计算方法(2)第二章 方程的近似解法
计算方法——第二章——课后习题答案刘师少
2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次?证明 令f (x )=1-x -sin x ,∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211x x +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。
计算方法
计算方法第一章绪论1.1计算方法的任务与特点计算方法(又称数值计算方法,数值方法)定义:研究数学问题数值解法及其理论的一门学科1.2误差知识误差来源:模型误差、观测误差、截断误差、舍入误差绝对误差:|e(x*)|=|x-x*|相对误差:e r=e(x*)/x*x*=±10m(a1×10-1+a2×10-2+…+an×10-n)n为有效数字|x-x*|≤(1/2)×10m-n1.3选用算法时应遵循的原则要尽量简化计算步骤以减少运算次数、要防止大数“吃掉”小数、尽量避免相近的数相减、除法运算中应尽量避免除数的绝对值远远小于被除数的绝对值选用数值稳定性好的公式,以控制舍入误差的传播第二章方程的近似解法方程f(x)=a0+a1x+…+a m-1x m-1+a m的根的模小于u+1大于1/|1+v| (u=max{|a m-1|,…,|a1|,|a0|}v=1/|a0|max{1,||a m-1|,…,|a1|})2.1二分法解法步骤:第一步利用(b-a)/2n+1≤1/2×10-m解得n+1≥~得最小对分次数2.2迭代法解法步骤:第一步画图求的隔根区间第二步建立迭代公示并判别收敛性第三步令初始值计算2.3牛顿迭代法迭代公式:x n+1= x n -f(x n)/f’(x n)解法步骤:第一步列出迭代公式第二步判断收敛性3.1解线性方程组的直接法高斯消去法、列主元素消去法、总体选主元素消去法暂不介绍矩阵三角分解法Ly=b Ux=y以三行三列为例介绍u11=a11u12=a12u13=a13l21=a21/u11l31=a31/u11u22=a22-l21×u12u23=a23-l21×u13l32=(a32-l31u12)/u22u33=a33-l31×u13-l32×u233.2解线性方程组的迭代法简单迭代法(雅可比迭代法)x=Bx+g收敛性判断|E入-B T B|=0 max入<1赛德尔迭代法x(k+1)=B1x(k+1)+B2x(k)+g收敛性判断|E入-C T C|=0 max入<1 C=(E-B1)-1B2第五章插值法余项R n(x)=f(n+1)(~)∏(x-x i)5.1拉格朗日插值法l k(x)=[(x-x0)…(x-x k-1)(x-x k+1)…(x-x n)]/[(x k-x0)…(x k-x k-1)(x k-x k+1)…(x k-x n)] L n(x)=∑l k(x)y k第六章最小二乘法与曲线拟合A T Ax=A T b第七章数值积分与数值微分梯形公式∫f(x)dx=(b-a)/2[f(a)+f(b)]Rn=-(b-a)3/12f’’(m) (m∈(a,b))复化梯形公式Rn=-(b-a)h2/12f’’(m) (m∈(a,b))辛浦生公式∫f(x)dx=(b-a)/6[f(a)+f((a+b)/2)+f(b)]Rn=- (b-a)5/2880f’(4)(m) (m∈(a,b))Rn=- (b-a)h4/2880f’(4)(m) (m∈(a,b))柯特斯公式∫f(x)dx=(b-a)/90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]Rn=-8(b-a)/945((b-a)/4)7f(6)(m) (m∈(a,b))Rn=-2(b-a)(h/4)6/945((b-a)/4)7f(6)(m) (m∈(a,b))龙贝格求积公式S N=(4T2N-T N)/(4-1)C N=(42S2N-S N)/(42-1)R N=(43C2N-C N)/(43-1)T梯形S辛浦生C柯特斯第八章常微分方程初值问题的数值解法欧拉法y n+1=y n+hf(x n,y n)梯形法y n+1=y n+h/2[f(x n,y n)+f(x n+1,y n+1)]欧拉预估-校正公式y n(0)=y n+hf(x n,y n) y n+1=h/2[f(x n,y n)+f(x n+1,y n+1(0))]。
高中数学:2.4.2求函数零点近似解的一种计算方法——二分法 _1
(1)确定区间[a,b],验证_____f_(_a_)·_f_(b_)_<_0____________;
(2)求区间(a,b)的中点 x1; (3)计算 f(x1);①若______f_(x_1_)_=__0_____,则 x1 就是函数的 零点;②若_____f(_a_)_·f_(_x_1)_<_0______________,则令 b=x1 (此 时零点 x0∈(a,x1));③若_______f(_x_1_)·_f_(b_)_<_0____________, 则令 a=x1(此时零点 x0∈(x1,b)). (4)判断是否达到精确度 ,即若|a-b|< ,则得到零点近似
栏目 导引
第二章 函 数
又 F(1)=-1<0, F(2)=29>0, 所以方程 x5-x-1=0 的根在区间(1,2)内. (2)证明:令 F(x)=x3-3x+1, 它的图象一定是不间断的, 又 F(-2)=-8+6+1=-1<0, F(-1)=-1+3+1=3>0, 所以方程 x3-3x+1=0 的一根在区间(-2,-1)内.
栏目 导引
第二章 函 数
2.二分法 对于在区间[a,b]上连续不断,且 f(a)·f(b)<0 的函数 y=f(x), 通过不断地把函数 f(x)的零点所在的区间一分为二,使区间 的两个端点逐步逼近零点,进而得到零点的近似值的方法叫 做二分法.
栏目 导引
第二章 函 数
3.用二分法求函数 f(x) 零点近似值的步骤
标
的函数值
x3=1.5+21.625= 1.562 5
f(x3)=0.252 2>0
x4=1.5+12.562 5 =1.531 25
第2章方程的近似解法
第二章 方程求根在许多实际问题中,常常会遇到方程f(x)=0求解的问题。
当f(x)为一次多项式时,f(x)=0称为线性方程,否则称为非线性方程。
对于非线性方程,由于f(x)的多样性,求其根尚无一般的解析方法可以使用,因此研究非线性方程的数值解法是十分必要的。
法、迭代法、牛顿法及割线法。
这些方法均是知道根的初始近似值后,进一步把根精确化,直到达到所要求的 精度为止。
也即求非线性方程根的数值方法。
第一节 第一节 增值寻根法与二分法2.1.1 增值寻根法设非线性方程f(x)=0的根为*x ,增值寻根法的基本思想是,从初始值0x 开始,按规定 的一个初始步长h 来增值。
令 1n x +=n x +h(n=0,1,2,…),同时计算f(1n x +)。
在增值的计算过程中可能遇到三种情形:(1) f(1n x +)=0,此时1n x +即为方 程的根*x 。
(2) f(n x )和f(1n x +)同符号。
这说明区间[n x , 1n x +]内无根。
(3) f(n x )和f(1n x +)异号,f(n x )·f(1n x +)<0此时当f(x)在区间[n x , 1n x +]上连续时,方程f(x)=0在[n x , 1n x +] 一定有根。
也即我们用增值寻根法找到了方程根的存在区间,n x 或1n x +均可以视为根的近似值。
下一步就是设法在该区间内寻找根 *x 更精确的近似值,为此再用增值寻根法 把n x 作为新的初始近似值,同时把步长缩小,例如选新步长1100h h =,这 样会得到区间长度更小的有根区间,从而也得到使f(x)n x ,作为*x 更 精确的近似值,若精度不够,可重复使用增值寻根法,直到有根区间的长度|1n x +-n x |<ε(ε为所要求的精度)为止。
此时f(n x )或f(1n x +)就可近似认为是零。
n x 或1n x +就是满足精度的方程的近似根(如图2-1).2—1例1 用增值寻根法求方程f(x)=324x x +-10=0的有根区间。
高中数学二章函数2.4函数与方程2.4.2求函数零点近似解的一种计算方法二分法
2.4.2 求函数零点近似解的一种计算方法—二分法整体设计教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点教学重点:用二分法求方程的近似解.教学难点:二分法.课时安排1课时教学过程导入新课思路1.(情境导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米).电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究 提出问题①解方程2x -16=0.②解方程x 2-x -2=0.③解方程x 3-2x 2-x +2=0.④解方程x 2-2x 2-3x +2=0.⑤我们知道,函数f x =lnx +2x -6在区间2,3内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间? ⑦什么叫二分法?⑧试求函数f x =lnx +2x -6在区间2,3内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.,⑩思考用二分法求函数零点近似值的特点. 讨论结果: ①x=8.②x=-1,x =2.③x=-1,x =1,x =2 ④x=-2,x =2,x =1,x =2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x =a +b 2称为区间(a ,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y =f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.⑧因为函数f(x)=lnx +2x -6,用计算器或计算机作出函数f(x)=lnx +2x -6的对应值表. x 1 2 3 4 5 6 789f(x)-4-1.306 91.098 63.386 35.609 47.791 89.945 9 12.079 4 14.197 2由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间(2,3)内有零点x 0,取区间(2,3)的中点x 1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x 0∈(2.5,3).同理,可得表(下表)与图象(如下图).区间 中点的值 中点函数近似值(2,3) 2.5 -0.084 (2.5,3) 2.75 0.512 (2.5,2.75) 2.625 0.215 (2.5,2.625) 2.562 5 0.066 (2.5,2.562 5) 2.531 25 -0.009 (2.531 25,2.562 5)2.546 8750.029(2.531 25,2.546 875) 2.539 062 5 0.010 (2.531 25,2.539 062 5)2.535 156 250.001由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.539 062 5-2.531 25|=0.007 812 5<0.01,所以,我们可以将x =2.531 25作为函数f(x)=lnx +2x -6零点的近似值.⑨用二分法求函数零点的一般步骤如下:第一步 在D 内取一个闭区间[a 0,b 0] D ,使f(a 0)与f(b 0)异号,即f(a 0)·f(b 0)<0.零点位于区间[a 0,b 0]中.第二步 取区间[a 0,b 0]的中点(如下图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0),并判断:(1)如果f(x 0)=0,则x 0就是f(x)的零点,计算终止;(2)如果f(a 0)·f(x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; (3)如果f(a 0)·f(x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0. 第三步 取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f(x 1)和f(a 1),并判断:(1)如果f(x 1)=0,则x 1就是f(x)的零点,计算终止;(2)如果f(a 1)·f(x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; (3)如果f(a 1)·f(x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f(x)的近似零点,计算终止.这时函数y =f(x)的近似零点满足给定的精确度.⑩由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1求函数f(x)=x 3+x 2-2x -2的一个正实数零点(精确到0.1).解:由于f(1)=-2<0,f(2)=6>0,可以确定区间[1,2]作为计算的初始区间.用二法逐步计算,列表如下:端点或中点横坐标 计算端点或中点的函数值 定区间 a 0=1,b 0=2 f(1)=-2,f(2)=6 [1,2] x 0=(1+2)/2=1.5 f(x 0)=0.625>0 [1,1.5] x 1=(1+1.5)/2=1.25 f(x 1)=-0.984<0 [1.25,1.5] x 2=(1.25+1.5)/2=1.375 f(x 2)=-0.260<0 [1.375,1.5] x 3=(1.375+1.5)/2=1.437f(x 3)=0.162>0[1.375,1.437 5]1.4,因此1.4就是所求函数的一个正实数零点的近似值.函数f(x)=x3+x2-2x-2的图象如下图.实际上还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.点评:以上求函数零点的二分法,对函数图象是连续不间断的一类函数的零点都有效.如果一种计算方法对某一类问题(不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到唯一的结果,我们常把这一类问题的求解过程叫做解决这一类问题的一种算法.算法是刻板的、机械的,有时要进行大量的重复计算,算法的优点是一种通法,只要按部就班地去做,总会算出结果.算法更大的优点是,它可以让计算机来实现.例如,我们可以编写程序,快速地求出一个函数的零点.有兴趣的同学,可以在“Scilab”界面上调用二分法程序,对上例进行计算,求出精确度更高的近似值.本套书的一个重要特点是,引导同学们认识算法思想的重要性,并希望同学们在学习前人算法的基础上,去寻求解决各类问题的算法.在思路2例1求方程2x3+3x-3=0的一个实数解(精确到0.01).解:考察函数f(x)=2x3+3x-3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在区间.经试算,f(0)=-3<0,f(2)=19>0,所以函数f(x)=2x3+3x-3在[0,2]内存在零点,即方程2x3+3x-3=0在[0,2]内有解.取[0,2]的中点1,经计算,f(1)=2>0,又f(0)<0,所以方程2x3+3x-3=0在[0,1]内有解.3至此,可以看出,区间[0.742 187 5,0.744 140 625]内的所有值,若精确到0.01,都是0.74.所以0.74是方程2x3+3x-3=0精确到0.01的实数解.点评:利用二分法求方程近似解的步骤:①确定函数f(x)的零点所在区间(a,b),通常令b-a=1;②利用二分法求近似解.,发现x1∈(2,2.5)(如上图),这样可以进一步缩小,先画出函数图象的简图,如上图.=2>0,x2-2x-1=0有一解,记为x1.,因为f(2.5)=0.25>0,所以2<x<2.5.知能训练1.函数f(x)=x3-2x2-x+2的零点个数是( )A.0 B.1 C.2 D.3答案:D2.在26枚崭新的金币中,有一枚外表与真币完全相同的假币(重量轻一点),现在只有一台天平,请问:应用二分法的思想,最多称__________次就可以发现这枚假币?解析:将26枚金币平均分成两份,放在天平上,则假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,放在天平上,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚平均分成两份,放在天平上,则假币一定在轻的那3枚金币里面;将这3枚金币任拿出2枚放在天平上,若平衡,则剩下的那一枚就是假币,若不平衡,则轻的那一枚就是假币.综上可知,最多称4次就可以发现这枚假币.答案:43.求方程x 3-3x -1=0的一个正的近似解(精确到0.1).解:设f(x)=x 3-3x -1,设x 1为函数的零点,即方程x 3-3x -1=0的解.作出函数f(x)=x 3-3x -1的图象如下图.因为f(1)=-3<0,f(2)=1>0,所以在区间(1,2)内方程x 3-3x -1=0有一个解,记为x 1.取1与2的平均数1.5,因为f(1.5)=-2.125<0,所以1.5<x 1<2.再取2与1.5的平均数1.75,因为f(1.75)=-0.890 625<0,所以1.75<x 1<2. 如此继续下去,得f(1)<0,f(2)>0 ⇒x 1∈(1,2), f(1.5)<0,f(2)>0 ⇒x 1∈(1.5,2), f(1.75)<0,f(2)>0 ⇒x 1∈(1.75,2), f(1.875)<0,f(2)>0 ⇒x 1∈(1.875,2),f(1.875)<0,f(1.937 5)>0 ⇒x 1∈(1.875,1.937 5),因为区间[1.875,1.937 5]内的所有值,如精确到0.1都是1.9,所以1.9是方程x 3-3x -1的实数解. 拓展提升从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为多少?(此例既体现了二分法的应用价值,也有利于发展学生的应用意识) 答案:至少需要检查接点的个数为4. 课堂小结①掌握用二分法求方程的近似解,及二分法的其他应用. ②思想方法:函数方程思想、数形结合思想. 作业课本习题2—4 A 7.设计感想 “猜价格”的游戏深受人们的喜欢,它是二分法的具体应用,用它引入拉近了数学与生活的距离.二分法是科学的数学方法,它在求方程的近似解和现实生活中都有着广泛的应用.本节设计紧紧围绕这两个中心展开,充分借助现代教学手段,用多种角度处理问题,使学生充分体会数学思想方法的科学性与完美性.备课资料基本初等函数的零点个数 结合基本初等函数的图象得:①正比例函数y =kx(k≠0)仅有一个零点0; ②反比例函数y =kx (k≠0)没有零点;③一次函数y =kx +b(k≠0)仅有一个零点;④二次函数y =ax 2+bx +c(a≠0),当Δ>0时,二次函数有两个零点-b ±Δ2a ;当Δ=0时,二次函数仅有一个零点-b2a;当Δ<0时,二次函数无零点.。
高中数学第二章函数2.4.2求函数零点近似解的一种计算方法二分法课件新人教B版必修108012132
由于|0.687 5-0.75|=0.062 5<0.1,
所以方程 2x3+3x-3=0 的一个精确度为 0.1 的正实数近似解可取为 0.687 5.
第二十五页,共35页。
1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的 解是等价的.求方程 f(x)=0 的近似解,即按照用二分法求函数零点近似值的步 骤求解.
第三十一页,共35页。
4.若函数 f(x)=x3+x2-2x-2 的一个正数零点附近的函数值用二分法计算,
参考数据如下:
f(1)=-2
f(1.5)=0.625
f(1.25)=-0.984
f(1.375)=-0.260 f(1.406 25)=-0.054 f(1.437 5)=0.162
那么方程 x3+x2-2x-2=0 的一个近似根为________.(精确到 0.1)
第二页,共35页。
[基础·初探] 教材整理 1 变号零点与不变号零点 阅读教材 P72~P73“第一行”以上部分内容,完成下列问题. 1.零点存在的判定 条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0. 结论:y=f(x)在[a,b]上至少有一个零点,即 x0∈(a,b)使 f(x0)=0.
第十五页,共35页。
[再练一题] 1.下面关于二分法的叙述,正确的是( ) A.用二分法可求所有函数零点的近似值 B.用二分法求方程的近似解时,可以精确到小数点后的任一位 C.二分法无规律可循 D.只有在求函数零点时才用二分法
第十六页,共35页。
【解析】 只有函数的图象在零点附近是连续不断且在该零点左右函数值异 号,才可以用二分法求函数的零点的近似值,故 A 错.二分法有规律可循,可 以通过计算机来进行,故 C 错.求方程的近似解也可以用二分法,故 D 错.
用二分法求方程的近似解知识点
用二分法求方程的近似解知识点二分法是一种常用的求方程近似解的数值计算方法,运用这种方法可以找到函数方程f(x)=0在给定区间[a,b]上的一个根。
本文将对二分法的原理、步骤及其应用进行详细介绍。
一、原理二分法的原理基于数学中的零点定理,也叫做中间值定理。
该定理表明:如果一个连续函数f(x)在区间[a,b]上有f(a)和f(b)异号,即f(a)·f(b)<0,则在该区间内至少存在一个根。
基于这一定理,我们可以通过不断将给定区间一分为二,并判断中点函数值与零的位置关系,从而确定新的区间,直到满足精度要求或者迭代次数达到指定值。
这样可以在给定的精度范围内逐步缩小根的位置。
二、步骤下面是使用二分法求解方程根的一般步骤:1.选择一个区间[a,b],确保f(a)·f(b)<0。
这样可以保证函数在区间[a,b]内至少有一个根。
2.计算区间中点m=(a+b)/23.计算函数在中点处的值f(m)。
4.判断f(m)和0的关系:a.如果f(m)等于0,那么m就是方程的一个根;b.如果f(m)与f(a)异号,那么存在根的区间变为[a,m],重复步骤2-4;c.如果f(m)与f(b)异号,那么存在根的区间变为[m,b],重复步骤2-45.重复步骤2-4,直到达到所需的精度要求或者迭代次数达到指定值。
三、应用二分法在解决方程问题中有广泛的应用,特别是对于无法用解析法求解的非线性方程、高次多项式等复杂函数,二分法可以提供一个近似解。
此外,二分法还可以用于其他数值计算问题。
例如,在一些求极值的问题中,我们可以通过求解函数导数方程的根来找到极值点。
这时,同样可以使用二分法来近似求解。
四、注意事项在使用二分法求解方程时,需要注意以下几点:1.确保函数在给定区间上是连续且有定义的。
2.选择合适的初始区间[a,b]。
如果起始区间过大,则可能导致求解时间过长;如果起始区间过小,则可能无法找到根。
通常情况下,可以通过分析函数图像或者利用已知的条件进行初步估计。
计算方法 02第二章 方程的近似解法
∈ (0.5, 0.75)
-1
3
二、代数方程实根的上下界
若f
( )
x
为 n 次多项式,则
f ( x) = 0
称为 n 次代数方程。
对于代数方程有如下定理: [定理] 设有 且 则 证明
f ( x ) = a0 x n + a1 x n −1 + L + an (a0 ≠ 0)
f ( x) = 0
A = max { a1 、 2 、 、 n } a L a
若同号,则取 于是得到区间
an −1 + bn −1 an = an −1,bn = 2 an −1 + bn −1 an = , bn = bn −1 2
1 。区间长为 n ( b − a ) , α ∈ ( an , bn )。 2
[ an,bn ]
若取α 的近似值
则绝对误差限为
例.求解方程
an + bn α = 2 1 b − a) n +1 ( 2
xn +1 − xn ≤ m xn − xn −1
xn + p − xn + p −1 ≤ m p xn − xn −1
xn + p − xn ≤ xn + p − xn + p −1 + xn + p −1 − xn + p − 2 + L + xn +1 − xn
其中p为任意正整数
……
≤ (m p + m p −1 + L + m) xn − xn −1
1 区间长为 ( b − a ) , α ∈ (a1 ,b1 ). 2
7
§..用二分法求方程的近似解教案人教版
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
§..用二分法求方程的近似解教案人教版
教材分析
本节课的教学内容是“用二分法求方程的近似解”。该内容是高中数学人教版必修四第四章“不等式”中的一个重要知识点。在此之前,学生已经学习了函数、方程和不等式的基础知识,通过这些知识的学习,学生已经掌握了函数的性质、解方程的方法等。
-反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:
-完成作业:认真完成老师布置的课后作业,巩固学习效果。
-拓展学习:利用老师提供的拓展资源,进行进一步的学习和思考。
-反思总结:对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
-自主学习法:引导学生自主完成作业和拓展学习。
- "The history and applications of the bisection method":这篇文章详细介绍了二分法的历史背景及其在各个领域的应用,有助于学生更好地理解二分法的地位和作用。
在线资源:
- GeoGebra:这是一个免费的数学软件,学生可以通过它来绘制函数图像,实践二分法求解方程的近似解。
d.案例研究环节:提供几个不同类型的方程,让学生运用二分法进行求解,并分析解题过程中的关键步骤。
e.项目导向学习环节:让学生分组选择一个方程,运用二分法编写程序求解,并展示解题过程和结果。
3.确定教学媒体和资源的使用:为了支持教学活动和提高学生的学习效果,将使用以下教学媒体和资源:
a. PPT:制作精美的PPT,用于展示二分法的原理、步骤和实例,提供直观的学习材料。
用二分法求方程的近似解的方法
用二分法求方程的近似解的方法二分法(又称折半法)是一种常用于求解方程近似解的数值计算方法。
它基于一个非常重要的思想:如果在一个区间内的函数值在两个端点处取值的符号不同,那么在该区间内一定存在一个根,即方程在该区间内至少有一个解。
二分法的基本原理是将求解的区间不断缩小,每次将区间一分为二,并找出中间点的函数值。
根据中间点的函数值与两个端点的函数值的符号关系,确定新的区间。
通过不断缩小区间的范围,最终找到一个满足精度要求的近似解。
下面将详细介绍二分法的步骤及相关注意事项。
步骤1:选择一个区间[a,b],其中a和b是方程的根的近似区间。
确保方程在a和b点的函数值异号,即f(a)*f(b)<0。
如果不满足这个条件,需要重新选择一个区间。
步骤2:求出区间的中点c,计算f(c)的值。
步骤3:根据f(c)的符号与f(a)的符号的关系,更新区间。
如果f(c)与f(a)的符号相同,则新的区间是[c,b]。
如果f(c)与f(a)的符号不同,则新的区间是[a,c]。
步骤4:重复步骤2和步骤3,直到满足精度要求为止。
一般可以设置一个容差范围eps,当区间的长度小于eps时,即认为求解已经足够精确。
注意事项:1.在选择初始区间[a,b]时,需要确保方程在这个区间内有一个解。
通常可以通过画出函数曲线或分析函数的性质来确定初始区间。
2.在每次更新区间时,要保证新的区间仍然满足f(a)*f(b)<0。
如果不满足,需要选择一个新的区间,并重新开始算法。
3. 二分法是一种迭代算法,需要根据精度的要求来设置迭代次数。
通常可以通过判断区间长度是否小于eps来确定迭代的终止条件。
4.二分法并不能保证找到方程在给定区间内的所有解,而只能找到一个解。
如果方程有多个解,需要根据需要修改初始区间,并多次运行二分法来找到所有的解。
总结:二分法是一种简单而有效的求解方程近似解的方法。
通过不断缩小区间的范围,并利用函数值的符号关系来确定新的区间,可以找到一个满足精度要求的近似解。
用二分法求方程的近似解(新)
2.4.2 求函数零点近似解的一种计算方法——二分法教材分析本节课注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系.在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献.●“二分法”是第一次进入高中教材,对教师来讲,教学内容是全新的,所体现算法的思想也是全新的,这就需要对“二分法”的本质和教材编写背景进行研究.●“二分法”体现了现代信息技术与数学课程的整合,教学中要探索如何将数学教学与信息技术紧密结合,既要恰当渗透算法思想,又要合理运用科学型计算器、各种数学教育技术平台组织教学,这就需要对教学手段进行研究.《课程标准》倡导改善学生的学习方式,既要有教师主导下的接受式学习,有要有学生自主探索、自主发现、自主创造的主动式学习,在“二分法”教学中能否实践如何改善学生的学习方式.学情分析通过本节课的学习,使学生在知识上学会用“二分法”求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板4.06中文版中的“绘制新函数”功能画出基本初等函数的图象,掌握Microsoft Excel 软件一些基本的操作.教学目标:1、知识与技能(1)通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法;(2)根据具体函数的图像,能够借助计算器或计算机用二分法求相应方程的近似解。
计算方法第2章f(x)=0求根概要
lim xk = x *
,则 x*就是 f (x)的根。
二、牛顿法收敛的充分条件
定理2.5: 设f (x)在[a, b]上满足下列条件:
(1)f (a) f (b) < 0;
(2)f’ (x) 0;
(3)f (x) 存在且不变号; (4)取x0 [a, b],使得f (x)f (x0) >0 则由(2.3)确定的牛顿迭代序列{xk}收敛于f (x) 在[a, b]上的唯一根x*。
如果存在正实数p,使得
lim
k
x * xk 1 x xk
* p
C
(C为非零常数)
则称序列{xk}收敛于x*的收敛速度是p阶的,或称该方法 具有p 阶敛速。当p = 1时,称该方法为线性(一次)收敛; 当p = 2时,称方法为平方(二次)收敛;当1< p< 2时, 称方法为超线性收敛。
证:先证解的存在性 作辅助函数f (x)=x - g (x), 由条件知 f (x)在[a, b]上连续,且f(a)f(b)<0; 由连续函数的零点定理,至少存在一 x* [a, b], 使f (x*)=0. 再证解的唯一性
设另有f(x1)=0,那么根据微分中值定理有 x1- x*=g(x1)-g(x*)=g’(x2)(x1- x*)
x0 0 1 1 xn xn 1 e 5 10
1 x* 1 n * xn 由于 x xn 1 10 (e e )
所以 取极限得
x* xn1 1 n e * x xn 10
x* xn 1 1 x* lim * e n x x 10 n
ek + 1 g ( p ) ( x*) ® 。这表明迭代过程 p ek p!
第二章 非线性方程(组)的近似解法2
Computational Method
计算方法
§2.2 根的隔离
5 4 3 2
例2.5 求 f ( x) x 2x 5x 8x 7 x 3 0 的正根上界。 解:f ( x) 5x4 8x3 15x2 16x 7
3 2 f ( x) 20x 24x 30x 16
f ( x) 的负根上界和下界。 注:掌握正根上界的求法,正根下界、负根上界和下界
也能求得。用定理1求得的上界和下界往往太大和太小。
Computational Method 计算方法
§2.2 根的隔离
n n1 f ( x ) a x a x 定理2.2 设 0 1
an , a0 0 ,若
f ( x) , 当 x 0 时,f ( x) 1 ,当 x 时, 因此方程必有根。因为
1 0 x 0, e f ( x) ln x 1 0 x 1 , e
1 在区间 0, 上函数是单调递减的,方程无根。在区间 e
Computational Method
计算方法
§2.2 根的隔离
所以,f ( x) 的实根不能大于 1 k B / a0 。即 1 k B / a0
是 f ( x) 的正根上界。
Computational Method
计算方法
§2.2 根的隔离
解:a0 1 0, k 2, B 7,1 k B / a0 1 7 3.645 8
作图法。 画出 y f ( x) 的简图,观察曲线 y f ( x) 与 x 轴交点的大致位置,从而确定隔根区间。
Computational Method
2.5.2求一元二次方程的近似根(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程近似根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的计算器操作实验。这个操作将演示如何使用计算器求解一元二次方程的近似根。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程及其近似根的基本概念。一元二次方程是形如ax^2 + bx + c = 0的方程,它的近似根是指在一定误差范围内接近真实解的数值解。这些近似根在工程、物理等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算器求解方程x^2 - 3x + 2 = 0的近似根,展示近似方法在实际中的应用,以及如何帮助我们解决问题。
举例:
-重点1:求解一元二次方程近似根的公式,如ax^2 + bx + c = 0的求根公式;
-重点2:使用计算器进行近似计算的方法,如牛顿迭代法、二分法等;
-重点3:结合实际例题,如求解二次方程x^2 - 5x + 6 = 0的近似根。
2.教学难点
(1)理解求根公式中各个参数的含义,尤其是判别式的应用;
2.5.2求一元二次方程的近似根(教案)
一、教学内容
本节课选自教材第二章第五节第二部分“2.5.2求一元二次方程的近似根”。教学内容主要包括以下两个方面:
1.掌握用求根公式求一元二次方程的Байду номын сангаас似根的方法。
2.学会利用计算器计算一元二次方程的近似根,并比较不同近似方法的精确度。
高等数学课件3-10方程近似解
在实际问题中的应用和推广
工程领域:解决 复杂工程问题, 提高计算效率
科学研究:应用 于物理、化学、 生物等领域,推 动科学研究发展
经济金融:应用 于经济模型、金 融市场分析等领 域,提高决策准 确性
人工智能:应用 于机器学习、深 度学习等领域, 提高算法性能和 准确性
感谢观看
汇报人:
原理:通过不断将区间分为 两部分,逐步逼近解
优点:简单易行,计算量小
缺点:不适用于非线性方程 或复杂方程的求解
04
方程近似解的精度 和误差控制
近似解的精度定义
近似解的定义:在给定条件下,对原方程的解进行近似计算得到的解 精度的定义:近似解与原方程真实解之间的误差大小 误差控制的方法:通过调整近似解的计算方法、参数等来减小误差 精度与误差的关系:精度越高,误差越小,反之亦然
近似解的应用场景
工程计算:在工程设计中,常常需要对复杂的数学模型进行近似求解,以提高计算效率和 准确性。
科学研究:在科学研究中,常常需要对复杂的物理现象进行近似求解,以简化模型和提高 计算效率。
经济分析:在经济分析中,常常需要对复杂的经济模型进行近似求解,以预测市场趋势和 制 Nhomakorabea经济政策。
计算机科学:在计算机科学中,常常需要对复杂的算法进行近似求解,以提高计算效率和 准确性。
05
方程近似解的实例 分析
一元方程的近似解求解实例
实例1:求解x^2+2x-3=0的近 似解
实例3:求解x^4+2x^33x^2+1=0的近似解
添加标题
添加标题
实例2:求解x^3+2x^23x+1=0的近似解
添加标题
添加标题
实例4:求解x^5+2x^43x^3+1=0的近似解
数值计算方法第二章方程的近似解法
个根,则称该区间为方程隔根区间。
Remark:若能把隔根区间不断缩小,则可以得出根的 近似值。
三、根的隔离
基于函数f(x)的连续性质,常用的根的隔离的方
法有:描图法与逐步搜索法。
1、描图法:画出y=f(x)的简图,从曲线与x轴交点
1.计算f (x)在有解区间[a, b]端点处的值,f (a),f (b)。
2.计算f (x)在区间中点处的值f (x1)。
3.判断若f (x1) = 0,则x1即是根,否则检验: (1)若f (x1)与f (a)异号,则知解位于区间[a, x1],
b1=x1, a1=a;
(2)若f (x1)与f (a)同号,则知解位于区间[x1, b], a1=x1, b1=b。
公式(2)
1.5 2.375 12.3965 1904.01 6.90244 3.28857 3.55651 4.49856 inf
公式(3)
1.5 1.29099 1.33214 1.32313 1.32506 1.32464 1.32473 1.32471 1.32471
公式(4)
1.5 1.9375 4.10535 36.1482 23634.7 6.60124 1.43829 1.4877 inf
间。必要时可调整步长h,总可把隔根区间全部找出。
3、根据函数单调性判断
§2.1 二分法(对分法)
一、算法
设 f ( x ) 在[a,b]上连续,f(a)f(b)<0且在[a,b]内 f(x)=0仅有一个实根 x*。二分法的基本思想是:
逐步将有根区间分半,通过判别函数值的符号, 进一步搜索有根区间,将有根区间缩小到充分小, 从而求出满足给定精度的根 x* 的近似值。 执行步骤:
利用二次函数的图象求一元二次方程的近似解
2.利用二次函数的图象求一元二次方程x2+2x-10=3的 近似根.
点拨5分钟
一元二次方程的图象解法
用图象求一元二次方程ax2+bx+c=0(a≠0)的一般步骤.
(1).用描点法作二次函数y=ax2+bx+c(a≠0)的图象;
(2).观察图象,估计二次函数y=ax2+bx+c(a≠o)的 图象与x轴的交点的横坐标; 由图象可知,图象与x轴有两个交点,其横坐 标一个在-1与0之间,另一个在2与3之间,分 别约为-0.2和2.2(可将单位长再十等分,借 助计算器确定其近似值). (3).所确定的横坐标即为方程ax2+bx+c=0(a≠0)的解 ;由此可知,方程ax2+bx+c=0(a≠0)的近似根为:x1≈-0.2,x2≈2.2.
当堂训练:20分钟
1
3
九年级数学(下)第二章 二次函数
5. 二次函数与一元二次方程(2) 一元二次方程的图象解法
学习目标:1分钟
能够利用二次函数的图象 求一元二次方程的近似根。
自学指导:1分钟
1.看课本51页,由图象如何估计一元二 次方程x +22x-10=0的根?
2+2x-10=3的近似根.
学生自学,老师巡视。(8分钟)
自学检测(10分钟)
1.利用二次函数的图象求一元二次方程x2+2x-10=3的 近似根.
计算方法 第2章 非线性方程数值解法
第二章非线性方程数值解法本章将讨论非线性方程0)(=x f (2.1)的数值解法,我们最为熟悉的非线性方程是一元二次方程02=++c bx ax也是最简单的非线性方程,其解为:aac b b x 2422,1-±-=但是对于(2.1)式中一般形式的非线性函数)(x f ,很难甚至不可能找到解析形式的解,通常只能用数值的方法求其近似数值解。
2.1 基本概念定义2.1如果*x 满足0)(*=x f ,则称*x 为方程(2.1)的解或根,也称*x 为函数)(x f 的零点或根。
用数值方法求解非线性方程的解,通常需要我们对其解有一个初步的估计,或知道其解的一个限定区间,因此确定包含解的区间将是我们首先需要解决的问题。
定义2.2若连续函数)(x f 在],[b a 内至少有一个根,则称],[b a 为有根区间,若在],[b a 内恰有一个根,则称],[b a 为隔根区间。
定理2.1 如果函数)(x f 在],[b a 上连续且0)()(<b f a f ,则)(x f 在),(b a 内至少有一个根,如果函数)(x f 另外满足在],[b a 上单调连续,则)(x f 在),(b a 内恰有一个根。
寻找隔根区间的通常方法有:图形法, 试探法。
例2.1 求033)(3=+-=x x x f 的有根区间。
解:作出函数)(x f y =的曲线图形图2.1 例2.1曲线示意图观察图中的曲线与X 轴的交点,可判断在区间)2,3(--之间方程有一个根。
例2.2 求033)(23=--+=x x x x f 的有根区间。
解:计算出)(x f 在一些点的值。
从表中可以看出1-=x 是一个根,区间)2,1(是一个有根区间。
如果在[-2,-1]之间把间隔再缩小到0.25我们可以得到下列表格在这个表格里我们又发现一个有根区间)5.1,75.1(--。
从此例中我们可以体会到试探法有可能漏掉某些有根区间,具有一定的局限性。
2024年-第课时利用二次函数求方程的近似根(精编)
(3) ①-x2+x-2=0; x无解 ②-x2+x-2>0; x无解
y
-1
2
0
x
y= -x2+x+2
y
y=x2-4x+4
02
x
y y=-x2+x-2
0
x
③-x2+x-2<0. x为全体实数
(-2,2)
2
-1 O
(4,2) 3x
15
问题2 如果不等式ax2+bx+c>0(a≠0)的解集是x≠2 的一切 实数,那么函数y=ax2+bx+c的图象与 x轴有__1__ 个 交点,坐标是_(_2_,_0_) _.方程ax2+bx+c=0的根是_x_=_2___.
16
问题3 如果方程ax2+bx+c=0 (a≠0)没有实数根,那么 函数y=ax2+bx+c的图象与 x轴有___0___个交点; 不等式ax2+bx+c<0的解集是多少?
y>0,x0之外的所有 实数;y<0,无解
y<0,x0之外的所有 实数;y>0,无解
没有交点
y>0,所有实数;y y<0,所有实数;y
<0,无解
>0,无解 19
当堂练习
1.根据下列表格的对应值:
x
3.23 3.24 3.25 3.26
y=ax2+bx+c -0.06 -0.02 0.03 0.09
2
解:由图象可知方程的一根在3到 4之间,另一根在-1到-2之间. (1)先求3到4之间的根.利用计算器进行探索:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)描图法
例如,求方程3x-1-cosx=0的隔根区间。
将方程等价变形为3x-1=cosx ,易见y=3x-1与y=cosx
的图像只有一个交点位于[0.5,1]内。
(2)逐步搜索法 运用零点定理可以得到如下逐步搜索法:
先确定方程f(x)=0的所有实根所在的区间为 [a,b],从x0=a 出发,以步长
定理2.2(收敛定理) 设方程x=φ(x),如果 (1)迭代函数φ(x)在区间[a,b]可导; (2)当x[a,b]时,φ(x)[a,b] ; (3)对于任意的x[a,b] ,有| ( x) | L 1 则有 ①方程x=φ(x)在区间[a,b]上有唯一的根α ; ②对于任意的初值 x0[a,b] ,由迭代公式
a o b x
图3
二分法计算过程简单,程序容易实现.可在大范 围内求根,但该方法收敛较慢,且不能求偶数重根和 复根,一般用于求根的初始近似值,而后再使用其它 的求根方法。 二分法收敛速度不快,其收敛速度仅与一个以 1/2为比值的等比级数相同 。
§2.2
迭代法
求解过程分以下二步: (1) 建立迭代公式。由公式f(x)=0出发将其分解为 等价形式x=φ(x),式中φ(x)叫做方程的迭代函数. (2) 进行迭代计算。由初值x0出发,按迭代函数进
3.若f(x1)· f(b)<0,则x*必在区间 [x1,b]内,此时令x1=a1, b =b1 。
………………
如此重复上述过程可以得到 一系列长度逐次减半的隔根 区间 [a,b]⊃[a1,b1]⊃…⊃[an,bn]⊃… 这些区间将收敛于方程的根α。 因而若k满足(ε为给定的精度)
xn bn an
基本思想
二分法就是将方程 的隔根区间对分,然后 再选择比原来区间缩小 一半的隔根区间,如此 继续下去,直到得到满 足精度要求的根为止的 一种简单的区间方法。
1.若f(x1)=0,则x1是f(x)=0的实根 2.若f(a)· f(x1)<0,则x*必在区间 [a,x1]内,此时令a=a1,x1=b1 。
数f(x)=0的零点。
理论上已证明,对于次数n≤4的代数方程,它的 根可以用公式表示,而次数大于5的多项式方程,它的 根一般不能用解析表达式表示。对于超越方程一般更 无求根公式。因此对于f(x)=0的函数方程,一般来说, 根的解析表达式是不存在的,而实际应用中,也不一定 必需得到求根的解析表达式,只要得到满足精度要求 的根的近似值就可以了。常用的求根方法分为区间法 和迭代法两大类。 求根方法中最直观最简单的方法是二分法,收敛 快的是牛顿迭代法。
1 求绝对误差不超过 10 2 2
解:显然 f(x)=x3+4x2-10在(1,2)内连续,且 满足
f (1) 5 0 f ( 2) 14 0
ba 1 2 10 2n 2
n lg 200(b a) / lg 2 7.结果如下: 隔根区间 中点 xn
μ= max { |-3.2| , |1.9| , |0.8| }=3.2 1 ν = max {1, |-3.2| ,|1.9| } 0 .8 故 0.2 | | 4.2 ,即有根区间为(-4.2,-0.2)和(0.2,4.2)
2.
根的隔离
在用近似方法时,需要知道方程的根所在区间。 若区间a,b含有方程f(x)=0的根,则称a,b为f(x)=0的 有根区间;若区间a,b仅含方程f(x)= 0的一个根,则 称a,b为f(x)= 0的一个隔根区间。求隔根区间有两种 方法: (1)描图法 (2)逐步搜索法
方程求根有以下三个基本问题:
1 .根的存在性;2.根的隔离;3. 根的精确化 1. 根的存在性
零点定理: f(x)为[a,b]上的连续函数,若 f(a)· f(b)<0,则 [a,b]中至少有一个实根。如果f(x)在[a,b]上还是单 调递增或递减的,则f(x)=0仅有一个实根。
对于m次代数方程 f (x) = xm+am-1xm-1+ …+a1x+a0=0其根的模 的上下界有如下结论: (1)若μ= max { |am-1| , ……, |a1| , |a0| },则方程根的模小于μ+1 1 1 …… (2)若 ν= max {1, |am-1| , , |a1| },则方程根的模大于 1 a0 例2.2 求方程 x3-3.2x2+1.9x+0.8=0的隔根区间。 解:设方程的根为α ,
+
+ -
[1.34375,1.375]
[1.359375,1.375] [1.359375,1.3671875]
+
原理阐述
如果我们把二分法与逐步搜索法结合起来,就可 以求非线性方程在任一区间上的全部实根。 首先, 将方程式f(x)=0化为函数式y=f(x).假设 方程求解区间为x[a,b] ,步常为h长,允许误差为。 如图3所示,由a点出发向b点跨步,每跨一步h,经 过判断在该区间内是否有根。如有根则进行二分法求 根计算,否则继续以h为步长向前跨步找根,直到走出 区间[a,b]为止.这样就可以按顺序将方程的全部实根 找出。 但应注意在计算中步长h要适当取小一些,若h过 长则容易丢根(若在区间范围内有两相邻函数值符号 相同而判定无根),若间隔h值太小,则影响计算速度。
(1)描图法
画出y=f(x)的略图,从而看出曲线与x轴交点的 大致位置。也可将f(x)=0等价变形为g1(x)=g2(x)的 形式,y=g1(x)与y=g2(x)两曲线交点的横坐标所在的 子区间即为含根区间。 例如,求方程3x-1-cosx=0的隔根区间。 将方程等价变形为3x-1=cosx ,易见y=3x-1与y=cosx 的图像只有一个交点位于[0.5,1]内。
f ( xn ) 的符号
[1,2]
[1,1.5] [1.25,1.5] [1.25,1.375] [1.3125,1.375]
x1 1.5 x2 1.25 x3 1.375 x4 1.3125 x5 1.34375 x6 1.359375 x7 1.3671875 x8 1.36328125
0.3
0.3617 0.3732
x2
x3
x4
0.3753
0.3757
可见,第一种迭代方式产生的数列发散,这时迭 代序列的极限不存在,迭代法失效。而第二种迭代方 式产生的数列是收敛的。
若从任何可取的初值出发都能保证收敛,则称它 为大范围收敛。如若为了保证收敛性必须选取初值充 分接近于所要求的根,则称它为局部收敛。 通常局部收敛方法比大范围收敛方法收敛得快。 因此,一个合理的算法是先用一种大范围收敛方法求 得接近于根的近似值(如二分法),再以其作为新的 初值使用局部收敛法(如迭代法)。 这里讨论迭代法的收敛性时,均指的是局部收敛 性。
n
知α=φ(α),即{xn}收敛于方程的根 α 。
迭代法的几何意义
记y1=x,y2=φ(x),它们交点的横坐标α即为方程的根
y
y1 x
( x1 , x1 ) ( x2 , x2 )
p
( x1 , ( x1 )) ( x2 ,( x2 ))
y
y2 ( x )
y1 x
y2 ( x )
2
控制误差常用的方法如下: (1)先计算对分次数再对分。由
ba ba 计算得 n l og 2 2n
得到满足误差要求的最少对分次数。 (2)事后误差估计法 由于
| xn || xn xn 1 | ba 2n
故可用| xn xn1 | 来判断误差。
例2.3: 用二分法求x3+4x2-10=0在(1,2)内的根,要
第二章 方程的近似解法
在科学研究的数学问题中有很多是非线性 问题,它们常常归结为非线性方程或非线性方 程组的求解问题。 非线性方程组的一般形式是
f1 x1 , x2 , , xn 0 f 2 x1 , x2 , , xn 0 ..................... f x , x , , x 0 n n 1 2
则 似解.
xn
an-1 bn-1 2
ba 2n
即为所求方程的近
定理2.1: f(x)在[a ,b]内连续,α 是方程f(x)在隔根区间[a ,b] 内的根,则由二分法产生的数列{xn}收敛于方程的根α ,且有 误差估计式 ba | xn | n ( n 0,1,)
h=(b-a)/n 其中n是正整数,在[a,b]内取定节点: xi=x0+ih
(i=0,1,2,……,n)
计算f(xi)的值,依据函数值异号及实根的个数确 定隔根区间,通过调整步长,总可找到所有隔根 区间。
算法2-1 (逐步搜索法) function [c,d]=Search(f,a,b,h) % 功能:找到f(x)在区间[a,b]上的所有隔根区间。 % 输入:f(x)----所求方程函数;[a,b]----有根区间。 % 输出:隔根区间[c,d]。c,d可以为向量。 x=a:h:b; y=f(x); n=length(x); m=0; for k=1:n-1 if y(k)*y(k+1)<=0, m=m+1; c(m)=x(k); d(m)=x(k+1); end end
例
求方程 x3-3.2x2+1.9x+0.8=0的隔根区间。
解:方程有根区间为[-4.2,4.2]。
>> f=inline(' x.^3-3.2*x.^2+1.9*x+0.8'); a=-4.2;b=4.2;h=0.01; [c,d]=Search(f,a,b,h) c= -0.2800 1.3400 2.1300 d= -0.2700 1.3500 2.1400
x 10x 2 0 x 10x 2