(完整版)高二数学选修1-2测试题及答案

合集下载

数学选修1-2第一、二章测试题(含答案)

数学选修1-2第一、二章测试题(含答案)

数学选修1-2第一、二章测试题参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,回归直线方程:1221ni ii nii x ynx y b xnx==-=-∑∑,一、选择题(共10小题,每小题5分,共50分。

) 1、下列两个量之间的关系是相关关系的为( )A .匀速直线运动的物体时间与位移的关系B .学生的成绩和体重C .路上酒后驾驶的人数和交通事故发生的多少D .水的体积和重量2、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.98 B. 模型2的相关指数2R 为0.80 C. 模型3的相关指数2R 为0.50 D. 模型4的相关指数2R 为0.25 3、下列说法正确的是( )A.由归纳推理得到的结论一定正确 B.由类比推理得到的结论一定正确 C.由合情推理得到的结论一定正确D.演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确。

4、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 5、下表为某班5位同学身高x (单位:cm)与体重y (单位kg)的数据,若两个量间的回归直线方程为 1.16y x a =+,则a 的值为( ) A .-121.04 B .123.2 C .21 D .-45.126、用反证法证明命题:“,,,a b c d R ∈,1a b +=,1c d +=,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为( )A .,,,a b c d 中至少有一个正数B .,,,a b c d 全为正数C .,,,a b c d 全都大于等于0D .,,,a b c d 中至多有一个负数7、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x 为( )A .6πB .4πC .3πD .π1258、在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )A .1:2 B. 1:4 C. 1:8 D. 1:6 9. 设4,0,0≤+>>b a b a 且,则有( ) A.211≥ab B.2≥ab C.111≥+b a D.411≤+b a 10、若下列方程关于x 的方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=(a 为常数,上同)中,至少有一个方程为实根,则实数a 的取值范围为( ) A.312a -<<- B.1a ≥-或32a ≤- C.20a -<< D.32a ≤-或0a ≥ 二、填空题(共4小题,每小题5分,共20分)11、回归直线方程为0.57514.9y x =-,则100x =时,y 的估计值为 12、黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖________________块.13、若()()()(,),f a b f a f b a b N +=⋅∈且(1)2f =,则(2)(4)(2010)(1)(3)(2009)f f f f f f +++=14、在平面几何里,有勾股定理:“设ABC ∆的两边AB 、AC 互相垂直,则222BC AC AB =+。

高二数学人教A版选修1-2试题和答案

高二数学人教A版选修1-2试题和答案

模块综合测评(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知复数z1=2+i,z2=1+3i,则复数z=在复平面内所对应的点位于() 第二象限A.第一象限B.第二象限C.第三象限D.第四象限第四象限解析:复数z=i, z对应的点的坐标为位于第四象限.答案:D 2.等于() A. B.C. D.1 解析:∵i, ∴.答案:B 3.下列说法错误的是() 球的体积与它的半径具有相关关系A.球的体积与它的半径具有相关关系B.计算误差、测量误差都将影响到残差的大小计算误差、测量误差都将影响到残差的大小C.在回归分析中R2的值越接近于1,说明拟合效果越好说明拟合效果越好D.在独立性检验中,K2的观测值k越大,说明确定两个分类变量有关系的把握越大说明确定两个分类变量有关系的把握越大 解析:A中球的体积与球的半径是函数关系,不是相关关系.B,C,D都正确.答案:A 4.在△ABC中,=a,=b,且a·b>0,则△ABC是() 锐角三角形A.锐角三角形B.直角三角形直角三角形C.钝角三角形钝角三角形D.等腰直角三角形等腰直角三角形cos(ππ-∠ABC)>0, 解析:由于a·b>0,即|a||b|cos(即cos∠ABC<0.又∵0<∠ABC<π, ∴∠ABC是钝角.∴△ABC是钝角三角形.答案:C 5.设回归方程=7-3x,当变量x增加两个单位时() 个单位A.y平均增加3个单位B.y平均减少3个单位个单位C.y平均增加6个单位个单位D.y平均减少6个单位个单位解析:由回归方程可知,y与x是负相关,x每增加2个单位,y平均减少6个单位.答案:D 6.在如图所示的程序框图中,输入a=,b=,则输出c=() A. B.C.1D.0 故输出c=|tan 解析:由程序框图知,当输入a=,b=时,tan a=-,tan b=-,则tan a>tan b.故输出a|=.答案:A 7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为() A.10B.14 C.13D.100 解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为=91,故第100个数为14答案:B 8.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体S-ABC 的体积为V,则r=() A.B.C.D.解析:设四面体S-ABC的内切球球心为O,那么由V S-ABC=V O-ABC+V O-SAB+V O-SAC+V O-SBC, 即V=S1r+S2r+S3r+S4r, 可得r=.答案:C 9.等于() A.2i B.-1+i C.1+i D.-1 解析:∵=i, ∴=i2014=(i2)1007=-1.答案:D 10.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是() ②④A.①③B.②④C.①④D.②③②③解析:由α∥β,m⊂α,n⊂β⇒m∥n或m,n异面, ∴②错;由m∥n,m∥α⇒n∥α或n⊂α, ∴③错.故选C.答案:C 11.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不等于() A.f(1)+2f(1)+…+nf(1) B.fC.n(n+1) D.n(n+1)f(1) 解析:由f(x+y)=f(x)+f(y)且f(1)=2,知f(2)=f(1)+f(1)=2f(1),f(3)=f(2)+f(1)=3f(1),…,f(n)=nf(1), ∴f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1)=n(n+1).答案:D 12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件,在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为() A.15B.16C.17D.18 解析:方法一:若AB之间不相互调动, 则A调出10件给D,B调出5件给C,C再调出1件给D,即可满足调动要求,此时共调动的件次n=10+5+1=16; 若AB之间相互调动,则B调动4件给C,调动1件给A,A调动11件给D,此时共调动的件次n=4+1+11=16.所以最少调动的件次为16,故应选B. 方法二:设A调动x件给D(0≤x≤10),则调动了(10-x)件给B,从B调动了5+10-x=(15-x)件给C,C调动出了15-x-4=(11-x)件给D,由此满足调动需求,此时调动件次n=x+(10-x)+(15-x)+(11-x)=36-2x,当且仅当x=10时,n取得最小值16,故应选B.答案:B 二、填空题(本大题共4小题,每小题4分,共16分) 13.已知复数z=(m∈R,i是虚数单位)是纯虚数,则m的值是的值是 .解析:z=, ∴=0,且≠0.∴m=-1答案:-1 14.按如图所示的程序框图运算,若输入x=8,则输出k=.解析:输入x=8时,k=0, 第一次循环,x=2×8+1=17,k=1,x<115; 第二次循环,x=2×17+1=35,k=2,x<115; 第三次循环,x=2×35+1=71,k=3,x<115; 第四次循环,x=2×71+1=143,k=4,x>115, 输出x=143,k=4.答案:4 15.观察下列式子1+,1+,1+,…,则可归纳出则可归纳出 .解析:根据三个式子的规律特点进行归纳可知,1++…+(n∈N*).答案:1++…+(n∈N*) 16.已知x,y取值如下表:x0 1 4 5 6 8 y 1.3 1.8 5.6 6.1 7.4 9.3 从所得的数点图分析可知,y 与x 线性相关,且=0.95x+,则的值为的值为 . 解析:×(0+1+4+5+6+8)=4, ×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25, 又=0.95x+必过样本中心点(),即(4,5.25),于是有5.25=0.95×4+a ,解得a=1.45.答案:1.45 三、解答题(本大题共6小题,共74分) 17.(12分)调查某桑场采桑员和患桑毛虫皮炎病的情况,结果如下表:采桑采桑 不采桑不采桑 总计总计患者人数患者人数 18 12 健康人数健康人数 5 78 总计总计利用独立性检验估计“患桑毛虫皮炎病与采桑”是否有关,并求出认为两者有关系犯错误的概率是多少. (注:K 2=,其中n=a+b+c+d.P (K 2≥k ) 0.005 0.001 k7.879 10.828 ) 解:因为a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113, 所以K 2的观测值k==≈39.6>10.828.所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系,认为两者有关系会犯错误的概率是0.1%.18.(12分)已知x 2-(3-2i)x-6i =0,i 为虚数单位. (1)若x ∈R ,求x 的值; (2)若x ∈C ,求x 的值.分析:(1)利用复数相等的充要条件可直接求解;(2)中要求x 的值,就应先设出x 的代数形式再利用复数相等的充要条件求解. 解:(1)当x ∈R 时,由已知方程, 得(x 2-3x )+(2x-6)i =0, 则解得x=3.(2)当x∈C时,设x=a+b i(a,b∈R),将其代入已知方程, 整理,得(a2-b2-3a-2b)+(2ab-3b+2a-6)i=0.则解得故x=-2i或x=3.19.(12分)已知△ABC的三边长为a,b,c,且其中任意两边长均不相等.若成等差数列.(1)比较的大小,并证明你的结论; (2)求证角B不可能是钝角.(1)解:大小关系为.证明如下: 要证,只需证∵a,b,c>0,∴只需证b2<ac.∵成等差数列, ∴≥2.∴b2≤ac.又△ABC的任意两边长均不相等,即a,b,c任意两数不相等,∴b 2<ac成立故所得大小关系正确,即.(2)证明:假设角B是钝角,则cos B<0, 而cos B=>0.这与cos B<0矛盾,故假设不成立, 即角B不可能是钝角.20.(12分)已知f(x)=,且f(1)=log162,f(-2)=1.(1)求函数f(x)的表达式; (2)已知数列{x n}的项满足x n=[1-f(1)]·(1)]·[1[1-f(2)]·…·[1-f(n)],试求x1,x2,x3,x4; (3)猜想{x n}的通项.解:(1)把f(1)=log162=,f(-2)=1代入f(x)=,得整理,得解得所以f(x)=(x≠-1).(2)x1=1-f(1)=1-, x2=, x3=, x4=(3)由(2),得x1=,x2=,x3=,x4=,可变形为,…,从而可归纳出{x n}的通项x n=.21.(12分)某市公交车票价按下列规则定价:(1)5公里以内(包括5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知相邻两个公共汽车站之间相距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x公里所用的票价,画出程序框图.解:依题意得,某人坐车x公里所用的票价y=程序框图如下: 22.(14分)设△ABC的两个内角A,B所对的边分别为a,b,复数z1=a+b i,z2=cos A+icos B,若复数z1·z2为纯虚数,试判断△ABC的形状,并说明理由.解:△ABC为等腰三角形或直角三角形.理由:∵z1=a+b i,z2=cos A+icos B, ∴z1z2=(a cos A-b cos B)+i(a cos B+b cos A).又∵z1z2为纯虚数, ∴由①及正弦定理, 得sin A cos A=sin B cos B, 即sin 2A=sin 2B.∵A,B为△ABC的内角, ∴0<2A<2π,0<2B<2π,且2A+2B<2π∴2A=2B或2A=π-2B, 即A=B或A+B=, 也就是A=B或C=.由②及正弦定理,得sin A cos B+sin B cos A≠0, 即sin(A+B)≠0∵A,B是△ABC的内角, ∴0<A+B<π.∴sin(A+B)≠0成立.综上所述,知A=B或C=.∴△ABC为等腰三角形或直角三角形.。

高二数学选修1-2测试练习卷(附答案)

高二数学选修1-2测试练习卷(附答案)

2019年3月8日高二数学周五晚修卷班级:学号:姓名:评分:一、选择题(共12小题;共60分)1. 已知复数,,是虚数单位,则复数的值是B. C.2. 甲、乙、丙、丁四位同学在建立变量,的回归模型时,分别选择了种不同模型,计算可得它们的相关指数分别如表:建立的回归模型拟合效果最差的同学是A. 甲B. 乙C. 丙D. 丁3. 在演绎推理“因为平行四边形的对角线互相平分,而正方形是平行四边形,所以正方形的对角线互相平分.”中“正方形是平行四边形”是“三段论”的A. 大前提B. 小前提C. 结论D. 其它4. 下面使用类比推理恰当的是A. “若,则”类推出“若,则”B. “若”类推出“”C. “”类推出“”D. “”类推出“”5. 若,,,,则,,的大小关系为A. B.C. D.6. 复数(是虚数单位)的共轭复数是A. B.7. 设,其中,是实数,则A. B. C. D.8. 用反证法证明命题“设,为实数,则方程至少有一个实根”时,要作的假设是A. 方程没有实根B. 方程至多有一个实根C. 方程至多有两个实根D. 方程恰好有两个实根9. 如图,第个图形是由正边形“扩展”而来,则在第个图形中共有个顶点A. B.C. D.10. 证明不等式的最适合的方法是A. 综合法B. 分析法C. 间接证法D. 合情推理法11. 若复数为纯虚数,其中为虚数单位,则C. D.12. 若复数满足,则的实部为C.二、填空题(共4小题;共20分)13. 用反证法证明命题“,为实数,则方程至少有一个实根”时,要做的假设是:“方程”.14. 如果发现散点图中所有的样本点都在一条直线上,则残差平方和等于,解释变量和预报变量之间的相关系数等于.15. 已知,且是纯虚数,则.16. 每年的三月十二号是植树节,某学校组织高中个学生及其父母以家庭为单位参加“种一棵小树,绿一方净士”的义务植树活动.活动将个家庭分成A,B 两组,A 组负责种植棵银杏树苗,B 组负责种植棵紫薇树苗.根据往年的统计,每个家庭种植一棵银杏树苗用时,假定 A,B 两组同时开始种植,若使植树活动持续的时间最短,则 A 组的家庭数为,此时活动持续的时间为.2019年3月8日高二数学周五晚修卷答案1. D2. C3. B4. C5. B【解析】,.6. B7. D 【解析】因为,所以解得所以.8. A 【解析】方程“至少有一个实根”等价于“方程有一个实根或有两个实根”,所以该命题的否定是“方程没有实根”.9. B 【解析】由已知中的图形我们可以得到:当时,顶点共有(个),时,顶点共有(个),时,顶点共有(个),时,顶点共有(个),由此我们可以推断:第个图形共有顶点个.10. B 11. B【解析】因为为纯虚数,所以且,解得.12. A 【解析】由,得,则的实部为.13. 没有实根 14. ,【解析】设样本点为,,回归直线为;若散点图中所有的样本点都在一条直线上,则此直线方程就是回归直线方程.所以有;残差平方和;解释变量和预报变量之间的相关系数满足,所以.15. 16.【解析】设 A 组有个家庭,则 B 组有个家庭.当两组同时完成植树任务时用时最短,由此列方程为,即.解得,经检验,原方程的解,且符合题意.此时两组同时完成植树任务,持续的时间为.。

人教A版高二数学选修1-2综合测试题带答案解析2套.doc

人教A版高二数学选修1-2综合测试题带答案解析2套.doc

最新人教A版高二数学选修1-2综合测试题带答案解析2套模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给岀的四个选项中,只冇一项是符合题目要求的・)1.设i为虚数单位,则复数(1+址=()A.0 B・ 2C. 2iD. 2 + 2i【解析】(1 + i)2 = 1 + 2i + i2 = 2i.【答案】C2•根据二分法求方程?-2=0的根得到的程序框图町称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图・【答案】B3.利用独立性检测来考查两个分类变量X, 丫是否冇关系,当随机变量K?的值()A.越大,“X与丫有关系”成立的可能性越大B.越大,“X与丫有关系”成立的可能性越小C.越小,“X与丫有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K?的意义可知,K?越大,说明X与y有关系的可能性越大.【答案】A4.用反证法证明命题“a, bGN,如果必可被5整除”,那么d, b至少冇一个能被5 整除.则假设的内容是()A.a, b都能被5整除B.ci, b都不能被5整除C・a不能被5整除D. a, b右一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”石攵应假设“Q力都不能被5整除”.【答案】B5.有一段演绎推理是这样的“有些右理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断・此题的推理不符合上述特征,故选C.【答案】C6.设i是虚数单位,如果复数尖的实部与虚部相等,那么实数Q的值为()1 1A3 B・一亍C・3 D・—3【解析】貯二2— 1 ;(° + 2)1,由题意知2— 1二Q +2 ,解得Q =3.【答案】C7.在两个变量的回归分析中,作散点图是为了()A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型•【答案】C8.给出下而类比推理:①“若2a<2b9贝lj a<b v类比推出“若a2<b29贝lj a<b";②“(a + b)c=Qc+bc(cHO)” 类比推出“厲也=E+°(cHO)” ;C C C③“a, bWR,若a—b = O,则a=b”类比推出“a, b^C,若a~b=O f贝a=b v;④“°, /)GR,若Q —b>0,贝类比推岀"ci, bWC,若a~b>O f则a>b(C为复数其中结论正确的个数为()【解析】 第一次循环S=2 , /; = 2 ,第二次循环S=6Z H = 3 ,第三次循环S = 2 ,n = 4f 弟四次循环S - 18 , n = 5 ,弟五次循环5 = 14 , A ? = 6 ,弟7X 次循环S 二78 , /? = 7 ,需满足S2K , 此时输出//= 7 ,所以18VKW78 ,所以整数K 的最大值为7&【答案】C10. 已知 Q1=3, Q2 = 6, A a n+2=a n+\—a n ,则的3 为( ) B. —3C- 6[角军析] Q1 = 3 , Q2 = 6 ,幺3 = Q2 ・ Q ] = 3 ,幺4 = 03 ・ ^2 二・ 3 , ^5 = ^4 ・ ^3 = ~ 6 , <26 = ^5■ 04 = ■ 3 ,= 3 卩= 07 ■= 6观察可知仏}是周期为6的周期数列,故的3 = 03 = 3.A. 1B. 2C. 3D. 4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B. 【答案】B9. 执行如图1所示的程序框图,若输出的〃 =7,则输入的整数K 的最大值是()A. 18B. 50 C- 78D. 306A. 311.下列推理合理的是()A.fix)是增函数,则f (x)>0B・因为ci>b(a, bWR),贝U+2i>6+2i(i是虚数单位)C.g ”是锐角AMC的两个内角,贝ijsiz>cos"D.%是三角形/EC的内角,若cos/f>0,则此三角形为锐角三角形【解析】A不正确,若/(工)是增函数,则f (x)^0 ;B不正确・复数不能比较大小;C7C正确,•/«+/?> 2 ,兀、a > 2 - sin a > cos “ ; D 不正确,只有cos A> 0 , cos B> 0 , cos C> 0 ,才能说明此三角形为锐角三角形・【答案】C12.有人收集了春节期间平均气温X与某取暖商品销售额尹的有关数据如下表:A A根据以上数据,用线性冋归的方法,求得销售额y与平均气温X之间线性冋归方^.y=bxA A+a的系数-2.4,则预测平均气温为一8°C时该商品销售额为()A. 34.6万元B. 35.6万元C. 36.6万元D. 37.6万元-.,- —_2-3-5_6【角牛析】x = 彳=■ 4 ,—20 + 23 + 27 + 30y = 4 =25”所以这组数据的样本中心点是(・4,25)・A因为b 二-2.4 ,把样本中心点代入线性回归方程得>15.4 ,所以线性回归方程为彳二-2.4X+15.4.当x =・8时,y = 346故选A.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上・)13. ___________________________________________________________ 已知复数z=m2( 1 + i)—m(m + i)(mR),若z是实数,则加的值为_____________________________ ・【解析1 z二〃,+加2).加2 . 〃打二(加2 . m y x ,m - m = 0 ,・•・加=0或1.【答案】0或114.心理学家分析发现视觉和空间想彖能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校屮按分层抽样的方法抽取50名同学(男30女20),给所有同学儿何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)几何题代数题总计男同学22830女同学81220总计302050根拯上述数据,推断视觉和空间想象能力与性别有关系,则这种推断犯错误的概率不超过 .附表:P 艮2k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828【解析】由列联表计算疋的观测值50X(22X 12 - 8X8)2〜5.556 >5.02430X20X20X30・•・推断犯错误的概率不超过0.025.【答案】0.02515.二维空间屮圆的一维测度(周长)/=2血,二维测度(面积)S=十,观察发现s,=1;三维空间小球的二维测度(表面积)S=4兀三维测度(体积)7=兑/,观察发现厂=S.则四维空间屮“超球”的四维测度W=2nr\猜想其三维测度V= _______________ .【解析】由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论•“超球”的三维测度是四维测度的导函数,即V=旷二(2兀/)' =8兀尸3.【答案】如彳16.已知等差数列{如中,右5十常•+20/十2事•+30,贝恠等比数列©}中, 会有类似的结论【解析】 由寺比数列的性质可知/ b\hyo - /?2^29 =…=伤]/?20 /"Q®ibi2・・・b20 =先如仇…加).【答案】 1守如1伤2・・・仇0 =彳躺血…加)三、解答题(木大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤•)l+i ・ 4i + 4 + 2 + 4i 7 + i z=3+4i =3+4i z・・・|z| =18.(木小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学 习部•请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19・(本小题满分12分)给岀如下列联表:由以上数拯判断高血压与患心肌病之间在多大程度上有关系?(参考数据:卩(疋26.635) = 0.010, P (^2>7.879) = 0.005) 【解】 由列联表中数据可得110X (20X50 ・ 10X30)2k = ------- ------------------- —^7 48630X80X50X60又卩(疋26.635)二 0.010 ,17. (本小题满分 10分)设(l —4i)(l+i) + 2+4i3+4i,求|z|.【解】所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系・20.(本小题满分12分)已知非零实数a, b, c构成公差不为0的等差数列,求证:十,丄不能构成等差数列.【证明】假设+ /1, +能构成等差数列,则| = ~ + |,因此b(a + c) = lac.而由于a , h , c构成等差数列,且公差,可得2b = a^c f:.(a + c)2 = 4ac ,即(a - c)1 2 3 = 0 ,于是得a-b-c ,这与a ,h ,c构成公差不为0的等差数列矛盾・故假设不成立,即+不能构成等差数列・21.(本小题满分12分)已知a2 + b2=i f x2+y2=i f求证:分别用综合法、分析法证明).【证明】综合法:•・・2axW/+x2,2/?yW Z)2+b ,・・・ 2(ax + + b2) + (x2 +/)・又•.•/ + 护=1 , x2 = 1 ,/. 2(ax + by)W2 , ax + byW 1.分析法:要证ax + byW 1成立,只要证1・(ax +切20 ,只要证2 - 2ax - 2by$0 ,又•・• / + 护二1 t x1 +y2= I ,・°・只要证cr + A2 + x2 +y2 ・2ax - 2byM0 ,即证(a - x)2 + (b - y)2^0 ,显然成立・22.(木小题满分12分)某班5名学生的数学和物理成绩如下表:1 画出散点图;2 求物理成绩y对数学成绩x的冋归直线方程;3 —名学生的数学成绩是96,试预测他的物理成绩.附:回归直线的斜率和截距的最小二乘法估计公式分别为:n ____»少厂〃兀yf=lAA ------------ A ______h=, a= y ~b x .■7x 2/=1【解】(1)散点图如图,~0.625・A —— A .a= y ・ bx ^67.8 ・ 0.625X73.2 = 22.05.所以y 对x 的回归直线方程是Aj^ = 0.625x +22.05.⑶当x = 96 ,贝I© = 0.625X96+ 22.05 = 82 r 即可以预测他的物理成绩是82分・模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有9080 • 70 • 60 ■ • •50l.~~-_-_-_«__一55 60 65 70 75 80 85 90 x(2)7 二*X(88 + 76 + 73 + 66 + 63) = 73.2 , 7 =|x (78 + 65 + 71 + 64 + 61) = 67.8.5为効= 88X78+ 76X65 + 73X71 +66X64 + 63X61 =25 054. /=!= 882 + 762 + 732 + 662 + 632 = 27 174.z=l5》>閃・5x y A /=!所以b 二一; ------- fx?-5x 2 /=125 054 ・ 5X73.2X67.8=~27 174 - 5X73.22一项是符合题目要求的.)1.冇下列关系:①人的年龄与他(她)拥冇的财富之间的关系;②曲线上的点与该点的坐 标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面宜径与 高度Z 间的关系.其中有和关关系的是()A.①②③C.②③B.①② D.①③④【解析】 曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确・其余 均为相关关系・【答案】DZ2・若z —4 + 3i,则恻—( )A. 1B ・一1cMi r 十5】D Mu5 51【解析】・.・z = 4 + 3i ,・•・ z =4 ・ 3i , |z| = ^/42 + 32 = 5 , z4・ 3i 4 3. •・|z| 5 5 51-【答案】D3. 有一段演绎推理:直线平行于平面,则平行于平面内所有直线;已知直线庆平面°, 直线QU 平而直线b 〃平而6(,则直线b 〃直线Q.这个结论显然是错误的,这是因为( )A.大前提错误C.推理形式错误B.小前提错误 D.非以上错误【解析】 大前提错误,直线平行于平面,未必平行于平面内的所有直线・ 【答案】A4. 如图1所示的知识结构图为什么结构()A.树形 C.对称性【解析】 由题图可知结构图为树形结构・ 【答案】A5. 执行如图2所示的程序框图,若输入的〃的值为8,则输出的s 的值为() (开始)/綸人聽/*图2 A. 4 B ・ 8 C- 10【解析】 初始值 \ n = S f i = 2 , k = \ , s = \ } z<A7 /5=1X(1X2) = 2 9 z = 2 + 2 = 4 , k=1 + 1=2 ; i < n , 5 = ^X(2X4) = 4 r 24 + 2 = 6 , Z: = 2 + 1 = 3 ; i < n , 5 = |x (4X6) = 8 r i 6 + 2 = 8 ,^=3+1=4;/ = /?,退出循环・故输出的s 的值为&【答案】B6. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是B.环形 D.左右形D. 12图1k=k+]1=2,5=i=i+2AAAy = 1.23x+4 By = 1.23x+5 C.J=1.23x+0.08D.J=0.08x+1.23【解析】 由题意可设回归直线方程为;=1.23x + d ,又样本点的中心(4,5)在回归直线上, 故 5 二 1.23X4 + ^ ,即 ° 二 0.08 , 故回归直线的方程为尹=1.23% + 0.08. 【答案】C7. 设的三边长分别为a, b, g N4BC 的面积为S,内切圆半径为r,则r=类比这个结论可知:四而体S-ABC 的四个而的而积分别为Si ,S2, S3, S4,内切球半径为7?, 四面体S-ABC 的体积为兀则/?=(V A ---SI+S2+S3+S4【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割37• R = ------------------S1+S2+S3 + S,【答案】c8. 已知数列仇}的前n 项和S”=/・d 〃(Q2),而°] = 1,通过计算。

高二数学选修1-2测试题及答案

高二数学选修1-2测试题及答案

高二数学(文科)选修1-2测试题及答案考试时间120分钟,满分150分一、选择题(共12道题,每题5分共60分)1. 两个量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数2R如下,其中拟合效果最好的模型是 ( )A.模型1的相关指数2R为 B. 模型2的相关指数2R为C. 模型3的相关指数2R为 D. 模型4的相关指数2R为2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()A.假设三内角都不大于60度;B.假设三内角都大于60度;C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。

3.如图是一商场某一个时间制订销售计划时的局部结构图,则直接影响“计划” 要素有( )A.1个 B.2个 C.3个 D.4个4.下列关于残差图的描述错误的是()A.残差图的纵坐标只能是残差.B.残差图的横坐标可以是编号、解释变量和预报变量.C.残差点分布的带状区域的宽度越窄残差平方和越小.D.残差点分布的带状区域的宽度越窄相关指数越小.5.有一段演绎推理:“直线平行于平面,则这条直线平行于平面内所有直线;已知直线b⊄平面α,直线a≠⊂平面α,直线b∥平面α,则直线b∥直线a”的结论是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.若复数z =(-8+i)*i在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.计算1i1i-+的结果是 ( )A.i B.i- C.2 D.2-8.i为虚数单位,则2013i1i1⎪⎭⎫⎝⎛-+= ( )A.i B. -i C. 1 D. -19.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+iB. 2+4iC. 8+2iD. 4+8i10.按流程图的程序计算,若开始输入的值为3x=,则输出的x的值是 ( )A.6B.21C.156D.23111.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)①“若a,b∈R,则0a b a b-=⇒=”类比推出“a,b∈C,则0a b a b-=⇒=”②“若a,b,c,d∈R,则复数,a bi c di a cb d+=+⇒==”类比推出“若,,,a b c d Q∈,则2=2,a b c a c b d++⇐==”;其中类比结论正确的情况是()A.①②全错B.①对②错C.①错②对 D.①②全对12.设()cosf x x=,/10()()f x f x=,/21()()f x f x=,……,/1()()n nf x f x+=()Nn∈,则()xf2012=() A. sin x B. sin x- C. cos x D. cos x-二、填空题(共4道题,每题5分共20分)13.若(2)a i ib i-=-,其中a、b R∈,i是虚数单位,则22a b+=________14. 已知,x y∈R,若i2ix y+=-,则x y-=.15. 若三角形内切圆半径为r,三边长为a,b,c则三角形的面积12S r a b c=++();输入x计算(1)2x xx+=的值100?x>输出结果x是否利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,; 则四面体的体积V=______ _ ______ 16.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖___ ___块.三、解答题(共6道题,第19题10分,其余每题12分,共70分)17.(本题满分12分) 实数m 取什么数值时,复数221(2)z m m m i =-+--分别是:(1)实数 (2)虚数 (3)纯虚数(4)表示复数z 的点在复平面的第四象限18. (本题满分12分)(1) 求证:4635,0:+-+>+-+>a a a a a 求证:已知(2) 已知:ΔABC 的三条边分别为a b c ,,. 求证:11a b ca b c+>+++19.(本题满分10分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好; 单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:(1)求:并初步判断损毁餐椅数量与学习雷锋精神是否有关(2)请说明是否有%以上的把握认为损毁餐椅数量与学习雷锋精神有关参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,20. (本题满分12分)已知:在数列{a n }中,71=a , 771+=+n nn a a a ,(1)请写出这个数列的前4项,并猜想这个数列的通项公式。

北师大版高二数学选修1-2试题及答案

北师大版高二数学选修1-2试题及答案

第 1 页 共 8 页高二数学选修1-2质量检测试题(卷)2010.04本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至6页.考试结束后. 只将第Ⅱ卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10个小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有个小偷在警察面前作了如下辩解:是我的录像机,我就一定能把它打开.看,我把它打开了.所以它是我的录像机.请问这一推理错在哪里? A .大前提 B .小前提 C .结论 D .以上都不是 2.复数534i -的共轭复数是: A .3455i - B .3455i + C .34i - D .34i +3.下列有关样本相关系数的说法不正确的是A.相关系数用来衡量 两个随机变量x 与y 的之间的线性相关程度 B. 1r ≤,且r 越接近0,相关程度越小 C. 1r ≤,且r 越接近1,相关程度越大 D. 1r ≥,且r 越接近1,相关程度越大4. 下面几种推理是合情推理的是(1)由正三角形的性质,推测正四面体的性质;(2)由平行四边形、梯形内角和是360︒,归纳出所有四边形的内角和都是360︒; (3)某次考试金卫同学成绩是90分,由此推出全班同学成绩都是90分; (4)三角形内角和是180︒,四边形内角和是360︒,五边形内角和是540︒,由此得凸多边形内角和是()2180n -︒A .(1)(2)B .(1)(3)C .(1)(2)(4)D .(2)(4)5.用反证法证明命题“如果a b >> A .= B .C .=<D .=<6.已知02a <<,复数z 的实部为a ,虚部为1,则||z 的取值范围是A .(1,5)B .(1,3) C.(1, D.(1,7.已知x 与y 之间的一组数据:第 2 页 共 8 页A .(0.5,3)B .(1.5,0)C .(1,2)D .(1.5,4) 8.复数2211(1)(1)i ii i -++=+-A .iB .-iC .—1D .1 9.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为A .62n -B .82n -C .62n +D .82n +10.设两个相互独立的事件,A B 都不发生的概率为19,若A 发生B 不发生的概率等于B 发生A 不发生的概率,则事件A 发生的概率()P A 是A .29B .23C .13 D . 118二、填空题:本大题共6小题,每小题6分,共36分.把本大题答案填在第Ⅱ卷题中横线上.11.1×9+2=11,12×9+3=111,123×9+4=1111,1234×9+5=11111,猜测123456×9+7=12.若复数z (1)(2)m m i =-++对应的点在直线220x y --=上,则实数m 的值是13.一个袋中有12个除颜色外完全相同的球,2个红球,5个绿球,5个黄球,从中任取一球,放回后再取一球,则第一次取出红球且第二次取出黄球的概率为14.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是15.类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.则正确结论的序号是 16.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i ,- i ,2+ i ,则点D 对应的复数为_________高二数学选修1-2质量检测试题(卷)2010.4… ③二、填空题:本大题共6小题,每小题6分,共36分. 把答案填在题中横线上.11.;12. ;13. ;14. ;15._______ _______;16. __________________.三、解答题:本大题共4小题,共54分.解答应写出文字说明、证明过程或演算步骤.17.( 本小题满分14分)已知复数2245(215)3m mz m m im--=+--+,m R∈.(1)若复数z是纯虚数,求m的值;(2)若复数z是实数,求m的值.18.(本小题满分12分)阅读下文,然后画出该章的知识结构图.推理与证明这一章介绍了推理与证明这两个知识点.推理这节包括合第 3 页共8 页情推理和演绎推理;证明这节包括直接证明和间接证明.合情推理中有两种常用推理:归纳推理和类比推理.直接证明有综合法和分析法;间接证明通常用反证法. 19.(本小题满分14分)在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的第 4 页共8 页为56人.(1)根据以上数据建立一个22⨯列联表;(2)试判断是否晕机与性别有关?(参考数据:2 2.706χ>时,有90%的把握判定变量A,B有关联;2 3.841χ>时,有95%的把握判定变量A,B有关联;2 6.635χ>时,有99%的把握判定变量A,B有关联.新课标第一网参考公式:22()()()()()n ad bca b c d a c b d χ-=++++)20.(本小题满分14分)第 5 页共8 页已知:a,b,c,d都是实数,且221c d+=,a b+=,221求证:1ac bd+≤第 6 页共8 页第 7 页 共 8 页高二数学选修1-2模块考试试题参考答案一.选择题:(本大题共10小题,每小题6分,共60分)二、填空题(本大题共6小题,每小题6分,共36分) 11. 1111111 12. 6 13.72514. 231 15. ②③ 16. 3+5i 三、解答题:(本大题共 4 小题,共 64分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分14分)解:(1)当⎪⎩⎪⎨⎧≠--=+--0152035422m m m m m 4分解得m = -1时,z 为纯虚数 7分(2)当230.....2150.....m m m +≠⎧⎨--=⎩ 11分解m = 5时,z 是实数 14分18、(本小题满分12分)解:推理与证明这章的知识结构图为:3分↑ 7分↑ 12分↑第 8 页 共 8 页19. (本小题满分14分) (1)解:2×2列联表如下:7分(2)假设是否晕机与性别无关,则2k 的观测值2140(28562828)35 3.888568456849k ⨯⨯-⨯==≈⨯⨯⨯ 12分又知k ︽3.888>3.841,所以有95%的把握认为是否晕机与性别有关. 14分20. (本小题满分14分)证明: 122=+b a ,122=+dc ,∴()()12222=++d c b a 3分 即122222222=+++c b d a d b c a又 acbd adbc c b d a 222222=≥+ 7分 ∴122222≤++acbd d b c a 11分∴()12≤+bd ac 故1≤+bd ac 14分(本题还有其余的综合法证明方式,也可用分析法、比较法和换元法等方法证明)。

(完整版)高中数学选修1-2综合测试题(附答案)

(完整版)高中数学选修1-2综合测试题(附答案)

高二数学月考试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.如果数列{}n a 是等差数列,则 A.1845a a a a +<+B. 1845a a a a +=+C.1845a a a a +>+D.1845a a a a =2.下面使用类比推理正确的是 A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )”3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32+、i 23+、i 32--,则D 点对应的复数是 ( ) A.i 32+- B.i 23-- C.i 32- D.i 23- 4. 已知向量)3,5(-=→x a , ),2(x b =→,且→→⊥b a , 则由x 的值构成的集合是( )A.{2,3}B. {-1, 6}C. {2}D. {6}5.已知数列Λ,11,22,5,2,则52是这个数列的 ( )A.第6项B.第7项C.第19项D.第11项 6. .对相关系数r ,下列说法正确的是 ( )A .||r 越大,线性相关程度越大B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越接近0,线性相关程度越小 7.2020)1()1(i i --+的值为 ( )A.0B.1024C.1024-D.10241- 8.确定结论“X 与Y 有关系”的可信度为99℅时,则随即变量2k 的观测值k 必须( )A.大于828.10B.小于829.7C.大于635.6D.大于706.2 9.已知复数z 满足||z z -=,则z 的实部 ( ) A.不小于0 B.不大于0 C.大于0 D.小于010.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理。

高中数学 综合测试(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

高中数学 综合测试(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

选修1—2综合测试时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分) 1.10i2-i=( ) A .-2+4i B .-2-4i C .2+4i D .2-4i解析:10i2-i =10i (2+i )(2-i )(2+i )=2i(2+i)=4i -2. 答案:A2.已知某车间加工零件的个数x 与所花时间y (单位:h)之间的线性回归方程为y ^=0.01x +0.5,则加工600个零件大约需要( )A .6.5 hB .5.5 hC .3.5 hD .0.5 h解析:把x =600代入方程,得y ^=0.01×600+0.5=6.5,故选A. 答案:A3.如图,∠BAC =∠BDC ,∠E =∠E ,所以△AEC ∽△DEB ,故EC BE =AC BD ,同理可证FCDF =AC BD ,所以EC BE =FCDF ,在以上推理过程中运用的推理规则是( ) A .三段论推理与关系推理 B .类比推理与关系推理 C .完全归纳推理与关系推理D .类比推理与完全归纳推理解析:推导“EC BE =AC BD ”时,运用了三段论推理,在推导“EC BE =AC BD ,FC DF =AC BD ,则ECBE =FCDF”时,运用了关系推理. 答案:A4.如果数列{a n }的前n 项和S n =32a n -3,那这个数列的通项公式是( )A .a n =2(n 2+n +1)B .a n =3·2nC .a n =3n +1D .a n =2·3n解析:当n =1时,a 1=32a 1-3,∴a 1=6, 由S n =32a n -3,当n ≥2时,S n -1=32a n -1-3,∴当n ≥2时,a n =S n -S n -1=32a n -32a n -1,∴a n =3a n -1.∴a 1=6,a 2=3×6,a 3=32×6. 猜想:a n =6·3n -1=2·3n . 答案:D5.利用独立性检验来考查两个分类变量X ,Y 是否有关系,当随机变量K 2的值( ) A .越大,“X 与Y 有关系”成立的可能性越大 B .越大,“X 与Y 有关系”成立的可能性越小 C .越小,“X 与Y 有关系”成立的可能性越大 D .与“X 与Y 有关系”成立的可能性无关解析:由K 2的意义可知,K 2越大,说明X 与Y 有关系的可能性越大,故选A. 答案:A6.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a ,b 的大小关系无法确定 解析:a =c +1-c =1c +1+c,b =c -c -1=1c +c -1, 因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b . 答案:B7.在一次试验中,当变量x 的取值分别为1、12、13、14时,变量y 的值依次为2、3、4、5,则y 与x 之间的回归方程为( )A.y ^=1x+1B.y ^=2x+3C.y ^=2x +1D.y ^=x +1解析:把变量x 的值代入检验知回归方程为y ^=1x+1,故选A.答案:A8.已知z 是纯虚数,z +21-i 是实数,那么z 等于( )A .2iB .iC .-iD .-2i解析:由题意可设z =a i(a ∈R 且a ≠0), ∴z +21-i =(2+a i )(1+i )(1-i )(1+i )=2-a +(a +2)i 2,则a +2=0,∴a =-2,有z =-2i ,故选D. 答案:D9.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为( )A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:等式的左边是9×(等式的序号-1)+等式的序号,故选B.10.设m ≠n ,x =m 4-m 3n ,y =n 3m -n 4,则x 与y 的大小关系是( ) A .x >y B .x =y C .x <yD .x ≠y解析:因为m ≠n ,x -y =m 3(m -n )-n 3(m -n ) =(m -n )(m 3-n 3)=(m -n )2(m 2+mn +n 2) =(m -n )2[(m +n 2)2+34n 2]>0,所以x >y . 答案:A11.已知某程序框图如图所示,则执行该程序后输出的结果是( )A.12 B .-1 C .2D .1解析:a =2,i =1;a =12,i =2;a =-1,i =3;a =2,i =4;…, 由此规律可知,a =2,i =3k +1. a =12,i =3k +2; a =-1,i =3k +3,其中,k ∈N . 从而可知当a =12时,i =20.故选A.12.在两个基础相当的班级实行某种教学措施的实验,测试成绩见下表.在犯错误的概率不超过0.01的前提下,试分析实验效果与教学措施是否有关( )优良中 差 合计 实验班 48 2 50 对比班 35 12 50 合计8614100A.有关 B .无关C .不一定D .以上都不正确解析:K 2=100×(48×12-38×2)250×50×86×14≈8.306>6.635.故在犯错误的概率不超过0.01的前提下,认为实验效果与教学措施有关. 答案:A第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.如图中还有“哺乳动物”、“地龟”、“长尾雀”三项未填,请补充完整这一结构图.①________,②________,③________.解析:狗和狼是哺乳动物,地龟是爬行动物,长尾雀是飞行动物. 答案:哺乳动物 地龟 长尾雀14.某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,得到如下列联表(单位:名):性别与主修统计专业列联表因为K 2≥3.841,所以断定主修统计专业与性别有关系.这种判断出错的可能性为________.解析:由K 2≥3.841可知我们有95%的把握能断定主修统计专业与性别有关系.故判断出错的可能性为5%.答案:5%15.已知复数z 1=cos θ-i ,z 2=sin θ+i ,则z 1·z 2的实部的最小值为________. 解析:z 1·z 2=(cos θ-i)·(sin θ+i) =(sin θcos θ+1)+(cos θ-sin θ)i , 即实部为sin θcos θ+1=12sin2θ+1,其最小值为-12+1=12.答案:1216.在△ABC 中,若D 为BC 的中点,则AD →=12(AB →+AC →),将此命题类比到四面体中去,得到一个类比命题是:________________________________________________________________________________________________________________________________________________.答案:在四面体A —BCD 中,若G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知x 是实数,y 是纯虚数,且满足(2x -1)+i =y -(3-y )i ,求x 与y . 解:设y =b i(b ∈R 且b ≠0),代入条件并整理得(2x -1)+i =-b +(b -3)i ,由复数相等的条件得⎩⎪⎨⎪⎧2x -1=-b ,1=b -3,解得⎩⎪⎨⎪⎧b =4,x =-32.所以x =-32,y =4i.18.(12分)已知f (z )=|1+z |-z ,且f (-z )=10+3i ,求复数z . 解:f (z )=|1+z |-z ,f (-z )=|1-z |+z . 设z =a +b i(a 、b ∈R ).由f (-z )=10+3i 得|1-(a +b i)|+a -b i =10+3i.即⎩⎪⎨⎪⎧(1-a )2+b 2+a =10,-b =3. 解方程组得⎩⎪⎨⎪⎧a =5,b =-3,所以复数z =5-3i.19.(12分)用综合法或分析法证明: (1)如果a >0,b >0,那么lg a +b 2≥lg a +lg b2;(2)已知x >0,y >0,求证(x 2+y 2)12>(x 3+y 3)13.解:(1)因为a >0,b >0,所以a +b >0.要证lg a +b 2≥lg a +lg b 2,只需证2lg a +b2≥lg(ab ),只需证lg(a +b 2)2≥lg(ab ),只需证(a +b2)2≥ab ,即证(a +b )2≥4ab ,只需证a 2-2ab +b 2≥0, 即证(a -b )2≥0.而(a -b )2≥0恒成立, 所以原式成立.(2)因为x >0,y >0,所以要证明(x 2+y 2)12>(x 3+y 3)13,只需证明(x 2+y 2)3>(x 3+y 3)2,即证x 2y 2(3x 2-2xy +3y 2)>0, 只需证3x 2-2xy +3y 2>0.因为3x 2-2xy +3y 2=3(x -y 3)2+83y 2>0恒成立,所以3x 2-2xy +3y 2>0成立,所以原式成立.20.(12分)某人酷爱买彩票,一次他购买了1 000注的彩票,共有50注中奖,于是他回到家对彩票的号码进行了分析,分析后又去买了1 500注的彩票,有75注中奖,请分析他对号码的研究是否对中奖产生了大的影响.解:根据题意可知购买1 000注的彩票,中奖50注,未中奖的有950注;购买1 500注彩票,中奖75注,未中奖的有1 425注.列出对应的2×2列联表如表:假设H 0:对彩票号码的研究与中奖无关. 由表中数据,得K 2的观测值为 k =2 500×(50×1 425-75×950)21 000×1 500×125×2 375=0.所以没有足够的证据说明对彩票号码的分析与中奖有关.21.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下表:(2)求出y 关于x 的线性回归方程y ^=bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x ).解:(1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5.x =3.5,y =3.5,∑i =14x 2i =54,∴b ^=0.7,于是a ^=y -b ^x =3.5-0.7×3.5=1.05, 因此回归直线方程为y ^=0.7x +1.05.(3)当x =10时,y ^=0.7×10+1.05=8.05(小时), 即加工10个零件需要8.05个小时.22.(12分)类比命题(1),给出命题(2)的结论的猜想.(1)如果△ABC 的三条边BC 、CA 、AB 上的高分别为h a 、h b 和h c ,△ABC 内任意一点P 到三条边BC 、CA 、AB 的距离分别为P a 、P b 、P c ,那么P a h a +P b h b +P ch c=1.(2)从四面体的四个顶点A 、B 、C 、D 分别向所对的面作垂线,垂线长分别为h a 、h b 、h c 和h d .P 为四面体内任意一点,从点P 向A 、B 、C 、D 四顶点所对的面作垂线,垂线长分别为P a 、P b 、P c 和P d ,那么诸h i 与诸P i 满足什么关系式(i =a 、b 、c 、d )?解:类比推理猜想P a h a +P b h b +P c h c +P dh d=1.更有趣的是它们证明也可类比移植,由平面到空间如法炮制,先看命题(1)的证法(面积证法): ∵P a h a =12BC ·P a 12BC ·h a =S △PBCS △ABC , 同理,P b h b =S △P AC S △ABC ,P c h c =S △P ABS △ABC ,∵S △PBC S △ABC +S △P AC S △ABC +S △P AB S △ABC=S △PBC +S △P AC +S △P ABS △ABC=S △ABC S △ABC=1.∴P a h a +P b h b +P ch c=1...DOC 版.命题(2)的证明(体积证法):∵P a h a =13S △BCD ·P a 13S △BCD ·h a=V P -BCD V ABCD , 同理,P b h b =V P -ACD V ABCDP c h c =V P -ABD V ABCD ,P d h d =V P -ABC V ABCD. ∵V P -BCD V ABCD +V P -ACD V ABCD +V P -ABD V ABCD +V P -ABC V ABCD=V P -BCD +V P -ACD +V P -ABD +V P -ABC V ABCD =V ABCD V ABCD =1, ∴P a h a +P b h b +P c h c +P d h d=1.。

高中数学选修1-2试题及答案(打印)(1)

高中数学选修1-2试题及答案(打印)(1)

高二数学选修1-2模块测试题(文科)一、选择题:(本大题共14小题,每小题5分,共70分) 1.若复数3i z =-,则z 在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是 ( ) A .6B .21C .156D .2318.若=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ) A .512 B .537 C .6 D .8 4.用火柴棒摆“金鱼”,如图所示:( )按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .82n - C .62n + D .82n + 5.计算1i1i -+的结果是 ( ) A .i B .i -C .2D .2-6.已知x 与y 之间的一组数据:则a bx y+=ˆ必过点 ( )A .(2,2)B .(1,2)C .(1.5,0)D .(1.5,4) 7.求135101S =++++的流程图程序如右图所示, 其中①应为 ( ) A.101?A = B .101?A ≤ C .101?A >…① ② ③D .101?A ≥7.已知a +b +c =0,则ab +bc +ca 的值( )A .大于0B .小于0C .不小于0D .不大于09.对相关系数r ,下列说法正确的是 ( ) A .||r 越大,线性相关程度越大 B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越近0,线性相关程度越小 10.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①9090180A B C C ++=︒+︒+>︒,这与三角形内角和为180︒相矛盾,90A B ==︒不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A 、B 、C 中有两个直角,不妨设90A B ==︒,正确顺序的序号为 ( ) A .①②③B .③①②C .①③②D .②③①11.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 ( ) A .有95%的把握认为两者有关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病 12.类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:( )①垂直于同一条直线的两条直线互相平行 ②垂直于同一个平面的两条直线互相平行 ③垂直于同一条直线的两个平面互相平行④垂直于同一个平面的两个平面互相平行则正确的结论是 ( )A .①②B .②③C .③④D .①④13.若定义运算:()()a a b a b b a b ≥⎧⊗=⎨<⎩,例如233⊗=,则下列等式不能成立....的是 ( )A .a b b a ⊗=⊗ B .()()a b c a b c ⊗⊗=⊗⊗ C .222()a b a b ⊗=⊗D ()()()c a b c a c b ⋅⊗=⋅⊗⋅(0c >)14.已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )A .21nn + B .311n n -+ C .212n n ++ D .22nn + 二、填空题:(本大题共4小题,每小题5分,共20分)1.现有爬行、哺乳、飞行三类动物,其中蛇、地龟属于爬行动物;河狸、狗属于哺乳动物;鹰、长尾雀属于飞行动物,请你把下列结构图补充完整.2.已知,x y ∈R ,若i 2i x y +=-,则x y -= . 3.在等比数列{}n a 中,若91a =,则有121217(17n n a a a a a a n -⋅⋅⋅=⋅⋅⋅<,且)n *∈N 成立,类比上述性质,在等差数列{}n b 中,若70b =,则有 . 4.观察下列式子:212311+=,313422+=,414533+=,515644+=,,归纳得出一般规律为 . 三、解答题:(本大题共3小题,共28分)1.(12分)(1)已知方程03)12(2=-+--i m x i x 有实数根,求实数m 的值。

高二数学选修1-2推理与证明测试题及答案

高二数学选修1-2推理与证明测试题及答案

推理与证明本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.测试时间120分钟. 一、选择题(本大题共12小题,每小题5分,共60分) 1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )”3.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 20044. 设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010()f x =( )A.cos x B .-cos x C .sin x D -sin x5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.238.用反证法证明命题“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )(A )假设,,a b c 不都是偶数 (B )假设,,a b c 都不是偶数 (C )假设,,a b c 至多有一个是偶数 (D )假设,,a b c 至多有两个是偶数9.如果=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ). A .512 B .537 C .6 D .82()3110:344,()(cos sin )(),24x x y x y y x y αα≥⎧•=•=-•+-⎨<⎩、定义运算例如则的最大值为()A .4B .3C .2D .111.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a+≥+•+.其中不成立的有A.1个B.2个C.3个D.4个 12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二、填空题(本大题共6小题,每小题5分,共30分)13.已知一列数1,-5,9,-13,17,……,根据其规律,下一个数应为 .14.在数列{}n a 中,()*1121,,2nn n a a a n N a +==∈+猜想这个数列的通项公式是 . 15.从22112343=++=2,,3+4+5+6+7=5中,可得到一般规律为 (用数学表达式表示)。

(完整版)高中数学选修1-2课后习题答案

(完整版)高中数学选修1-2课后习题答案

me an di n高中数学选修1-2课后习题答案第Ⅰ卷选择题共50分一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)参考公式P k ≥2(K )0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.8281.在画两个变量的散点图时,下面哪个叙述是正确的( )A 预报变量在轴上,解释变量在轴上B 解释变量在轴上,预报变量在轴上x y x y C 可以选择两个变量中任意一个变量在轴上 D 可以选择两个变量中任意一个变量在轴上x y 2.数列…中的等于()2,5,11,20,,47,x x A B C D 283233273.复数的共轭复数是( )25-i A i +2 B i -2C -i -2D 2 - i4.下面框图属于( )A 流程图B 结构图C 程序框图D 工序流程图5.设大于0,则3个数:,,的值( ),,a b c 1a b +1b c +1c a+A 都大于2 B 至少有一个不大于2 C 都小于2 D 至少有一个不小于26.当时,复数在复平面内对应的点位于( )132<<m )2()3(i i m +-+A 第一象限 B 第二象限 C 第三象限 D 第四象限7.考察棉花种子经过处理跟生病之间的关系得到如下表数据:种子处理种子未处理合计得病32101133不得病61213274合计93314407根据以上数据,则( )A 种子经过处理跟是否生病有关B 种子经过处理跟是否生病无关C 种子是否经过处理决定是否生病D 以上都是错误的11,9,8,5,若在实际问题中,的预报最大取值是10,则的最大取值不能超过( )y x A 16 B 17 C 15 D 129.根据右边程序框图,当输入10时,输出的是()A 12B 19C 14.1D-3010.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( )第Ⅱ卷非选择题(共100分)二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在答题卡的横线上)11.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i,-i,2+i,则点D 对应的复数为_________。

高中数学选修1-2第一章统计案例测试题带详细解答(可编辑修改word版)

高中数学选修1-2第一章统计案例测试题带详细解答(可编辑修改word版)
()
1
A、增加3个单位B、增加个单位C、减少3个单位D、减少个单位
3
【答案】C
【解析】
解释变量即回归方程里的自变量xˆ,由回归方程知预报变量yˆ减少 3 个单位
4.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U
与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之
选修 1-2 第一章、统计案例测试
一、选择题
1.已知x与y之间的一组数据:
x
0
1
2
3
y
1
3
5
7
则y与x的线性回归方程为ybxa必过点() A.(2,2)B. (1.5 ,4)C.(1.5 ,0)D.(1,2)
【答案】B
【解析】
试题分析:由数据可知x1.5,y4,∴线性回归方程
4
为yb xa必过点(1.5,4)
5 =11.72
. Y =(1+2+3+4+5)
5 =3
∴这组数据的相关系数是r=7.2
19.172 =0.3755,
变量U与V相对应的一组数据为(10,5),(11.3,4),
(11.8,3),(12.5,2),(13,1)
. U =(5+4+3+2+1)
5 =3,
∴这组数据的相关系数是-0.3755,
【解析】
试题分析:由题意,年劳动生产率x(千元)和工人工资y(元)之间回归方程为
y1070x,
故当x增加 1 时,y要增加 70 元,
∴劳动生产率每提高1千元时,工资平均提高70元,故A正确.

高二数学选修1-2期末试题及答案

高二数学选修1-2期末试题及答案

高二数学选修模块测试题数学选修1-2一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的一项是符合要求的. .1.若复数3i z =-,则z 在复平面内对应的点位于在复平面内对应的点位于 A .第一象限.第一象限B .第二象限.第二象限C .第三象限.第三象限D .第四象限.第四象限2.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是的值是A .6B .21C .156D .2313.用演绎法证明函数3y x =是增函数时的小前提是是增函数时的小前提是 A .增函数的定义.增函数的定义B .函数3y x =满足增函数的定义满足增函数的定义 C .若12x x <,则12()()f x f x <D .若12x x >,则12()()f x f x >4.用火柴棒摆“金鱼”,如图所示:,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为图需要火柴棒的根数为A .62n -B .82n -C .62n +D .82n +5.计算1i 1i-+的结果是的结果是A .iB .i -C .2D .2-6.求135101S =++++ 的流程图程序如右图所示,的流程图程序如右图所示, 其中①应为其中①应为A .101?A = B .101?A £ C .101?A > D .101?A ³开始开始 ①是 否 S =0 A =1 S =S +A 输出x 结束结束输入x 计算(1)2x x x +=的值的值 100?x >输出结果x是否…① ② ③7.在线性回归模型y bx a e =++中,下列说法正确的是中,下列说法正确的是A .y bx a e =++是一次函数是一次函数B .因变量y 是由自变量x 唯一确定的C .因变量y 除了受自变量x 的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e 的产生的产生D .随机误差e 是由于计算不准确造成的,可以通过精确计算避免随机误差e 的产生8.设有一个回归方程ˆ2 2.5y x =-,变量x 增加一个单位时,变量ˆy 平均(平均( )A.增加2.5 个单位个单位B.增加2个单位个单位C.减少2.5个单位个单位D.减少2个单位个单位 9.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:的过程归纳为以下三个步骤:①9090180A B C C ++=°+°+>°,这与三角形内角和为180°相矛盾,90A B ==°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A 、B 、C 中有两个直角,不妨设90A B ==°,正确顺序的序号为,正确顺序的序号为 A .①②③.①②③B .③①②.③①②C .①③②.①③②D .②③①.②③①10.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K £3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 A .有95%的把握认为两者有关 B .约有95%的打鼾者患心脏病的打鼾者患心脏病C .有99%的把握认为两者有关的把握认为两者有关D .约有99%的打鼾者患心脏病的打鼾者患心脏病二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上把答案填在题中横线上. .11.现有爬行、现有爬行、哺乳、哺乳、哺乳、飞行三类动物,飞行三类动物,飞行三类动物,其中蛇、其中蛇、其中蛇、地龟属于爬行动物;地龟属于爬行动物;地龟属于爬行动物;河狸、河狸、河狸、狗属于哺乳动物;狗属于哺乳动物;鹰、长尾雀属于飞行动物,请你把下列结构图补充完整.鹰、长尾雀属于飞行动物,请你把下列结构图补充完整.12.已知,x y ÎR ,若i 2i x y +=-,则x y -= .13.已知x 与y 之间的一组数据:之间的一组数据:x 0 1 2 3 y 1 3 5 7 动物动物爬行动物爬行动物飞行动物飞行动物狗 狼 鹰 蛇则y 与x 的线性回归方程为y =bx +a 必过点必过点 .14.有甲,乙,丙,丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:‘是乙或丙获奖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(文科)选修1-2测试题及答案考试时间120分钟,满分150分一、选择题(共12道题,每题5分共60分)1. 两个量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数2R如下,其中拟合效果最好的模型是( )A.模型1的相关指数2R为0.99 B. 模型2的相关指数2R为0.88C. 模型3的相关指数2R为0.50 D. 模型4的相关指数2R为0.202.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()A.假设三内角都不大于60度;B.假设三内角都大于60度;C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。

3.如图是一商场某一个时间制订销售计划时的局部结构图,则直接影响“计划” 要素有()A.1个B.2个C.3个D.4个4.下列关于残差图的描述错误的是()A.残差图的纵坐标只能是残差.B.残差图的横坐标可以是编号、解释变量和预报变量.C.残差点分布的带状区域的宽度越窄残差平方和越小.D.残差点分布的带状区域的宽度越窄相关指数越小.5.有一段演绎推理:“直线平行于平面,则这条直线平行于平面内所有直线;已知直线b⊄平面α,直线a≠⊂平面α,直线b∥平面α,则直线b∥直线a”的结论是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6.若复数z =(-8+i)*i在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.计算1i1i-+的结果是( )A.i B.i-C.2D.2-8.i为虚数单位,则2013i1i1⎪⎭⎫⎝⎛-+= ( )A.i B. -i C.1 D.-19.在复平面内,复数6+5i,-2+3i 对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+iB. 2+4iC. 8+2iD. 4+8i10.按流程图的程序计算,若开始输入的值为3x=,则输出的x的值是( )A.6B.21C.156D.23111.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)①“若a,b∈R,则0a b a b-=⇒=”类比推出“a,b∈C,则0a b a b-=⇒=”②“若a,b,c,d∈R,则复数,a bi c di a cb d+=+⇒==”类比推出“若,,,a b c d Q∈,则2=2,a b c a c b d++⇐==”;其中类比结论正确的情况是()A.①②全错B.①对②错C.①错②对D.①②全对12.设()cosf x x=,/10()()f x f x=,/21()()f x f x=,……,/1()()n nf x f x+=()Nn∈,则()xf2012=() A. sin x B. sin x- C. cos x D. cos x-二、填空题(共4道题,每题5分共20分)13.若(2)a i ib i-=-,其中a、b R∈,i是虚数单位,则22a b+=________14. 已知,x y∈R,若i2ix y+=-,则x y-=.15. 若三角形内切圆半径为r,三边长为a,b,c则三角形的面积12S r a b c=++();利用类比思想:若四面体内切球半径为R,四个面的面积为124S S S3,,S,;输入x计算(1)2x xx+=的值100?x>输出结果x是否则四面体的体积V=______ _ ______ 16.黑白两种颜色的正六形地面砖块按如图的规律拼成 若干个图案,则第n 个图案中有白色地面砖___ ___块.三、解答题(共6道题,第19题10分,其余每题12分,共70分)17.(本题满分12分) 实数m 取什么数值时,复数221(2)z m m m i =-+--分别是:(1)实数? (2)虚数? (3)纯虚数?(4)表示复数z 的点在复平面的第四象限?18. (本题满分12分)(1) 求证:4635,0:+-+>+-+>a a a a a 求证:已知(2) 已知:ΔABC 的三条边分别为a b c ,,. 求证:11a b ca b c+>+++19.(本题满分10分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好; 单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:(1)求:并初步判断损毁餐椅数量与学习雷锋精神是否有关?(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,20. (本题满分12分)已知:在数列{a n }中,71=a , 771+=+n nn a a a ,(1)请写出这个数列的前4项,并猜想这个数列的通项公式。

(2)请证明你猜想的通项公式的正确性。

()n a b c d =+++21.(本题满分12分)某城市理论预测2015年到2019年人口总数与年份的关系如下表所示 (1)请根据上表提供的数据,求最小二乘法求出Y 关于x 的线性回归方程; (2) 据此估计2020年该城市人口总数。

参考公式:1221ˆˆˆni ii ni i x y nx ybay bx x nx==-==--∑∑,高二数学(文科)选修1-2参考答案一、选择题(共12道题,每题5分共60分)二、 填空题(共4道题,每题5分共20分) 13、514、 -3 15、23413S S ++1R (S +S ) 16、4n +2三、解答题(共6道题,第20题10分,其余每题12分,共70分) 17.(本题满分12分)解:(1)当220m m --=,即21m m ==-或时,复数z 是实数;……3分(2)当220m m --≠,即21m m ≠≠-且时,复数z 是虚数;……6分(3)当210m -=,且220m m --≠时,即1m =时,复数z 是纯虚数;……9分 (4)当2m - m-2<0且2m -1>0,即1<m<2时,复数z 表示的点位于第四象限。

……12分 18. (本题满分12分)证明:(分析法)要证原不等式成立, 只需证3645+++>+++a a a a⇐22)36()45(+++>+++a a a a ……2分 ⇐)3)(6()4)(5(++>++a a a a ……4分即 证 20 > 18 ∵上式显然成立, ∴原不等式成立. ……6分 (2) 要 证11a b ca b c +>+++成立,只需证 c b a +->++-111111只需证 c b a +->++-1111,只需证 cb a +<++1111 只需证 b a c ++<+11, 只需证b a c +<∵a b c ,,是ΔABC 的三条边∴b a c +<成立,原不等式成立。

……12分19.(本题满分10分)解:(1) 学习雷锋精神前座椅的损坏的百分比是:%2520050= ……2分 学习雷锋精神后座椅的损坏的百分比是:%1520030= ……4分因为二者有明显的差异,所以初步判断损毁座椅减少与学习雷锋精神是否有关. ……5分(2)根据题中的数据计算: 25.620020032080)1503017050(4002=⨯⨯⨯⨯-⨯⨯=k ……8分 因为6.25>5.024所以有97.5%的把我认为损毁座椅数减少与学习雷锋精神有关。

……10分20.(本题满分12分) 解:(1)由已知47,37,27,74321====a a a a ……3分 猜想:a n =n7……6分 (2)由771+=+n nn a a a两边取倒数得: ⇔,71111+=+n n a a ⇔ ,71111=-+n n a a ……8分 ⇔数列 {n a 1}是以11a =71为首相,以71为公差的等差数列,……10分 ⇒n a 1=71+(n-1)71=7n ⇔ a n =n7……12分 21.(本题满分12分) 解:(1)210,x y ==,…… 2分∑=51i ii yx = 0×5+1×7+2×8+3×11+4×19=132,∑=51i 2i x =222220123430++++=…… 4分1221ˆˆˆ 3.6ni ii ni i x y nx ybay bx x nx==-∴==-=-∑∑=3.2, …… 6分 故y 关于x 的线性回归方程为yˆ=3.2x+3.6 …… 8分 (2)当x=5时,yˆ=3.2*5+3.6即y ˆ=19.6 …… 10分 据此估计2012年该城市人口总数约为196万. …… 12分。

相关文档
最新文档