•淮南一模)复数的虚部是( )A.i B.﹣i C.1 D.﹣12.(2016•眉山模拟)已知i是虚数单位,则复数i(1+i)的共轭复数为( )A.1+i B.l﹣i C.﹣l+i D.﹣l﹣i3.(2016•黄浦区一模)已知复数z,“z+=0"是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件4.(2016•临沂一模)复数z为纯虚数,若(3﹣i)z=a+i(i为虚数单位),则实数a的值为( )A.﹣3 B.3 C.﹣D.5.(2016•广西一模)在复平面内,复数+2i2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2016•白山一模)若=a+bi(a,b∈R,i为虚数单位),则a﹣b等于( )A.B.1 C.0 D.﹣17.(2016•衡阳一模)如图,在复平面内,复数z1和z2对应的点分别是A和B,则=()A.+i B.+i C.﹣﹣i D.﹣﹣i8.(2016•河西区模拟)已知复数z 1=3﹣i,z2=1+i,是z1的共轭复数,则=( )A.1+i B.1﹣i C.2+i D.2﹣i(2016•青浦区一模)复数(a∈R,i是虚数单位)在复平面上对应的点不可能位于( )9.A.第一象限B.第二象限C.第三象限D.第四象限10.(2015•新课标II)若a为实数且,则a=()A.﹣4 B.﹣3 C.3 D.411.(2015•静安区一模)已知i为虚数单位,图中复平面内的点A表示复数z,则表示复数的点是()A.M B.N C.P D.Q12.(2015•固原校级一模)若复数(i为虚数单位,a∈R)在复平面内对应点在第四象限,则a的取值范围为()A.{a|a<﹣6}B.C.D.13.(2015•海南模拟)已知i是虚数单位,m∈R,且是纯虚数,则()2011的值为()A.i B.﹣i C.1 D.﹣1二.填空题(共5小题)14.(2015•曲阜市校级模拟)若=1﹣bi,其中a,b都是实数,i是虚数单位,则a+b= .15.(2015秋•启东市校级期末)复数z满足|z﹣2+i|=1,则|z+1﹣2i|的最小值为.16.(2015春•淮安校级期末)定义:若z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数﹣3+4i的平方根是.17.(2015秋•大丰市校级期末)已知复数z=x+yi(x,y∈R,x≠0)且|z﹣2|=,则的范围为.18.(2015春•常州期中)设x是纯虚数,y是实数,且2x﹣1+i=y﹣(3﹣y)i,则|x+y|= .。
第三章3.2复数 习题课
习题课 课时目标 1.进一步理解复数代数形式的运算.2.将复数的运算和复数的几何意义相联系,加深对复数的模概念的理解.1.复数z =a +b i (a ,b ∈R )的模|z |=____________,在复平面内表示点Z (a ,b )到_______.复数z 1=a +b i ,z 2=c +d i ,则|z 1-z 2|=(a -c )2+(b -d )2,在复平面内表示__________________________________.2.i 4n =______,i 4n +1=______,i 4n +2=________,i 4n +3=________ (n ∈Z ),1i=______一、选择题1.复数⎝ ⎛⎭⎪⎫3-i 1+i 2等于( ) A .-3-4i B .-3+4iC .3-4iD .3+4i2.已知i 2=-1,则i(1-3i)等于( )A.3-i B .3+iC .-3-iD .-3+i3.设a ,b 为实数,若复数1+2i a +b i=1+i ,则( ) A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3 4.下列式子中正确的是( )A .3i>2iB .|2+3i|>|1-4i|C .|2-i|>2·i 4D .i 2>-i5.对任意复数z =x +y i (x ,y ∈R ),i 为虚数单位,则下列结论正确的是( )A .|z -z |=2yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y |二、填空题6.若复数z =1-2i (i 为虚数单位),则z ·z +z =__________.7.设复数z 满足z (2-3i)=6+4i(其中i 为虚数单位),则z 的模为________.8.设复数z 满足关系式z +|z |=2+i ,那么z =______.三、解答题9.已知复平面上的▱ABCD 中,AC →对应的复数为6+8i ,BD →对应的复数为-4+6i ,求向量DA →对应的复数.10.已知关于x 的方程x 2-(6+i)x +9+a i =0 (a ∈R )有实数根b .(1)求实数a ,b 的值;(2)若复数z 满足|z -a -b i|-2|z |=0,求z 为何值时,|z |有最小值,并求出|z |的最小值.能力提升11.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i的点是( )A .EB .FC .GD .H 12.(1)证明|z |=1⇔z =1z ; (2)已知复数z 满足z ·z +3z =5+3i ,求复数z .1.复数的运算可以看作多项式的化简,加减看作多项式加减,合并同类项,乘法可看作多项式的乘法,除法类比分式的分子分母有理化.2.复数的几何意义使复数及复平面内的点的数学问题转化成一系列的实数集中的问题.习题课答案知识梳理1.a 2+b 2 原点的距离 点Z 1(a ,b ),Z 2(c ,d )两点间的距离2.1 i -1 -i -i作业设计1.A [⎝ ⎛⎭⎪⎫3-i 1+i 2=⎣⎡⎦⎤(3-i )(1-i )22 =(1-2i)2=-3-4i.]2.B [i(1-3i)=i +3,选B.]3.A4.C [在A 、D 中都含有虚数.因虚数不能比较大小,故A 、D 错;在B 中:|2+3i|=13,|1-4i|=1+16=17,故B 错;在C 中,|2-i|=4+1=5,2·i 4=2,故C 正确.]5.D [可对选项逐个检查,A 项,|z -z |≥2y ,故A 错,B 项,z 2=x 2-y 2+2xy i ,故B 错,C 项,|z -z |≥2y ,故C 错,D 项正确.]6.6-2i解析 z ·z +z =(1-2i)(1+2i)+1-2i =6-2i.7.2解析 考查复数的运算、模的性质.z (2-3i)=2(3+2i),2-3i 与3+2i 的模相等,z 的模为2.8.34+i 解析 设z =x +y i ,则z +|z |=x 2+y 2+x +y i =2+i ,∴⎩⎨⎧ x 2+y 2+x =2y =1,∴⎩⎪⎨⎪⎧x =34y =1,∴z =34+i. 9.解 设▱ABCD 的对角线AC 与BD 相交于点P ,由复数加减法的几何意义,得 DA →=P A →-PD →=12CA →-12BD →=12(CA →-BD →) =12(-6-8i +4-6i)=-1-7i , 所以向量DA →对应的复数为-1-7i.10.解 (1)∵b 是方程x 2-(6+i)x +9+a i =0 (a ∈R )的实根,∴(b 2-6b +9)+(a -b )i =0,故⎩⎪⎨⎪⎧b 2-6b +9=0a =b 解得a =b =3.(2)设z =x +y i (x ,y ∈R ),由|z -3-3i|=2|z |,得(x -3)2+(y +3)2=4(x 2+y 2),即(x +1)2+(y -1)2=8.∴Z 点的轨迹是以O 1(-1,1)为圆心,22为半径的圆. 如图,当Z 点在OO 1的连线上时,|z |有最大值或最小值. ∵|OO 1|=2,半径r =22,∴当z =1-i 时,|z |min = 2.11.D [由题图知复数z =3+i ,∴z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i. ∴表示复数z 1+i的点为H .] 12.(1)证明 设z =x +y i (x ,y ∈R ), 则|z |=1⇔x 2+y 2=1,z =1z⇔z ·z =1⇔(x +y i)(x -y i)=1 ⇔x 2+y 2=1,∴|z |=1⇔z =1z. (2)解 设z =x +y i (x ,y ∈R ),则z =x -y i , 由题意,得(x +y i)(x -y i)+3(x +y i) =(x 2+y 2+3x )+3y i =5+3i ,∴⎩⎪⎨⎪⎧ x 2+y 2+3x =5,3y =3∴⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧x =-4y =1. ∴z =1+i 或z =-4+i.。
复数习题课课件
信号的傅里叶变换
复数可以帮助我们分解和分析 信号的频率和幅度,以实现傅 里叶变换。
工程和科学领域中的 实际应用案例
复数的应用不限于数学领域, 也可以帮助我们解决模拟和数 字信号等方面的问题。
复数的重要性
我们可以看到,复数不仅在数学领域有着广泛应用,而且在工程和科学领域中也有接踵而至的重要作用。
电力系统中的应用
复杂的电力网络需要使用复数数 学来计算电流和电压。
波动现象中的应用
复数数学可以帮助我们分析和计 算波动现象。
人工智能领域中的应用
复数数学可以帮助我们模拟神经 网络等复杂系统。
复数的深入学习和研究
1 探索更高级的复数应用
在学习和应用复数中,我们可以不断挑战自 己,去探索和发现更多的应用场景。
2 培养数学素养
复数的常见运算法则
1
复数乘法
2
在直角坐标和极坐标形式下的运算法则
是不同的。
3
共轭复数
4
通过将复数中的虚数部分取相反数,可 以得到其对应的共轭复数。
复数加减法
在直角坐标和极坐标形式下的运算法则 是不同的。
复数除法
在直角坐标和极坐标形式下的运算法则 是不同的。
复数的代数形式和实数部分和虚数部分
复数可以写成实数部分和虚数部分的和的形式,也称为代数形式。实数部分指复数的实数部分,虚数部分指复 数的虚数部分。
复数不仅是一种数学概念,更是培养我们数 学素养和逻辑思考能力的极好工具。
ห้องสมุดไป่ตู้
复数习题课ppt课件
在这个PPT课件中,我们将深入探讨复数的概念,表示和运算法则,并讨论复 数的实际应用。欢迎加入!
什么是复数?
复数的基本概念
数学课程复数的运算练习题及答案
数学课程复数的运算练习题及答案一、绪论在数学课程中,复数的运算是一个重要的内容。
复数是由实数和虚数组成的数学对象,广泛应用于代数、物理学和工程学等领域。
掌握复数的运算规则和技巧对于提高数学解题能力和扩展数学思维具有重要意义。
本文将为大家提供一系列复数的运算练习题及答案,以帮助读者更好地理解和应用复数。
二、复数的定义与基本运算1. 复数的定义复数可以表示为 a + bi 的形式,其中 a 是实数部分,bi 是虚数部分,i 是虚数单位,满足 i^2 = -1。
2. 复数的共轭复数 a + bi 的共轭定义为 a - bi。
共轭复数的实数部分相等,虚数部分互为相反数。
3. 复数的加法与减法对于复数 a + bi 和 c + di,其加法为 (a + c) + (b + d)i,减法为 (a - c) + (b - d)i。
4. 复数的乘法对于复数 a + bi 和 c + di,其乘法为 (ac - bd) + (ad + bc)i。
5. 复数的除法对于复数 a + bi 和 c + di,其除法为 (ac + bd)/(c^2 + d^2) + (bc - ad)/(c^2 + d^2)i。
三、复数运算练习题及答案1. 计算下列复数的和与差:a) (4 + 3i) + (1 - 2i)解:(4 + 1) + (3 - 2)i = 5 + ib) (2 + 5i) - (3 - 4i)解:(2 - 3) + (5 + 4)i = -1 + 9i2. 计算下列复数的乘积与商:a) (2 + i)(3 - 2i)解:(2*3 - 1*(-2)) + (2*(-2) + 3*1)i = 8 - ib) (4 + 5i)/(2 - i)解:((4*2 + 5*1)/(2^2 + 1^2)) + ((5*2 - 4*1)/(2^2 + 1^2))i = (13/5) + (6/5)i3. 计算下列复数的共轭:a) (3 + 4i)解:3 - 4ib) (-2 - 6i)解:-2 + 6i4. 求下列复数的模和幅角:a) 2 + 4i解:模为√(2^2 + 4^2) = √20,幅角为 arctan(4/2) = arctan 2b) -3 - 5i解:模为√((-3)^2 + (-5)^2) = √34,幅角为 arctan((-5)/(-3)) =arctan(5/3)五、总结本文针对数学课程中复数的运算练习题及答案进行了介绍,并给出了相应的解答。
专题09:复数知识点及典型例题(解析版)-2022年高考数学一轮复习课件+知识清单+练习题
A. 4 2i
12.A 【分析】
B. 4 2i
利用复数的加法法则直接计算即可.
C.1 4i
D.1 5i
【详解】
(3 4i) (1 2i) 3 1 4 2 i 4 2i .
故选:A.
【点睛】
本题考查复数的加法运算,属于基础题.
13.如图,在复平面内,若复数 z1 , z2 对应的向量分别是 OA ,OB ,则复数
zm zn zmn , (zm )n zmn , (z1z2 )n z1n z2n
15.复数 z 2 i1 2i 在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
15.A
【分析】
利用复数的乘法化简复数 z ,利用复数的乘法可得出结论.
【详解】
z 2 i1 2i 2 3i 2i2 4 3i ,
D.1 3i
7.A
【分析】
由图形得复数对应点的坐标,利用复数的运算法则求解.
【详解】
由题意可得
z
1i
,所以 z
4 =1 i+ 4
z
1i
1 i 21 i 3 i .
故选:A.
【点睛】
本题考查复数的运算、几何意义,属于基础题.
8.在复平面内,若表示复数 z m2 1 1 i 的点在第四象限,则实数 m 的取值范围是( ) m
z 2i,
则 z 的虚部是 1.
故选: B .
21.设复数
z
1 i2020 1i
(其中
i
为虚数单位),则
z
在复平面内对应的点所在象限为(
)
A.第四象限 21.A
B.第三象限
C.第二象限
英语名词复数练习题(1)
英语名词复数练习题(1)一将下列的名词变成复数形式。
1.book。
___________________。
2.duck。
___________________3.house。
___________________。
4.orange。
___________________5.class。
___________________。
6.box。
___________________7.watch。
___________________。
8.bus。
___________________9.city。
___________________。
10.factory。
___________________11.country。
___________________。
12.family。
___________________13.hero。
___________________。
14.potato。
___________________15.tomato。
___________________。
16.photo。
___________________17.piano。
___________________。
18.knife。
___________________19.leaf。
___________________。
20.life。
___________________21.fish。
___________________。
22.sheep。
___________________23.foot。
___________________。
24.tooth。
___________________25.man。
___________________。
26.woman。
___________________27.fireman___________________。
28.policeman。
___________________29.postman。
第14讲复数(1)-解析与答案
第14讲 复数(一)模块1 复数的概念1.复数的表示形式(1)代数形式:z a bi ,其中,a b R .这里,a 称为复数z 的实部,用 Re z 表示;b 称为复数z 的虚部,用 Im z 表示. 当0b 时,z 就是实数;当0b 时,称z 为虚数;当0b 且0a 时,复数z 称为纯虚数. (2)几何形式:复数z a bi ,a b R 与复平面内的点 ,Z a b 或由原点发出的向量OZ 一一对应. (3)三角形式: cos sin z r i ,其中0,r R .这里,r 称为复数z 的模,用z 表示; 称为复数z 的幅角,而当02 时,称为复数z 的幅角主值,用 arg z 表示,不难发现tan b r a .(4)指数形式:i z re ,其中0,r R . 这里,cos sin i e i 也就是著名的欧拉公式.(5)共轭复数:当两个复数的实部相等,虚部互为相反数时,就称其互为共轭复数. 一般用z 来表示z 的共轭复数,当z a bi 时,z a bi ;共轭复数在复平面内关于x 轴对称;当 cos sin z r i 时, cos sin z r i ,也就是说共轭复数的模相等而幅角互为相反数; 当i z re 时,i z re .2.复数与一元二次方程(1)对所有的实系数一元二次方程20ax bx c (0)a , 若240b ac ,则此方程没有实根,但有两个虚根,且两根242b ac b x a 互为共轭复数,故实系数方程的虚根成对出现.3.复数的运算法则:(1)加减法: a bi c di a c b d i ; (2)乘法: a bi c di ca bd ad bc i ,111222121212cos sin cos sin cos sin r i r i r r i ,(3)除法:2222a bi ac bd bc adi c di c d c d,111112122222cos sin cos sin cos sin r i r i r i r(4)棣莫弗定理(乘方):cos sin cos sin nn r i r n i n复数的运算满足:交换律,结合律,分配律.(5)若 cos sin nk w r i,则22cos sin k k k w i n n, 其中0,1,2,,1k n .4.复数的性质: 共轭复数的性质: (1)1212z z z z ;(2)11121222,z zz z z z z z , n n z z ;(3)1Re 2z z z,1Im 2z z z ; (4)z 是实数的充要条件是z z ,z 是纯虚数的充要条件是z z 且0z ; (5)z z ; (6)22z z z z .5.复数的模的性质:(1)max Re ,Im Re Im z z z z z ; (2)1212m n z z z z z z ;(3)112220z z z z z ; (4)121212z z z z z z .【经典例题】【例1】 (1)若复数z 满足 325z i (i 为虚数单位),则z 的共轭复数为________. (2)复数21iz i(i 为虚数单位)的共轭复数在复平面上对应的点位于第________象限. (3)复数11z i的模为________. (4)复数,z w 满足3z ,74z w z w i ,则 2z w z w ________. 【教师建议】复数计算,共轭,模 【解析与答案】(1)5i ;(2)四;(3; (4)2274i z w z w z w zw zw , 由于22,,Re 0z w R zw zw ,则227,4z w zw zw i ,而3z ,故22w ,故222242z w z w z w zw zw18i ,故2218z w z w i【例2】 若z C ,且286z i ,求3210016z z z. (2)二次函数 210ax x a R 的两根的模都小于2,求实数a 的取值范围.(3)设R ,若二次方程 2110i x i x i 有两个虚根,求实数 的取值范围.【教师建议】1.复数开方方法;2.实(复)系数二次函数的解.【例3】 (1)31 ________.(2)已知1,mnii m n N ,则mn 的最小值是________.(3)计算102282000i【教师建议】三角形式计算 【解析与答案】(1)-8;(2)72(3)256i .【例4】 设x是模为1的复数,则函数 2211f x xx的最小值为________.(2)设,p q是复数 0q ,若关于x的方程220x px q的两根的模相等,证明:pq是实数. 【教师建议】复函数最值(利用三角形式,三角函数最值)【解析与答案】(1)设ix e,则 22221112cos211i if x x e ex.(2)21212,z z p z z q,2221221222122122iii iz z z zpe e e eq z z z z为非负实数,因此pq是实数.【例5】 已知复数z满足1z ,则1z iz的最小值为________.(2)设复数z满足1z 且152zz,则z ________.(3)(2002联赛)已知复数12,z z满足122,3z z.若它们所对应向量的夹角为060,则1212z zz z________.【解析与答案】(1)1112iz iz i z1.(2)2151122z z z z zz(3)几何意义,余弦定理【例6】 已知复数z 的模大于1,155cos sin 22iz z,则z ________.(2)已知复数12,z z 满足121232,3,322z z z z i ,试求12z z 的值. 【解析与答案】 (1)25551cos sin 12222i zz z z z z,代入得 2cos sin z i (2) 1212216323072131323z z z z i z z【例7】 求证:当1a 或1b ,当a b 时,有11a bab. 【解析与答案】【例8】 若1231z z z ,求223123111z z z z z z 的值【解析与答案】【例9】 若12,,,0z z A C A ,且12120z z Az Az . 求证:12()()z A R z A .【解析与答案】【例10】 (全国高考题)设z C ,解方程313zz iz i . 【解析与答案】模块2 复数的几何意义1.复数及其预算的几何意义复数 ,z x yi x y R 与复平面内的点 ,Z x y 及向量OZ (O 是坐标原点)之间构成一一对应关系,这就使得复数本身以及运算中有着深刻的几何意义. (1)复数加减法的几何意义复数的加法可以按照向量的加法法则来进行. 两个复数的差12z z 与连接两向量终点并指向被减数的向量对应.(2)复数乘除法的几何意义记 11112222cos sin ,cos sin z r i z r i ,两个复数的积12z z 对应的向量就是把向量OZ 按逆时针方向旋转一个角 (若0 ,则应将OZ 按顺时针方向旋转一个角 ),再将它的模变为原来的2r 倍. 复数的除法也有类似的几何意义.2.复平面解析几何(1)复平面上两点间的距离公式复数12,z z 在复平面上对应的点为12,,Z Z d 表示两点12,Z Z 之间的距离,则有12d z z . (2)复平面上的曲线方程如果复数z 对应着复平面上一点 ,Z x y 就可得出一些常用曲线的复数形式的方程: ①方程0z z r 表示以0Z 为圆心,r 为半径的圆; ②方程12z z z z 表示线段12Z Z 的垂直平分线;③方程122z z z z a 表示以12,Z Z 为焦点,a 为长半轴的椭圆; ④方程122z z z z a 表示以12,Z Z 为焦点,实轴长为2a 的双曲线.复数的几何意义构建了代数与几何之间的相互联系,当中的要害之处在于怎样选取恰当坐标系,进而建立几何元素的复数表示,以借助复数的运算来探究平面几何问题的解决方案.【经典例题】【例11】 (1)(2009复旦)复平面上点012z i 关于直线:22l z i z 的对称点的复数表示是________. (2)设复数z 满足1z ,则2221z z z i的最大值为________.【教师建议】复数几何意义 【解析与答案】(1)i ;(21 .(2)22211z z z i z i表示单位圆上与 1,1距离最大值,为1【例12】 任给8个非零实数128,,,a a a ,证明:下面6个数132415261728354637485768,,,,,a a a a a a a a a a a a a a a a a a a a a a a a 中,至少有一个数是非负的.【解析与答案】令212,1,2,3,4i i i z a a i , 212,i i i z a a【例13】 (全国高中数学联赛题)给定实数,,a b c 已知复数123,,z z z 满足1233122311.1.z z z z z z zz z求123az bz cz 的值. 【解析与答案】【例14】 设复数cos sin (0180)z i ,复数,(1),2z i z z 在复平面上对应的三个点分别是,,P Q R .当,,P Q R 不共线时,以线段,PQ PR 为两边的平行四边形的第四个顶点为S ,点S 到原点距离的最大值是________. 【解析与答案】模块3 多项式与单位根1.多项式的根一般地,以x 为未知数的一元n 次多项式 f x 可以写成:1110n n n n f x a x a x a x a这里n 为确定的自然数 0n a ,称为 f x 的次数,记作 deg f x .2.多项式相等:两个多项式如果次数相同且同次项系数相等,则此两多项式相等. 竞赛中出现的多项式多为整系数的,称为整系数多项式.如果 1110n n n n f x a x a x a x a 是复系数一元n 次多项式,那么它对应的方程 0f x 就称为复系数一元n 次方程,它的根也称为多项式 f x 的根.类似地,如果 f x 是实系数(或有理系数,整系数等)多项式,则称对应方程为实系数(或有理系数,整系数等)一元n 次方程.3.代数基本定理一元n 次多项式在复数中至少有一个根.根的个数定理:一元n 次多项式有且仅有n 个根(k 重根算作k 个根)推论:若有1n 个不同的x 值使得n 次多项式 f x 与 g x 值相等,那么 f x g x .4.实系数多项式虚根成对定理:若实系数多项式 f x 有一个虚根a bi ,那么a bi 也是它的根,且两根有共同的重数k . 推论1:任何奇次实系数多项式至少有一个实根.推论2:任何次数大于0的实系数多项式均可在实数范围内分解成若干个一次因式与具有共轭虚根的二次因式之积.5.韦达定理的一般形式为:如果一元n 次多项式 1110n n n n f x a x a x a x a 的根是12,,,n x x x ,那么112n n nax x x a ,212131n n n na x x x x x x a, 312312421n n n n na x x x x x x x x x a,12n x x x .6.单位根对于方程10n x (n 是自然数且2n ),由复数开方法则,就得到它的n 个根.利用复数乘方公式,有12222cos sin cos sin kk k k k i i n n n n. 这说明:这n 个n 次单位根可以表示为211111,,,,n ,它们在复平面内对应的点构成一个内接于单位圆的正n 边形.关于n 次单位根,有如下一些性质: (1) 111k k n ;(2) 1,1i j i j i j n ; (3)2111110n ;(4) 设m 是整数,则1211m m mn,当 是 的倍数时;0,当 不是 的倍数时.(5) 1101n n k k k k x x ,特别的,当1x 时, -111n k k n .【经典例题】【例15】 (1)证明:sin x 不是多项式; (2). 【解析与答案】【例16】 若多项式 3248f x x x x a 有模等于2的虚根,试确定实数a 并解出所有的根.【例17】 若多项式 43262f x x x ax bx 有4个实根,证明:这些根中必有一个小于1【例18】 设,,0,,,a b R b 是三次方程30x ax b 的3个根,求以111111,,为根的三次方程. 【解析与答案】【例19】 (1)设1002200012001x x a a x a x ,求03198a a a 的值.(2)033333nn n nC C C ________. (3)计算:024698100100100100100100100C C C C C C 【解析与答案】(1)令21,,x w w ,其中31w 且1w ,解得99031983a a a(2)21211,3nn n w w 其中22cos sin 33w i . (3)100024*********1001001001001001001001001i C C C C i C C C C利用三角形式可得024********50100100100100100100100C C C C C C 2cos24【说明】类似可求0k kn knkn kn C C C【例20】 若cos 40sin 40i ,则12392π239sin 99等于________. 【解析与答案】设222239s ,其中29i e.23410239s .2391019s . 1 ∵,210191s∴.注意到92921091,i i e e,19s ∴.故11111999s s ,.由于1与 是单位圆内接正九边形的相邻顶点,所以1 是单位圆内接正九边形的边长.即π12sin 9,也即12πsin 0999.【例21】 (99联赛)给定实数a b c ,,,已知复数1z ,2z ,3z 满足: 12331223111z z z z z z zz z,求123az bz cz 的值. 利用单位根形式证明1z ,2z ,3z 必有两个相等. 【解析与答案】由题设,有i i i()1e e e .两边取虚部,有 0sin sin sin 2sincos2sincos22222sincos cos2224sin sin sin 222故2πk 或2πk 或2πk ,k Z .因而,12z z 或23z z 或31z z . 如果12z z ,代入原式即 313111z z z z .故23110z z,31i z z . 这时,1231i az bz cz z a b c.类似地,如果23z z,则123az bz cz ;如果31z z ,则123az bz cz .所以,123az bz cz22a b c22b c a22c a b【例22】 是否存在一个凸1990边形,同时具有下列的性质(1)与(2): (1)所有内角均相等;(2)1990条边的长度是1,2,…,1989,1990的一个排列。
复数的四则运算⑴
3. 共轭复数的概念、性质: (1)定义: 实部相等,虚部互为相反数的两个复数互为共轭 复数.
复数 z=a+bi 的共轭复数记作
z, 即 z a bi
一步到位!
注意: a+bi 与 a-bi 两复数的特点.
( 2 ) (a bi) a 2abi b i
2 2
2 2
a b 2abi
2 2
( 3 ) (1 2i)(3 4i)(2 i)
(1 2i )(3 4i )( 2 i ) (11 2i )( 2 i ) 20 15i
这就是复数加法的几何意义.
类似地,复数减法: y
Z2(c,d)
OZ1-OZ2
Z1(a,b) O
x Z
这就是复数减法的几何意义.
练一练:如图的向量对应的复数z,试作出下列运算的结果
对应的向量:(书 P109, 2)
1、z+1 y
Z
2、z-1
Z
3、z+(-2+i) y
OZ
O
O 1 1
OZ
x
x
3.复数的乘法:
复数z=a+bi (数) y z=a+bi b a Z(a,b)
一一对应
直角坐标系中的点Z(a,b) (形)
一一对应
平面向量 OZ
0
x
2、复数的加法与减法几何意义
我们知道,两个向量的和满足平行四边形法则, 复数可以表示平面上的向量,那么复数的加法与向量 的加法是否具有一致性呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1
已知关于 x 的方程 x 2 (2i 1) x 3m i 0 有实根. 则实数 m 的取值范围是____________. 1
5答案
12
5. (《随堂通》 P111 12) 已知关于 x 的方程 x 2 (2i 1) x 3m i 0 有实根. 则实数 m 的取值范围是____________.
解:原方程整理得: (x2+x+3m)-(2x+1)i=0 ∵x、m∈R,由复数相等的充要条件得: x 2 x 3m 0 1 1 解得 x , m . 2 12 2 x 1 0
1 ∴实数 m 的取值范围是 . 12 评注: 一元二次方程系数为虚数时, △ 法判别实 根已经不适用了.
C
4 2
A
1 2
5答案
5.已知关于 x 的实系数方程 x -2ax+a -4a+4=0 的两 虚根为 x1、x2,且|x1|+|x2|=3,则 a 的值为 .
解:依题意可设两虚根为 m ni , m ni m ni m ni 2a 则由韦达定理得 ( m ni )( m ni ) a 2 4a 4 又∵ m ni m ni 3 ,∴ 2 m2 n2 3 9 1 7 2 ∴ a 4a 4 解得 a 或 ( 舍去) 4 2 2 评注: 实系数一元二次方程有虚根一定是成 对出现的.(两虚根互为共轭复数) 作业:课本 P A 组题 1、2、3(第 1 题不抄题) 129
4
能力练习: 1.(《随堂通》 P111 16)已知 z = x+yi(x,y∈R), 且 2
x y
2+i 或 1+2i 1 3 9 4 2 8 2.若 i ,则 (1 )(1 )(1 )(1 ) 的值为____. 2 2 1 3.设 Sn 1 i i 2 i n1 ,则 S2007 等于________. 1 1 14 4.已知 x 1, 则 x 14 _____. x x 5. (《随堂通》 P111 12)
拓展练习: 1.满足条件|z-i|=|3+4i|的复数 z 在复平面上对应 点的轨迹是( ) (A)一条直线 (B)两条直线 (C)圆 (D) 椭圆 2.复数 z=x+yi(x, y∈R)满足|z-4i|=|z+2|, 则 2x +4y 的最小值是_______. 3.如果复数 z 满足|z+i|+|z-i|=2, 那么|z+i+1|的最小 值是( )(A)1 (B) 2 (C)2 (D) 5 4.已知复数 z x 2 yi ( x, y R) 的模是 3 , y 3 则 的最大值是______. x 5.已知关于 x 的实系数方程 x2-2ax+a2-4a+4=0 的两 虚根为 x1、x2,且|x1|+|x2|=3,则 a 的值为 .
B)
z1 3.已知复数 z1 2 i , z2 1 i ,则 在复平面内 z2 四 对应的点位于第_____象限. 25 4.若复数 z 的共轭复数是 3-4i . 3 4i 5.已知复数 z1=3+4i, z2=t+i,且 z1 z2 是实数,则实 3 数 t =____.
复数的复习(习题课)
知识概括
基础练习
能力练习
拓展练习
作业:课本 P A 组题 1、2、3(第 1 题不抄题) 129
复数的复习(习题课)
一、本章知识结构
虚数的引入 复 复数的表示 代数表示 几何表示 数 复数的运算
代数运算
几何意义
下面我们主要通过练习来巩固相关概念和方法.
基础练习: 1. a 0 是复数 a bi (a , b R) 为纯虚数的( (A)充分条件 (B)必要条件 (C)充要条件 (D)非充分非必要条件 2.已知复数 z 1 i , z 4 =_______ 4