中考数学总复习专题训练(一)
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。
中考数学复习 核心素养专题(一)练习
强化训练1.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合。
你能利用数形结合的思想解决下列问题吗?(1)如图①,是一个边长为1的正方形,依次取正方形面积的12,14 ,18,…,12n ,根据图示我们可以知道:11111248162n+++++=_____。
(用含有n 的式子表示) (2)如图②,是一个边长为1的正方形,依次取剩余部分的23,根据图示,计算:222239273n ++++=______。
(用含有n 的式子表示) (3)如图③,是一个边长为1的正方形,根据图示,计算:1124823927813n n -++++ =_______。
(用含有n 的式子表示)2.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,类比分数的运算法则,我们得到了分式的运算法则,等等。
小学里,把分子比分母小的分数叫作真分数。
类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式。
对于任何一个假分式都可以化成整式与真分式的和的形式。
例如,1121221;11111x x x x x x x x +-+-==+=+----- 2322522552;11111x x x x x x x x -+-+-⎛⎫==+=+- ⎪+++++⎝⎭(1)下列分式: 2222143,,,11211x x y m x x y m -++-+-①②③④,属于真分式的是___________。
(填序号)(2)将假分式4521aa+-化成整式与真分式的和的形式为4521aa+-=_______,若假分式4521aa+-的值为整数,则整数a的值为_______。
3.数形结合思想是中学数学解题中常用的数学思想,利用这种思想,可以将代数问题转化为几何问题,也可以将几何问题转化为代数问题。
通过数形结合将代数与几何完美地结合在一起,可以大大降低解题的难度,提高效率和正确率,甚至还可以达到令人意想不到的效果。
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。
中考数学一轮复习 专题01 有理数(基础训练)(原卷版)
专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。
中考总复习数学01- 第二部分 专题一 运算求解题
∴1※(-2)=3×1+4×(-2)
=3+(-8)
=-5,
∴1※(-2)的值为-5.
8
9
10
11
12
专题一
返回类型清单
运算求解题—新定义
(2)若5※3=16,2※(-3)=-2,求a与b的值.
解:(2)∵5※3=16,2※(-3)=-2,
5a+3b=16①,
∴൝
①+②得7a=14,解得a=2,
数学
专题一
运算求解题
专题一
运算求解题
类型清单
类型一
缺项
类型二
运算过程纠错
类型三
新定义
类型四
数轴情境问题
专题一
返回类型清单
运算求解题—缺项
类型一
缺项
题型讲解
缺项的有关题目,通常给定一个代数式或者式子的部分信息,要求我们按
要求补全缺项,利用相应的运算法则,解决问题.主要通过观察、分析、
尝试、计算,验证结论,解决问题,培养了学生的符号意识和运算能力.
+
∴m= .
−
8
9
10
11
12
专题一
返回类型清单
运算求解题—数轴情境问题
类型四
数轴情境问题
题型讲解
数轴情境类题型主要考查学生对数轴概念的理解能力,培养学生借助
数轴建立数式联系,运用数学知识解决问题,培养学生的抽象思维和学
习习惯.
例题
13
14
15
专题一
返回类型清单
运算求解题—数轴情境问题
题型讲解
7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只
中考数学复习《多边形》专题练习(含答案)(1)
中考数学复习《多边形》专题练习(含答案)(1)中考数学专题练习多边形一、选择题1.(·云南)一个五边形的内角和为( )A. 540oB. 450oC. 360oD. 180o2. (2018·南通)若一个凸多边形的内角和为720o,则这个多边形的边数为( )A. 4B. 5C. 6D. 73. (2018·呼和浩特)已知一个多边形的内角和为1 080o,则这个多边形是( )A.九边形B.八边形C.七边形D.六边形4. ( 2018·台州)正十边形的每一个内角的度数为( )A. 120oB. 135oC. 140oD. 144o5. (2018·曲靖)若一个正多边形的内角和为720o,则这个正多边形的每一个内角是( )A. 60oB. 90oC. 108oD. 120o6. ( 2018·宁波)已知正多边形的一个外角等于40o,那么这个正多边形的边数为( )A. 6B. 7C. 8D.97. (2018·北京)若正多边形的一个外角是60o,则该正多边形的内角和为( )A. 360oB. 540oC. 720oD. 900o8. (2018·宿迁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是( )A. 8B. 9C. 10D. 119. (2018·济宁)如图,在五边形ABCDE 中,300A B E ∠+∠+∠=?,,DP CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是( )A. 50oB. 55oC. 60oD. 65o10. (2018·双鸭山)如图,在四边形ABCD 中,AB AD =,5AC =,90DAB DCB ∠=∠=?,则四边形ABCD 的面积为( )A. 15B. 12.5C. 14.5D. 17二、填空题11. (2018·福建)一个n 边形的内角和为360o,则n 的值为 .12. (2018·广安)一个n 边形的每一个内角等于108o,那么n 的值为 .13. (2018·菏泽)若正多边形的每一个内角为135o,则这个正多边形的边数是 .14. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 .15. (2018·江汉油田)若一个多边形的每个外角都等于30o,则这个多边形的边数为 .16. (2018·怀化)一个多边形的每一个外角都是36o,则这个多边形的边数是 .17. (2018·山西)图①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= .18. (2018·邵阳)如图,在四边形ABCD 中,AD AB ⊥,110C ∠=?,它的一个外角60ADE ∠=?,则B ∠的大小是 .19. (2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .20. (2018·抚顺)将两张三角形纸片如图摆放,量得1234220∠+∠+∠+∠=?,则5∠的度数为 .21. (2018·南京)如图,五边形ABCDE 是正五边形.若12//l l ,,则12∠-∠= .22. (2018·贵阳)如图,,M N 分别是正五边形ABCDE 的两边,AB BC 上的点.若AM BN =,点O 是正五边形的中心,则MON ∠的度数是 .23. (2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则BOM ∠的度数为 .24. (2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O 的半径为1,若用⊙O 的外切正六边形的面积S 来近似估计⊙O 的面积,则S = . (结果保留根号) 25. (2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为 .26.(导学号78816049)(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .三、解答题27. (2018·河北)如图①,作BPC ∠的平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=?,而90452?=?是360o(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图②所示.(1)图②中的图案外轮廓周长是 ;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,求该会标的外轮廓周长.参考答案一、1. A 2. C 3. B 4. D 5. D 6. D 7. C 8. A 9. C10. B二、填空题11. 412. 513. 814. 540?15. 1216. 1017. 360?18. 40?19. 72?20. 40?21. 72?22. 72?23. 48?24. 25.26. 540?或360?或180?三、27. (1) 14(2) 会标的外轮廓周长为21。
2020届中考数学专题复习测试题(专题一:动点探究)含答案
中考总复习专题一动点探究一、单动点1.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A 作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.解:①当BA=BP时,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴,∴,∴,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP==;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,易得△PFB∽△CGB,∴,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,答案为:8,,.2.(2015•连云港)已知如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.解:(1)原点O在⊙P外.理由:∵直线y=x﹣2与x轴、y轴分别交于A,B两点,∴点A(2,0),点B(0,﹣2),在Rt△OAB中,tan∠OBA===,∴∠OBA=30°,如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=OB•sin∠OBA=,∵>1,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,∴弧长为:=;同理:当⊙P过点B时,点P在y轴左侧时,弧长同样为:;∴当⊙P过点B时,⊙P被y轴所截得的劣弧的长为:;(3)如图3,当⊙P与x轴相切时,且位于x轴下方时,设切点为D,在PD⊥x轴,∴PD∥y轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP•tan∠DPA=1×tan30°=,∴OD=OA﹣AD=2﹣,∴此时点D的坐标为:(2﹣,0);当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为:(2+,0);综上可得:当⊙P与x轴相切时,切点的坐标为:(2﹣,0)或(2+,0).3.(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x 轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:①当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6<t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APM﹣S△CPM===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t<8时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>8时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=144.(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图1:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.图1③当3<t≤4时,如图2:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t ﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=﹣t2+4t﹣.综上所述,S与t之间的函数关系式为S=.图2图3图4(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图3:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图4:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).5.(2015•绵阳)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S 的最大值.(1)解:存在;当点M为AC的中点时,AM=BM,则△ABM为等腰三角形;当点M与点C重合时,AB=BM,则△ABM为等腰三角形;当点M在AC上,且AM=2时,AM=AB,则△ABM为等腰三角形;当点M为CG的中点时,AM=BM,则△ABM 为等腰三角形;(2)证明:在AB上截取AK=AN,连接KN;如图1所示:∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∴∠CDG=90°,∵BK=AB﹣AK,ND=AD﹣AN,∴BK=DN,∵DH平分∠CDG,∴∠CDH=45°,∴∠NDH=90°+45°=135°,∴∠BKN=180°﹣∠AKN=135°,∴∠BKN=∠NDH,在Rt△ABN中,∠ABN+∠ANB=90°,又∵BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°﹣∠BNH=90°,∴∠ABN=∠DNH,在△BNK和△NHD中,,∴△BNK≌△NHD(ASA),∴BN=NH;(3)解:①当M在AC上时,即0<t≤2时,△AMF为等腰直角三角形,∵AM=t,∴AF=FM=t,∴S=AF•FM=×t×t=t2;当t=2时,S的最大值=×(2)2=2;②当M在CG上时,即2<t<4时,如图2所示:CM=t﹣AC=t﹣2,MG=4﹣t,在△ACD和△GCD中,,∴△ACD≌△GCD(SAS),∴∠ACD=∠GCD=45°,∴∠ACM=∠ACD+∠GCD=90°,∴∠G=90°﹣∠GCD=45°,∴△MFG为等腰直角三角形,∴FG=MG•cos45°=(4﹣t)•=4﹣t,∴S=S△ACG﹣S△CMJ﹣S△FMG=×4×2﹣×CM×CM﹣×FG×FG=4﹣(t﹣2)2﹣(4﹣)2=﹣+4t﹣8=﹣(t﹣)2+,∴当t=时,S的最大值为.6.(2015•抚顺)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G 点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),∴解得∴抛物线的解析式是:y=﹣x2﹣x+8.(2)如图①,作DM⊥抛物线的对称轴于点M,,设G点的坐标为(﹣1,n),由翻折的性质,可得BD=DG,∵B(4,0),C (0,8),点D为BC的中点,∴点D的坐标是(2,4),∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==4,∴,在Rt△GDM中,32+(4﹣n)2=20,解得n=4±,∴G点的坐标为(﹣1,4+)或(﹣1,4﹣).(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.①当CD∥EF,且点E在x轴的正半轴时,如图②,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,4),点E的坐标是(1,0).②当CD∥EF,且点E在x轴的负半轴时,如图③,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,﹣4),点E的坐标是(﹣3,0).③当CE∥DF时,如图④,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,12),点E的坐标是(3,0).综上,可得抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).二、双动点1.(2015•辽阳)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.4解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.选:B.2.(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A 点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.解:(1)如图1,过点B作BM⊥AC于点M,∵AC=9,S△ABC=,∴AC•BM=,即×9•BM=,解得BM=3.由勾股定理,得AM===4,则tanA==;(2)存在.如图2,过点P作PN⊥AC于点N.依题意得AP=CQ=5t.∵tanA=,∴AN=4t,PN=3t.∴QN=AC﹣AN﹣CQ=9﹣9t.根据勾股定理得到:PN2+NQ2=PQ2,S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t<).∵﹣==在t的取值范围之内,∴S最小值===;(3)①如图3,当点E在边HG上时,t1=;②如图4,当点F在边HG上时,t2=;③如图5,当点P边QH(或点E在QC上)时,t3=1④如图6,当点F边C上时,t4=3.(2015•大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D 出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.解:(1)如图1,当x=时,△PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ=,QR=PQ,∴QR=,∴n=S=×()2=×=.(2)如图2,根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S=×PQ×RQ=x2,当点Q点运动到点A时,x=2AD=4,∴m=4.当<x≤4时,S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ,AP=2+,AQ=2﹣,∵△AQE∽△AQ 1R1,,∴QE=,设FG=PG=a,∵△AGF∽△AQ1R1,,∴AG=2+﹣a,∴a=,∴S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ=(2)(2)﹣(2﹣)•(2)=﹣x2+∴S=﹣x2+.综上,可得S=4.(2015•宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.5.(2015•荆门)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,在Rt△DBP和Rt△DEQ中,,∴△DBP≌△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EN,CM互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).三、面动探究1.(2015•青岛)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.解:(1)在Rt△ABC中,AC==4,由平移得MN∥AB,∵PQ∥MN,∴PQ∥AB,∴=,∴=,t=,(2)过点P作PD⊥BC于D,∵△CPD∽△CBA,∴=,∴=,∴PD=﹣t,∵PD∥BC,∴S△QMC=S△QPC,∴y=S△QMC=QC•PD=t(﹣t)=t﹣t2(0<t<4),(3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴(t﹣t2):6=1:5,∴t=2,(4)若PQ⊥MQ,则∠PQM=∠PDQ,∵∠MPQ=∠PQD,∴△PDQ∽△MQP,∴=,∴PQ2=MP•DQ,∴PD 2+DQ2=MP•DQ,∵CD=,∴DQ=CD﹣CQ=﹣t=,∴()2+()2=5×,∴t1=0(舍去),t2=,∴t=时,PQ⊥MQ.2.(2015•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=12cm.解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴取AB中点D,连接CD,OD,则CD与OD之和大于或等于CO,当且仅当C,D,O三点共线时取等号,此时CO=CD+OD=6+6=12,故答案为:12.第二问方法二:因角C与角O和为180度,所以角CAO与角CBO和为180度,故A,O,B,C四点共圆,且AB为圆的直径,故弦CO的最大值为12.3.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠C EF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.4.(2015•温州)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).解:(1)在Rt△ABQ中,∵AQ:AB=3:4,AQ=3x,∴AB=4x,∴BQ=5x,∵OD⊥m,m⊥l,∴OD∥l,∵OB=OQ,∴=2x,∴CD=2x,∴FD==3x;(2)∵AP=AQ=3x,PC=4,∴CQ=6x+4,作OM⊥AQ于点M(如图1),∴OM∥AB,∵⊙O是△ABQ的外接圆,∠BAQ=90°,∴点O是BQ的中点,∴QM=AM=x∴OD=MC=,∴OE=BQ=,∴ED=2x+4,S矩形DEGF=DF•DE=3x(2x+4)=90,解得:x1=﹣5(舍去),x2=3,∴AP=3x=9;(3)①若矩形DEGF是正方形,则ED=DF,I.点P在A点的右侧时(如图1)∴2x+4=3x,解得:x=4,∴AP=3x=12;II.点P在A点的左侧时,当点C在Q右侧,0<x<时(如图2),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=,∴AP=;当≤x<时(如图3),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=(舍去),当点C在Q的左侧时,即x≥(如图4),DE=7x﹣4,DF=3x,∴7x﹣4=3x,解得:x=1,∴AP=3,综上所述:当AP为12或或3时,矩形DEGF是正方形;②连接NQ,由点O到BN的弦心距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,∵GM=x,BM=x,∴∠GBM=45°,∴BM∥AQ,∴AI=AB=4x,∴IQ=x,∴NQ==2,∴x=2,∴AP=6;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,∵GJ=x,BJ=4x,∴tan∠GBJ=,∴AI=16x,∴QI=19x,∴NQ==2,∴x=,∴AP=,综上所述:AP的长为6或。
2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)
2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)1.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣12.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣2,2),则关于x的不等式x+a>kx+b 的解集是()A.x<﹣2B.x>﹣2C.x<2D.x>23.如图,已知函数y=kx+b图象如图所示,则不等式kx+b<0的解集为()A.x>5B.x<5C.x>4D.x<44.一次函数y=kx+b(k,b为常数)的图象如图所示,则不等式kx+b<1的解集是()A.x<﹣2B.x<1C.x>﹣2D.x<05.如图,直线l1:y1=ax(a≠0)与直线l2:y2=x+b(b≠0)交于点P,有四个结论:①a<0②a>0③当x>0时,y1>0④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D.②③6.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b<0的解集是()A.x>0B.x<0C.x>2D.x<27.一次函数y1=kx+b与y2=mx+n的图象如图所示,则以下结论:①k>0;②b>0;③m >0;④n>0;⑤当x=3时:y1>y2.正确的个数是()A.1个B.2个C.3个D.4个8.如图,已知一次函数y1=x+b与正比例函数y2=kx的图象交于点P.四个结论:①k>0;②b>0;③当x<0时,y2>0;④当x<﹣2时,kx<x+b.其中正确的是()A.①③B.②③C.③④D.①④9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1B.﹣3C.﹣4D.﹣510.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则()A.x>0B.x>﹣3C.x>﹣6D.x>﹣911.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是()A.x<1B.x<2C.x>0D.x>212.在平面直角坐标系中,正比例函数y=2x的图象与直线y=kx+b交于A(﹣1,﹣2).直线y=kx+b,还经过点(﹣2,0).则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<0C.﹣2<x<﹣1D.﹣1<x<0 13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是.14.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为.15.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为.16.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为.17.一次函数y=kx+b的图象如图所示,则关于x的不等式kx﹣m+b>0的解集是.18.函数y=2x和y=ax+4的图象相交于点A(m,2),则不等式2x﹣4≤ax的解集.19.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣1)﹣b>0的解集为.20.已知直线y1=2x与直线y2=﹣2x+4相交于A,有以下结论:①A的坐标为(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④y1,y2在平面直角坐标系中的位置关系是平行,其中正确的是.21.如图,直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,则不等式k1x+b>k2x+b的解集为.22.在平面直角坐标系xOy中,一次函数y=ax和y=kx+7的图象如图所示,则关于x的一元一次不等式ax>kx+7的解集是.23.已知一次函数y=kx+b经过点A(3,0),B(0,3).(1)求k,b的值.(2)在平面直角坐标系xOy中,画出函数图象;(3)结合图象直接写出不等式kx+b>0的解集.24.在给出的网格中画出一次函数y=2x﹣3的图象,并结合图象求:(1)方程2x﹣3=0的解;(2)不等式2x﹣3>0的解集;(3)不等式﹣1<2x﹣3<5的解集.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=结合上面经历的学习过程,现在来解决下面的问题:在函数y=||(k>0)中,当x=﹣4时,y=1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=x||x 的解集.26.在平面直角坐标系中,直线y=2x向右平移1个单位长度得到直线y1.(1)直接写出直线y1的解析式;(2)直线y1分别交x轴,y轴于点A,B,交y2=kx于点C,若A为BC的中点.①请画图并求k的值;②当0<y1<y2时,请直接写出x的取值范围.27.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.28.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.29.如图,过点C(0,﹣2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m),且直线l1与x轴交于点B,直线l2与x轴交于点A.(1)直接写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式;(3)若点M在x轴的正半轴上运动,点M运动到何处时△ABP与△BPM面积相等?求出此时△BPM面积.30.如图,函数y1=2x和y2=kx+4(k为常数,且k≠0)的图象都经过点A(m,3).(1)求点A的坐标及k的值;(2)结合图象直接写出)y2≥y1时x的取值范围.31.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.32.设函数f(x)=|x+2|﹣|x﹣1|.(1)画出函数y=f(x)的图象;(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.参考答案1.解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选:D.2.解:因为直线y1=x+a与y2=kx+b相交于点P(﹣2,2),当x>﹣2时,x+a>kx+b,所以不等式x+a>kx+b的解集为x>﹣2.故选:B.3.解:∵从图象可知:一次函数图象和x轴的交点坐标为(4,0),y随x的增大而减小,∴不等式kx+b<0的解集是x>4,故选:C.4.解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(0,1),并且函数值y随x的增大而增大,因而则不等式kx+b<1的解集是x<0.故选:D.5.解:∵直线l1:y1=ax(a≠0)从左往右呈下降趋势,∴a<0,故①正确,②错误;由函数图象可得当x>0时,y1<0,故③错误;∵两函数图象交于P,∴x<﹣2时,y1>y2,故④正确,故选:C.6.解:由图可知:当x>2时,y<0,即kx+b<0;故关于x的不等式kx+b<0的解集为x>2.故选:C.7.解:∵一次函数y1=kx+b的图象经过第一、三象限,∴k>0,所以①正确;∵一次函数y1=kx+b的图象与y轴的交点在y轴的负半轴上,∴b<0,所以②错误;∵一次函数y2=mx+n的图象经过第二、四象限,∴m<0,所以③错误;∵一次函数y2=mx+n的图象与y轴的交点在y轴的正半轴上,∴n>0,所以④正确;∵x>2时,y1>y2,∴当x=3时:y1>y2.所以⑤正确.故选:C.8.解:∵直线y2=kx经过第二、四象限,∴k<0,故①错误;∵y1=x+b与y轴交点在正半轴,∴b>0,故②正确;∵正比例函数y2=kx经过原点,且y随x的增大而减小,∴当x<0时,y2>0;故③正确;当x<﹣2时,正比例函数y2=kx在一次函数y1=x+b图象的上方,即kx>x+b,故④错误.故选:B.9.解:当y=0时,nx+4n=0,解得x=﹣4,所以直线y=nx+4n与x轴的交点坐标为(﹣4,0),当x>﹣4时,nx+4n>0;当x<﹣2时,﹣x+m>nx+4n,所以当﹣4<x<﹣2时,﹣x+m>nx+4n>0,所以不等式组﹣x+m>nx+4n>0的整数解为x=﹣3.故选:B.10.解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>x,即kx﹣x>﹣b的解集为x>﹣9.故选:D.11.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故选:D.12.解:画出函数y=2x与y=kx+b如图,由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1,﹣2),∴不等式2x<kx+b的解集是x<﹣1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2,0),∴不等式kx+b<0的解集是x>﹣2,∴不等式2x<kx+b<0的解集是﹣2<x<﹣1,故选:C.13.解:一次函数y=(m﹣1)x﹣m+4中,令x=0,解得:y=﹣m+4,与y轴的交点在x轴的上方,则有﹣m+4>0,解得:m<4.故本题答案为:m<4且m≠1.14.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为x>﹣1.15.解:从图象可看出当x≥﹣1,直线l2的图象在直线l1的上方,不等式ax+b>kx.故答案为:x≥﹣1.16.解:∵一次函数y=kx+b的图象经过(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b<﹣3的解集是x>4.故答案是:x>4.17.解:当x<﹣3时,y=kx+b>m,所以关于x的不等式kx﹣m+b>0的解集为x<﹣3.故答案为:x<﹣3.18.解:∵函数y=2x的图象经过点A(m,2),∴2m=2,解得:m=1,∴点A(1,2),当x≤1时,2x≤ax+4,即不等式2x﹣4≤ax的解集为x≤1.故答案为x≤1.19.解:把(3,0)代入y=kx+b得3k﹣b=0,则b=3k,所以k(x﹣1)﹣b>0化为k(x﹣1)﹣3k>0,即kx﹣4k>0,因为k<0,所以x<4,故答案为:x<4.20.解:解方程组得,∴两直线的交点坐标为(1,2),所以①②正确;当y1<y2,即2x<﹣2x+4,解得x<1,即当x<1时,y1<y2;所以③正确;∵直线y1=2x与直线y2=﹣2x+4相交于A,∴y1,y2在平面直角坐标系中不平行,所以④错误.故答案为:①②③.21.解:∵直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,∴交点的横坐标为0∵从图象看,当x>0时,直线y1=k1x+b的图象位于直线y2=k2x+b的上方;当x<0时,直线y1=k1x+b的图象位于直线y2=k2x+b的下方∴当x>0时,k1x+b>k2x+b故答案为:x>0.22.解:因为当x>2时,ax>kx+7,所以关于x的一元一次不等式ax>kx+7的解集为x>2.故答案为x>2.23.解:(1)∵一次函数y=kx+b经过点A(3,0),B(0,3).∴,解得;(2)函数图象如图:;(3)不等式kx+b>0的解集为:x<3.24.解:(1)由图象可知,方程2x﹣3=0的解是x=,(2)由图象可知,不等式2x﹣3>0的解集是x>;(3)由图象可知,不等式﹣1<2x﹣3<5的解集是:1<x<4.25.解:(1)∵在函数y=||(k>0)中,当x=﹣4时,y=1,||1,解得k=4,∴这个函数的表达式是y=||;(2)∵y=||,∴y=,列表:x﹣4﹣2﹣1123y124421…描点、连线,画出该函数的图象如图所示:由图象可知,函数的图象关于y轴对称;(3)由函数图象可得,||x的解集是0<x≤2或x<0.26.解:(1)由“左加右减”的原则可知:把直线y=2x向右平移1个单位长度后,其直线解析式为y=2(x﹣1),即y=2x﹣2.故直线y1的为y=2x﹣2;(2)①如图,由直线y1的为y=2x﹣2可知A(1,0),B(0,﹣2),∵A为BC的中点,∴C(2,2),把C(2,2)代入y2=kx得,2=2k,∴k=1;②当0<y1<y2时,x的取值范围是1<x<2.故答案为1<x<2.27.解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B (2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x>1,∵AB=3,∴S△ABC=•y C==.28.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).29.解:(1)当x<2时,y1<y2;(2)把点P(2,m)代入y2=x+1中,得m=2+1=3,∴点P的坐标为(2,3).把点C(0,﹣2)、P(2,3)分别代入y1=kx+b中,得,解得,∴直线l1的解析式为y1=x﹣2;(3)由(2)得点P的坐标为(2,3),∵△ABP与△BPM有相同的高,即h=3.要使△ABP与△BPM面积相等,且点M在x 轴正半轴上.∴在x轴上取点M,当AB=BM时,△ABP与△BPM面积相等.∵在直线中,当y=0时,,即点B的坐标是(,0),∴AB=1+=,BM=OM﹣OB=,∴OM=,则点M运动到(0,)时△ABP与△BPM面积相等.∴S△BPM=.30.解:(1)把A(m,3)代入y1=2x得2m=3,解得m=,∴A(,3),把A(,3)代入y2=kx+4得3=k+4,解得k=﹣;(2)当x≤时,y2≥y1.31.解:(1)联立两函数解析式可得方程组,解得:,∴点A的坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,解得:x=﹣2,∴B(﹣2,0),当y2=0时,x﹣4=0,解得:x=4,∴C(4,0),∴CB=6,∴△ABC的面积为:6×3=9;(3)由图象可得:y1≤y2时x的取值范围是x≥1.32.解:(1)函数f(x)=,所以其图象如图:(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,即(|x+2|﹣|x﹣1|+4)的最大值≥|1﹣2m|,故|x+2|﹣|x﹣1|+4的最大值大于或等于|1﹣2m|,利用绝对值的意义可得|x+2|﹣|x﹣1|+4的最小值为3+4=7,∴|1﹣2m|≤7,解得﹣3≤m≤4。
中考数学总复习第三编综合专题闯关篇专题1规律探索猜想类试题(2021-2022学年)
专题一规律探索猜想类规律探索与猜想是中考中常见题型之一,它主要用于考查学生观察、分析、归纳、猜想等方面的能力,既可以命基础题,也可命中高档题,题型不限,方法灵活,主要有数式规律、图形规律、坐标规律等,解这类问题要善于发现其过程中的特点,抓住其周期是解决此类问题的关键.纵观遵义近五年中考,每年都会涉及一道规律探索问题,一般难度不大,预计2018年遵义中考也有可能命一道中基础(选择或填空)规律探索题.,中考重难点突破)数字规律【例1】(临夏中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为x n,则x n+x n+1=________.【解析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+2+3+…+n=错误!未定义书签。
,xn+1=错误!,然后计算xn+xn+1可得.【答案】(n+1)2◆模拟题区1.(2017遵义二中二模)计算下列各式的值:92+19;错误!;错误!;错误!.观察所得结果,总结存在的规律,应用得到的规律可得错误!未定义书签。
+199…9,2015个9))=__102__015__.2.(2017遵义六中三模)将自然数按以下规律排列:第一列第二列第三列第一行14 5…第二行 2 3 6…第三行987………表中数2在第二行第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为__(45,12)__.3.(2017遵义十一中三模)已知:错误!未定义书签。
=\f(1,3);错误!=错误!;计算:错误!未定义书签。
=__错误!__;猜想:错误!未定义书签。
=__错误!未定义书签。
__.4.(天水中考)观察下列运算过程:S=1+3+32+33+…+32 012+32 013①,①×3得3S=3+32+33+…+32 013+32 014 ②,②-①得2S=32014-1,S=错误!未定义书签。
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。
2012年济南数学中考数学总复习专题训练
2012年济南数学中考数学总复习专题训练(中考模拟一)考试时间:120分钟 满分150分一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)均不得分。
1.已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 2.如图(1),在等腰直角△ABC 中,∠B =90°,将△ABC 绕顶点A 逆时针方向旋转60°后得到△AB ′C ′则'BAC ∠等于( ) A . 60° B. 105° C.120° D. 135° 3.下列四个函数中,y 随x 增大而减小的是( )A .y=2xB .y=―2x+5C .y=―3xD .y=―x 2+2x ―14.据“保护长江万里行”考察队统计,仅2003年长江流域废水排放量已达163.9亿吨!治长江污染真是刻不容缓了!请将这个数据用四舍五入法,使其保留两个有效数字,再用科学记数法表示出来是( ) A .31.610⨯亿吨 B.21.610⨯亿吨 C.31.710⨯亿吨 D.21.710⨯ 亿吨 5.直线y ax b =+经过第二、三、四象限那么下列结论正确的是( )Aa b =+B.点(a ,b )在第一象限内C.反比例函数ay x=当0x >时函数值y 随x 增大而减小 D.抛物线2y ax bx c =++的对称轴过二、三象限6、如图(2),CD 是ABC Rt ∆斜边AB 上的高,将∆BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A .25B .30C .45D .607.如图(3),在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且cos α=53,AB =4,则AD 的长为( ) C'B'图(1)BAACDA .3B .316 C .320D .516图(2) 图(3) 8.如图(4)所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则a 3+b 4的值为( ) A .35 B .43 C .89 D .979.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1 分米的正方体摆在课桌上成如图5形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )A . 33分米2B .24分米2C .21分米2D .42分米2图(4) 图(5) 10.已知:关于x 的一元二次方程x 2-(R +r)x +41d 2=0无实数根,其 中R 、r 分别是⊙O 1、⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1,⊙O 2的位置关系为( )A .外离B .相切C .相交D .内含 二、填空题(本题共4小题,每小题5分,满分20分) 11、如图(6),请你补充一个你认为正确的条件,使ABC ∆∽ACD ∆:______ 。
专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.
备战2021中考数学考点专题训练——专题一:一次函数(word解析版)
备战2021中考数学考点专题训练——专题一:一次函数1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.17.问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)尝试:如图2,△ABC中,AC=BC,∠ACB=90°.(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)18.已知,平面直角坐标系中,直线y=kx﹣4k交x轴A,交y轴正半轴于点B,直线y=﹣x+b经过点A,交y轴正半轴于点C,且BC=5OC.(1)如图1,求k的值;(2)如图2,点P为第二象限内直线AC上一点,过点P作AC的垂线,交x轴于点D,交AB于点E,设点P的横坐标为t,△ADE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,Q为线段PE上一点,PQ=PC,连接AQ,过点C作CG⊥AQ 于G,交直线AB于点F,连接QF,若∠AQP=∠FQE,求点F的坐标.19.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.20.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.备战2021中考数学考点专题训练——专题一:一次函数参考答案1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?【答案】解:(1)由函数图象可得,甲乙两地之间的路程是560km,快车的速度为:560÷(5﹣1)=140(km/h),慢车的速度为:560÷(5+4﹣1)=70(km/h),故答案为:140,70;(2)设出发a小时时,快慢两车相遇,140a+70a=560,解得,a=,即出发小时后,快慢两车相遇,故答案为:;(3)快慢两车出发b小时后第一次相距150km,140b+70b=560﹣150,解得,b=,即快慢两车出发小时后第一次相距150km2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【答案】解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【答案】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【答案】解:(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:=;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+=0时,a=,当(a﹣3+0)=时,a=7,当(+0)=a﹣3时,a=,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?【答案】解:(1)由图象可得,小王的速度为:80÷1=80(km/h),a=400÷80﹣1=4,故答案为:80,4;(2)设小张加速前的速度为xkm/h,2.4x=(x+20)×(4.4﹣2.4),解得,x=100,b=400﹣2.4×100=160,即小张加速前的速度为100km/h,b的值是160;(3)由题意可得,相遇前:100x+80(x+1)=400﹣20解得,x=,相遇后到小张返回前:100x+80(x+1)=400+20解得,x=,小张返回后到小王到达A市前:80×(x+1)=(400﹣100×2.4)+(100+20)×(x﹣2.4)+20,解得,x=4.7(舍去),小王到达A市到小张返回到A市前,(400﹣100×2.4)+(100+20)×(x﹣2.4)+20=400,解得,x=,由上可得,在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km.6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.【答案】解:(1)∵直线l1:y=x+3经过点E(m,4),∴4=+3,解得m=2,∴E(2,4),∵直线l1与坐标轴交于点A、B,∴A(﹣6,0),B(0,3),∵OC=2OB,∴OC=6,∴C(6,0),把C(6,0),E(2,4)代入直线l2:y=kx+b得,解得,∴直线CD的解析式为y=﹣x+6;(2)将直线l1向下平移7个单位得到直线l3:y=x﹣4,令x=0,则y=﹣4,∴G(0,﹣4),由,解得,∴F的坐标为(,﹣),∴S△EFG=S△DFG﹣S△DEG=﹣=.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.【答案】解:(1)设甲车从A到B地对应的函数解析式为y=kx,1.5k=180,得k=120,即甲车从A到B地对应的函数解析式为y=120x,设甲车从B到A对应的函数解析式为y=ax+b,甲车从A到B用的时间为:300÷120=2.5,则函数y=ax+b过点(2.5,300),(5.5,0),,解得,,即甲车从B到A对应的函数解析式为y=﹣100x+550;(2)乙车的速度为:(300﹣180)÷1.5=80(km/h),乙车从B到A的时间为:300÷80=(小时),将x=代入y=﹣100x+550,得y=﹣100×+550=175,即当乙车到达A地时,甲车距离A地的距离是175km.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE【答案】解:(1)由a,b满足+(a﹣b﹣1)2=0可知,解得,∴点A(3,6),B(5,2);(2)设直线AB的解析式为y=kx+c,把点A(3,6),B(5,2)代入得,解得,∴直线AB的解析式为y=﹣2x+12,∵点C在在直线AB上,且点C的坐标为(m,n),∴2m+n=12;(3)设直线EF的解析式为y=﹣2x+d,∴E(,0),F(0,d),∵EF=AB,∴()2+d2=(3﹣5)2+(6﹣2)2,解得d=﹣4或4(舍去),∴直线EF为y=﹣2x﹣4,E(﹣2,0),∵直线AB的解析式为y=﹣2x+12,∴直线AB与x轴,y轴的交点分别为(6,0),(0,12),∴S△AOB=﹣﹣=12,∵点D在直线EF上,且D点的纵坐标为x,∴D(x,﹣2x﹣4),∴S△DOE=×|﹣2x﹣4|=|﹣2x﹣4|,∵S△DOE≥S△AOB,∴|﹣2x﹣4|≥×12,解得x≤﹣10或x≥6,∴当满足S△DOE≥S△AOB时,x的取值范围是x≤﹣10或x≥6.9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.【答案】解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC所在直线对应的函数表达式为.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.【答案】解:(1)∵直线y=x+9分别交x轴、y轴于点A、B,∴x=0时,y=9,当y=0时,x+9=0,解得x=﹣12.∴A(﹣12,0),B(0,9).∴OA=12,OB=9,∴AB===15,过点C作CD⊥AB于点D,如图1,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO(HL),∴BD=BO=9,CO=CD,∴AD=AB﹣BD=15﹣9=6,设CO=x,则AC=12﹣x,CD=x,∵CD2+AD2=AC2,∴x2+62=(12﹣x)2,解得x=.∴C(﹣,0).(2)如图2,当AB为平行四边形的一边时,∵CM∥AB,∴设CM的解析式为y=x+b,∴,解得b=,∴直线CM的解析式为y=.当AB为平行四边形的对角线时,BM∥AC,AM∥BC,∴BM=AC=AO﹣OC=,∴M(﹣,9).设直线CM的解析式为y=mx+n,∴,解得,∴CM的解析式为y=﹣3x﹣.综合以上可得:CM所在直线的解析式为y=x+或y=﹣3x﹣.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.【答案】解:(1)∵直线y=﹣2x+6交x轴于点A,交y轴于点B,∴A(3,0),B(0,6),∴OA=3,OB=6,∵AB=BC,OB⊥AC,∴OC=OA=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=2x+6.(2)如图,取点Q(﹣1,3),连接BQ,DQ,DQ交AB于E.∵D(a,2)在直线y=﹣2x+6上,∴2=﹣2a+6,∴a=2,∴D(2,2),∵B(0,6),∴QB==,QD==,BD==2,∴BD2=QB2+QD2,QB=QD,∴∠BQD=90°,∠BDQ=45°,∵直线DQ的解析式为y=﹣x+,∴E(0,),∴OE=,BE=6﹣=,∴S△BDE=××2=.(3)如图,过点D作DM⊥OA于M,DN⊥OB于N.∵四边形DEGF是正方形,∴∠EDF=90°,ED=DF,∵∠EDF=∠MDN=90°,∴∠EDN=∠DFM,∵DE=DF,DN=DM,∴△DNE≌△DMF(SAS),∴∠DNE=∠DMF=90°,EN=FM,∴点F在x轴上,∴当点F与C重合时,FM=NE=5,此时E(0,7),同法可证,点F′在直线y=4上运动,当点F′落在BC上时,E(0,﹣1),综上所述,满足条件的点E的坐标为(0,7)或(0,﹣1).12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵四边形ABCO是矩形,B(﹣,4),△ODE是由△OCB旋转得到,∴OC=OD=4,∴D(4,0),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣x+3.(2)∵E(4,),∴直线OE的解析式为y=x,由,解得,∴H(,),∴OH==,∵OB==,∴S△BOH=•OB•OH=××=.(3)如图,由题意F(0,3),D(4,0),∴OF=3,OD=4,∴DF==5,当DM1为菱形的对角线时,M1(﹣4,0),N1(0,﹣3).当DM=DF时,M2(﹣1,0)或M3(9,0),可得N2(﹣5,3),3(5,3),当DF为对角线时,M4(,0),可得N4(,3),综上所述,满足条件的点N的坐标为(0,﹣3)或(﹣5,3)或(5,3)或(,3).13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.【答案】解:(1)如图1中,∵直线y=﹣x+8交x轴于点A,交y轴于点B,∴A(6,0),B(0,8)∴OA=6,OB=8,∴AB===10,∵AC=5,∴AC=BC=5,∵CD∥OA,∴BD=OD=4,∴D(0,4).(2)如图2,作PF⊥AB于点F,PA=6﹣tPF=PA sin∠PAF=(6﹣t),∴CQ=5﹣t,S=•CQ•PF=(5﹣t)•(6﹣t)=t2﹣6t+12.(3)如图3中,作OG⊥AD于点G,在Rt△AOD中,AD===2,∵S△AOD=•OD•OA=•AD•OG∴OG==,∴DG===,∵DE=AE=,∴GE=DE﹣DG=﹣=,∵∠OED+∠OPR=90°,∠OED+∠EOG=90°,∴∠OPR=∠EOG,∴tan∠OPR=tan∠EOG=∵BR===﹣t,∵tan∠OPR==,OP=t,∴OR=t,当R在y轴的负半轴上,如图3中,OR=BR﹣8=﹣t,∴t=﹣t,解得t=,当R在y轴的正半轴上,如图4中,OR=8﹣BR=t﹣,∴t=t﹣,解得t=,综上,当t值为或,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.【答案】解:(1)∵直线y2=kx﹣6交于点C(4,2),∴2=4k﹣6,∴k=2,∵直线y1=﹣x+b过点C(4,2),∴2=﹣2+b,∴b=4,∴直线解析式为:y1=﹣x+4,直线解析式为y2=2x﹣6,∵直线y1=﹣x+b分别与x轴、y轴交于A,B两点,∴当x=0时,y=4,当y=0时,x=8,∴点B(0,4),点A(8,0),故答案为:4,2,(0,4);(2)∵点E在线段AB上,点E的横坐标为m,∴,F(m,2m﹣6),①当0≤m≤4时∴.∵四边形OBEF是平行四边形,∴BO=EF,∴,解得:;②当4≤m≤8时,2m﹣6﹣()=4,解得,综上所述:当或时,四边形OBEF是平行四边形;(3)存在.理由如下:①若以AB为边,AP为边,如图1所示:∵点A(8,0),B(0,4),∴.∵四边形BAPQ为菱形,∴AP=AB=4=BQ,AP∥BQ,∴点Q(4,4),点Q'(﹣4,4),若以AB为边,AP是对角线,如图1,∵四边形ABPQ是菱形,∴OB=OQ=4,∴点Q(0,4);②以AB为对角线,如图2所示:∵四边形APBQ是菱形,∴AP=BP=BQ,AP∥BQ,∵BP2=OP2+OB2,∴AP2=(8﹣AP)2+16,∴AP=5,∴BQ=5,∴点Q(5,4)综上所述:若点P为x轴上一点,当点Q坐标为或剧哦(0,﹣4)或(5,4)时,使以P,Q,A,B为顶点的四边形是菱形.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.【答案】解:(1)设直线AB交CD于E.∵直线y=x+4分别交x轴,y轴于A,B两点,∴A(﹣4,0),B(0,4),∵OC=BC=2,四边形AOCD是矩形,∴D(﹣4,2),当y=2时,2=x+4,∴x=﹣2,∴E(﹣2,2).(2)①如图2﹣1作MF⊥OA于F.在Rt△AMF中,∵∠AFM=90°,AM=t,∠MAF=45°,∴AF=FM=t当点P在线段OE上时,S△PHM=×2×(4﹣t﹣t)=1解得t=.如图2﹣2中,当点P在线段DE上时,同法可得:S△PHM=×2×(t+t﹣4)=1解得t=,综上所述,满足条件的t的值为或.②如图2﹣3中,BP+PH+HQ存在最小值.连接CQ交AO于H,作HP⊥CD于P,∵BC=PH,BC∥PH,∴四边形BCHP是平行四边形,∴BP=CH,∵BP+PH+HQ=CH+BC+HQ=BC+CQ=定值,根据两点之间线段最短,可知此时BP+PH+HQ的值最小,∵B(0,4),A(4,0),∵AQ=AB,∴Q(﹣8,﹣4),∵C(0,2),Q(﹣8,﹣4),∴直线CQ的解析式为y=x+2,令y=0,解得x=﹣,∴H(﹣,0),∴P(﹣,2).16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.【答案】解:(1)由题意可得:A(0,10m),B(﹣10,0),∴S△AOB=×10×|10m|=50,∴m=1或﹣1(舍弃)∴m=1.(2)如图1中,∵PD=PC,P点横坐标为t,C(6,0),∴CD=2|6﹣t|,∴S△PCD=×2|6﹣t|×|10+t|=|t2+4t﹣60|,当t>6时,S=t2+4t﹣60,当﹣10<t<6时,S=﹣t2﹣4t+60.(3)如图2中,在边CD的下方作⊙K与CD相切于点E,与PD相切于点R,与PC相切于点Q,连接PK,CK,DK,EK,PK交CD于T,作FW⊥PK于W.∵DE=DR,GE=GQ,PR=PQ,∵PD+DE=PG+EG,∴PE平分△PDG的周长,∴当F,E,K共线时,PE平分△PDG的周长,∵DK平分∠RDG,PK平分∠DPG,∴∠DKP=∠DGP=45°,∵∠DTK=90°,∴∠KDT=∠DCK=45°,∴∠DKC=90°,∴DT=TC﹣TK=6﹣t,∵EF⊥DG,DG⊥PC,∴FK∥PQ,∴∠FKW=∠CPT,∵FW⊥PK,∴tan∠FKW=tan∠CPT,∴=,∵BC=16,△FBC是等腰直角三角形,∴F(﹣2,8),∵K(t,t﹣6),∴=,解得t=2,∴P(2,12),D(﹣2,0),K(2,﹣4),∴直线PQ的解析式为y=﹣3x+18,直线FK的解析式为y=﹣3x+2,∵DG⊥PQ,∴直线DG的解析式为y=x+,。
【中考数学】2020中考数学总复习-专题一 规律探究型问题
栏目索引
命题点一 点的坐标变化规律
例3 (2019东营)如图,在平面直角坐标系中,函数y= 3 x和y=- 3x的图象分别为 3
直线l1,l2,过l1上的点A1 1, 33 作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于
点A3,过点A3作x轴的垂线交l2于点A4,……,依次进行下去,则点A2 019的横坐标为 -31 009 .
+1+ 12 -
1 3
+…+1+ 2 0118
-
2
1 019
=2
018+1- 1 + 1 - 1+ 1- 1 +…+
2 23 34
1 - 1 =2 018 2 018 .
2 018 2 019
2 019
栏目索引
方法技巧 解答此类问题常用的解题方法有以下两种: (1)合情推理:从简单(或特殊)的情形入手,通过研究简单(或特殊)问题中存在的 变化关系,猜测、归纳复杂(或一般)情形下存在的规律. (2)抓“变”与“不变”:把蕴含的规律用含有序数的式子表示出来.
栏目索引
3.(2019云南)按一定规律排列的单项式:x3,-x5,x7,-x9,x11,…,第n个单项式是 ( C)
A.(-1)n-1x2n-1
B.(-1)nx2n-1
C.(-1)n-1x2n+1
D.(-1)nx2n+1
解析 ∵x3=(-1 )1-1 x211,
-x5=(-1 )2-1 x221,x7=(-1 )3-1 x231,-x9=(-1 )4-1 x241,
栏目索引
类型二 图形类规律探究问题
根据点或图形的个数,确定图中哪些部分发生了变化,变化的规律是什么, 通过分析找到各部分的变化规律后,用一个统一的式子表示出变化规律是解答 此类问题的关键.
中考数学总复习《平面直角坐标系》专题训练(附带答案)
中考数学总复习《平面直角坐标系》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点A到x轴的距离为2,到y轴的距离为5,且点A在第四象限,则点A的坐标是()A.(2,−5)B.(5,−2)C.(−2,5)D.(−5,2)2.若点P(m+5,m−3)在x轴上,则点P的坐标为()A.(8,0)B.(0,−8)C.(4,0)D.(0,−4)3.在平面直角坐标系中,若直线AB经过点(3,−4)和(−3,4),则直线AB() A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.在平面直角坐标系中,将点P(−1,5)绕原点O顺时针旋转90°得到P′,则点P′的坐标为()A.(1,5)B.(5,1)C.(−1,−5)D.(−5,−1) 5.点P坐标为(6−3a,a+2),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,−3)C.(3,3)或(−6,6)D.(3,−3)或(6,−6)6.在平面直角坐标系中,点A(3,4),B(−1,b),当线段AB最短时,b的值为()A.5B.4C.3D.07.如图,雷达探测器测得六个目标A,B,C,D,E,F,目标E,F的位置分别表示为E(3,330°),F(2,30°)按照此方法,目标A,B,C,D的位置表示不正确的是()A.A(5,60°)B.B(3,120°)C.C(3,210°)D.D(5,270°) 8.如图A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1)…按此规律,点A2022的坐标为()A.(505,505)B.(−506,506)C.(506,506)D.(−505,−505)二、填空题9.电影票上“10排8号”记作(10,8),那么(15,9)表示的意义是10.已知A(a,−4)与B(3,4)两点关于x轴对称,则a的值为11.已知点A(m+1,2)和点B(3,m−1),若直线AB∥x轴,则A的坐标为.12.如图,在平面直角坐标系xOy中,Rt△OAB的斜边OB在x轴上∠ABO=30°,若点A的横坐标为1,则点B的坐标为.13.如图,△ABC为等腰直角三角形∠ABC=90°,点B、C在坐标轴上,已知点A坐标为(3,4),则△ABC的面积为.14.在平面直角坐标系中,用大小、形状完全相同的长方形纸片摆放成如图所示的图案,已知点A的坐标为(−1,3),则点B的坐标为.15.如图所示,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C 在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB全等.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.三、解答题17.为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);(2)在(1)建立的平面直角坐标系xOy中.①表示古树C的位置的坐标为______,并在网格中标出古树E(4,−1)的位置;②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.请在网格中画出点P(保留作图痕迹,不写作图过程);该距离和的最小值为______.18.已知平面直角坐标系中有一点M(m−1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到两坐标轴的距离相等时,求点M的坐标.19.如图,已知△ABC的三个顶点的坐标分别为A(−6,0),B(−2,3),C(−1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(2)在格点图内,若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.20.如图,在直角坐标系中A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中描点,画出△ABC;并作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.21.如图,已知△ABC的顶点分别为A(−2,2),B(−4,5),C(−5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1(2)写出点C1的坐标(3)在x轴上找一点P,使得AP+CP最小(画出图形,找到点P的位置).22.如图,在平面直角坐标系中,设一点M自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位长度至P2处,再向下运动3个单位长度至P3处,再向右运动4个单位长度至P4处,再向上运动5个单位长度至P5处…如此继续运动下去,设P n(x n,y n),n=1,2,3,…….(1)计算x1+x2+x3+x4.(2)计算x1+x2+⋅⋅⋅+x2023+x2024的值.参考答案1.解:设A(x,y)∵点A到x轴的距离为2,到y轴的距离为5∴x=±5,y=±2∵点A在第四象限∴x>0,y<0∴x=5,y=−2∴A(5,−2)故选:B.2.解:依题意得:m−3=0,即:m=3∴m+5=3+5=8∴点P的坐标为(8,0)故选A.3.解:点(3,−4)和(−3,4)的横纵坐标互为相反数故点(3,−4)和(−3,4)关于原点对称故直线AB经过原点.故选:C.4.解:如图,过P、P′分别向x轴作垂交于H、K根据旋转的定义可知OP=OP′,∠POP′=90°∴∠POH+∠P′OK=90°,∠P′OK+∠P′=90°∴∠POH=∠P′∴∠PHO=∠P′KO=90°∴△PHO≌△P′OK(AAS).∴PH=OK=5,OH=P′K=1即P′(5,1).故选B.5.解:由点(6−3a,a+2)到两坐标轴的距离相等,得6−3a=a+2,或6−3a+a+2=0解得a=1,或a=4则该点的坐标为(3,3)或(−6,6)故选:C.6.解:由题意知,点B(−1,b)在直线x=−1上运动∴当AB⊥直线x=−1时,线段AB最短此时b=4.故选:B.7.解:∴E(3,330°),F(2,30°)∴A(5,60°),B(3,120°),C(4,210°),D(5,270°)故选:C8.解:由题可知第一象限的点:A2,A6,A10,……角标除以4余数为2;第二象限的点:A3,A7,A11……角标除以4余数为3;第三象限的点:A4,A8,A12……角标除以4余数为0;第四象限的点:A5,A9,A13……角标除以4余数为1;由上规律可知:2022÷4=505⋯2∴点A2022在第一象限.观察图形,得:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),……∴第一象限点的横纵坐标数字隐含规律:点的横纵坐标=n+2(n为角标)4∴点A2022的坐标为(506,506).故选:C.9.解:∴“10排8号”记为(10,8)∴(15,9)表示的意义是15排9号.故答案为:15排9号.10.解:∴A(a,−4)与B(3,4)两点关于x轴对称∴a=3故答案为:3.11.解:∴直线AB∥x轴∴m−1=2∴m=3∴m+1=4即点A坐标:A(4,2)故答案为:(4,2).12.解:过点A作x轴的垂线,垂足为点C ∴Rt△OAB中∠ABO=30°∴∠AOB=60°∴AC⊥OB∴∠OAC=30°∴点A的横坐标为1∴OC=1∴OA=2OC=2∴∠ABO=30°∴OB=2OA=4∴点B的坐标为(4,0)故答案为:(4,0).13.解:如图所示,过点A作AD⊥y轴于点D∴△ABC是等腰直角三角形∴AB =BC ,∠ABC=90°∴∠ABD =90°−∠OBC =∠OCB又∠ADB =∠BOC =90°∴△ADB ≌△BOC (AAS)∴AD =OB,DB =OC∴点A 坐标为(3,4)∴AD =OB =3∴S △ABC =S 梯形−S △ABD −S △OBC =12(1+3)×4−12×1×3−12×1×3=5 故答案为:5.14.解:设每个长方形纸片的宽为x ,长为y由题意可得:{2y −x −y =12x +y =3解得{x =23y =53∴点B 的到x 轴的距离为x +y =73,到y 轴的距离为2y −x =83 ∴点B 的坐标为(−83,73). 故答案为:(−83,73).15.解:如图(1)所示当点C 在x 轴负半轴上,点D 在y 轴负半轴上时若△AOB ≌△COD ,则CO =AO =2∴点C 的坐标为(−2,0);若△AOB ≌△DOC ,则OC =OB =4∴点C 的坐标为(−4,0);如图(2)所示当点C在x轴负半轴上,点D在y轴正半轴上时若△AOB≌△DOC,则CO=BO=4∴点C的坐标为(−4,0).若△AOB≌△COD,则CO=AO=2∴点C的坐标为(−2,0);如图(3)所示当点C在x轴正半轴上,点D在y轴正半轴上时同理可得C的坐标为(4,0);如图(4)所示当点C在x轴正半轴上,点D在y轴负半轴上时,同理可得点C的坐标为(4,0);综上所述,点C的坐标为(−4,0)或(−2,0)或(4,0)故答案为:(−4,0)或(−2,0)或(4,0).16.解:由图可得,动点P的横坐标和运动的次数相同,纵坐标以1,0,2,0为一个循环组依次循环∴经过第2023次运动后,动点P的横坐标为2023∴2023÷4=505 (3)∴经过第2023次运动后,动点P的纵坐标为2∴动点P的坐标是(2023,2)故答案为:(2023,2).17.解:(1)如图所示(2)①点C(−2,2),点E(4,−1)的位置如图所示;②过点A作关于y轴的对称点为A′,则A′(−2,1),连接A′B与y轴交于点P,此时PA+PB最小等于A′B的长度;A′B=√[5−(−2)]2+(5−1)2=√72+42=√65∴点P到古树A,B的距离和的最小值为√65;故答案为:√6518.解:(1)∵|2m+3|=1∴2m+3=1或2m+3=−1解得:m=−1或m=−2∴点M的坐标是(−2,1)或(−3,−1);(2)∵|m−1|=|2m+3|∴m−1=2m+3或m−1=−2m−3解得:m=−4或m=−23∴点M的坐标是:(−5,−5)或(−53,5 3 ).19.(1)解:△A′B′C′如图所示∴A′(0,−6);(2)解:如图平行四边形A′B′C′D′即为所求:根据平行四边形性质可得D′(3,−5)故答案为:D′(3,−5).20.(1)解:如图所示,△ABC即为所求;△A1B1C1即为所求.(2)S△ABC=3×4−12×1×2−12×2×4−12×2×3=4;(3)当点P在y轴上时,△ABP的面积=12AP×|x B|=4即12AP×2=4解得:AP=4.∴点P的坐标为(0,5)或(0,−3).21.解:(1)如图1所示,△A1B1C1即为所求;(2)点C1的坐标为(−5,−1);(3)如图2所示,点P即为所求.22.(1)解:由题意可知P1(1,1),P2(−1,1),P3(−1,−2),P4(3,−2),P5(3,3),P6(−3,3),P7(−3,−4),P8(5,−4),……于是得到x1,x2,x3,x4的值为1,-1,-1,3∴x1+x2+x3+x4=1−1−1+3=2(2)解:∴x5,x6,x7,x8的值分别为3,-3,-3,5∴x5+x6+x7+x8=3−3−3+5=2;∴x1+x2+x3+x4=1−1−1+3=2x5+x6+x7+x8=3−3−3+5=2…x2021+x2022+x2023+x2024=2∴2024÷4=506∴x1220232024。
初中数学中考复习专题:一元一次方程练习题1(含答案)
一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
人教版九年级数学中考总复习 专题一 作图专题 含解析及答案
专题一作图专题1.如图所示,小明利用一块平面镜使此时的太阳光水平射入隧道内。
请你通过作图画出平面镜并标出反射角的角度。
答案:如图所示解析:根据光的反射定律,反射角等于入射角,作反射光线和入射光线夹角的角平分线就是法线的位置;由图知,反射光线和入射光线的夹角为180°-60°=120°,则反射角等于入射角等于60°。
2.图中的A'B'是物体AB经过平面镜M后所成的像,请在图中画出该物体。
答案:如图所示3.如图所示,点光源S置于平面镜前,请画出点光源S的成像光路图。
答案:如图所示解析:从点光源S向镜面任意发出两条入射光线,入射点分别是O1、O2;根据光的反射定律,画出这两条入射光线的反射光线;将这两条反射光线反向延长,相交于点S',点S'即为点光源S在平面镜中所成的像。
4.如图所示,在平静的湖边上方有一盏路灯,潜水员在水下E处看到了路灯的像,图中A、B两点,其中一点是路灯的发光点,另一点是路灯的像点。
请你区分发光点、像点,在图中画出水下E处的潜水员看到路灯的光路图。
答案:如图所示解析:根据光从空气中斜射入水中时,折射角小于入射角,可知A为路灯的发光点,B为像点,连接EB与界面的交点即为入射点,光路图如图所示。
5.如图所示,平面镜垂直于凸透镜主光轴且在凸透镜左侧焦点上,请完成光路图。
答案:如图所示6.如图所示,请在图中画出力F的力臂l及物体所受重力的示意图。
答案:如图所示7.如图所示,某人在A处提起物体,请在图中画出最省力的绳子绕法。
答案:如图所示解析:从动滑轮上挂钩开始,依次绕过定滑轮和动滑轮,绳端回到人的手中,提升物体绳子条数为3,是最省力的绕法。
8.根据下面左侧电路实物图,在下面右侧方框内画出对应的电路图。
答案:如图所示9.设计一个病床呼叫电路。
要求:开关S1控制指示灯L1和电铃,开关S2控制指示灯L2和电铃。
请在图中连线,形成符合要求的完整电路图。
【怀化专版】2019届中考数学总复习试题:专题1_阴影部分图形的有关计算_含答案
第三编 综合专题闯关篇,中考重难点突破)求阴影部分图形面积【例1】(2015怀化一模)如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB =2,则图中阴影部分的面积为________.【解析】要求不规则图形的面积,可转化成规则图形面积的和差关系求解.如解图,连接OA ,OB ,OC ,则旋转角为∠AOC=90°,且∠OCD=∠OAD,又∵∠BAD =60°,四边形ABCD 是菱形,∴∠CBA =120°,∠BCD =60°,∵∠CBA +∠BCO+∠COA+∠OAB=360°,∴∠OCD =∠OAD=15°,∴∠BAO =∠BCO=75°,∴∠AOB =45°,由题意知△ABD 是等边三角形,作BD 边上的高AE ,∵AB =2,∴AE =3,OE =AE =3,∴OD =3-1,∴S △AOD =12×(3-1)×3=32-32.根据旋转的特征可知S 阴影部分=8S △AOD=8×(32-32)=12-4 3.【学生解答】12-4 3【点拨】求阴影部分面积往往都是不规则图形,所以把不规则的图形的面积问题转化为规则图形的面积是解决这类问题的主要思路,以下介绍几种常用的方法:1.和差法:不改变图形的位置,用规则图形面积的和或差表示,经过计算即得所求图形面积;2.移动法:通过平移、旋转、割补、等体积变换等将图形的位置进行移动求解;3.代数法:借助于列方程(组),通过解方程求解.本题则是通过作辅助线把不规则图形转化为规则图形,利用和差关系算出部分阴影面积,进而计算出全部阴影图形的面积.1.(2016怀化二模)如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N ,若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( D )A .23a 2B .14a 2C .59a 2D .49a 2(第1题图)(第2题图)2.(2015泰安中考)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为( A ) A .(π2-1)cm 2 B .(π2+1)cm 2C .1 cm 2D .π2cm 23.(2016常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是__3π__.(第3题图)(第4题图)4.(2016毕节中考)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为__π2-1__.5.(2015绵阳中考)如图,⊙O 的半径为1 cm ,正六边形ABCDEF 内接于⊙O,则图中阴影部分面积为__π6__cm 2.(结果保留π)(第5题图)(第6题图)6.(2015广东中考)如图,△ABC 三边的中线AD ,BE ,CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是__4__.7.(2016连云港中考)如图,⊙P 的半径为5,A ,B 是圆上任意两点,且AB =6,以AB 为边作正方形ABCD(点D ,P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为__9π__.(第7题图)(第8题图)8.如图所示,正六边形ABCDEF 内接于⊙O,若⊙O 的半径为4,则阴影部分的面积等于__163π__.9.(2016鹤城模拟)如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABEF ,ACPQ ,BDMC ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于__18__.(第9题图)(第10题图)10.如图,在菱形ABCD 中,AB =1,∠DAB =60°,把菱形ABCD 绕点A 顺时针旋转30°得菱形AB′C′D′,其中点C 的运动路径为CC ︵′,则图中阴影部分的面积为42.求阴影部分图形的周长【例2】(2016原创)如图,将等腰直角△ABC 沿斜边BC 方向平移得到△A 1B 1C 1,若AB =3,△ABC 与△A 1B 1C 1重叠部分的面积为2,则重叠部分图形的周长为________. 【解析】∵△ABC 为等腰直角三角形,AB =3,∴S △ABC =3×3×12=92,又∵△A BC 与△HB 1C 相似,∴S △ABC ∶S 阴影=(AB B 1H)2,∴B 1H =2,在△HB 1C 中,B 1C =2B 1H =22,∴△B 1HC 周长为2+2+22=4+2 2. 【学生解答】4+2 2【点拨】此类问题涉及到的阴影部分图形一般为不规则的图形,解决的方法有以下三种:1.在规则图形中找与所求图形存在数量关系的边,利用勾股定理或锐角三角函数求得线段长度,有时会涉及到弧长;2.将所求图形进行平移、拼接,转化为规则图形的和差关系求解;3.构造直角三角形,利用直角三角形边角关系求解.此题阴影部分为规则的三角形,且已知直角三角形的边与阴影部分的面积,首先应考虑运用相似三角形相似比及勾股定理,求出阴影部分图形的边长,进而计算出周长.11.(2016沅陵模拟)如图,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点E ,F 分别在AB ,CD 上,将矩形ABCD 沿EF 折叠,使点A ,D 分别落在矩形ABCD 外部的点A 1,D 1处,则整个阴影部分图形的周长为( B )A .72 cmB .36 cmC .18 cmD .30 cm(第11题图)(第12题图)12.(2017怀化中考预测)如图,矩形花坛ABCD的周长为36 m,AD=2AB,在图中阴影部分种植郁金香,则种植郁金香部分的周长约为( B)A.18.84 m B.30.84 mC.42.84 m D.48 m13.(2016溆浦模拟)把四张大小相同的长方形卡片(如图①)按图②、图③两种方式放在一个底面为长方形(长比宽多 6 cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C2,图③中阴影部分的周长为C3,则( B)A.C2=C3B.C2比C3大12 cmC.C2比C3小6 cm D.C2比C3大3 cm14.如图所示,两个面积都为6的正六边形并排摆放,它们的一条边相互重合,那么图中阴影部分的面积为( B)A.2 B.3 C.4 D.6,(第14题图)) ,(第15题图)) 15.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,若BC=16,AB=10,则图中阴影部分的面积是( B)A.12 B.24 C.36 D.4816.如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为__8__.17.(2016洪江模拟)如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得到新正方形A′B′C′D′,则新正方形与原正方形重叠部分四边形A′NCM的周长是__.(第17题图)(第18题图)18.(2016芷江模拟)如图,两个全等的正六边形ABCDEF,PQRSTU,其中点P位于正六边形ABCDEF的中心,如果它们的边长均为1,PU,PQ与FE,CD的交点为M,N,且PM=0.6,则阴影部分的周长是__3.2__.19.(2016原创)如图,菱形花坛ABCD的周长为36 cm,∠B=60°,其中由两个正六边形拼接而成的图形部分种花,其余“四个角”是绿草地,则种花部分的图形的周长(不计拼接重合的边)为__33__cm.(第19题图)(第20题图)20.如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为.21.(2016黄石中考)如图所示,正方形ABCD对角线AC所在的直线上有一点O,OA=AC=2,将正方形绕点O顺时针旋转60°,在旋转过程中,正方形扫过的面积是__2π+2__.,(第21题图)) ,(第22题图))22.(2016白银模拟)如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.。
2021年中考数学总复习专题特训1 规律探索与归纳推理
专题特训一 规律探索与归纳推理题型1 数式规律1.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,…,第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +12.按一定规律排列的一组数:12 ,16 ,112 ,120 ,…,1a ,190 ,1b(其中a ,b 为整数),则a +b 的值为( )A .182B .172C .242D .2003.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 021的结果的个位数字是( )A .0B .1C .7D .8 4.(2020·西藏中考)观察下列两行数: 1,3,5,7,9,11,13,15,17,…; 1,4,7,10,13,16,19,22,25,….探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( ) A .18 B .19 C .20 D .21 5.(2020·娄底中考)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .1896.按一定规律排列的一列数依次为:-a 22 ,a 55 ,-a 810 ,a 1117,…(a ≠0),按此规律排列下去,这列数中的第n 个数是____(n 为正整数).7.a 1,a 2,a 3,a 4,a 5,a 6,…是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2 021个数a 2 021的值是___.8.有2 021个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是__0__,这2 021个数的和是____.9.将从1开始的自然数按如图规律排列,例如,位于第3行、第4列的数是12,则位于第45行、第5列的数是___.10.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律,若把第1个三角数记为a 1,第2个三角数记为a 2,…,第n 个三角数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 199+a 200=____.11.(2020·咸宁中考)按一定规律排列的一列数:3,3 2,3-1,33,3-4,37,3-11,318,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是____.12.(2020·铜仁中考)观察下列等式: 2+22=23-2; 2+22+23=24-2; 2+22+23+24=25-2; 2+22+23+24+25=26-2; ……已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m ,则220+221+222+223+224+…+238+239+240=____(结果用含m 的代数式表示).13.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32 022 的结果的个位数字是____.14.观察下列式子:第1个式子:2×4+1=9=32, 第2个式子:6×8+1=49=72,第3个式子:14×16+1=225=152,……请写出第n个式子:___.题型2图形规律15.(2020·百色模拟)平面上2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…,那么6条直线最多有()A.21个交点 B.18个交点C.15个交点 D.10个交点16.(2020·日照中考)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59 B.65 C.70 D.7117.(2020·聊城中考)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖,如果按图①②③…的次序铺设地砖,把第n个图形用图表示,那么图中的白色小正方形地砖的块数是()A.150 B.200C.355 D.50518.(2020·达州中考)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是()A.12(m-1)B.4m+8(m-2)C.12(m-2)+8D.12m-1619.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有____个小圆(用含n的代数式表示).20.(源于沪科七上P83)如图,用棱长为a的小正方体拼成长方体,按照这样的拼法,第n个图形中小正方体拼成的长方体表面积是____.21.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2 021次后,则它与AB 边的碰撞次数是____.题型3与坐标有关的规律22.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2 021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A —B —C —D —A —…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(-1,0)B .(1,0)C .(1,1)D .(0,1)23.如图,在平面直角坐标系中,直线l :y =33x +1交x 轴于点A ,交y 轴于点B ,点A 1,A 2,A 3,…在x 轴上,点B 1,B 2,B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 5B 6A 6的周长是( )A .243B .483C .963D .192324.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得点A 1,A 2,A 3,…,A n ,…,若点A 1的坐标为(3,1),则点A 2 021的坐标为____.25.(2020·朝阳中考)如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1 s 运动到点(1,0),第2 s 运动到点(1,1),第3 s 运动到点(0,1),第4 s 运动到点(0,2)……则第2 068 s 点P 所在位置的坐标是___.答案专题特训一 规律探索与归纳推理题型1 数式规律1.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,…,第n 个单项式是( C )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +12.按一定规律排列的一组数:12 ,16 ,112 ,120 ,…,1a ,190 ,1b(其中a ,b 为整数),则a +b 的值为( A )A .182B .172C .242D .2003.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 021的结果的个位数字是( D )A .0B .1C .7D .8 4.(2020·西藏中考)观察下列两行数: 1,3,5,7,9,11,13,15,17,…; 1,4,7,10,13,16,19,22,25,….探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( A ) A .18 B .19 C .20 D .21 5.(2020·娄底中考)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( C )A.135 B.153 C.170 D.1896.按一定规律排列的一列数依次为:-a22,a55,-a810,a1117,…(a≠0),按此规律排列下去,这列数中的第n个数是__(-1)n·a3n-1n2+1__(n为正整数).7.a1,a2,a3,a4,a5,a6,…是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2 021个数a2 021的值是__5__.8.有2 021个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是__0__,这2 021个数的和是__1__.9.将从1开始的自然数按如图规律排列,例如,位于第3行、第4列的数是12,则位于第45行、第5列的数是__2__021__.10.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律,若把第1个三角数记为a1,第2个三角数记为a2,…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…,由此推算a199+a200=__40__000__.11.(2020·咸宁中考)按一定规律排列的一列数:3,32,3-1,33,3-4,37,3-11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__a÷b=c__.12.(2020·铜仁中考)观察下列等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;2+22+23+24+25=26-2;……已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=__m(2m-1)__(结果用含m的代数式表示).13.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32 022的结果的个位数字是__3__.14.观察下列式子:第1个式子:2×4+1=9=32,第2个式子:6×8+1=49=72,第3个式子:14×16+1=225=152,……请写出第n个式子:__(2n+1-2)×2n+1+1=(2n+1-1)2__.题型2图形规律15.(2020·百色模拟)平面上2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…,那么6条直线最多有(C)A.21个交点 B.18个交点C.15个交点 D.10个交点16.(2020·日照中考)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是(C)A.59 B.65 C.70 D.7117.(2020·聊城中考)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖,如果按图①②③…的次序铺设地砖,把第n个图形用图表示,那么图中的白色小正方形地砖的块数是(C)A.150 B.200C.355 D.50518.(2020·达州中考)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是(A)A.12(m-1)B.4m+8(m-2)C.12(m-2)+8D.12m-1619.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有__[4+n(n+1)]__个小圆(用含n的代数式表示).20.(源于沪科七上P83)如图,用棱长为a的小正方体拼成长方体,按照这样的拼法,第n个图形中小正方体拼成的长方体表面积是__(4n+6)a2__.21.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2 021次后,则它与AB 边的碰撞次数是__673__.题型3与坐标有关的规律22.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2 021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C—D—A—…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(D)A.(-1,0) B.(1,0)C.(1,1) D.(0,1)23.如图,在平面直角坐标系中,直线l:y=33 x+1交x轴于点A,交y轴于点B,点A1,A2,A3,…在x轴上,点B1,B2,B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是(C)A.243 B.483 C.963 D.192324.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3,…,A n,…,若点A1的坐标为(3,1),则点A2 021的坐标为__(3,1)__.25.(2020·朝阳中考)如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1 s运动到点(1,0),第2 s运动到点(1,1),第3 s运动到点(0,1),第4 s运动到点(0,2)……则第2 068 s点P所在位置的坐标是__(45,43)__.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题(每小题 64的平方根是( A. 4 2. 3. 4. 5. 中考数学总复习专题训练(一 考试时间: (实数) 120分钟满分150分 共 45 分) 3分,)° B. _4 C. 8D. _8估算56的值应在( A. C. 6.5〜7.0之间 7.5〜8.0之间 B. D. 7.0〜7.5之间 8.0〜8.5之间 若实数m 满足m - m = 0 , 则m 的取值范围是( A. m > 0 B . m 0 C. m < 0 算术平方根比原数大的是( A.正实数 D .m :: 0C.大于o 而小于1的数D. 下列各组数中互为相反数的一组是( )° B.负实数 不存在 A. -2与 3 -8 B. -2与..荷 1C. -2 与-12 D. -2与26.实数a 在数轴上的位置如图所示, 1 2 A. a :-a a a 22的大小关系是(B. 2-a : — :a aa 1 2 c. a a a a 7.下列各式的求值正确的是( D. A. 0.00001 -0.1 B.C . ,0.01 0.1 D. &下列各数中,是无理数的有 2 , 3 1000 , 二,-3.1416, 0.571 43 , |3 -计 °::a 2::a :: -a、、0.01 =0.1- .0.0001 =0.011,、9 , 0.030 030 0033-1A. 2个B. 3个C. 4个D. 5个9 .若-a 有意义,则a 是一个(⑴(-a ) =a 2 (2)-a 2 =( -a )2 (3)(一 a )a>0,b<0 ,且 |a|<|b| ,则 a+b 是(A. m w 4B. m 15. 一个正偶数的算术平方根是 的平方根(2.4的平方根是 __________ , — 27的立方根是 _________ ° 113. 比较大小:—一——°234. 近似数0.020精确到 ___________ 位,它有 _________ 个有效数字。
5. 用小数表示 3 X 10-2的结果为 __________ °1 26. 若实数 a 、b 满足 |a — 2| + ( b + ? ) = 0,贝U ab = _________ °7. 在数轴上表示a 的点到原点的距离为3,则a — 3 = ________8. 数轴上点A 表示数—1 ,若 AB = 3 ,则点B 所表示的数为A. 正数B.负数C.D.不确定13.如果 a 的平方是正数,那么 a 是( A. 正数B.负数C. 不等于零D.非负数14.要使 3 (4 -m)3 =4-m ,m 的取值为(A. a 2B. a 2 2C.二a 2 ■ 2D.二 a ■ 2二、填空题(每小题 3分,共45分)1. — 2的倒数是,•一 3-2的绝对值是 A.正实数B.负实数C.非正实数D. 非负实数10.若3 a =1.38,3ab =13.8,则 b 等于( B. 1000 A. 100000011.若a 是有理数,则下列各式一定成立的有(C. 10)°D. 10000-a 3 |二 a 3A. 1B. 2个 C. 3 D.412.已知> 4 C. 0w m w 4 a ,那么与这个正偶数相邻的下一个正偶数D. —切实数9•由四舍五入法得到的近似数 3.10 x 104,它精确到__________ 位。
这个近似值的有效数字是_________ 。
10 .若J30 = m,则J0.3 = _________ 。
11. J4—2a 表示的值最小时是___________ ,这时a= ________ 。
12 .如果一::: x 5,且x是整数,则x的值是。
2 213. 写出和为6的两个无理数___________ (只需写出一对)。
14. 请在实数3.2和3.8之间找一个无理数,它可以是_______________ 。
15. 罗马数字共有7个:I (表示1 ), V (表示5 ), X (表示10 ), L (表示50), C (表示100 ) , D (表示500 ) , M(表示1000 ),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:女口IX = 10— 1 = 9, VI = 5+ 1 = 6, CD= 500 —100= 400,贝U XL= ____ , XI = __________ 。
三、计算题(每小题4分,共16分)1 1 3 7 7 32 5 4 8 12 4 '3. ( —1 )3X 3 + 2° 4 . n +」3 —~3~ (精确到0.01 )2 3四、解答下列各题(第7题8分,其余每小题6分,共44 分)1. 把下列各数填入相应的大括号里。
n , 2,—y,丨一才2 | , 2.3 , 30% 、4,邸—8(1)整数集:{ …}(2)有理数集:{ …}(3)无理数集:{ …}2 .已知:x是I—3 |的相反数,y是一2的绝对值,求2x2- y2的值。
3 •某人骑摩托车从家里出发,若规定向东行驶为正,向西行驶为负,一天行驶记录如下:(单位:km)—7,+ 4,+ 8, —3,+ 10, —3, —6,问最后一次行驶结束离家里有多远?若每千米耗油0.28升,则一天共耗油多少升?31254•已知8(x-1)3,求x的值。
85 .若(2x + 3)2和y+ 2互为相反数,求x —y的值。
6 .若正数a的倒数等于其本身,负数b的绝对值等于3,且c v a, c2=36,求代数式 2 (a —2b2)—5c的值。
7•先阅读下列材料,再解答后面的问题材料:一般地,n个相同的因数a相乘:a a a记为a n。
如23=8,此时,n个3叫做以2为底8的对数,记为log2 8即log 2 8 =3。
一般地,若a n =b a - 0且a = 1, b • 0 ,贝V n叫做以a为底b的对数,记为log a b即log a b二n .如34 =81 ,则4叫做以3为底81的对数,记为log 3 81 (即log 381 二4)。
问题:(1)计算以下各对数的值log24 =, log216 二,log264 二。
(2 )观察(1)中三数4、16、64之间满足怎样的关系式?log 2 4、log 216、log 2 64之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M log a N 二________________ a 0且a = 1, M 0, N 0 根据幕的运算法则:a n a = a n m以及对数的含义证明上述结论。
证明:设log a M =b 1log a N =b 2参考答案2 -3 ; -,2与7-2 ;等等,任选一对即可;14、,“或.12或.133、原式=— ¥X 1 + 1 = — 3 + 1 = 54、= 4.218988四、1. (1) 2, J 4 , 3 — 8; ( 2) 2,— 2, 2. 3 , 30% 斗 4, ;—8 ; ( 3) n ,I - 2 I °2. v x = — 3, y = 2,「. 2x 2 — y 2 = 2 ( — 3)2— 22= 2X 9— 4= 18 — 4= 14°3. — 7 + 4+ 8 — 3 + 10 — 3 — 6= 3,离家在正东 3千米处。
7+ 4 + 8 + 3+ 10+ 3+ 6 = 41, 41 X 0.28 = 11.48 升。
1 4. X =45.T X = — 3, y =—26.T a = 1, b =— 3, c =— 6,••• 2 (a — 2b 2) — 5c = 2 : 1 — 2X ( — 3)勺一5X ( — 6) = 2 : 1 — 18]+ 30 =—34 + 30= — 4°证明:,log 24 + log 216 = log 2 64(3) log a M + log a N = log a (MN ) 则 = M , a® = N 1、D 2、B 3、A 4、C 5、B6、C7、C8、 B9、C10、B 11 、 A 12 、 B 13 、C 14、D 15、C1、 1 —1, 2 — 3 ;2、 ± 23; 3、 V ; 4、 ,千分,两; 5、0.03 ;—1 ;7、0 或一6; 8、 2,- -4; 9、 百, 3、1、0; 10、 0.1m ;11、0, 2; 12、6、 -1 , 0, 1; 13、无理数部分和为 0.答案不惟一,如: ,14 ; 15、 40 11。
1、 1 102、原式= =-1 + - + -= 2 67. (1) log 2 4 = 2,log 216=4 , log 2 64 = 6(2) 4X 16=64 或••• MN 心a" =a b1 ©b i+b2=log a (MN )即log a M+ log a N = log a (MN )。