六年级下册数学培优-第一讲-圆柱与圆锥

合集下载

北师大版小学数学六年级下册第一单元《圆柱与圆锥》教学课件(优质精选)

北师大版小学数学六年级下册第一单元《圆柱与圆锥》教学课件(优质精选)

60×4 =240(cm3)
3.14×12×5 3.14×(6÷2)2×10 =15.7(cm3) =282.6(dm3)
3.这个杯子能否装下3000mL的牛奶?
3.14×(14÷2)2×20 =3077.2(cm3) =3077.2(mL) 3077.2mL>3000mL 答:这个杯子能装下3000mL的牛奶。
北师大版六年级数学下册
第 一 单元
圆柱与圆锥
第 1 课时 面的旋转
第 一 单元
圆柱与圆锥
第 1 课时 面的旋转
点 线面动动成成线 面体
形成了圆柱。
上面一排图形旋转后会得到下面的哪个图形?想一 想,连一连。
圆柱
圆台

圆锥
操作活动:
准备两块橡皮泥,捏成圆柱和 圆锥;用看、滚、剪、切等多种 方式探索圆柱和圆锥的特征。
o'底面
侧高 面
o 底面
顶点
侧高 面
o 底面
可以这样量圆 锥的高。 平板和底面一样平
底面放平
1.上面一排图形旋转后会得到下面的哪个图形? 想一想,连一连。
2.找一找下面图中的圆柱或圆锥,说说圆柱 和圆锥有什么特点。
电池和台灯上部分的形状是圆柱,舞台灯光 和冰淇淋的形状是圆锥。 圆柱的特点:圆柱上、下两个底面是完全相 同的两个圆;侧面是一个曲面;圆柱有无数 条高,所有的高都相等。 圆锥的特点:圆锥只有一个底面,并且底面 是一个圆;侧面是一个曲面,圆锥的母线是 线段,它有无数条母线;它只有一个顶点和 一条高。
2.计算下面各圆锥的体积。
1 3
×9×3.6=10.8(m3)
1 3 ×3.14×32×8=75.36(dm3)
1
3
×3.14×(8÷2)2 ×12=200.96(cm3)

六年级下册数学培优-第一讲-圆柱与圆锥

六年级下册数学培优-第一讲-圆柱与圆锥

六年级下册数学培优-第一讲-圆柱与圆锥一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

2.如图,一个内直径是20cm的纯净水水桶里装有纯净水,水的高度是22cm.将水桶倒放时,空余部分的高度是3cm,无水部分是圆柱形.这个纯净水水桶的容积是多少升?【答案】解:3.14×(20÷2)2×22+3.14×(20÷2)2×3=3.14×100×(22+3)=3.14×100×25=7850(立方厘米)7850立方厘米=7.85升答:这个纯净水水桶的容积是7.85升。

【解析】【分析】水桶的容积包括水的体积和空余部分的体积,根据圆柱的体积公式分别计算后再相加即可求出水桶的容积。

3.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

(1)通过比较,请你说说这类立体图形有什么样的共同特征呢?(至少写出3点)(2)我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为2cm、3cm,高为5cm,请你计算出它的体积。

北师大版数学6年级下册 第1单元(圆柱和圆锥)圆柱和圆锥的认识 课件(共28张PPT)

北师大版数学6年级下册 第1单元(圆柱和圆锥)圆柱和圆锥的认识 课件(共28张PPT)

(4)从圆锥的(顶点)到(底面圆心)的距离是圆 锥的高,一个圆锥只有( 一 )条高。
2.从正面、上面和侧面看圆柱,看到的是什么图 形?从这三个面看圆锥呢?先和圆锥的高都有无数条。 2.圆柱两个底面的直径相等。 3. 圆柱的侧面展开图一定是长方形。
本课小结
• 这节课你学会了什么?
底面 O
在生活中,圆柱的高会有不同的称呼,你知道吗?



画圆柱体的步骤
第一步:
第二步:
画上底面
画侧面
第三步: 画下底面
把圆柱展开,你还能分清楚各部分的名称吗?
圆柱展开图
圆柱展开图
圆柱展开图
圆柱展开图
圆柱展开图
圆柱展开图
底面 侧面
底面
圆 锥 又 是 由 那 几 部 份 组 成 的 呢 ?
北师大版 六年级下册 第一单元 圆柱与圆锥
• 学习目标:
• 1、认识圆柱和圆锥各部分名称。
• 2、掌握圆柱与圆锥的高的特征,并且会测 量。
仔细观察圆柱,你发现了什么?
1.圆柱是由几个面围成的? 2.用手平摸上、下两个面,有什么特点?
上、下两个面的面积大小有什么关系? 你怎么知道的? 3.用双手摸侧面,滚一滚,发现什么?
底面 侧面 底面
两个圆柱有什么不同?
底面 O
侧面 高
底面 O
底面 O
侧面 高
底面 O
圆柱两个底面之间的距离叫做高。
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O

【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

第一单元 圆柱与圆锥(培优卷) 小学数学六年级下册高频易错题真题专项突破(北师大版,含答案)

第一单元 圆柱与圆锥(培优卷) 小学数学六年级下册高频易错题真题专项突破(北师大版,含答案)

第一单元圆柱与圆锥(培优卷)小学数学六年级下册高频易错题真题专项突破(满分:100分,完成时间:60分钟)一、选择题(每题2分,共16分)1.一台压路机的前轮是圆柱形,轮宽4米,直径l.4米。

前轮滚动一周,压路的面积是()平方米。

A.17.584 B.18.984 C.20.66122.一个圆柱的侧面展开图是正方形,侧面积是()。

A.正方形边长的平方B.正方形边长×4 C.正方形周长×43.求一只圆柱形油桶能装油多少升,是求它的();求这只铁桶所占空间的大小,是求它的()。

()A.表面积;体积B.体积;容积C.容积;体积4.一个圆柱和一个圆锥的高相等,它们的底面积的比是1∶2,它们的体积比是()。

A.3∶1 B.2∶9 C.3∶25.若圆柱和圆锥的底面积和体积都分别相等,则圆柱的高一定是圆锥高的()。

A.23B.13C.3倍6.一个长方体和一个圆锥的底面积和高分别相等,长方体的体积是圆锥体积的()。

A.3倍B.13C.9倍7.下面材料中,()能做成圆柱。

A.①④⑤B.①②③C.①②④8.圆柱形容器内的沙子占圆柱体积的13(如图),倒入()内正好装满。

A.B.C.二、填空题(每题2分,共16分)9.一个圆柱体木块底面直径是20厘米,高是6厘米,它的表面积是( )平方厘米.把它削成一个最大的圆锥,应削去( )立方厘米.10.一个圆锥的高是18厘米,体积是60立方厘米,比与它等底等高的另一个圆柱的体积少50立方厘米,另一个圆柱的高是_________厘米.11.一个圆柱和一个圆锥的高相等,圆柱与圆锥底面半径的比是3∶2,它们的体积之和是933cm,圆柱的体积是( )3cm,圆锥的体积是( )3cm。

12.如下图所示,把一个圆柱纵切一刀,表面积增加了( )2cm。

13.一支圆柱形铅笔使用一段时间后,变成了下图的样子。

现在这支铅笔的圆柱部分的体积是圆锥部分的体积的( )倍。

14.把图1中的正方形绕一条边旋转一周,所形成圆柱的侧面积是________。

北师大六年级下册数学第一单元《圆柱和圆锥》知识点

北师大六年级下册数学第一单元《圆柱和圆锥》知识点

【小学数学】北师大六年级下册数学第一单元《圆柱和圆锥》知识点1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆;侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高;且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体;所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆;和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体;所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开;圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开;有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高;用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高;求侧面积;可运用公式:S侧=ch;(2)已知底面直径和高;求侧面积;可运用公式:S侧=πdh;(3)已知底面半径和高;求侧面积;可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积;S底表示底面积;d表示底面直径;r表示底面半径;h表示高;那么这个圆柱的表面积为:S表=S 侧+2S底或S表=πdh+π或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的;例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的;例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多;拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半;高相当于圆的半径;拼成的长方形的长相当于圆周长的一半;宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同;圆的面积公式的推导;也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开;把它分成若干等份;分得越细越好;再把它拼成一个近似长方体的立体图形;形状改变了;但体积没变;那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的;长方体的高也与圆柱的高相等;而长方体的体积=底面积×高;也就等于圆柱的体积。

六年级下册数学培优-第一讲-圆柱与圆锥

六年级下册数学培优-第一讲-圆柱与圆锥

六年级下册数学培优-第一讲-圆柱与圆锥一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.3.一个圆柱形的汽油桶,底面半径是2分米,高是5分米,做这个桶至少要用多少平方分米的铁皮?它的容积是多少升?【答案】解:3.14×22×2+3.14×2×2×5=3.14×4×2+3.14×4×5=25.12+62.8=87.92(dm2)3.14×22×5=62.8(dm3)62.8dm3=62.8L答:做这个桶至少要用87.92平方分米的铁皮。

(最新)六年级下册数学培优讲义

(最新)六年级下册数学培优讲义

(最新)六年级下册数学培优讲义1、圆柱的表⾯积复习1:(1)(2)把⼀根长2⽶,底⾯直径是6分⽶的圆柱形⽊料平均锯成4段后,增加了()⾯,表⾯积增加了()平⽅分⽶,每段⽊料的表⾯积()平⽅分⽶。

例题1如图,⼀个零件是由⾼是1⽶,底⾯直径分别是4厘⽶和8厘⽶,⾼分别是5厘⽶和6厘⽶的2个圆柱体组成的,求该零件的表⾯积。

练习:1、右图是⼀顶帽⼦。

帽顶部分是圆柱形,⽤⿊布做;帽沿部分是⼀个圆环,⽤⽩布做。

如果帽顶的半径、⾼与帽沿的宽都是a (a=10厘⽶),那么哪种颜⾊的布⽤得多?2、如图:求该零件的表⾯积。

做⼀个圆柱形纸盒,⾄少要多⼤⾯积的纸板?底⾯积:侧⾯积:表⾯积:30cmh 例题2把⼀个圆柱形⽊料锯开(如下图:单位cm),求下图的表⾯积。

练习:1、把⼀个底⾯半径6分⽶,⾼1⽶的圆柱切成3个⼩圆柱,表⾯积增加了()2、⼀段长1⽶,半径是10厘⽶的圆⽊,若沿着它的直径剧成两半,表⾯积增加了()3、把⼀段长20分⽶的圆柱形⽊头沿着底⾯直径劈开,表⾯积增加80平⽅分⽶,原来这段圆柱形⽊头的表⾯积是多少?例题3、求下⾯图形的侧⾯积。

(单位:cm)⼀、填空题1、⼀个圆柱的底⾯半径是2cm,⾼是10cm,它的侧⾯积是( ),表⾯积是( )。

2、把⼀张长⽅形的纸的⼀条边固定贴在⼀根⽊棒上,然后快速转动,得到⼀个()。

3、⼀个圆柱的侧⾯展开后得到⼀个长⽅形,长是12.56厘⽶,宽是3厘⽶。

这个圆柱的底⾯周长是()厘⽶,⾼是()厘⽶。

4、已知圆柱的底⾯周长是12.56m,⾼是3m,圆柱的表⾯积是()。

5、圆柱形烟囱的直径为8分⽶,每节长1.5⽶,做2节这样的烟囱⾄少要()分⽶2铁⽪。

6、⼀个圆柱体的侧⾯积是12.56平⽅厘⽶,底⾯半径是2分⽶,它的⾼是()厘⽶。

7、⼀个圆柱的侧⾯积展开是⼀个边长15.7厘⽶的正⽅形。

这个圆柱的表⾯积是()平⽅厘⽶。

8、圆柱形⽔池内壁和底⾯都抹上⽔泥,⽔泥底⾯半径是4m,深15⽶,抹⽔泥的⾯积是()m2.9、⼀台压路机,前轮直径1⽶,轮宽1.2⽶,⼯作时每分滚动15周。

【精品】 六年级下册数学培优-第一讲-圆柱与圆锥

【精品】 六年级下册数学培优-第一讲-圆柱与圆锥

【精品】六年级下册数学培优-第一讲-圆柱与圆锥一、圆柱与圆锥1.计算圆柱的表面积。

【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

2.计算圆锥的体积。

【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。

3.在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米.每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)【答案】解:圆锥的体积: ×[3.14×(4÷2)2]×1.5= ×1.5×12.56=6.28(立方米)这堆沙的吨数:1.7×6.28=10.676(吨)≈11(吨)答:这堆沙约重11吨。

【解析】【分析】这堆沙大约的重量=这堆沙的体积×每立方米大约的重量,其中这堆沙的体积=圆锥的体积=πr2h,得数要保留整数,就是把得出的数的十分位上的数进行“四舍五入”即可。

4.求圆柱体的表面积和体积.【答案】表面积:3.14×5×2×8+3.14×52×2=252.6+157=409.6(平方厘米)体积:3.14×52×8=3.14×25×8=628(立方厘米)答:圆柱的表面积是409.6平方厘米,体积是628立方厘米。

【解析】【分析】圆柱的表面积=2r2+2rh,体积=r2h,据此代入数据解答即可。

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。

提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。

2.周围的面(除底面外)叫做侧面。

思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。

S侧=2πrh。

2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。

S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。

两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。

侧面积是多少?侧面积=底面周长×高。

S侧=3.14×1×2×5=31.4平方厘米。

圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。

思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。

思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。

圆柱的底面半径是多少厘米?48÷4=12平方厘米。

12÷3=4 4=2×2。

所以半径是2厘米。

原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。

圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。

北师大版小学数学六年级下册第一单元《圆柱和圆锥》PPT教学课件

北师大版小学数学六年级下册第一单元《圆柱和圆锥》PPT教学课件
底面积:3.14×(25.12÷3.14÷2)2=50.24 ( m2) 30.144+50.24=80.384 表面积: (m2)
6.油桶的表面要刷上防锈油漆,每平方 米需用防锈油漆0.2kg,漆一个油桶 大约需要多少防锈油漆?(结果保留 两位小数) 求圆柱侧面积和两个底面积 侧面积:3.14×0.6×1=1.884(m2) 表面积:1.884+0.5652=2.4492 (m2) 油漆:2.4492×0.2≈0.49(kg)

料按如图所示的方式放入
箱内,这个箱子内部的长、 长:6.5×6=39(cm) 宽、高至少是多少?
宽:6.5×4=26(cm) 高:11cm
6.如图,把下面的立体图形切开,想一想切
开后的面分别是什么形状,连一连。
“神州”号飞船有返回舱、轨
道舱和推进舱。其中,轨道舱的外
形为两端带有锥形的圆柱形。
北师大版小学数学六年级下册
圆柱的侧面
因为长方形的面积=长×宽 所以圆柱的侧面积=底面周长×高
圆柱的表面积
底面
底面
侧面
侧面
底面
底面
圆柱的表面积= 圆柱的侧面积 + 两个底面积
基本练习
一、判断: 1、圆柱侧面展开图只能是长方形或 正方形. (× ) 2、圆柱体的侧面展开可以得到一个 长方形,这个长方形的长等于圆柱底 面的直径, 宽等于圆柱的高.( × ) 3、圆柱体上、下两个底面之间的距离 叫做它的高,它有无数条高。( √ )
3、圆柱的表面积的 应用
小组交流要求:
交流与分享: 把你整理出来的相关知识在小组中交流交流, 相信你一定会有新的收获。 温馨提示(围绕以下三个主题交流):
1 2 3
圆柱体的特征

单元培优易错题第一单元:圆柱与圆锥-六年级下册数学培优卷(北师大版)

单元培优易错题第一单元:圆柱与圆锥-六年级下册数学培优卷(北师大版)

单元培优易错题第一单元:圆柱与圆锥六年级下册数学培优卷(北师大版)学校:___________姓名:___________班级:___________一、选择题1.“数学好玩”小组的同学们为了测量一个底面直径是6厘米的圆锥体铁块的体积,将这个圆锥体铁块浸没在一个底面半径是10厘米,水深是8厘米的圆柱体容器中,发现水面上升到10厘米(水未溢出)。

这个圆锥体铁块的体积是()立方厘米。

A.628B.565.2C.314D.1572.如下图,一个长方形长为a,宽为b。

分别以长为轴、宽为轴旋转,产生了两个圆柱甲、乙。

判断甲、乙两个圆柱侧面积的大小关系()。

A.甲>乙B.甲<乙C.甲=乙D.无法比较3.某工厂有一个圆柱形水箱,从里面量得底面直径是10分米,高是20分米,这个圆柱形水箱的容积是()升。

A.1570B.1256C.1884D.25124.如图,先将甲容器注满水,再将水倒人乙容器,这时乙容器中的水面高度是()厘米。

A.4B.6C.125.等底等高的圆柱、正方体、长方体的体积相比,()。

A.长方体最大B.正方体最大C.一样大D.圆柱最大6.一个长方体包装盒的长是20cm,宽是4.2cm,高是2cm。

一种圆柱形零件的底面直径是2cm,高是1cm,这个包装盒内最多能放()个这种零件。

A.40B.42C.46D.497.制作一个无盖的水桶,以下哪种铁皮可供搭配?应选择()。

A.①和①B.①和①C.①和①8.一个直角三角形的两条直角边长分别为3cm和4cm,以较短直角边为轴旋转一周得到一个圆锥,这个圆锥的体积是()cm3。

A.12πB.16πC.36πD.48π二、填空题9.一个圆柱的底面直径是4cm、高是18cm,这个圆柱的表面积是( )平方厘米。

10.一个圆柱的侧面积是188.4平方厘米,高是10厘米,它的底面周长是( )厘米,表面积是( )平方厘米。

11.一块棱长4分米的正方体木料,若削成一个最大的圆柱,这个圆柱的表面积是( )平方分米,削去部分的体积是( )立方分米。

六年级下册数学培优第一讲圆柱和圆锥

六年级下册数学培优第一讲圆柱和圆锥

第一讲圆柱与圆锥一、旋转圆柱1、用一个长8厘米,宽6厘米的长方形,旋转形成圆柱,求形成的圆柱的表面积和体积。

2、用一张长12.56厘米,宽6.28厘米的长方形纸卷形成圆柱,求卷成的圆柱的体积。

二、旋转圆锥1、一个直角三角形,两条直角边分别是6厘米和9厘米,沿一条直角边旋转一周后,得到一个圆锥体,求圆锥体的体积是多少?2、一个直角三角形,两条直角边分别是6厘米和10厘米,沿斜边旋转一周后,得到一个旋转体,求旋转体的体积是多少?三、圆柱圆锥之间的转换1、甲乙两个圆柱,底半径比是3:2,高相等,它们的体积比是多少?2、甲乙两个圆柱,底面积相等,高的比是4:5,它们的体积比是多少?甲乙两个圆柱,底半径比是2:3,高的比是4:5,它们的体积比是多少?4、甲乙两个圆柱,高的比是16:25,底半径比是4:5,体积比是多少?5、甲乙两个圆柱体积是5:6,高的比是2:3,求它们的底面积比。

四、接轨奥数1、如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?2、用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)3、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?4、皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶底面直径为60厘米。

皮球有54的体积浸在水中(见右图)。

问:皮球掉进水中后,水桶中的水面升高了多少厘米?5、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?7、将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

六年级下册数学培优-第一讲-圆柱与圆锥

六年级下册数学培优-第一讲-圆柱与圆锥

六年级下册数学培优-第一讲-圆柱与圆锥一、圆柱与圆锥1.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。

【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。

2.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)【答案】解:8dm=0.8m5dm=0.5m0.8÷2=0.4(m)3.14×0.8×0.5+3.14×0.42×2=1.256+3.14×0.16×2=1.256+1.0048=2.2608(平方米)≈3(平方米)答:做一个这样的铁皮油桶至少需3平方米铁皮。

【解析】【分析】1dm=0.1m;d=2r;所以做一个这样的铁皮油桶至少需要铁皮的平方米数=πdh+2πr2,据此代入数据作答即可。

3.一个圆锥形沙堆,底面积是45.9m2,高1.2m.用这堆沙在12m宽的路面上铺3cm厚的路基,能铺多少米?【答案】解:3厘米=0.03米×45.9×1.2÷(12×0.03)=18.36÷0.36=51(米)答:能铺51米。

【解析】【分析】现根据圆锥的体积=×底面积×高求出圆锥形沙堆的体积,然后根据长方体的体积=长×宽×高,求出铺路的长度即可。

4.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?【答案】解:3.14×6×10+3.14×(6÷2)2=18.84×10+3.14×9=188.4+28.26=216.66(平方分米)答:做这个水桶大约要用铁皮216.66平方分米。

【数学】北师大版数学六年级下册第1单元圆柱与圆锥

【数学】北师大版数学六年级下册第1单元圆柱与圆锥

北师大版数学六年级下册第1单元圆柱与圆锥一、面的旋转 1.点动成线....,.线动成面....,.面动成体。

.....2.将一个长方形以长(宽)为轴,快速旋转后可以形成一个圆柱。

3.将一个直角三角形沿一条直角边快速旋转,会形成一个圆锥。

二、圆柱和圆锥的特征1.圆柱有两个面是大小相同的圆,有一个面是曲面;圆锥有一个面是圆,有一个面是曲面。

即:2.圆柱的上、下两个圆面叫作圆柱的底面,圆柱的曲面叫作圆柱的侧面;圆柱的两个底面之间的距离叫.............作圆柱的高.....。

即:3.圆锥的圆面叫作圆锥的底面,圆锥的曲面叫作圆锥的侧面;圆锥的顶点到底面圆心的距离叫作圆锥.................的高。

...4.测量圆锥的高的方法:把圆锥放在水平面上,在圆锥的顶点上放一个平面的东西,比如一块木板,并与底面平行,测量一下这两个平面间的距离,这两个平面间的距离就是圆锥的高。

即:5.测量圆柱的高的方法:把圆柱放在水平面上,选一把直尺和一个直角三角板,使圆柱的底面与直尺的..........0.刻线对齐....,使三角板与直尺垂直并靠紧圆柱的底面,此时圆柱的另一个底面对准的刻度值即是圆柱的高。

三、圆柱的表面积 1.圆柱的侧面积。

圆柱的侧面如果沿高剪开得到一个长方形。

长方形的面积=长方形的长 × 长方形的宽↓ ↓ ↓圆柱的侧面积=圆柱的底面周长×圆柱的高面的形状不同,快速旋转后形成的立体图形也不同。

圆柱有无数条高,圆锥只有一条高。

圆柱或圆锥的高都是一条垂直于底面的线段。

易错点:剪开圆柱的侧面时一定要沿高剪开才可以得到一个长方形。

用字母表示:S 侧=Ch 或S 侧=πdh 或S 侧=2πrh2.圆柱的表面积。

圆柱的表面积......=.侧面积...+.两个底面积.....不同的圆柱形实物,它们的表面积也不相同。

比如圆柱形烟囱的表面积等于烟囱的侧面积,圆柱形水桶的表面积就是水桶的侧面积加上一个底面积。

【数学】 六年级下册数学培优-第一讲-圆柱与圆锥

【数学】 六年级下册数学培优-第一讲-圆柱与圆锥

【数学】六年级下册数学培优-第一讲-圆柱与圆锥一、圆柱与圆锥1.看图计算.(1)求圆柱的表面积(单位:dm)(2)求零件的体积(单位:cm)【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2=628+3.14×25×2=628+157=785(平方分米)答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4= ×3.14×1×3+3.14×1×4=3.14+12.56=15.7(立方厘米)答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

2.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.计算下面圆柱的表面积和体积,圆锥的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册数学培优-第一讲-圆柱与圆锥一、圆柱与圆锥1.一个圆锥形沙堆,底面周长是31.4米,高是1.2米.每立方米黄沙重2吨,这堆黄沙重多少吨?【答案】解:底面半径:31.4÷(2×3.14)=31.4÷6.28=5(米)这堆沙子的总重量: ×3.14×52×1.2×2=3.14×25×0.4×2=78.5×0.4×2=31.4×2=62.8(吨)答:这堆黄沙重62.8吨。

【解析】【分析】用底面周长除以圆周率的2倍即可求出底面半径。

根据圆锥的体积公式计算出沙子的体积,再乘每立方米沙子的重量即可求出总重量。

2.求圆柱的表面积和圆锥的体积。

(1)(2)【答案】(1)解:2×3.14×3×4+2×3.14×32=103.62(cm2)(2)解:【解析】【分析】(1)圆柱的表面积=圆柱的底面积×2+圆柱的侧面积,圆柱的底面积=πr2,圆柱的侧面积=圆柱的底面周长×高,圆柱的底面周长=2πr;(2)圆锥的体积=πr2h。

3.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

(1)通过比较,请你说说这类立体图形有什么样的共同特征呢?(至少写出3点)(2)我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为2cm、3cm,高为5cm,请你计算出它的体积。

【答案】(1)答:①上下两个底面的大小和形状完全相同,并且它们相互平行。

②侧面与底面垂直,两个底面之间的距离就是直柱体的高。

③直柱体的侧面展开图是长方形。

④当底面周长与高相等时,侧面展开图是正方形。

(2)答:我们学过的长方体,正方体和圆柱体的体积都可以用“底面积×高”来计算.因为三棱柱也是直柱体,所以我精测,三棱柱的体积计算方法也可以用“底面积x高”来计算。

三棱柱的体积:2×3÷2×5=15cm3【解析】【分析】(1)根据每种直柱体的特征总结出它们共同的特征即可,例如:①它们的上下两个底面的大小和形状完全相同,并且它们相互平行;②它们的侧面与底面垂直,两个底面之间的距离就是直柱体的高;③它们的侧面展开图是长方形;④当底面周长与高相等时,侧面展开图是正方形;(2)长方体、正方体的体积都可以用“底面积×高”来计算,而三棱柱也是直柱体,所以三棱柱的体积也可以用“底面积×高”来计算,直角三角形的面积等于两条直角边乘积的一半,据此作答即可。

4.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。

【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。

5.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?【答案】解: ×3.14×32×2=3.14×6=18.84(立方厘米)答:这个零件的体积是18.84立方厘米。

【解析】【分析】圆锥的体积=底面积×高×,根据公式计算体积即可。

6.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?【答案】解:3.14×3×2+3.14×(3÷2)2=18.84+3.14×2.25=18.84+7.065=25.905(平方米)答:抹水泥的面积是25.905平方米。

【解析】【分析】抹水泥的面积 =池子的底面积+池子的侧面积=π×半径²+π×直径×高。

7.一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?【答案】解:底面半径:25.12÷3.14÷2=8÷2=4(米)×3.14×42×1.5=×3.14×16×1.5=3.14×16×0.5=50.24×0.5=25.12(立方米)25.12×2=50.24(吨)答:这堆沙重50.24吨.【解析】【分析】已知圆锥的底面周长,求底面半径,用C÷π÷2=r,然后求出圆锥的体积,用公式:S=πr2h,据此列式计算,最后用黄沙的体积×每立方米黄沙的质量=这堆黄沙的总质量,据此列式解答.8.填写下列表格(cm)。

名称半径直径高表面积体积圆柱5424205圆锥4 2.4——0.5 4.5——名称半径直径高表面积体积圆柱5104282.631412431.412.562040531406280圆锥24 2.4——10.0480.51 4.5—— 1.1775【解析】【分析】已知圆柱的底面半径和高,求直径,用半径×2=直径,要求表面积,用公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,据此列式解答;已知圆柱的底面直径和高,先求半径,用直径÷2=半径,求表面积,用公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,据此列式解答;已知圆锥的底面直径和高,先求半径,用直径÷2=半径,求圆锥的体积,用公式:圆锥的体积=×底面积×高,据此列式解答;已知圆锥的底面半径和高,求圆锥的体积,用公式:圆锥的体积=×底面积×高,据此列式解答.9.(1)按1:3的比画出长方形缩小后的图形,按2:1的比画出直角三角形放大后的图形。

(每个小方格表示1cm2)(2)沿原来三角形的直角边旋转,可以得到一个圆锥,圆锥的体积最大是多少立方厘米?【答案】(1)(2)π×32×2=×3.14×9×2=3.14×3×2=9.42×2=18.84(立方厘米)答:圆锥的体积最大是18.84立方厘米.【解析】【分析】(1)原来的长方形长是6厘米,宽是3厘米,按1:3的比画出长方形缩小后的图形,缩小后的长方形长是2厘米,宽是1厘米,据此作图;原来的三角形的两条直角边分别是2厘米,3厘米,按2:1的比画出直角三角形放大后的图形,放大后的两条直角边分别是4厘米,6厘米,据此作图;(2)要求沿原来三角形的直角边旋转,可以得到一个圆锥,圆锥的体积最大是多少立方厘米,以直角三角形中较长的直角边为圆锥的底面半径,较短直角边为圆锥的高,据此应用公式:V=πr2h,据此列式解答.10.一个圆柱形无盖水桶,底面周长是12.56分米,高6分米,(1)做这个水桶至少需要铁皮多少平方分米?(2)水桶能盛水多少升?【答案】(1)解:底面半径:12.56÷3.14÷2=2(分米),3.14×2²+12.56×6=12.56+75.36=87.92(平方分米)答:做这个水桶至少需要铁皮87.92平方分米。

(2)解:3.14×2²×6=3.14×24=75.36(升)答:水桶能盛水75.36升。

【解析】【分析】(1)先根据底面周长求出底面半径,然后用底面积加上侧面积就是需要铁皮的面积;(2)用底面积乘高即可求出能盛水的升数。

11.学校用的自来水管内直径为0.2分米,自来水的流速每秒5分米,如果你忘记关上水龙头,一分钟你将浪费多少升水?【答案】解:3.14×(0.2÷2)2×5×60=9.42(升)答:一分钟你将浪费9.42升水。

【解析】【分析】1分钟=60秒,用自来水管的面积乘每秒的流速求出每秒出水的体积,再乘60即可求出一分钟浪费水的体积。

12.在一个底面直径是8厘米,高是10厘米的圆柱形玻璃杯内,放上水,水面高8厘米.把一个小球沉浸在杯内,水满后还溢出12.52毫升.求小球的体积.【答案】解:3.14×(8÷2)2×(10﹣8)+12.52=3.14×16×2+12.52=100.48+12.52=113(立方厘米)答:小球的体积是113立方厘米。

【解析】【分析】小球的体积就是水面上升部分水的体积加上溢出水的体积。

根据圆柱的体积公式计算水面上升部分水的体积,再加上溢出水的体积就是小球的体积。

13.用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长10厘米.(1)扎这个盒子至少用去塑料绳多少厘米?(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?【答案】(1)解:20×4+40×4+10=80+160+10=250(厘米)答:扎这个盒子至少用去塑料绳250厘米。

(2)解:面积:3.14×40×20=125.6×20=2512(平方厘米)答:在它的整个侧面贴上商标和说明,这部分的面积是2512平方厘米。

【解析】【分析】(1)扎这个盒子至少用去塑料绳的长度=蛋糕的直径×4+蛋糕的高×4+打结处的长度;(2)侧面贴上商标和说明这部分的面积=蛋糕的侧面积=蛋糕的底面周长×蛋糕的高,其中蛋糕的底面周长=蛋糕的底面直径×π。

14.一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆.(1)搭建这个大棚大约要用多少平方米的塑料薄膜?(2)大棚内的空间大约有多大?【答案】(1)解:3.14×22+2×3.14×2×15÷2=3.14×4+188.4÷2=12.56+94.2=106.76(平方米)答:搭建这个大棚大约要用106.76平方米的塑料薄膜。

(2)解:3.14×22×15÷2=3.14×4×15÷2=188.4÷2=94.2(立方米)答:大棚内的空间大约有94.2立方米。

【解析】【分析】(1)搭建这个大棚大约要用塑料薄膜的平方米数=大棚的侧面积+半圆的面积×2,其中半圆的侧面积=横截面的半径×2×π÷2,半圆的面积×2=圆的面积=横截面的半径2×π;(2)大棚内的空间=横截面的半径2×π×大棚的长度÷2。

相关文档
最新文档