九年级数学上册--相似三角形的判定定理3导学案

合集下载

4.5-相似三角形判定定理的证明--导学案

4.5-相似三角形判定定理的证明--导学案

中宁二中 4.5 相似三角形判定定理的证明导学案主备:万银华 审核: 2014-11-17 一、学习准备:判定定理1:两角 的两三角形相似;判定定理2:两边 两个三角形相似; 判定定理3: 的两三角形相似. 二、学习目标:1、相似三角形的判定定理;2、相似三角形的判定定理的证明; 三、自学提示: 自主学习:独立证明三个判定定理。

见书P99页。

(用作业纸写上,贴于导学案上) 例题: 例1、如图,在平行四边形,过点B 作BE CD ⊥,垂足为E ,连接AE,F 为AE 上一点,且BFE C ∠=∠. (1)求证:△ABF ∽△EAD ; (2)若AB=4,30BAE ∠=︒,求AE 的长; (3)在(1)(2)的条件下,若AD=3,求BF 的长.变式演练:如图四边形ABCD 是平行四边形,点F 在BA 的延长线上连结CF 角AD 于点E. (1)求证:△CDE ∽△FAE ;(2)当E 是AD 的中点,且BC=2CD 时,求证:F BCF =∠.例2、已知DE ∥⊥AB ,EF ∥BC 求证:△DEF ∽△ABC.四、学习小结: 五、夯实基础:1、如图,已知在△ABC 中,AB=AC, 36A ∠=︒,BD 是B ∠的角平分线,试利用三角形相似的关系说明AD 2=DC ·AC.2、如图已知在△ABC 中,AB=AC,AD 是BC 边上的中线,CF ∥BA ,BF 交AD 于点P ,交AC 于点E ,求证:BP 2=PE ·PF.六、能力提升:1、如图,∠ACD=∠B ,DE ⊥BC , 则图中共有 对相似三角形.2、在△ABC 中,点D 在线段BC 上,,816BAC ADC AC BC ∠=∠==,,求CD.3、如图,D 在AB 上,且DE ∥BC 交AC 于E 、F 在AD 上,且AD 2=AF ·AB 求证:△AEF ∽△ACD.布置作业: 【评价反思】。

九年级数学《相似三角形的判定(3)》教案

九年级数学《相似三角形的判定(3)》教案

《相似三角形(3)》教学设计教学评价评价量规:随堂提问、动手实践、操作演练、练习反馈;评价策略:坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励式点评有机结合,既有即兴评价,又有概要性评价;既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

教学流程活动流程活动内容及目的活动一创设情境,导入新课(3——5分钟)学生借助已有的知识和经验感知和体会数学的应用价值。

活动二演示操作,形成假设(10——15分钟)探究实践,总结发现自己观察到的结论。

并加以推理证明。

活动三验证假设,获得定论(10——15分钟)将自己发现的结论加以证明。

类比活动2探究结论,运用所学勾股定理加以证明。

活动四运用新知,解决问题(3——5分钟)应用所学知识来解决实际问题活动五回顾总结,推荐作业(3——5分钟)通过归纳、作业,巩固自己所学知识,形成技能技巧。

教学程序问题与情境师生互动媒体使用与设计意图活动1:创设情境导入新课问题:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)观察两副三角尺,同样角度的两个三角尺的三个内角有什么关系?这两个三角形相似吗?如果两个三角形有两组对应角相等,它们相似吗?——引出课题.教师通过提出问题,引导学生复习学过的知识,在此基础上激发学生学习新知的欲望。

学生思考回答,同时教师将学生的回答整理板书到黑板上。

本次活动教师应重点关注:学生能否熟练回答三角形相似的判定定理,相似三角形的判定方法和性质是否熟练。

用已学的知识能否顺利完成练习。

【媒体使用】播放图片,依次出示相关内容。

【设计意图】复习旧知,承前启后;通过本环节的复习和情景创设,让学生达到复习旧知,为新课做好铺垫的目的。

最新沪教版五四制九年级数学上册《相似三角形的判定3》教学设计-评奖教案

最新沪教版五四制九年级数学上册《相似三角形的判定3》教学设计-评奖教案

24.4(3)相似三角形的判定教学目标1、掌握相似三角形的判定定理3;2、会综合运用所学的三个定理判定三角形相似,进行相关证明与计算.教学重点及难点了解判定定理3的证题方法与思路,应用判定定理3,如网格问题.教学用具准备三角板、课件教学过程设计一、复习引入1.复述已经学习过的判定三角形相似的定理.(1)定义法:对应角相等、对应边成比例;(2)预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形和原三角形相似.(3)判定定理1:两角对应相等,两个三角形相似;(4)判定定理2:两边对应成比例且夹角相等,两个三角形相似.本节学习相似三角形判定定理3二、学习新课新授1:相似三角形的判定定理3的推导及文字和符号表述.问题3:类比三角形全等的判定,思考猜测问题3.如图在ABC ∆和111A B C ∆中,如果111111AB AC BC A B AC B C ==,那么ABC ∆和111A B C ∆相似吗?C 1B 1A 1C B A分析:同样可以利用相似三角形预备定理来证明.学生完成证明.通过问题3,又得到相似三角形的判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似. 简述为:三边对应成比例,两个三角形相似.111111AB BC CA A B B C C A ==ABC ∆∴∽111C B A ∆ 新授2:相似三角形的判定定理3的应用例题3 已知如图,D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点.求证:DEF ∆∽ABC ∆.F ED CB A(分析:利用中位线的性质,可得两个三角形三边对应成比例,根据相似三角形的判定定理3,可得两个三角形相似)证明:略.例题4(补充)如图,在正方形网格上有两个三角形111C B A 和222C B A 求证:△111C B A ∽△222C B A.分析 由条件可考虑三边是否对应成比例.可设小正方形边长为1,由勾股定理可求出各自边长,再进行证明.证明:设小正方形边长为1,则由勾股定理可求得:22B A =2,2210B C =,115A B =,1110AC =,又22C A =2,11C B =5.∴11B A ∶22B A 5:210:2==11C A ∶22C A 10:2=,11C B ∶22C B =5:1010:2= ∴111111222222A B A C B C A B A C B C == ∴△111C B A ∽△222C B A .三、巩固练习练习1:书后练习24.4(3)/1练习2:(1)书后练习24.4(3)/2(2)书后练习24.4(3)/3(3)以下各图放置的小正方形的边长都相同,分别以小正方形的顶点为顶点画三角形,则与△ABC相似的三角形图形为()(4)如图,是一个正方形网络,里面有许多三角形.在下面所列出的各三角形中,与ABC__________.不相似的是____(A)△BDE;(B)△BCD;(C)△FGH;(D)△BFG.四、课堂小结1、三角形相似与三角形全等的判定方法的类比.2、三角形相似的判定定理3,并强调用判定3证明相需三个条件,强调对应边成比例.3、得到判定三角形相似的方法有:(1)定义法:对应角相等、对应边成比例;(2)预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形和原三角形相似.(3)判定定理1:两角对应相等,两个三角形相似;(4)判定定理2:两边对应成比例且夹角相等,两个三角形相似(5) 判定定理3:三边对应成比例,两个三角形相似.五、作业布置练习册24.4(3)六、教学设计说明1.相似三角形的判定定理3是本节的重点,证明的导出过程引导学生多多参与,重点理解三边对应成比例.2.例题及练习的教学是相似三角形的判定定理3的应用,建议由浅入深,图形由简单到复杂,对于网格问题教师应注意解题方法的引导.3.总结所得到判定三角形相似的方法.。

相似三角形的性质和判定3

相似三角形的性质和判定3

CAEDFBBACD EFABCDE文桥中学 九 年级 数学 科教、学案主备人:陈平峰 刘鸿志 时间:课题:相似三角形的性质和判定(三)四、知识小结:总结一下相似三角形的判定方法有哪些?两个直角三角形满足什么条件时相似? 五、当堂检测:1、 要判定△DE F ∽△ABC ,已知条件BCEFAB DE =,还要添加 条件 或 。

2、如图,DE 与BC 不平行,当 时,△ABC ∽△AED.3、(A 、B)如图, △ABC 中,D 、E 分别在AC 、AB 上且 21==AC AE AB AD ,BC=6,求DE 。

4、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,DC 交BE 于F ,且31=AB AD , 21=EC AE ,求证:△DEF ∽△CBF.5、如图由△ABC ∽△CBD ,∠CAB =∠BCD ,AD =2,BD =4,求BC课型:预习、展示 课时:二课时 学习目标:1、探究并理解相似三角形的判定定理3,并能运用此定理证明两三角形相似。

2、进一步培养学生的逻辑推理能力;学习重点:两个三角形相似的判定方法3及其应用 学习难点:判定定理3的条件的识别及理解一、复习旧知,引入新课:1、 三角形相似的判定定理1、2与全等三角形的哪个判定定理类似?2、 判定全等三角形还有哪些方法?你能根据以上的类比猜想相似三角形的又一个判定定理吗? 二、自主学习,合作探究:阅读教材P77-79页,完成下列问题 1、阅读教材77页动脑筋,分组活动:(1)按要求每组画两个三角形,相似比可由组长决定 (2)判断这两个 三角形相似吗?(组织讨论)(3)一学生展示归纳:相似三角形的判定定理3 。

2、思考:两条直角边对应成比例的两个三角形相似吗?为什么?3、阅读教材78页动脑筋并填写下空:=DE AB , =DFAC∠B= 这两个三角形相似吗?为什么?( )由此你想到三角形全等中不存在的边边角。

切记:两边对应成比例,必须是 角相等的两个三角形才相似。

九年级数学上册《相似三角形的判定定理3》教案、教学设计

九年级数学上册《相似三角形的判定定理3》教案、教学设计
5.预习下一节课的内容,提前了解相似三角形的其他判定方法,为后续学习打下基础。
作业要求:
1.学生应独立完成作业,诚实守信,不得抄袭。
2.注意作业书写的规范性和整洁性,养成良好的学习习惯。
3.家长应关注学生的学习情况,协助学生按时完成作业,并对学生的学习给予鼓励和支持。
作业批改与反馈:
1.教师应及时批改作业,了解学生的学习情况,对存在的问题进行针对性辅导。
2.选取生活中的一个相似三角形的例子,画图并解释其相似关系,将所学知识应用到实际情境中,增强学生的几何直观。
3.小组合作完成一道综合性的几何证明题,要求运用相似三角形的判定定理3解决问题。通过合作交流,培养学生的团队协作能力和几何逻辑思维。
4.尝试研究相似三角形判定定理3在解决面积问题中的应用,并撰写一篇小论文,内容包括定理的应用方法、解题步骤和实际例题。
九年级数学上册《相似三角形的判定定理3》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握相似三角形的判定定理3,即两边成比例且夹角相等的两个三角形相似。
2.熟练运用相似三角形的判定定理3解决实际问题,提高解决问题的能力。
3.能够运用相似三角形的性质,解决与比例相关的问题,如线段比例、面积比例等。
4.掌握相似三角形的判定方法,形成严密的逻辑推理能力,为后续学习打基础。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
a.相似三角形的判定定理3的具体内容是什么?
b.如何运用判定定理3解决实际问题?
c.判定定理3在实际生活中的应用例子。
2.各小组汇报讨论成果,分享解题思路和经验。
3.教师点评各小组的表现,给予鼓励和指导。
(四)课堂练习
1.设计不同难度的习题,让学生独立完成,巩固所学知识。

九年级数学上册《相似三角形的判定》教案、教学设计

九年级数学上册《相似三角形的判定》教案、教学设计
-定期组织课外活动,如数学竞赛、研究性学习等,激发学生的学习热情和创造力。
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例作为导入,例如,展示一组相似的图形,如不同大小的三角形装饰品,并提出问题:“你们观察这些图形,它们之间有什么共同之处?”通过引导学生观察和思考,激发学生对相似三角形的兴趣。
1.教学策略:
-采用直观演示与抽象讲解相结合的方式,通过动态几何软件或实物模型,让学生直观感受相似三角形的形成和性质。
-引导学生通过自主探索、小组讨论等形式,发现并理解相似三角形的判定条件。
-设计层次分明的练习题,从基础到提高,逐步深化学生对知识点的掌握。
2.教学过程:
-导入新课:通过生活实例或几何图形,引发学生对相似三角形的好奇心,激发学习兴趣。
-小组展示:每组选取一道典型问题,进行解题思路和答案的展示,培养学生表达能力和逻辑思维能力。
4.家庭作业:
-布置适量的课后作业,涵盖相似三角形的判定方法和性质应用,要求学生在规定时间内完成,家长签字确认。
-鼓励学生在完成作业过程中,遇到问题主动向同学和老师请教,培养自主学习和解决问题的能力。
5.作业评价:
-对学生的作业进行及时批改,给予反馈,关注学生在作业中反映出的薄弱环节,进行针对性辅导。
-开展优秀作业展示活动,激发学生的学习积极性,营造良好的学习氛围。
2.学生在运用相似三角形的判定方法时,可能会出现混淆和错误,教师应针对这一问题进行针对性的讲解和练习。
3.学生的空间想象能力和逻辑思维能力存在差异,教师应充分关注这一点,设计不同难度的教学活动,使每位学生都能得到提高。
4.学生在小组合作学习中,沟通能力和团队协作能力有待提高,教师应引导学生积极参与讨论,学会倾听他人意见。

北师版九年级上册数学导学案 第3课时 三边成比例的两个三角形相似2

北师版九年级上册数学导学案 第3课时 三边成比例的两个三角形相似2

第3课时三边成比例的两个三角形相似学习目标:1、掌握并会推导相似三角形的判定定理3.2、会用相似三角形的判定定理1、2、3进行一些简单的判断、证明和计算. 学习重点:灵活运用相似三角形的判定定理3证明和解决有关问题.预设难点:相似三角形的判定定理3的推导和应用.☆预习导航☆一、链接1、回忆相似三角形的判定定理1、2的内容.定理1可简单说成: .定理2可简单说成: .2、简单说一说相似三角形的判定定理1、2的证明过程.二、导读结合课本和相似三角形的判定定理1、2的证明过程写一写相似三角形的判定定理3的证明过程.☆ 合作探究 ☆1、根据下列条件,判断 ∆ABC 与∆A 1B 1C 1是否相似,并说明理由: (1)∠A =1200,AB=7,AC=14,∠A 1=1200,A 1B 1= 3,A 1C 1=6。

(2)∠A =380,∠C =970 ,∠A 1=380,∠B 1=450(3) 5121022111111======C A C B B A AC BC AB ,,,,,2、如图,在正方形网格上有两个三角形111C B A 和,求证:△111C B A ∽△222C B A☆归纳反思☆本节课你有哪些收获?还存在哪些困惑?☆达标检测☆1、如图,要使△ADE∽△ABC,只给出一个条件即可.2、已知ΔABC与ΔDEF相似,AB=2,AC=10,BC=2,DE=1,DF=5,求EF的长.(注意多种情况)3、如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中相似三角形(相似比为1除外);(2)求BP:PQ:QR .。

相似三角形复习导学案

相似三角形复习导学案

相似三角形复习导学案一、学习目标1、掌握相似三角形的定义、性质和判定定理。

2、能够熟练运用相似三角形的性质和判定解决相关问题。

3、通过复习,提高对图形的观察、分析和推理能力。

二、知识梳理1、相似三角形的定义三角分别相等,三边成比例的两个三角形叫做相似三角形。

2、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。

(2)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比。

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

3、相似三角形的判定定理(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

三、典型例题例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以 AD/AB = AE/AC因为 AB = AD + BD = 3 + 2 = 5所以 3/5 = 4/(4 + CE)15 = 20 + 3CE3CE =-5CE =-5/3(舍去)所以 CE 的长为 20/3。

例 2:如图,在△ABC 中,∠A = 90°,AB = 8,AC = 6,点 D在 AB 上,且 AD = 4,DE⊥BC 于点 E,求 DE 的长。

解:因为∠A = 90°,AB = 8,AC = 6,所以 BC =√(AB²+ AC²) =√(8²+ 6²) = 10因为∠B =∠B,∠A =∠BED = 90°所以△BDE∽△BAC所以 DE/AC = BD/BC因为 BD = AB AD = 8 4 = 4所以 DE/6 = 4/10DE = 24四、巩固练习1、如图,在△ABC 中,D、E 分别是 AB、AC 边上的点,且DE∥BC,若 AD = 2,BD = 4,AE = 3,则 EC 的长为()A 6B 9C 12D 152、已知△ABC∽△A'B'C',相似比为 3:4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 103、如图,在△ABC 中,D 是 AB 上一点,且∠ACD =∠B,若AD = 1,AC = 2,AB = 4,则 CD 的长为()A 1B √2C 2D 2√2五、拓展提高1、如图,在矩形 ABCD 中,AB = 6,BC = 8,点 E 是 BC 边上一点,连接 AE,将△ABE 沿 AE 折叠,点 B 恰好落在对角线 AC 上的点 F 处,求 CE 的长。

九年级数学 相似三角形的判定(教案、导学案)

九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。

相似三角形的判定(3)导学案

相似三角形的判定(3)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(3)学习目标:1.记住“三边成比例的两个三角形相似”的判定方法,以及“两边成比例且夹角相等的两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点 : 记住两种判定方法,会运用两种判定方法判定两个三角形相似.难点 : 1. 三角形相似的条件归纳、证明;2. 会准确的运用两个三角形相似的条件来判定三角形是否相似.预学案【回顾】1.两个三角形全等有哪些判定方法?2.我们学习过哪些判定三角形相似的方法?3.全等三角形与相似三角形有怎样的关系?4.如果要判定△ABC 与△A ′B ′C ′相似,是不是一定需要一一验证所有的对应角和对应边的关系?(自主学习)1. 三边________的两个三角形相似.如下图,如果AB A ′B ′=BC B ′C ′=AC A ′C ′,则△ABC ________△A ′B ′C ′.2. 两边___________且夹角________的两个三角形相似. 如下图,如果''''C A AC B A AB ,△A =△A ′ 则△ABC △A ′B ′C ′探究案【探究一】探究三边成比例的两个三角形相似.在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?猜测:如果两个三角形的三边 , 那么这两个三角形相似.已知:求证:证明:归纳: 三角形相似的判定定理 :三边 的两个三角形相似.符号语言:△ ,△△ABC △ △DEF .【探究二】:探究两边成比例且夹角相等的两个三角形相似.类似判定三角形全等的SAS 方法,能不能通过两边和夹角判定两个三角形相似呢?事实上,我们有利用两边和夹角判定两个三角形相似的定理:△''''C A AC B A AB ,△A =△A ′ △△ABC △△A ′B ′C ′归纳:两边___________且夹角________的两个三角形相似.怎样证明这个定理呢?它的证明思路与证明前面定理的思路类似,先用同样的方法作一个与△A ′B ′C ′_______的三角形,再用相似三角形____________和已知条件证明所作三角形与△ABC __________.【探究三】 根据下列条件,判断△ABC 和△A ′B ′C ′是否相似,并说明理由.(1) AB =4 cm , BC =6 cm , AC =8 cm ,A ′B ′ =12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm .(2)△A =120°, AB =7 cm ,AC =14 cm ,△A '=120°,A ′B ′ =3 cm ,A ′C ′=6 cm .检测案1. 如图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为 ( )2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值 ( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.如图,△ABC 与 △ADE 都是等腰三角形,AD=AE ,AB=AC ,△DAB=△CAE. 求证:△ABC △△ADE.4.如图,△ABC 中,点 D ,E ,F 分别是 AB ,BC ,CA 的中点,求证:△ABC ∽△EF D .A .B .C .D . 第1题 A C B。

数学教案-三角形相似的判定 第3课时【优秀3篇】

数学教案-三角形相似的判定 第3课时【优秀3篇】

数学教案-三角形相似的判定第3课时【优秀3篇】角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。

2.继续渗透和培养学生对类比数学思想的认识和理解。

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。

4.通过学习,了解由特殊到一般的唯物辩证法的观点。

二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。

2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。

四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。

这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。

应让学生对此有所了解。

定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。

例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。

还可提问:(1)当BD与、满足怎样的关系时∽ ?(答案:)(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)(答案:或两种情况)探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。

相似三角形的判定(2)导学案

相似三角形的判定(2)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(2)【学习目标】1. 探究平行相似.2. 会证明定理并灵活应用.【重点】三角形相似的判定方法----平行相似 .【难点】证明定理并灵活应用.预学案(回顾)1、相似三角形的定义:如果两个三角形的_________,__________________,那么这两个三角形相似.2、平行线分线段成比例定理:两条直线被 所截,所得的 线段成比例3、推论:平行于三角形一边的直线截其他两边(或两边延长线),所得的_______线段的比_______.探究案探究1:三角形相似的判定定理------平行相似:如图,在△ABC 中,D 为AB 上任意一点,过点D 作BC 的平行线DE ,交AC 于点E .问题1 △ADE 与△ABC 的三个内角分别相等吗?∠A ∠A , ∠ADE ∠B , ∠AED ∠C ,问题2 分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?______=_______=BCDE 问题3 你认为△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,你的结论还成立吗? △ADE △ABC猜想: ∵DE ∥BC∴______ = _______.而BCDE 中的DE 不在△ABC 的边BC 上,不能直接利用前面的结论,但从要证的AC AE =BC DE 可以看出,除DE 外,AE ,AC ,BC 都在△ABC 的边上,因此只需将DE _______到BC边上去,使得_____=DE,再证明ACAE=________就可以了.只要过点E作EF∥AB,交BC于点F,BF就是_____DE所得的线段.请你写出证明过程:结论:判定三角形相似的定理:,所构成的三角形与原三角形相似.三角形相似的两种常见类型:“A”型“X”型检测案1.已知在△ABC中,D,E分别是AB,BC的中点,ED:AC等于()A.1:2 B.1:3 C.2:3 D.2:52. 如图,在△ABC中,EF∥BC,AE= 2 cm,BE = 6 cm,BC=4 cm,则EF的长为()A.1 cm B.cmC.3 cm D.2 cm3.如图,在△ABC中,DE∥BC,则△____∽△____,对应边的比为=.4.如图,在平行四边形ABCD中,EF∥AB,DE:EA=2 :3,EF=4,求CD的长.34ABAD。

九年级数学上册《相似三角形判定定理三》教案、教学设计

九年级数学上册《相似三角形判定定理三》教案、教学设计
4.教师结合教材,详细讲解相似三角形判定定理三的证明过程,让学生理解并掌握定理的原理。
(三)学生小组讨论
1.教师将学生分成小组,每组发放一张含有相似三角形的图形,要求学生在规定时间内找出图形中的相似三角形,并说明判定依据。
2.小组讨论过程中,教师巡回指导,解答学生的疑问,引导学生运用相似三角形判定定理三进行判断。
-在复杂图形中,找出相似三角形并运用定理进行判定。
-将相似三角形的性质与实际问题的解决相结合,培养学生的解决问题能力。
(二)教学设想
1.导入设计
-通过展示生活中的相似三角形实例,如建筑物的立面图、桥梁的形状等,引出相似三角形判定定理三的学习。
-利用多媒体动画,形象直观地呈现相似三角形的形成过程,激发学生的学习兴趣。
5.预习作业:预习下一节课要学习的相似三角形的其他性质和判定方法,为课堂学习做好准备。
作业要求:
1.请同学们认真完成作业,保持字迹工整,步骤清晰,便于教师批改和辅导。
2.遇到问题时,鼓励同学们积极思考、查阅资料或与同学、老师讨论,培养解决问题的能力。
3.作业完成后,请同学们认真检查,确保解答正确,并对解题过程进行总结和反思。
四、教学内容与过程
(一)导入新课
1.教师出示准备好的图片,如建筑物的立面图、桥梁的形状等,引导学生观察并提问:“同学们,你们在生活中见过这样的图形吗?它们之间有什么共同特征?”
2.学生回答后,教师总结:“这些图形都是三角形,而且它们都是相似的。今天我们就来学习相似三角形的判定定理三,探讨如何判断两个三角形是否相似。”
九年级数学上册《相似三角形判定定理三》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握相似三角形判定定理三的内容,即两边对应成比例且夹角相等的两个三角形相似。

秋九年级数学上册 4.4 探索三角形相似的条件 第3课时 三边成比例的判定方法导学案 (新版)北师大

秋九年级数学上册 4.4 探索三角形相似的条件 第3课时 三边成比例的判定方法导学案 (新版)北师大

第3课时三边成比例的判定方法1.掌握三角形相似的判定方法3.2.会用相似三角形的判定方法3进行计算.阅读教材P93-94,自学“例3”,理解相似三角形判定定理3.自学反馈学生独立完成后集体订正①如果一个三角形的两个角与另一个三角形的两个角对应,那么这两个三角形相似.②如果两个直角三角形中,有一条直角边和斜边对应成比例,那么这两个直角三角形.③要判定两个直角三角形相似,最简单的方法就是再找对应相等,就可以根据相似三角形的判定3,判定这两个直角三角形相似.④如图所示,已知∠ADE=∠B,则△AED∽.理由是.⑤顶角对应相等的两个等腰三角形相似吗?为什么?要根据已知条件选择适当的方法.活动1 小组讨论例1 如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?解:△ABC∽△A′B′C′.判断方法有:1.三边成比例的两个三角形相似.2.两角分别相等的两个三角形相似.3.两边成比例且夹角相等.4.定义法.活动2 跟踪训练(独立完成后展示学习成果)ABC △与'''A B C △中,9AB cm =,8BC cm =,5CA cm =,'' 4.5A B cm =,'' 2.5B C cm =,''4C A cm =,则下列说法错误的是( )A.ABC △和'''A B C △相似B.AB 和''A B 是对应边C.C ∠和'C ∠是对应角D.BC 和''B C 是对应边2.△ABC 的三边长分别为2、10和2,△A ′B ′C ′的两边长分别为1和5,如果△ABC ∽'''A B C ,则△A ′B ′C ′第三边的长为( )A.22B.22ABC △的各边都分别扩大为原来的2倍,得到'''A B C △,则下列结论正确的是( )A. ABC △与'''A B C △的对应角不相等B. ABC △与'''A B C △不一定相似C. ABC △与'''A B C △的相似比为12∶D. ABC △与'''A B C △的相似比为21∶△ABC 的三边长分别为6cm ,7.5cm ,9cm ,△DEF 的一边长为4cm ,如果这两个三角形相似,则△DEF 的另两条边长可以是( )A.2cm ,3cmB.4cm ,5cmC.5cm ,6cmD.6cm ,7cm5.下列四个三角形,与左图中的三角形相似的是()△ABC 和△A'B'C'中,AB=12,BC=15,AC=24,A'B'=20,B'C'=25,A'C'=40,则△ABC 和△A'B'C'(填“相似”或“不相似”).7.如图所示,要使△ABC ∽△DEF ,则x =.8.如图,点O 是ABC △外的一点,分别在射线OA OB OC ,,上取一点A B C ''',,,使得3OA OB OC OA OB OC'''===,连接A B B C C A '''''',,,所得A B C '''△与ABC △是否相似?加以说明.活动1 小组讨论例2 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD 与a,b 之间满足怎样的关系时,这两个三角形相似?解:∵∠ABC=∠CDB=90°,(1)当BCBD=ABCD时,△ABC∽△CDB,此时BCBD=ABCD=ACBC,即ab=bBD.∴BD=2ba.即当BD=2ba时,△ABC∽△CDB;(2)当ABBD=BCCD时,△ABC∽△BDC,此时ABBD=BCCD=ACBC,即ABBD=ACBC.∴22a bBD-=ab,BD=ba22a b-.∴当BD=ba22a b-时,△ABC∽△BDC.综上所述,即当BD=2ba或BD=ba22a b-时,这两个三角形相似.本题仍是要考虑当两个三角形有一个角相等时,夹这个角的两边的比相等时有两种情况.活动2 跟踪训练(独立完成后展示学习成果)如图,在△ABC中,∠C=90°,BC=8 cm,4AC-3BC=0,点P从B点出发,沿BC方向以2 cm/s的速度移动,点Q从C点出发,沿CA方向以1 cm/s的速度移动,若P、Q分别从B、C同时出发,经过多少秒时,△CPQ与△CBA 相似?活动3 课堂小结1.本节学习的数学知识:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.2.根据题目的具体情况,选择适当的方法证明三角形相似.3.本节学习的数学思想:数形结合、分类讨论.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈①相等②相似③一个锐角④△ACB 略⑤相似 略【合作探究1】活动2 跟踪训练 1.D 2.A 3.C 4.C 5.B 6.相似 7. 403OA OC OA OC ''==,AOC A OC ''∠=∠,AOC A OC ''∴△∽△.3A C OA AC OA'''==∴.同理33B C A B BC AB ''''==,,A C B C A B AC BC AB''''''==∴. ∴A B C ABC '''△∽△.【合作探究2】活动2 跟踪训练设经过t s 时,△CPQ 和△CBA 相似,此时BP=2t cm ,CQ=t cm ,则CP=(8-2t) cm ,其中0<t<4. 又BC=8 cm ,4AC-3BC=0,求得AC=6 cm.(1)当PQ ∥AB 时,△CPQ ∽△CBA,则CP CB =CQ CA ,即828t -=6t ,所以t=2.4. (2)当CP CA =CQ CB 时,△CPQ ∽△CAB,则826t -=8t ,解得t=3211. 故经过2.4 s 或3211 s 时,△CPQ 与△CBA 相似.。

沪科版数学九上22.2《相似三角形的判定》word学案3

沪科版数学九上22.2《相似三角形的判定》word学案3
☆合作探究☆
1、如图,在四边形ABCD中,∠A =∠CBD,AB = 15cm,AD = 20cm,BD = 18cm,BC = 24cm,求CD的长.
2、如图,点C、D在线段AB上,△PCD是等边三角形.
(1)当AC、CD、BD满足什么
数量关系时,△ACP∽△PDB?
(2)当△ACP∽△PDB时,求
九年级(上)数学导学案
课题:22.2相似三角形的判定(3)编号9S030
教学思路
(纠错栏)
教学思路
(纠错栏)
学习目标:
1、掌握并会推导相似三角形的判定定理2.
2、会用相似三角形的判定定理2进行一些简单的判断、证明和计算.
学习重点:灵活运用相似三角形的判定定理2证明和解决有关问题.
预设难点:相似三角形的判定定理2的推导和应用.
∠APB的度数.
☆归纳反思☆
本节课你有哪些收获?还存在哪些困惑?
☆达标检测☆
1、如图,D是△ABC一边BC上的一点,△ABC∽△DBA的条件是( )
A. B. C.AB2=CD·BC D. =BD·
2、已知:如图,D是△ABC边AB上的一点,且AC2=AD·AB.
求证:∠ADC=∠AC边(或)相交,截得的三角形与原三角形.
2、如果一个三角形的两个角分别与另一个三角形的两个角,那么这两个三角形相似(可简单说成:).
3、如果一个三角形的两条边分别与另一个三角形的两条边,并且夹角,那么这两个三角形全等(可简单说成:).
二、导读
结合课本写一写相似三角形的判定定理2的证明过程.

九年级数学上册《相似三角形的判定定理的应用》教案、教学设计

九年级数学上册《相似三角形的判定定理的应用》教案、教学设计
(二)讲授新知,500字
1.教师引导学生复习全等三角形的判定定理,为新课的学习打下基础。
2.提问:“全等三角形有什么特点?”学生回答后,教师总结:“全等三角形的大小和形状完全相同,那么相似三角形呢?”
3.教师给出相似三角形的定义,解释相似比的概念,并强调相似三角形的对应角相等、对应边成比例。
4.讲解相似三角形的判定定理,如AA、SSS、SAS、HL等,结合图形进行演示,让学生直观地理解定理的含义。
2.能够运用判定定理解决实际问题,提高几何解题能力。
3.培养学生的逻辑思维能力和几何直观。
(二)教学难点
1.相似三角形判定定理的理解与运用,特别是AA定理和SAS定理的灵活运用。
2.学生在解决实际问题时,难以将问题转化为相似三角形的判定问题。
3.学生在合作交流过程中,如何有效地表达自己的观点和倾听他人的意见。
4.通过变式练习,巩固所学知识,提高学生的灵活运用能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生热爱数学的情感。
2.培养学生勇于探索、积极思考、克服困难的意志品质,增强学生的自信心。
3.引导学生认识到数学在生活中的广泛应用,体会数学的价值,提高学生的数学素养。
4.通过合作交流,培养学生团结协作、互相帮助的精神,增强学生的团队意识。
(三)教学设想
1.创设情境,导入新课:通过生活中常见的相似图形,如照片放大、建筑设计等,引发学生对相似三角形判定定理的兴趣。
2.自主探究,合作交流:给予学生充足的时间和空间,让他们在自主探究的基础上,进行小组合作交流,共同发现相似三角形的判定定理。
-教师引导学生通过观察、猜想、验证等方法,探索相似三角形的判定条件。
(五)总结归纳,500字

北师大版数学九年级上册4.4.3探索三角形相似的条件(三)教学设计

北师大版数学九年级上册4.4.3探索三角形相似的条件(三)教学设计
3.拓展延伸:设计不同难度的练习题,让学生在解决问题的过程中,由浅入深地理解和掌握相似三角形的性质。
4.思维训练:鼓励学生多角度思考问题,培养其逻辑思维和几何直观。
(三)情感态度与价值观
1.培养学生对几何学习的兴趣,激发其探究精神和求知欲望。
2.培养学生团队合作意识,使其在小组活动中学会互相尊重、互相帮助。
4.知识拓展:教师引导学生思考,除了AAA相似定理外,还有哪些相似三角形的判定方法?它们之间是否存在联系?
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
a.总结已学的相似三角形判定方法。
b.探讨AAA相似定理在实际问题中的应用。
c.分析相似三角形性质在解决问题时的作用。
2.教师指导:教师巡回指导,解答学生的疑问,引导学生深入探讨相似三角形的性质和应用。
a.学生利用几何画板等教学软件,观察动态变化的相似三角形,发现并总结AAA相似定理。
b.教师巡回指导,给予学生及时反馈,纠正错误理解,引导其深入思考。
3.例题讲解,巩固知识:结合教材中的例题,讲解运用AAA相似定理分析和解决问题的方法,强调证明过程的严谨性。
4.拓展延伸,提高能力:设计不同层次的练习题,让学生在解决问题中巩固所学知识,提高几何直观和推理能力。
北师大版数学九年级上册4.4.3探索三角形相似的条件(三)教学设计
一、教学目标
(一)知识与技能
1.理解并掌握相似三角形的判定条件——AAA(角角角)相似定理,即若两个三角形的三组对应角相等,则这两个三角形相似。
2.能够运用AAA相似定理,识别并证明两个三角形之间的相似关系。
3.能够运用相似三角形的性质,解决实际问题,如求三角形未知边长或角度。
4.情感教育:教师鼓励学生树立信心,勇于面对几何学习中的困难,不断提高自己的几何素养。

北师大版九年级数学上册《图形的相似》导学案:相似三角形判定定理的证明

北师大版九年级数学上册《图形的相似》导学案:相似三角形判定定理的证明

北师大版九年级数学上册《图形的相似》导学案相似三角形判定定理的证明【学习目标】1.了解相似三角形判定定理会证明相似三角形判定定理;2.掌握推理证明的方法,发展演绎推理能力.【知识梳理】1.两角 的两个三角形相似. 2.两边 且 的两个三角形相似.3.三边 的两个三角形相似.【典型例题】知识点一:两角分别相等的两个三角形相似.1.已知:如图,∠ABD=∠C ,AD=2, AC=8,求AB.知识点二:两边成比例且夹角相等的两个三角形相似.2.如图,△ABC,AB=12,AC=15,D 为AB 上一点,且AD=23AB,在AC 上取一点E,使以A. D. E 为顶点的三角形与ABC 相似,则AE 等于( )A. 6.4B. 10C. 6.4或10D. 以上答案都不对知识点三:定理 三边成比例的两个三角形相似.3.下列四个三角形,与左图中的三角形相似的是( )【巩固训练】1. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A. =B.C.D.2如图,矩形ABCD 中,AD =4,AB =10,P 为CD 边上的动点,当DP = 时,△ADP 与△BCP 相似2题1题图3.如图,在等边三角形 ABC 中, D , E , F 分别是三边上的点, AE = BF = CD ,那么△ABC 与△DEF 相似吗? 请证明你的结论.4.已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD.【拓展延伸】5.如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,DE=DF ,∠EDF=∠A .(1)找出图中一对相似的三角形,并证明(2)求证:BC AB CE BD .6.如图,AB ∥CD ,AC 与BD 交于点E ,且∠ACB =90°,AB =6,BC =6,CE =3. (1)求CD 的长;(2)求证:△CDE ∽△BDC .4题图 A D B E C F。

1.2.4判定定理3

1.2.4判定定理3
.

BC B C

∴ ∽ ( 四、有效训练 1.如图,在大小为 4×4 的正方形网格中,是相似三角形的是(
) )
A、①和② B、②和③ C、①和③ D、②和④
2. (2011•深圳) 如图, 小正方形的边长均为 1, 则下列图中的三角形 (阴影部分) 与△ABC 相似的是 (

A、 3.已知:
问题:如图,在△ABC 与△A′B′C′中,已知 求证:△ABC~△A′B′C′
=
AB AC = A B AC
BC BC
课 内 探 究
你能模仿相似三角形判定 2 给与证明吗? 结论:相似三角形的判定定理 3 。 简单说成
三、精讲点拔 例 1:根据下列条件,判断△ABC 与△A’B’C’是否相似,并说明理由. (1)∠A=1200,AB=7cm,AC=14cm,∠A’=1200,A’B’=3cm,A’C’=6cm. 解:∵
B、
C、
D、
AD AE DE ,求证:∠ BAD =∠ CAE . AB AC BC
A D B
E
C
4. (2010•杭州)如图,AB=3AC,BD=3AE,又 BD∥AC,点 B,A,E 在同一条直线上. (1)求证:△ABD∽△CAE; (2)如果 AC=BD,AD=2 2 BD,设 BD=a,求 BC 的长.
重点:掌握判定方法,会用判定方法判定两个三角形相似 难点:会准确的运用三角形相似的条件来判定三角形相似 1、 什么叫相似多边形? 2、 什么叫相似三角形? 3、 我们学的预备定理是? 4、 相似三角形的判定方法我们学了哪些了? 一、自主学习 阅读课本 17-18 页,本课我们又将学习的一个判定定理是:_________________________________ 除此之外,咱们还学习了哪些? ______________________________________________ ______________________________________________ 二、合作探究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册--相似三角形的判定定理3导学案
教学思路
(纠错栏)
教学思路
(纠错栏)
教学目标:
1、掌握并会推导相似三角形的判定定理3.
2、会用相似三角形的判定定理1、2、3进行一些简单的判断、证明和计算.
教学重点:灵活运用相似三角形的判定定理3证明和解决有关问题.
预设难点:相似三角形的判定定理3的推导和应用.
(1)∠A=1200,AB=7,AC=14,∠A1=1200,A1B1= 3,A1C1=6.
(2)∠A=380,∠C=970,∠A1=380,∠B1=450
(3)
2、如图,在正方形网格上有两个三角形 和 ,
还存在哪些困惑?
☆ 达标检测 ☆
1、如图,要使△ADE∽△ABC,只给出一个条件即可.
☆ 预习导航 ☆
一、链接
1、回忆相似三角形的判定定理1、2的内容.
定理1可简单说成:.
定理2可简单说成:.
2、简单说一说相似三角形的判定定理1、2的证明过程.
二、导读
结合课本和相似三角形的判定定理1、2的证明过程写一写相似三角形的判定定理3的证明过程.
☆ 合作探究 ☆
1、根据下列条件,判断∆ABC与∆A1B1C1是否相似,并说明理由:
2、已知Δ 与ΔDEF相似,AB= ,AC= ,BC=2,DE=1,DF= ,求EF的长.(注意多种情况)
3、如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)请写出图中相似三角形(相似比为1除外);
(2)求BP:PQ:QR .
相关文档
最新文档