定积分的证明题44题

定积分的证明题44题
定积分的证明题44题

题目1证明题 容易 。证明

)()()()(a f x f dt t f t x dx d x a -='-?

题目2证明题 容易 。利用积分中值定理证明 0sin lim :400=?→dx x n n π

题目3证明题 一般

。使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==?ξξb a dx x f a f b a x f b

a

题目4证明题 一般

。为正整数时证明:当,

设??=+=a

na dx x f n dx x f n a x f x f 0 0 )()( )()(

题目5证明题 一般

。证明: )1()1(1 0 1 0 ??-=-dx x x dx x x m n n m

题目6证明题 一般 。且

上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(,

,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f b a -≤---≤-?

题目7证明题 一般 。其中证明且内可导在上的连续在设 )(sup ,)()(4 :.

0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f b x a b a '=-≤==<

题目8证明题 一般 。使,

内至少存在一点上正值,连续,则在在设???==b b dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ

题目9证明题 一般 。证明: sin sin 0 202

01??<<+ππ

xdx xdx n n

题目10证明题 一般 。求证:?<+-<1032 6421πx x dx

题目11证明题 一般

内恒等于零。在区间上积分为零,证明内任一闭

上连续,且在在区间设),()(),(),()(b a x f b a b a x f

题目12证明题 一般 。证明上连续在若函数0)(a )(21)(:,

]1,0[ )( 2 0 0 23>=??a a dx x xf dx x f x x f

题目13证明题 一般

。证明上连续在和设函数????≤b

a b a b a dx x g dx x f dx x g x f b a x g x f )()(])()([ :,

],[)()(222

题目14证明题 一般 ??+=4 0 2 0

)d sin )(cos 2(sin d cos )2(sin ]1,0[ )( π

π

???????。证明:上连续,

在设f f x f

题目15证明题 一般 。

证明且上可导在设2

)(2)(:,0)(,)(,],[)(a b M dx x f a f M x f b a x f b a -≤=≤'?

题目16证明题 一般

。证明:上连续,

,在设??-+=>a a dx x a f x f dx x f a a x f 0 2 0 )]2()([)( )0( ]2,0[ )(

题目17证明题 一般

。;为正整数,证明:

设 sin )2( cos )1( 2 2πππππ

π

==??--kxdx kxdx k

题目18证明题 一般

。试证且上有一阶连续导数在设1)]([:.

1)0()1(.]1,0[)(210≥'=-?dx x f f f x f

题目19证明题 一般 。证明:为正整数,

若??=?2 0 2 0 cos 21sin cos π

πxdx xdx x m m m m m

题目20证明题 一般

。则上连续,在区间若函数 ])([)()( ],[ )( ??-+-=b a b a dx x a b a f a b dx x f b a x f

题目21证明题 一般 。证明:上连续在设函数??=ππ2 0 2 0 )cos (41)cos (,

]1,0[ )( dx x f dx x f x f

(完整版)定积分的证明题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :40 0=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

用变限积分函数证明不等式

用变限积分函数证明不等式 院系:数学与计算科学学院 班级:应数5班 姓名:谭晶晶学号:201040510534 【摘要】证明不等式,方法多种多样。构造变限积分来证明不等式是非常巧 妙的方法之一。本文介绍了利用变限积分和被积函数的不等式的方法解决不等 式的证明。 【关键字】变限积分;辅助函数;不等式;被积函数的不等式 提出问题:变限积分是一类重要的函数,在微积分领域应用广泛。本文我们探讨:如何运用变限积分函数证明不等式。 分析问题:对于形如的积分,我们可以写成, 的形式;对于简单函数也可表示为的积分形式。 由此可以看出不管是积分表达式还是一般表达式都可以用变限积分 表示出来那么我们便可将证明不等式问题转化为研究变限积分函数 的问题中来,再结合具体情况根据函数的性质最终证出不等式。 解决问题:在解决此类问题关键是构造变限积分形式的辅助函数。大致步骤可分三步:构造辅助函数根据所构造的辅助函数性质结合题目 进一步处理,多数采用求导的方法;还原到原来形式,不等式得 证。 一.变限积分的定义 设f(x)在,上可积,根据定积分性质,对任意x∈,,f在,上 也可积。于是,由 ? 定义了一个以积分上限x为自变量的函数,称为变上限的定积分。类似地,又 可以定义变下限的定积分 ?与统称为变限积分。注意,在变限积分中,不可再把积分变量写成x。 二﹑变限积分函数的应用

一通过变限积分函数构造辅助函数证明不等式 在解题中构造辅助函数后,要对函数求导,我们简单介绍一下变限 积分函数的求导问题。 定义在,上, 设φ ψ ’φφ’ψψ’ 注:若被积函数中含x,不能直接用公式求导,应先作变代换使被积函数不含 x, 再求导。 在构造辅助函数时,又可根据不等式的特征分为两类构造方法将不等式两边相减的方法,即:要证形如的不等式,可设。 例一:设f(x)是,上的单调递增函数,且f(x)在,上连续,求证: 分析:在此证明不等式题中,可以先运用变限积分构造辅助函数F(x),由于 f(x)在,上连续,得知F(x)可导,求出F(x)的导函数,再由f(x)是,上的单调递增函数推出F(x)的单调性,从而证出不等式。 证明:令 () 由f(x)在,上连续得知F(x)可导。 且 ‘ 又因为f(x)是,上的单调递增函数,故在,上有, , 则 ()

定积分的证明题44题word文档良心出品

题目1证明题 容易 d x 证明丄 f (X _t) f Tt)dt = f(X)_ f (a)。 dx 'a 题目2证明题 容易 题目3证明题 一般 b 设函数 f(x)在[a,b ]内可导,且 f(a)=0,[ f(x)dx = 0 证明:在[a,b ]内至少存在一点E 使f(E )=0。 题目4证明题 一般 设f(X)= f(X +a). na 证明:当n 为正整数时 L f(x)dx= nj0f(x)dx 。 利用积分中值定理证明 :lim f 4 sin n xdx = 0。 」0

1 1 证明:x m (1-x)n dx = Lx n (1 —x)m dx 。 题目6证明题 一般 设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y, x — y |.则f (x)在[a,b ]上可积,且 1 2 题目7证明题 一般 设f(X)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) =0. 证明:4a|f(x)|dx

(a,b)内至少存在一点匕,设f (x)在[a,b]上正值,连续,则在 £ b 1 b 使J a f (x)dx = J E f (x)dx = —J a f (x)dx。 ■* 2 题目9证明题一般 丑丑 证明:0<FsinXxdxc『sin n xdx。 题目10证明题一般 1/ dx 兀 求证:一<〔<-。 20 2,3 6 2V4 —X +x 6

题目11证明题一般 设f(x)在区间(a,b)上连续,且在(a,b)内任一闭区间上积分为零,证明f(x)在(a,b)内恒等于零。 题目12证明题一般 若函数f(x)在[0,1]上连续, a 3 2 1 a2 (a A O)。 证明:J0x f(x )dx=5 J o xf (x)dx 题目13证明题一般 设函数f(x)和g(x)在[a,b]上连续, b 2 b 2 b 2 证明:[f f(x)g(x)dx]< f f (x)dx 订g (x)dx。 a a a 题目14证明题一般

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

几类定积分不等式的证明

万方数据

万方数据

几类定积分不等式的证明 作者:王阳, 崔春红 作者单位:河北农业大学中兽医学院,河北定州,073000 刊名: 和田师范专科学校学报 英文刊名:JOURNAL OF HOTAN TEACHERS COLLEGE 年,卷(期):2009,28(3) 被引用次数:0次 参考文献(4条) 1.白银凤微积分及其应用 2001 2.刘连福.许文林高等数学 2007 3.詹瑞清高等数学全真课堂 2003 4.沈燮吕.邵品宗数学分析纵横谈 1991 相似文献(10条) 1.期刊论文杜红敏.Du Hong-min浅谈定积分在不等式证明与因式分解中应用-中国科教创新导刊2009,""(3) 定积分是高中新课程体系中一个新增加的重要内容,很多教师在该部分内容的教学时都与高中其他知识点割裂开未,殊不知,定积分在高中阶段解题中具有广泛的应用,本文以定积分在不等式证明和因式分解中应用为例,探讨定积分在高中解题中的应用. 2.期刊论文陈欢定积分的一个不等式及其应用-福州大学学报(自然科学版)2003,31(6) 线性是定积分最重要的性质之一,在此基础上定性地分析了形如gfn的函数的定积分的随着n的变化趋势,得到一个定理,并利用这个定理重新证明了Holder不等式. 3.期刊论文嵇国平.Ji Guoping定积分在不等式上的应用-常州师范专科学校学报2003,21(2) 不等式的证明是中学教学的一个重要内容,同时也是一个数学难点.由于微积分部分内容逐步渗透到中学数学中,用定积分方法解决不等式证明已成为可能. 4.期刊论文张惠玲.ZHANG Hui-ling定积分中不等式性质的研究-西安航空技术高等专科学校学报2009,27(3) 关于不等式的性质结论中等号成立的问题,在定积分中,进行了研究与探讨,并举例说明了它的应用. 5.期刊论文冯其明含∑nk=1f(k/n)的不等式的一种证法-高等数学研究2003,6(4) 利用定积分的定义及其几何意义可证明一些含∑nk=1f(k)/(n)的不等式. 6.期刊论文侯晓星.HOU Xiao-xing含定积分的不等式证明-泰州职业技术学院学报2005,5(4) 定积分不等式的证明是常见的一种题型.通过对典型例题的分析,利用换元法将被积函数转化为非负函数,或将定积分不等式视为数值不等式,再利用函数的单调性等,论述了含定积分的不等式证明的一般规律及求证方法. 7.期刊论文程仁华.李丽定积分的定义与某些重要不等式的推广应用-景德镇高专学报2004,19(4) 本文通n个正数的调和平均值、几何平均值、算术平均值及k次幂平均值的关系,并利用定积分的定义和连续函数极限的性质推导出函数的上述四种平均值之间的类似关系. 8.期刊论文沈凤英.孙存金.SHEN Feng-ying.SUN Cun-jin Schwarz不等式及旋转体侧面积的计算问题-苏州市职业大学学报2006,17(4) 文章应用Schwarz不等式的知识,给出了旋转体侧面积计算公式的一个新颖的证明,并同时指出用定积分计算旋转体侧面积时应该避免发生的错误. 9.期刊论文林银河关于Minkowski不等式的讨论-丽水师范专科学校学报2003,25(5) 在有关定积分不等式中,Minkowski不等式占有重要地位.将<数学分析>中提到的Minkowski不等式推广到更加一般的情形,从而改进已有的结论. 10.期刊论文刘放不等式(1/n+1+1/n+2+…+1/2n)2《1/2的六种不同证法-宜宾学院学报2003,6(6) 给出了不等式((1)/(n+1)+(1)/(n+2)+…+(1)/(2n))2<(1)/(2)的六种不同证法. 本文链接:https://www.360docs.net/doc/35426698.html,/Periodical_htsfgdzkxxxb-hwb200903135.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:05ca550e-ea59-4c55-8af2-9da600b00ff2,下载时间:2010年7月 1日

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

定积分的证明题

定积分的证明题https://www.360docs.net/doc/35426698.html,work Information Technology Company.2020YEAR

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :400=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分不等式

第三章 一元积分学 第三节 定积分值的估计及不等式 定积分值的估计及不等式证明是一个较难的问题,方法多样,用到的知识(微分学的知识,积分学的知识等)也很多。总的说来: (1)主要用积分学的知识,除了定积分的性质、积分中值定理、计算方法外,以下几个简单的不等式也是有用的: (i )若]),[( )()(b a x x g x f ∈≤,则?? ≤b a b a dx x g dx x f )()( . (ii )? ?≤b a b a dx x f dx x f |)(||)(| . (iii )若b d c a b a x x f ≤≤≤∈≥]),,[( 0)(,则?? ≤b a d c dx x f dx x f )()(. (iv)(柯西不等式)??? ≤b a b a b a dx x g dx x f dx x g x f )()(])()([ 222 (2)主要用微分学的知识,包括前面己讲过的利用微分学知识证明不等式的一切方法. (3)利用二重积分、级数等.值得注意的是:题目的解法往往有多种,同一题目其解答过程中往往要用到各种知识和方法. 例1.判断积分 ? π 20 2sin dx x 的符号 分析:这个积分值是求不出来的.如果被积函数在积分区间上有确切的符号,那么积分值的符号很容易判断.如果被积函数在积分区间上有正、有负,那么应根据被积函数的正、负情况将积分区间分成部分区间,然后利用积分学等方面的知识比较在这些部分区间上的积分值(实际上是比较积分值的绝对值).本题中被积函数2 sin x 在积分区间上有正、有负,先作换元:2 x t =,把积分变为 dt t t dx x ?? =ππ 2020 2 sin 21sin 后,问题更清晰,因而想到 dt t t dx x ?? = ππ 2020 2sin 21sin +=?π0sin (21dx t t )sin 2?π π dt t t 至此积分的符号凭直觉已经能判断了.但严格说明还需做一些工作,上式右端两个积分 的积分区间不一样,为了方便比较,应将两个积分放在同一积分区间上进行比较.有了这些分析和思路后,解答就容易了. 解:令2 x t =,则 dt t t dx x ?? = ππ 2020 2sin 21sin = +=?π0sin (21dx t t )sin 2?π π dt t t 对上式右端后一积分换元π+=u t 得 ? ? ?+-=+-=π π π π π π 2sin sin sin dt t t du u u dt t t 从而 =? π 20 2sin dx x -= ?π0sin (21dx t t )sin 0 ? +π π dt t t

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。 1.运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。 例1:设)(x f 在[0,1]上连续且单调不增,证明a ?∈[0,1]有? a dx x f 0 )(≥? 1 )(dx x f a . 证明:由原不等式变形得 ? a dx x f 0 )(≥??+1 ))()(dx x f dx x f a a (, 即是要证:? -a dx x f a 0 )() 1(≥?1 )(dx x f a , 对左式,)(x f 在[0,1]上连续,

故 由定积分中值定理知: [] a ,01∈?ξ使 )()1()()110 ξf a a dx x f a a -=-?(, 同理对右式:[]12,a ∈ ?ξ使)()1()(2 1 ξ f a a dx x f a -=?, 显然,ξ1<ξ2又f(x)在[0,1]上单调不增, ∴f (ξ1)≥f (ξ2) 故原不等式 ? a dx x f 0 )(≥?1 )(dx x f a 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。 2.运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F ’(x),并运用单调性及区间端点值特性证明不等式。 例2:设)(x f 在[a ,b]上连续,且)(x f >0. 试证:2b )() (1 )(a b dx x f dx x f a b a -≥?? 证明:构造辅助函数2)() (1 )()(a x dt t f dt t f x F x a x a --= ? ? (将b 换成x ), 则??--+=x a x a a x dt t f x f dt t f x f x F )(2)() (1)(1)()('

定积分习题

定积分习题

————————————————————————————————作者: ————————————————————————————————日期: ?

第九章 定 积 分 练 习 题 §1定积分概念 习 题 1.按定积分定义证明:?-=b a a b k kdx ).( 2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: (1)?∑=+= 1 1 22 33 )1(4 1:;n i n n i dx x 提示 (2)?10;dx e x (3)?b a x dx e ; (4)12(0).(:)b i i i a dx a b x x x ξ-<<=?提示取 §2 牛顿一菜布尼茨公式 ??1.计算下列定积分: (1)?+1 0)32(dx x ; (2)?+-1 022 11dx x x ; (3)?2ln e e x x dx ; (4)?--1 2 dx e e x x ; (5)? 30 2tan π xdx (6) ? + 9 4 ;)1(dx x x (7)?+4 0;1x dx (8)?e e dx x x 12 )(ln 1 2.利用定积分求极限: (1));21(13 34lim n n n +++∞→ (2);)(1)2(1)1(1222lim ??????++++++∞→n n n n n n (3));21 )2(111( 222lim n n n n n +++++∞ →

(4))1sin 2sin (sin 1lim n n n n n n -+++∞→ ππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外 有F '(x)=f (x),则有 ()()().b a f x dx F b F a =-? §3 可积条件 1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑?≤?' .''T T i i i i χωχω 2.证明:若f在[a ,b ]上可积,[][][]上也可积在则ββ,,,,a f b a a ?. 3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b ]上可积时,g 在[a,b]上也可积,且 ()().χχχχd g a b d f a b ??= 3.设f 在[a,b]上有界,{}[], ,b a a n ?.lim c a n n =∞ →证明:在[a ,b]上只有 () ,2,1=n a n 为其间断点,则f在[a,b ]上可积。 4.证明:若f在区间?上有界,则 ()()()()"','".sup sup inf f f f f χ χχχχχχχ∈? ∈? ∈? -=-。 §4 定积分的性质 1.证明:若f与g都在[a ,b]上可积,则 ∑?=→=?n i b a i i i T dx x g x f x g f 1 0,)()()()(lim ηξ 其中i i ηξ,是T所属小区间△i中的任意两点,i=1,2…,n . 2.不求出定积分的值,比较下列各对定积分的大小: (1)??101 ;2 dx x xdx 与 ?(2)??20 20 .sin π π xdx xdx 与 3.证明下列不等式:

定积分练习题精品文档10页

第九章 定 积 分 练 习 题 §1定积分概念 习 题 1.按定积分定义证明:?-=b a a b k kdx ).( 2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作 是对应的积分和的极限,来计算下列定积分: (1)?∑=+= 1 1 22 33 )1(4 1:;n i n n i dx x 提示 (2)?10;dx e x (3)?b a x dx e ; (4 )2(0).(:b i a dx a b x ξ<<=? 提示取 §2 牛顿一菜布尼茨公式 1.计算下列定积分: (1)?+1 0)32(dx x ; (2)?+-1 022 11dx x x ; (3)?2ln e e x x dx ; (4)?--1 02dx e e x x ; (5)?302tan π xdx (6)?+94;)1(dx x x (7)?+4 0;1x dx (8)?e e dx x x 12 )(ln 1 2.利用定积分求极限: (1));21(13 34lim n n n +++∞→Λ (2);)(1)2(1)1(1222lim ?? ????++++++∞→n n n n n n Λ (3));21 )2(111( 2 22lim n n n n n +++++∞ →Λ

(4))1sin 2sin (sin 1lim n n n n n n -+++∞→Λππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点 外有F '(x )=f (x),则有 ()()().b a f x dx F b F a =-? §3 可积条件 1.证明:若T ˊ是T 增加若干个分点后所得的分割,则 ∑∑?≤?' .'' T T i i i i χωχω 2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?. 3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且 ()().χχχχd g a b d f a b ??= 3.设f 在[a,b]上有界,{}[], ,b a a n ?.lim c a n n =∞ →证明:在[a,b]上只有 ()Λ,2,1=n a n 为其间断点,则f 在[a,b]上可积。 4.证明:若f 在区间?上有界,则 ()()()()"','".sup sup inf f f f f χ χχχχχχχ∈? ∈? ∈? -=-。 §4 定积分的性质 1.证明:若f 与g 都在[a,b]上可积,则 ∑?=→=?n i b a i i i T dx x g x f x g f 1 0,)()()()(lim ηξ 其中i i ηξ,是T 所属小区间△i 中的任意两点,i=1,2…,n. 2.不求出定积分的值,比较下列各对定积分的大小:

定积分的证明题

题目1证明题 容易 d X 证明 (x -t) f (t)dt = f (x) - f (a) dx J a 解答_ X a (x-t)f (t)dt X = [(X —t)df(t) X X =(X 一 t)f(t) a + [ f(t)dt X = (^-X) f (a) + [ f (t)dt d X ^X a (X -t)f(t)dt --f(a) f(x) f (x) - f (a)。 题目2证明题 容易 由积分中值定理,在[0,…]上存在点',使 4 Iim 4 Sin n XdX= Iim Sin n ( 0) G 三[0,] n 》::0 n 匚 4 4 Iim Sin n 4 J 0 Q 0 . sin :: 1 .Iim Sin n =0 n _O π .Iim 4 Sin n XdX= 0。 —0 0 题目3证明题 一般 b 设函数 f (x)在[a,b ]内可导,且 f(a)=0, f(x)dx = 0 -a 证明:在[a,b ]内至少存在一点?使f 「)=0。 解答_ 由积分中值定理,在(a,b)存在一点'1,使 b [ f (x)dx = f (: 1)(b -a) = 0 f ( 1 ) =0 在区间[a , 1]上,应用罗尔定理,可知存 在一点 二(a , ' 1) (a,b)使f ( J=0b 题目4证明题 一般 设 f (x) = f (x +a), na a 证明:当n 为正整数时 0 f (x)dx = n .°f(x)dx 解答 利用积分中值定理证明 解答 π :Ijm 4 Sin n XdX 二 0 n 0 0

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。 1.运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。 例1:设)(x f 在[0,1]上连续且单调不增,证明a ?∈[0,1]有 ? a dx x f 0 )(≥ ?1 )(dx x f a . 证明:由原不等式变形得? a dx x f 0 )(≥??+1 ))()(dx x f dx x f a a (, 即是要证:? -a dx x f a 0 )() 1(≥?10 )(dx x f a , 对左式,)(x f 在[0,1]上连续, 故 由定积分中值定理知: [] a ,01∈?ξ使 )()1()()110 ξf a a dx x f a a -=-?(, 同理对右式:[]12,a ∈ ?ξ使)()1()(2 1 ξ f a a dx x f a -=?,

显然,ξ1<ξ2又f(x)在[0,1]上单调不增, ∴f (ξ1)≥f (ξ2) 故原不等式 ? a dx x f 0 )(≥?1 )(dx x f a 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。 2.运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F ’(x),并运用单调性及区间端点值特性证明不等式。 例2:设)(x f 在[a ,b]上连续,且)(x f >0. 试证:2b )() (1 )(a b dx x f dx x f a b a -≥?? 证明:构造辅助函数2)() (1 )()(a x dt t f dt t f x F x a x a --=? ? (将b 换成x ), 则??--+=x a x a a x dt t f x f dt t f x f x F )(2)() (1)(1)()(' = ??? -+x a x a x a dt dt x f t f dt t f x f 2) ()()() ( =dt x f t f t f x f x a )2) ()()()((-+? ∵)(x f >0,∴ 02) () ()()(≥-+x f t f t f x f , 又a

2076字定积分中的几何证明方法与证明

定积分中的几何直观方法与不等式的证明 摘要:一些高指数的不等式,如果借助算术—几何均值不等式或者通过分解因式再进行放缩的话,一般都要分01p <<与1p >进行讨论证明,往往证明起来很麻烦,若借助数学分析中的定积分来进行证明的话,会大大简化其证明工序,也很简单,灵活的选取合适的初等函数进行定积分,再求和会得到意想不到的效果。 关键词:高指数;不等式;算术—几何均值;定积分;数列 1 引言 文[1]中给出了一个不等式: 11 2(11)21n i n n i =+-<<-∑ (1n >) (1) 田寅生对(1)进行了指数推广,其结果是 命题1【2】 设p R ∈且0p >,1p ≠,1n >,则有 1111111[(1)1]1111n p p p k n n p k p p --=+-<<-+---∑ (2) 文[2]的证明方法是借助于算术—几何均值不等式,分01p <<与1p >进行讨论证明,读者不难看出,不仅过程繁琐,而且对其证明思路难以把握。文[3] 中利用微分中值定理给出了它的另一种证法。 文[4]借助定积分的方法,给出了一种很自然的证明【4】: 命题1的证明【4】 当0p >,1k ≥时,对于1k x k <<+,有(1)p p p k x k <<+,即 111 (1)p p p k x k <<+,

两边取积分,得 1 111 11(1) k k k p p p k k k d x d x d x k x k +++<<+? ??, (3) 即得 11111[(1)](1)1p p p p k k k p k --<+-<+- (4) 对(3)两边分别求和,即得 111 1111[(1)1]1111n p p p k n n p k p p --=+-<<-+---∑ (5) 命题1得证。 该证明方法简单自然,几何意义直观。不等式(3)的几何意义是:如图1,以1 p y x = 为边的曲边梯形的面积介于两个矩形的面积之间,根据定积分的几何意义,即知上面不等式中三部分分别代表了它们的面积。 (图1) 在文[5]中,又把(1)式推广为: 命题2【5】 已知{}n a 为等差数列且10a >,公差0d >,则 1111 1221 ()()n n i n i a a a a a d d a +=-<<-+∑ (6) 其证明方法与文[1]本质上是一样的。本文将借鉴[4]中方法,即利用定积分的几何直观方法,把有关结果作进一步的推广。

定积分练习题及答案(基础)

第六章 定积分练习题及答案 一、填空题 (1) 根据定积分的几何意义,?-=+2 1)32(dx x 12 =-?dx x 2 024π ,=?π0 cos xdx ____0____ (2)设?-=1110)(2dx x f ,则?-=1 1)(dx x f _____5____, ?-=1 1)(dx x f ____-5___,?-=+1 1]1)(2[51dx x f 512 . (3) =?102sin dx x dx d 0 (4) =?2 2sin x dt t dx d 4sin 2x x 二、选择题 (1) 定积分?12 21ln xdx x 值的符号为 (B ) .A 大于零 .B 小于零 .C 等于零 .D 不能确定

三、计算题 1.估计积分的值:dx x x ?-+3 121 解:设1)(2+=x x x f ,先求)(x f 在]3,1[-上的最大、最小值, ,) 1()1)(1()1(21)(222222++-=+-+='x x x x x x x f 由0)(='x f 得)3,1(-内驻点1=x ,由3.0)3(,5.0)1(,5.0)1(==-=-f f f 知,2 1)(21≤≤- x f 由定积分性质得 221)()21(2313131=≤≤-=-???---dx dx x f dx 2.已知函数)(x f 连续,且?- =10)()(dx x f x x f ,求函数)(x f . 解:设 a dx x f =?10)(,则a x x f -=)(,于是 a adx xdx dx a x dx x f a -=-=-==????2 1)()(1 0101010, 得41=a ,所以4 1)(+=x x f . 3. dx x x x ?++1 31 222) 1(21 解:原式=dx x x dx x x x x )111()1(1213 121312222++=+++?? 3112+-= π 4. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 5. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 6. ?-1 02dx xe x

相关文档
最新文档