2014北京市朝阳区高考数学(文)二模试题(附答案)
2014年高考真题——文科数学(北京卷)解析版 Word版含解析
课标文数【2014·北京文卷】一、选择题1.[2014•北京文卷]若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 【答案】C【解析】{}{}{}2,13,2,14,2,1,0==I I B A . 2. [2014•北京文卷]下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =【答案】B【解析】由定义域为R 排除选项C ,定义域单调递增排除选项A 、D. 3. [2014•北京文卷]已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】2a -b =()()()7,51,14,22=--. 4. [2014•北京文卷]执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出【答案】C【解析】7222210=++=S . 5. [2014•北京文卷]设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 【答案】D【解析】当0<⋅b a 时,由b a >推不出22b a >,反之也不成立. 6. [2014•北京文卷] 已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 【答案】C 【解析】在同一坐标系中作函数()xx h 6=与()x x g 2log =的图象如图,可得()x f 零点所在区间为()4,2.7. [2014•北京文卷]已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o ,则m 的最大值为( )A.7B.6C.5D.4 【答案】B【解析】由图可知当圆C 上存在点P 使O =∠90APB ,即圆C 与以AB 为直径的圆有公共点,∴143122+≤+≤-m m ,解之得64≤≤m .8. [2014•北京文卷]加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 O 5430.80.70.5t p记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 【答案】B【解析】由题意得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 5255.04168.0397.0,解之得⎪⎩⎪⎨⎧-==-=25.12.0c b a ,∴()0625.075.32.025.12.022+--=-+-=t t t p ,即当75.3=t 时,P 有最大值.二、填空题9. [2014•北京文卷]若()()12x i i i x R +=-+∈,则x = . 【答案】2【解析】∵()i xi i i x 211+-=+-=+,∴2=x . 10. [2014•北京文卷]设双曲线C 的两个焦点为()2,0-,()2,0,一个顶点式()1,0,则C 的方程为.()0,m A -()0,m BP【答案】122=-y x【解析】由题意设双曲线方程1222=-by x ,又∵()2221=+b ,∴12=b即双曲线方程为122=-y x .11. [2014•北京文卷]某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .侧(左)视图正(主)视图11122【答案】 22【解析】三棱锥的直观图如图所示,并且ABC PB 面⊥,2=PB ,2,2===BC AC AB ,222222=+=PA ,()62222=+=PC .12. [2014•北京文卷]在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 【答案】2、815PBAC【解析】由余弦定理得24112241cos 2222=⨯⨯⨯-+=-+=C ab b a c ,即2=c ; 872221442cos 222=⨯⨯-+=-+=bc a c b A ,∴815871sin 2=⎪⎭⎫⎝⎛-=A . 13. [2014•北京文卷]若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则3z x y =+的最小值为 .【答案】1【解析】可行域如图,当目标函数线x y z 3+=过可行域内A 点时,z 有最小值,联立⎩⎨⎧=-+=011y x y ,解之得()1,0A ,11103min =⨯+⨯=Z .14. [2014•北京文卷] 【答案】42【解析】交货期最短即少耽误工期,所以先让徒弟加工原料B ,交货期为4215216=++天. 顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都 完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序 时间 原料粗加工精加工原料A 9 15 原料B6 21则最短交货期为 工作日15. [2014•北京文卷]已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.1=y 01=--y x 01=-+y x xy 3-=A(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.【解析】⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --=== 所以()()11312n a a n d n n =+-==L ,,. 设等比数列{}n n b a -的公比为q ,由题意得·· 344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=L ,, ⑵ 由⑴知()13212n n b n n -=+=L ,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×. 所以,数列{}n b 的前n 项和为()31212n n n ++-.16. [2012•北京文卷] 函数()3sin 26f x x π⎛⎫=+⎪⎝⎭的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值; (2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值. 【解析】⑴ ()f x 的最小正周期为π07π6x =. 03y =⑵ 因为ππ212x ⎡⎤∈--⎢⎥⎣⎦,,所以π5π2066x ⎡⎤+∈-⎢⎥⎣⎦,.于是当π206x +=,即π12x =-时,()f x 取得最大值0;当ππ262x +=-,即π3x =-时,()f x 取得最小值3-. 17. [2014•北京文卷]如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥. 又因为AB BC ⊥.所以AB ⊥平面11B BCC .所以平面ABE ⊥平面11B BCC .(Ⅱ)取AB 中点G ,连结EG ,FG . 因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC =.因为11AC A C ∥,且11AC A C =, 所以1FG EC ∥,且1FG EC =. 所以四边形1FGEC 为平行四边形. 所以1C F EG ∥.又因为EG ⊂平面ABE ,1C F ⊄平面ABE ,GC 1B 1A 1FE CBA所以1C F ∥平面ABE .(Ⅲ)因为12AA AC ==,1BC =,AB BC ⊥,所以AB ==. 所以三棱锥E ABC -的体积111112332ABC V S AA =⋅=⨯⨯=△. 18. [2014•北京文卷]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距. 课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.250.1252b ===频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. 19. [2014•北京文卷] 已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=.所以24a =,22b =,从而2222c a b =-=. 因此2a =,c =.故椭圆C的离心率c e a ==.(Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=u u u r u u u r, 即0020tx y +=,解得02y t x =-. 又220024x y +=,所以()()222002AB x t y =-+- ()22000022y x y x ⎛⎫=++- ⎪⎝⎭2220002044y x y x =+++()2202224442x x x x --=+++ ()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为 20. [2014•北京文卷] 已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)解:(Ⅰ)由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛= ⎝()11f f ==-所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝ . (Ⅱ)设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -,因此()()2000631t y x x -=-- . 整理得3204630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.()g x 与()g x '的情况如下:)当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有1个零点.由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--, .(Ⅲ)过点()12A -, 存在3条直线与曲线()y f x =相切;过点()210B ,存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:。
2014年北京高考文科数学试题含答案(Word版)(卷)
2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}32.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,94.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15 输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点 P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京高考数学真题及答案(文科)
绝密★启封并使用完毕前2014年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{0,1,2,4}IB=,则A B=A=,{1,2,3}(A){0,1,2,3,4}(B){0,4}(C){1,2}(D){3}(2)下列函数中,定义域是R且为增函数的是(A)e xy x=y-=(B)3(C)lny x==(D)||y x(3)已知向量(2,4)a bb,则2-==-=a,(1,1)(A)(5,7)(B)(5,9)(C)(3,7)(D)(3,9)(4)执行如图所示的程序框图,输出的S值为Array(A)1(B)3(C)7(D)15数学(文)(北京卷)第1 页(共13 页)数学(文)(北京卷) 第 2 页(共 13 页)(5)设,a b 是实数,则“a b >”是“22a b >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)已知函数26()log f x x x =-.在下列区间中,包含()f x 零点的区间是 (A )(0,1) (B )(1,2) (C )(2,4)(D )(4,)+∞(7)已知圆22:(3)(4)1C x y -+-=和两点(,0),(,0)A m B m - (0m >).若圆C 上存在点P ,使得90APB ∠=°,则m 的最大值为 (A )7 (B )6 (C )5(D )4(8)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系2p at bt c =++(,,a b c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 (A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟数学(文)(北京卷) 第 3 页(共 13 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京高考文科数学试题及答案(Word版)
2014 年一般高等学校招生全国一致考试北京卷文科数学本试卷共 6 页, 150 分。
考试时长120 分钟,。
考生务势必答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8 小题,每题 5 分,共 40 分。
在每题列出的 4 个选项中,选出切合题目要求的一项。
1.若会合A 0,1,2,4 , B 1,2,3 ,则A B ()A. 0,1,2,3,4B. 0,4C. 1,2D. 32.以下函数中,定义域是R 且为增函数的是()A. y e xB. y xC. y ln xD. y x3.已知向量a 2,4 , b 1,1 ,则 2a b ()A. 5,7B. 5,9C. 3,7D. 3,94.履行以下图的程序框图,输出的S 值为()A. 1B. 3C. 7D. 15开始否是输出结束5.设a、b是实数,则“ a b ”是“ a2 b2”的()A. 充分而不用要条件B. 必需而不用要条件C.充分必需条件D. 既不充分不用要条件6.已知函数f x 6log 2 x ,在以下区间中,包括 f x 零点的区间是()xA. 0,1 1,2 2,4 D. 4,B. C.7.已知圆C : x2 21和两点A m,0 , B m,0 m 0 ,若圆C上存在点3 y 4P ,使得 APB 90 ,则 m 的最大值为()A. 7B. 6C. 5D. 48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”at 2 . 咋特定条件下,可食用率p 与加工时间t(单位:分钟)学科网知足的函数关系 p bt c ( a 、b、 c 是常数),以下图记录了三次实验的数据. 依据上述函数模型和实验数据,能够获得最正确加工时间为()A. 3.50分钟B. 3.75分钟C. 4.00分钟D. 4.25分钟p0.80.70.5O 3 4 5 t第 2 部分(非选择题共 110 分)二、填空题共 6 小题,每题 5 分,共 30 分。
2014年北京市数学(文)高考真题含答案带解析(超完美word版)
2014年普通高等学校招生全国统一考试北京卷文科数学一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B = ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.y x =C.ln y x =D.y x =3.已知向量()2,4a = ,()1,1b =-,则2a b -= ( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.155.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 6.已知函数()26log f x x x=-,在下列区间中, 包含()f x 零点的区间是( ) A.()0,1B.()1,2C.()2,4D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P , 使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”. 在特定条件下,可食用率p 与加工时间t (单位:分钟) 满足的函数关系2p at bt c =++(a 、b 、c 是常数), 图中记录了三次实验的数据.根据上述函数模型和实验数据, 可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题共6小题,每小题5分,共30分。
9.若()()12x i i i x R +=-+∈,则x = . 10.设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为.11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.侧(左)视图正(主)视图12.在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 13.若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y +的最小值为 .14.顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都 完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为 工作日.三、解答题共6小题,共80分。
数学_2014年某校高考数学二模试卷(文科)(含答案)
2014年某校高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合P ={3, 4, 5},Q ={6, 7},定义P ∗Q ={(a, b)|a ∈P, b ∈Q},则P ∗Q 的子集个数为( )A 7B 12C 32D 64 2. 已知复数a−2i i=b +i (a ,b ∈R ,i 为虚数单位),则a −2b =( )A 1B 2C 3D 43. “p 或q 为真命题”是“p 且q 为真命题”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 4. 一个几何体的三视图如图所示,则该几何体的体积是( )A 6B 8C 10D 12 5. 已知数阵[a 11a 12a 13a 21a 22a 23a 31a 32a 33]中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=8,则这9个数的和为( ) A 16 B 32 C 36 D 726. 如图所示的程序框图,它的输出结果是( )A 3B 4C 5D 67. 已知三个实数2,m ,8构成一个等比数列,则圆锥曲线x 2m +y 22=1的离心率为( )A √22 B √3 C √22或√3 D √22或√628. 若a ≥0,b ≥0,且当{x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,则以a ,b 为坐标的点P(a, b)所形成的平面区域的面积是( ) A 12B π4C 1D π29. 在平行四边形ABCD 中,AD =1,∠BAD =60∘,E 为CD 的中点.若AD →⋅BE →=12,则AB的长为( )A 12B 1C 32D 210. 过抛物线y 2=2px(p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF →=λFB →(λ>1),则λ的值为( ) A 5 B 4 C 43 D 5211. 已知函数f(x)对定义域R 内的任意x 都有f(x)=f(4−x),且当x ≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a <4则( )A f(2a )<f(3)<f(log 2a)B f(3)<f(log 2a)<f(2a )C f(log 2a)<f(3)<f(2a )D f(log 2a)<f(2a )<f(3)12. 函数f(x)={1−|x −1|,x ∈[0,2]12f(x −2),x ∈(2,+∞),则下列说法中正确命题的个数是( )①函数y =f(x)−ln(x +1)有3个零点;②若x >0时,函数f(x)≤kx 恒成立,则实数k 的取值范围是[32, +∞);③函数f(x)的极大值中一定存在最小值;④f(x)=2k f(x +2k),(k ∈N),对于一切x ∈[0, +∞)恒成立. A 1 B 2 C 3 D 4二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题纸的相应位置. 13. 若非零向量a →、b →,满足|a →|=|b →|,且(2a →+b →)⋅b →=0,则a →与b →的夹角大小为________. 14. 函数f(x)=sinx +cosx ,在各项均为正数的数列{a n }中对任意的n ∈N ∗都有f(a n +x)=f(a n −x)成立,则数列{a n }的通项公式可以为(写一个你认为正确的)________. 15. 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x −2)2+y 2=2有公共点的概率为________.16. 已知四棱柱ABCD −A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AA 1=2,底面ABCD 的边长均大于2,且∠DAB =45∘,点P 在底面ABCD 内运动且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥P −D 1MN 体积的最大值为________.三、解答题:本大题共6个小题,共70分.解答应写文字说明、证明过程或演算步骤 17. 在△ABC 中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直l 1:ax +y +1=0与直线l 2:(b 2+c 2−bc)x +ay +4=0互相平行(其中a ≠4) (1)求角A 的值,(2)若B ∈[π2,2π3),求sin 2A+C 2+cos2B 的取值范围.18. 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155, 160),第二组[160, 165),…,第八组[190, 195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人. (1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件E ={|x −y|≤5},事件F ={|x −y|>15},求P(E ∪F).19. 如图,四边形ABCD 中,AB ⊥AD ,AD // BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF // AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(1)当BE =1,是否在折叠后的AD 上存在一点P ,且AP →=λPD →,使得CP // 平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(2)设BE =x ,问当x 为何值时,三棱锥A −CDF 的体积有最大值?并求出这个最大值. 20. 已知函数f(x)=e x ,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下界函数.(1)若函数g(x)=kx 是f(x)的下界函数,求实数k 的取值范围;(2)证明:对任意的m ≤2,函数ℎ(x)=m +lnx 都是f(x)的下界函数.21. 已知F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,O 为坐标原点,点P(−1, √22)在椭圆上,线段PF 2与y 轴的交点M 满足PM →+F 2M →=0→.(1)求椭圆的标准方程;(2)圆O 是以F 1F 2为直径的圆,一直线l:y =kx +m 与圆O 相切,并与椭圆交于不同的两点A 、B ,当OA →⋅OB →=λ且满足23≤λ≤34时,求△OAB 的面积S 的取值范围.四、选做题:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22. 选修4一1:几何证明选讲如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC // OD.(1)求证:DE是圆O的切线;(2)如果AD=AB=2,求EB.【选修4-4:坐标系与参数方程】23. 在极坐标系内,已知曲线C1的方程为ρ2−2ρ(cosθ−2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为{5x=1−4t5y=18+3t(t为参数).(1)求曲线C1的直角坐标方程以及曲线C2的普通方程;(2)设点P为曲线C2上的动点,过点P作曲线C1的两条切线,求这两条切线所成角余弦的最小值.【选修4-5:不等式选讲】24. 设函数f(x)=|2x+1|−|x−4|.(1)求不等式f(x)>2的解集;(2)求函数f(x)的最小值.2014年某校高考数学二模试卷(文科)答案1. D2. C3. B4. D5. D6. C7. C8. C9. D10. B11. C12. B13. 120∘14. a n=(n−34)π(n∈Z)15. 71216. 13(√2−1)17. 解:(1)l1 // l2,得a2=b2+c2−bc(a≠4)即b2+c2−a2=bc…∴ cosA=b2+c2−a22bc =bc2bc=12∵ A∈(0, π),∴ A=π3.…(2)sin2A+C2+cos2B=cos2B2+2cos2B−1=cosB+12+2cos2B−1=2cos2B+12cosB−1 2=2(cosB+18)2−1732…∵ B∈[π2,2π3), ∴ cosB∈(−12,0]…∴ 2(cosB+18)2−1732∈[−1732,−14)…即sin2A+C2+cos2B的取值范围为[−1732,−14)…18. 解:(1)第六组的频率为450=0.08,所以第七组的频率为1−0.08−5×(0.008×2+0.016+0.04×2+0.06)=0.06;(2)身高在第一组[155, 160)的频率为0.008×5=0.04,身高在第二组[160, 165)的频率为0.016×5=0.08,身高在第三组[165, 170)的频率为0.04×5=0.2,身高在第四组[170, 175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5估计这所学校的800名男生的身高的中位数为m,则170<m<175由0.04+0.08+0.2+(m−170)×0.04=0.5得m=174.5所以可估计这所学校的800名男生的身高的中位数为174.5由直方图得后三组频率为0.06+0.08+0.008×5=0.18,所以身高在180cm以上(含180cm)的人数为0.18×800=144人.(3)第六组[180, 185)的人数为4人,设为a,b,c,d,第八组[190, 195]的人数为2人,设为A,B,则有ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB共15种情况,因事件E={|x−y|≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E包含的基本事件为ab,ac,ad,bc,bd,cd,AB共7种情况,故P(E)=715.由于|x−y|max=195−180=15,所以事件F={|x−y|>15}是不可能事件,P(F)=0由于事件E和事件F是互斥事件,所以P(E∪F)=P(E)+P(F)=715.19. CP // 平面ABEF成立.(2)∵ 平面ABEF⊥平面EFDC,ABEF∩平面EFDC=EF,AF⊥EF,∴ AF⊥平面EFDC,∵ BE=x,∴ AF=x,(0<x<4),FD=6−x,故三棱锥A−CDF的体积V=13×12×2×(6−x)x=13[−(x−3)2+9]=−13(x−3)2+3,∴ x =3时,三棱锥A −CDF 的体积V 有最大值,最大值为3. 20. 解:(1)若g(x)=kx 为f(x)=e x 的下界函数,易知k <0不成立,而k =0必然成立. 当k >0时,若g(x)=kx 为f(x)=e x 的下界函数,则f(x)≥g(x)恒成立, 即e x −kx ≥0恒成立.令ϕ(x)=e x −kx ,则ϕ′(x)=e x −k .易知函数ϕ(x)在(−∞, lnk)单调递减,在(lnk, +∞)上单调递增.由ϕ(x)≥0恒成立得ϕ(x)min =ϕ(lnk)=k −klnk ≥0,解得0<k ≤e . 综上知0≤k ≤e .(2)由(1)知函数G(x)=ex 是f(x)=e x 的下界函数,即f(x)≥G(x)恒成立. 由于 m ≤2,构造函数F(x)=ex −lnx −m(x >0), 则 F′(x)=e −1x =ex−1x,易知F(x)min =F(1e )=2−m ≥0,即ℎ(x)=m +lnx 是G(x)=ex 的下界函数, 即G(x)≥ℎ(x)恒成立.所以f(x)≥G(x)≥ℎ(x)恒成立,即m ≤2时,ℎ(x)=m +lnx 是f(x)=e x 的下界函数. 21. 解:(1)∵ PM →+F 2M →=0→, ∴ 点M 是线段PF 2的中点, ∴ OM 是△PF 1F 2的中位线, 又OM ⊥F 1F 2, ∴ PF 1⊥F 1F 2,∴ {c =11a 2+12b 2=1a 2=b 2+c 2,解得a 2=2,b 2=1,c 2=1, ∴ 椭圆的标准方程为x 22+y 2=1. (2)∵ 圆O 与直线l 相切, ∴√k 2+1=1,即m 2=k 2+1,由{x 22+y 2=1y =kx +m,消去y , 得:(1+2k 2)x 2+4kmx +2m 2−2=0, ∵ 直线l 与椭圆交于两个不同点, ∴ Δ>0,∴ k 2>0,设A(x 1, y 1),B(x 2, y 2), 则x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−21+2k 2,y 1y 2=(kx 1+m)(kx 2+m) =k 2x 1x 2+km(x 1+x 2)+m 2 =m 2−2k 21+2k 2,OA →⋅OB →=x 1x 2+y 1y 2=1+k 21+2k 2=λ,∵ 23≤λ≤34,∴ 23≤1+k 21+2k 2≤34,解得:12≤k 2≤1, S =S △AOB =12|AB|⋅1=12√1+k 2√(−4km 1+2k 2)2−42m 2−21+2k 2 =√2(k 4+k 2)4(k 4+k 2)+1,设μ=k 4+k 2,则34≤μ≤2,S =√2μ4μ+1=√24+1μ,μ∈[34,2],∴ S 关于μ在[34,2]上单调递增, S(34)=√64,S(2)=23.∴√64≤S ≤23.22. (1)证:连接AC ,AB 是直径,则BC ⊥AC由BC // OD ⇒OD ⊥AC则OD 是AC 的中垂线⇒∠OCA =∠OAC ,∠DCA =∠DAC ,⇒∠OCD =∠OCA +∠DCA =∠OAC +∠DAC =∠DAO =90∘. ⇒OC ⊥DE ,所以DE 是圆O 的切线.(2) BC // OD ⇒∠CBA =∠DOA ,∠BCA =∠DAO ⇒△ABC ∽△AOD ⇒BC OA =AB OD ⇒BC =OA ⋅AB OD =1×2√5=2√55⇒BC OD =25⇒BE OE =25⇒BE OB =23 ⇒BE =2323. 解:(1)对于曲线C 1的方程为ρ2−2ρ(cosθ−2sinθ)+4=0,可化为直角坐标方程x 2+y 2−2x +4y +4=0,即(x −1)2+(y +2)2=1; 对于曲线C 2的参数方程为{5x =1−4t5y =18+3t(t 为参数),可化为普通方程3x +4y −15=0.(2)过圆心(1, −2)点作直线3x +4y −15=0的垂线,此时两切线成角θ最大,即余弦值最小.则由点到直线的距离公式可知,d =√32+42=4,则sin θ2=14,因此,cosθ=1−2sin 2θ2=78,因此两条切线所成角的余弦值的最小值是78.24. ①由{−x −5>2x <−12 ,解得x <−7; ②{3x −3>2−12≤x ≤4 ,解得53<x ≤4;③{x +5>2x >4,解得x >4;综上可知不等式的解集为{x|x <−7或x >53}.如图可知f(x)min =−92.。
2014年普通高等学校招生全国统一考试北京卷文科数学及答案
2014年普通高等学校招生全国统一考试(北京卷)数 学(文史类)本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分 不必要条件 6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞ 7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市朝阳2014届高三二模文科数学试卷(带解析)
北京市朝阳2014届高三二模文科数学试卷(带解析)1.若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于( )(A )()U A B ð (B )A B (C )A B (D )()U AB ð 【答案】A 【解析】 试题分析:因为{,,}A B a b c =,所以()U A B ð{}.d =而A B .φ=()U AB ð.U =所以选A.考点:集合运算2.下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( )(A )sin y x = (B )ln y x = (C )3y x = (D )2x y = 【答案】C【解析】试题分析:sin y x =是奇函数但在区间0,+∞()上不是单调函数.ln y x =在区间0,+∞()上单调递增但不是奇函数,3y x =既是奇函数又在区间0,+∞()上单调递增的函数,2xy =在区间0,+∞()上单调递增但不是奇函数.考点:函数奇偶性及单调性3.已知抛物线22x y =,则它的焦点坐标是( )(A )1,04⎛⎫ ⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫ ⎪⎝⎭ 【答案】B【解析】试题分析:因为抛物线22(0)x py p =>的焦点坐标为(0,),2p 所以抛物线22x y =的焦点坐标是10,2⎛⎫⎪⎝⎭.考点:抛物线焦点4.执行如图所示的程序框图.若输入3a =,则输出i 的值是( )(A )2 (B ) 3 (C ) 4 (D ) 5 【答案】C 【解析】试题分析:第一次循环,9,1,a i ==第二次循环,21,2,a i ==第三次循环,45,3,a i ==第四次循环,93,4,a i ==结束循环,输出 4.i = 考点:循环结构流程图5.由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界)用不等式组可表示为( ) (A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩ (B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩ (C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩ (D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩【答案】A 【解析】试题分析: 由题意得:所围成的三角形区域在直线10x y -+=的上方,直线50x y +-=的下方,及直线10x -=的右侧,所以10x y -+≤,50x y +-≤,10.x -≥ 考点:不等式组表示平面区域6.在区间ππ[-,]上随机取一个实数x ,则事件:“cos 0x ≥”的概率为( )(A )14 (B ) 34 (C )23 (D )12【答案】D 【解析】试题分析:由cos 0x ≥,x ∈ππ[-,]得:[,]22x ππ∈-,所以事件:“cos 0x ≥”的概率为()122.()2ππππ--=-- 考点:几何概型概率7.设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n n S a +的最小值为( ) (A )10 (B )92 (C )72 (D)12+【答案】B 【解析】试题分析:由题意得:(1),2n n n n a n S +==,所以8n n S a+1819.222n n +=+≥+=当且仅当4n =时取等号.因此8n n S a +的最小值为92.考点:基本不等式求最值8.已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是( )(A )4π (B )16π ( C )32π (D )36π 【答案】C 【解析】试题分析:圆心00(,)x y 在圆224x y +=上运动 一周,点P 在平面上所组成图形为以坐标原点为圆心,6为半径的实心圆减去以坐标原点为圆心,2为半径的实心圆的一个圆环,面积是226232πππ-=.考点:圆的方程,动点轨迹9.计算12i1i +=- . 【答案】13i 22-+【解析】 试题分析:12i (12i)(1+i)13.1i (1i)(1+i)2i++-+==-- 考点:复数运算10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点的坐标是 . 【答案】30,2⎛⎫ ⎪⎝⎭【解析】试题分析:设C 点的坐标是(,)x y ,则由12BC BA =得1(1,2)(11,12),2x y +-=+-即30,.2x y ==C 点的坐标是30,2⎛⎫⎪⎝⎭.考点:向量坐标运算11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .【答案】()22116x y -+=和()22916x y -+=【解析】试题分析:设圆心为(),a b ,因为与直线5x =相切,所以|5|4,1a r a -===或9.a =因此圆的方程是()22116x y -+=和()22916x y -+=考点:圆的标准方程12.由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .【答案】3, 【解析】2的正方形.因此体积为21223⨯=表面积为8个全等的边长为2的等边三角形面积之和,即282= 考点:三视图 13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m . 【答案】200 【解析】试题分析:设这列火车的长度为xm ,则由题意得:860790,200.2233x xx -+==.考点:实际问题应用题14.在如图所示的棱长为2的正方体1111ABCD A BC D -中,作与平面1ACD 平行的截面,则截得的三角形中,面积最大的值是___;截得的平面图形中,面积最大的值是___.AC【答案】【解析】试题分析:截得的三角形中,面积最大的是三角形11ACB ,面积为2=的平面图形中,面积最大的是正六边形,如图,面积为26=考点:空间想象15.在ABC ∆中,a ,b ,c 分别是角A B C ,,的对边.已知a =π3A =. (1)若b =C 的大小; (2)若2c =,求边b 的长. 【答案】(1),125π(2)4b =. 【解析】 试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化. 由正弦定理由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=.(2)由余弦定理222cos 2b c a A bc +-=得2141224b b +-=整理得2280b b --=,又0b >,所以4b =.本题也可由正弦定理sin sin a c A C =2sin C=,解得1sin 2C =.由于a c >,所以π6C =.由π3A =,得π2B =. 由勾股定理222b c a =+,解得4b =.(1由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. 6分(2)依题意,222cos 2b c a A bc+-=,即2141224b b +-=.整理得2280b b --=,又0b >,所以4b =. 13分另解: 由于sin sin a c A C =2sin C=,解得1sin 2C =.由于a c >,所以π6C =. 由π3A =,得π2B =. 由勾股定理222b c a =+,解得4b =. 13分考点:正余弦定理16.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【答案】(Ⅰ)6,(Ⅱ)7.15【解析】 试题分析:(Ⅰ)根据频率分布直方图中小长方形面积为频率,而频数为总数与频率之积. 因此参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人),参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人).所以参加社区服务时间不少于90小时的学生人数为 4+26=(人).(Ⅱ)解概率应用题,要注意“设、列、解、答”. 设所选学生的参加服务时间在同一时间段内为事件A .由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ;参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,a b ac ad a A a B b c b d b A b B c d共15种情况.事件A 包括,,,,,,a b a c a d b c b d c d AB 共7种情况.所以所选学生的服务时间在同一时间段内的概率7()15P A =. 解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人), 参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人).所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). 5分 (Ⅱ)设所选学生的参加服务时间在同一时间段内为事件A . 由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB 共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =. 13分 考点:频率分布直方图,古典概型概率17.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ; (Ⅱ)求证:PA ⊥CD ;(Ⅲ)若2PA PD AD ==,求证:平面PAB ⊥平面PCD .A【答案】(Ⅰ)详见解析,(Ⅱ)详见解析,(Ⅲ)详见解析. 【解析】 试题分析:(Ⅰ)证明线面平行,关键在于找出线线平行.本题条件含中点,故从中位线上找线线平行. E ,F 分别为PC ,BD 中点,在△PAC 中,E 是PC 中点,F 是AC 中点,所以EF ∥PA .又因为EF ⊄平面PBC ,PA ⊂平面BC P ,所以EF ∥平面PAD .(Ⅱ)由面面垂直性质定理可得线面垂直,因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD ,又CD AD ⊥,CD ⊂平面ABCD , 所以CD ⊥面PAD .又因为PA ⊂平面PAD ,所以CD PA ⊥.即PA ⊥CD .(Ⅲ)证明面面垂直,关键找出线面垂直. 在△PAD中,因为2PA PD AD ==,所以PA PD ⊥.由(Ⅱ)可知PA ⊥CD ,且=C D P D D , 所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . 证明:(Ⅰ)如图,连结AC . 因为底面ABCD 是正方形,所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PC 中点,F 是AC 中点, 所以EF ∥PA .又因为EF ⊄平面PAD ,PA ⊂平面PAD ,所以EF ∥平面PAD . 4分 (Ⅱ)因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD , 又CD AD ⊥,CD ⊂平面ABCD , 所以CD ⊥面PAD . 又因为PA ⊂平面PAD ,所以CD PA ⊥.即PA ⊥CD . 9分(Ⅲ)在△PAD 中,因为PA PD AD ==, 所以PA PD ⊥. 由(Ⅱ)可知PA ⊥CD ,且=CD PD D ,所以PA ⊥平面PCD . 又因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . 14分 考点:线面平行判定定理,面面垂直性质定理与判定定理18.已知函数e ()xa f x x⋅=(a ∈R ,0a ≠).(Ⅰ)当1a =时,求曲线()y f x =在点()1,(1)f 处切线的方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当()0,x ∈+∞时,()f x 1≥恒成立,求a 的取值范围.【答案】(Ⅰ)e y =,(Ⅱ)0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.(Ⅲ)1ea ≥ 【解析】试题分析:(Ⅰ))利用导数的几何意义,在1x =处切线的斜率为0即为(1).f '因为22e e e (1)()x x x ax a a x f x x x ⋅--'==,所以当1a =时,2e (1)()x x f x x -'=.(1)0f '=,又(1)e f =,则曲线()f x 在1x =处切线的方程为e y =. (Ⅱ)利用导数求函数单调区间,需明确定义域{}0x x ≠,再导数值的符号确定单调区间. (1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. 当()0,x ∈+∞时,要使()f x =e 1x a x ⋅≥恒成立,即使e x xa ≥在()0,x ∈+∞时恒成立. 设()e xx g x =,易得max 1()(1)e g x g ==,从而1ea ≥. (Ⅰ)22e e e (1)()x x x ax a a x f x x x ⋅--'==,0x ≠. 当1a =时,2e (1)()x x f x x -'=.依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x=中,得(1)e f =.则曲线()f x 在1x =处切线的方程为e y =. .4分 (Ⅱ)函数()f x 的定义域为{}0x x ≠.22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数. (2)若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1. 0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞. .9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1x a x⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()ex x g x -'=.可知在01x <<时,()0g x '>,()g x 为增函数; 1x >时,()0g x '<,()g x 为减函数.则max 1()(1)e g x g ==.从而1ea ≥. 另解:(1)当0a <时,()e 1a f a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1ea ≥. 综上所述,1ea ≥. .13分 考点:利用导数求切线,利用导数求单调区间,利用导数求最值 19.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B +=-成立?若存在,求m 的值;若不存在,请说明理由.【答案】(Ⅰ)22143x y +=,(Ⅱ)不存在. 【解析】试题分析:(Ⅰ)求椭圆标准方程,关键利用待定系数法求出a,b. 由..及1a c -=,解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=.(Ⅱ)存在性问题,一般从假设存在出发,建立等量关系,有解就存在,否则不存在. 条件22OA OB OA OB +=-的实质是垂直关系,即0OA OB ⋅=.所以12120x x y y +=.1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=.整理得2512m =-,矛盾. (Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c . 依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. .4分 (Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>.设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+. 依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=.即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=,整理得21212(1)()10m x x m x x ++++=,所以2(1)m +2843m -+2281043m m -+=+, 整理得2512m =-,矛盾. 所以不存在实数m ,使||||OA OB OA OB +=-. .14分考点:椭圆标准方程,直线与椭圆位置关系20.已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}n a 满足:()n a f n =,*n ∈N .(Ⅰ)求(0)f 及(1)f 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若311()()42n n a a n b +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.【答案】(Ⅰ)(0)1f =-,(1)1f =,(Ⅱ)21na n =-,(Ⅲ)当12t =,即1n =时,{}nb 的最大项为1316b =.当132t =,即3n =时,{}n b 的最小项为331024b =-.【解析】试题分析:(Ⅰ)对应抽象函数,一般方法为赋值法. 在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-,在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,(Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =,得(1)()2f n f n +=+,即12n n a a +-=.所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N .(Ⅲ)研究数列{}nb 是否存在最大项和最小项,关键看通项公式的特征.令2111()()22n a n t -==,则22111()816256n b t t t =-=--,显然102t <≤,又因为N n *∈,所以当12t =,即1n =时,{}n b 的最大项为1316b =.当132t =,即3n =时,{}n b 的最小项为331024b =-解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-,在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =, 2分(Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =,得(1)()2f n f n +=+,即12n n a a +-=. 所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N . 6分(Ⅲ)数列{}n b 存在最大项和最小项令2111()()22na nt-==,则22111()816256nb t t t=-=--,显然12t<≤,又因为Nn*∈,所以当12t=,即1n=时,{}n b的最大项为1316b=.当132t=,即3n=时,{}n b的最小项为331024b=-. 13分考点:等差数列,赋值法研究抽象函数。
北京市2014年高考真题-文科数学(有答案)
2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 答案:C2.下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.y x =C.ln y x =D.y x = 答案:B3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 答案:A4.执行如图所示的程序框图,输出的S 值为( )A.1 D.15输出答案:C5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 答案:D6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞答案:C7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4答案:B8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟答案:B第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年普通高等学校招生全国统一考试(北京卷)数学试题(文科)解析版
类题目的关键.
7.已知圆 C : x 32 y 4 2 1 和两点 Am, 0 , B m, 0 m 0 ,若圆 C 上存在点
P ,使得
APB 90 ,则 m 的最大值为(
)
A. 7 B. 6 C. 5
D. 4
【答案】B
【解析】由图可知当圆 C 上存在点 P 使 APB 90 ,即圆 C 与以 AB 为直径的圆有公共
.
4
【答案】2、 15 8
【解析】由余弦定理得 c2 a2 b2 2ab cos C 1 4 2 2 1 1 2 ,即 c 2 ; 4
cos A b2 c2 a2 4 4 1 7 ,∴ sin A 1 7 2 15 .
2bc
222 8
8 8
y 1
13.若
x
、
是减函数,故选 B.
【考点】本小题主要考查函数的单调性,属基础题,难度不大.
3.已知向量 a 2, 4 , b 1,1 ,则 2a b ( )
A. 5, 7 B. 5,9
C. 3, 7
【答案】A
【解析】2a-b= 22,4 1,1 5,7.
D. 3,9
4.执行如图所示的程序框图,输出的 S 值为( )
.
【答案】 2 2 【解析】三棱锥的直观图如图所示,并且 PB 面ABC ,PB 2 ,AB 2, AC BC 2 ,
PA 22 22 2 2 , PC 22 2 2 6 .
P
B
C
A
12.在 ABC 中, a 1, b 2 , cos C 1 ,则 c
; sin A
y
满足
x
y
1
0
,则
z
3x y 的最小值为
2014北京各区高考数学二模试题及答案解析
2014北京各区高考数学二模
试题及答案解析
2014年北京市各县区的高考二模对于测验高三考生的复习成果和接下来的高考志愿填报具有非常重要的参考价值。
本人特将一模试题进行整理汇总,以下是2014年北京各城区高考二模试题及答案汇总,供考生
参考!
北京市西城区2014年高三二模试卷
数 学(理科) 2014.5
第Ⅰ卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合
题目要求的一项.
1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,
则实数a 的取值范围是( ) (A )(,2]-∞-
(B )[2,)-+∞
(C )(,2]-∞
(D )[2,)+∞
2.在复平面内,复数2
=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限
(D )第四象限
3.直线2y x =为双曲线22
22 1(0,0)x y C a b a b
-=>>:的一条渐近线,则双曲线C 的离心率是( )
(A (B (C
(D。
2014年高考北京卷数学文试题及答案解析
2014年高考北京卷数学文试题及答案解析一、选择题1.[2014•北京文卷]若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 【答案】C【解析】{}{}{}2,13,2,14,2,1,0== B A . 2. [2014•北京文卷]下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =【答案】B【解析】由定义域为R 排除选项C ,定义域单调递增排除选项A 、D. 3. [2014•北京文卷]已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】2a -b =()()()7,51,14,22=--.4. [2014•北京文卷]执行如图所示的程序框图,输出的S 值为( )A. B.3 C.7 D.15输出【答案】C【解析】7222210=++=S . 5. [2014•北京文卷]设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 【答案】D【解析】当0<⋅b a 时,由b a >推不出22b a >,反之也不成立. 6. [2014•北京文卷] 已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 【答案】C 【解析】在同一坐标系中作函数()xx h 6=与()x x g 2log =的图象如图,可得()x f 零点所在区间为()4,2. 7. [2014•北京文卷]已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 【答案】B【解析】由图可知当圆C 上存在点P 使O =∠90APB ,即圆C 与以AB 为直径的圆有公共点,∴143122+≤+≤-m m ,解之得64≤≤m .8. [2014•北京文卷]加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间(单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 O 5430.80.70.5t p记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 【答案】B【解析】由题意得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 5255.04168.0397.0,解之得⎪⎩⎪⎨⎧-==-=25.12.0c b a ,∴()0625.075.32.025.12.022+--=-+-=t t t p ,即当75.3=t 时,P 有最大值.二、填空题9. [2014•北京文卷]若()()12x i i i x R +=-+∈,则x = . 【答案】2【解析】∵()i xi i i x 211+-=+-=+,∴2=x . 10. [2014•北京文卷]设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为()0,m A -()0,m BP. 【答案】122=-y x【解析】由题意设双曲线方程1222=-by x ,又∵()2221=+b ,∴12=b即双曲线方程为122=-y x .11. [2014•北京文卷]某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .俯视图侧(左)视图正(主)视图11122【答案】 22【解析】三棱锥的直观图如图所示,并且ABC PB 面⊥,2=PB ,2,2===BC AC AB ,222222=+=PA ,()62222=+=PC .12. [2014•北京文卷]在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 【答案】2、815PBAC【解析】由余弦定理得24112241cos 2222=⨯⨯⨯-+=-+=C ab b a c ,即2=c ; 872221442cos 222=⨯⨯-+=-+=bc a c b A ,∴815871sin 2=⎪⎭⎫⎝⎛-=A . 13. [2014•北京文卷]若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y =+的最小值为 .【答案】1【解析】可行域如图,当目标函数线x y z 3+=过可行域内A 点时,z 有最小值,联立⎩⎨⎧=-+=011y x y ,解之得()1,0A ,11103min =⨯+⨯=Z .14. [2014•北京文卷] 【答案】42【解析】交货期最短即少耽误工期,所以先让徒弟加工原料B ,交货期为4215216=++天. 顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都则最短交货期为 工作日. 15. [2014•北京文卷]已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.1=y 01=--y x 01=-+y x xy 3-=A(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.【解析】⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --=== 所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得·· 344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,,⑵ 由⑴知()13212n n b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×. 所以,数列{}n b 的前n 项和为()31212n n n ++-.16. [2012•北京文卷] 函数()3sin 26f x x π⎛⎫=+⎪⎝⎭的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值; (2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值. Oy xy 0x 0【解析】⑴ ()f x 的最小正周期为π07π6x =. 03y =⑵ 因为ππ212x ⎡⎤∈--⎢⎥⎣⎦,,所以π5π2066x ⎡⎤+∈-⎢⎥⎣⎦,.于是当π206x +=,即π12x =-时,()f x 取得最大值0;当ππ262x +=-,即π3x =-时,()f x 取得最小值3-. 17. [2014•北京文卷]如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥. 又因为AB BC ⊥.所以AB ⊥平面11B BCC .所以平面ABE ⊥平面11B BCC .(Ⅱ)取AB 中点G ,连结EG ,FG . 因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC =.因为11AC A C ∥,且11AC A C =, 所以1FG EC ∥,且1FG EC =. 所以四边形1FGEC 为平行四边形. 所以1C F EG ∥.又因为EG ⊂平面ABE ,1C F ⊄平面ABE ,GC 1B 1A 1FE CBA所以1C F ∥平面ABE .(Ⅲ)因为12AA AC ==,1BC =,AB BC ⊥,所以AB ==. 所以三棱锥E ABC -的体积111112332ABC V S AA =⋅=⨯⨯=△. 18. [2014•北京文卷]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距. 课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.250.1252b ===频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. 19. [2014•北京文卷] 已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=. 所以24a =,22b =,从而2222c a b =-=. 因此2a =,c =故椭圆C的离心率c e a =.(Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.因为OA OB ⊥, 所以0OA OB ⋅=, 即0020tx y +=,解得02y t x =-. 又220024x y +=,所以 ()()222002AB x t y =-+-()22000022y x y x ⎛⎫=++- ⎪⎝⎭2220002044y x y x =+++()2202224442x x x x --=+++ ()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为 20. [2014•北京文卷] 已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 解:(Ⅰ)由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛= ⎝()11f f ==-所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝. (Ⅱ)设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -,因此()()2000631t y x x -=-- . 整理得3204630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.()g x 与()g x '的情况如下:)所以,(0)g t =当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有个零点.由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在条直线与曲线()y f x =相切时,的取值范围是()31--, . (Ⅲ)过点()12A -, 存在条直线与曲线()y f x =相切;过点()210B ,存在2条直线与曲线()y f x =相切; 过点()02C , 存在条直线与曲线()y f x =相切.:。
2014 北京朝阳高考二模(含解析)
北京市朝阳区高三年级第二次综合练习语文试卷2014.5(考试时间150分钟满分150分)本试卷共6页。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,请交回答题卡。
一、本大题共7小题,共16分。
阅读下面文字,按要求完成1~6题。
人们常把人生看成一种占有物,必欲向之获取最大效益而后快,因此多有唯利是图、贪得无厌的行径。
但人生是占有不了的。
毋宁说,它是侥幸落到我们手上的一件暂.时的礼物,我们迟早要把它交还。
在终极的意义上,人世间的成功和失败、幸福和灾难,都只是过眼烟云,彼此并无实质的区别。
从呱.呱坠地开始,人们习惯于得到,而不习惯于失去。
但是,“人有旦夕祸福”,(既然/即使)生而为人,就得有承受旦夕祸福的精神准备和勇气,否则很容易在遭到重大失去之后一蹶不振。
甲。
布施的本义是教人去除(贪鄙/卑鄙)之心,由不执著于财物,进而不执著于一切身外之物,乃至于这尘世的生命。
正如佛家的一.幅.对联所说:“身心放下于当下,乙”。
佛教把布施列为“六度”之首,即意欲把人从迷惑的此岸(渡/度)向觉悟的彼岸。
俗众借布施积善图报,寺庙靠布施敛财致富....,这实在是小和尚念歪了老祖宗的经。
我始终把佛教看作是古今中外最透彻的人生哲学,对它后来不伦不类的演变实在是刮目相看。
肖伯纳说:“人生有两大悲剧,一是没有得到你心爱的东西,另一是得到了你心爱的东西。
”这话的立足点是占有,所以才会有占有欲未得满足的痛苦和已得满足的无聊这双重悲剧。
如果把立足点移到创造上,以审美的眼光看人生,我们是可以反其意而说的:人生有两大快乐,一是没有得到你心爱的东西,于是你可以去寻求和创造;另一是得到了你心爱的东西,于是你可以去(品味/品位)和体验。
(选自周国平《不占有》,有删改)1.文中加点字的读音和加点词语书写不.正确..的一项是(2分)A.暂时(zàn) B.呱呱坠地(gū) C.一幅 D.敛财致富2.文中黑体字成语运用不当..的一项是(2分)A.贪得无厌 B.过眼烟云 C.一蹶不振 D.刮目相看3.文中括号内词语运用全部正确的一项是(2分)A.即使贪鄙度品位B.既然卑鄙度品位C.既然贪鄙渡品味D.即使卑鄙渡品味4.填入文中横线甲处的过渡句与上下文衔接最恰当的一项是(2分)A.要么被动失去,要么主动布施B.为了习惯失去,有时不妨主动失去——布施C.习惯布施,就是习惯失去D.几乎所有宗教都倡导布施5.将下列句子填入文中横线乙处,对仗最工整的一项是(2分)A.名利超然即泰然B.真入法门圣默然C.迷津总在利当前D.看穿世事意清闲6.针对萧伯纳和周国平对人生的认识,下列理解不正确...的一项是(3分)A.萧伯纳从占有的角度论述人生,看到了人生有两大悲剧。
高考数学 2014-2015朝阳高三二模数学文答案
北京市朝阳区高三年级第二次综合练习数学试卷答案(文史类)2015.5一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)解:2()cos cos )sin f x x x x x =+-22cos cos sin x x x x =+-2cos 2x x =+2sin(2)6x π=+.(Ⅰ)因为[,]2x π∈π,所以7132[,]666x πππ+∈,所以1sin(2)[1,]62x π+∈-,所以,当且仅当13266x ππ+=,即x =π时,max ()1f x =. ……………… 8分(Ⅱ)依题意,02sin(2)26x π+=,所以0sin(2)16x π+=.又0(0,2)x ∈π,所以0252(,)666x ππ+∈π,所以0262x ππ+=或05262x ππ+=,所以06x π=或076x π=. ……………………………………………… 13分16.(本小题满分13分)解:(Ⅰ)依题意,设数列{}n a 的公差为(0)d d >.由12318a a a ++=,可得26a =,则16a d =-,36a d =+.由前三项之积为120可得,(6)6(6)120d d -创+=,解得4d =?. 舍负得4d =.所以 42n a n =-. …………………………………………… 5分(Ⅱ)由于点111(,)A a b ,222(,)A a b ,…,(,)n n n A a b 依次都在函数23xy =的图象上,且42n a n =-,所以213n n b -=.所求这n 个点123,,A A A ,…,n A 的纵坐标之和即为数列{}n b 的前n 项和n T . 由于19n nb b +=,所以数列{}n b 为以3为首项,9为公比的等比数列. 所以 ()3193(91)198n nn T -==--. ……………………………………… 13分 17.(本小题满分13分)解:(Ⅰ)由题意可得,试卷的抽出比例为31=18060, 所以应从选择B 题作答试卷中抽出2份,从选择C 题作答试卷中抽出2份.……4分(Ⅱ)记在(Ⅰ)中抽出的选择A 题作答的试卷分别为123,,a a a ,其中12,a a 得优;选择B 题作答的试卷分别为12,b b ,其中12,b b 得优;选择C 题作答的试卷分别为12,c c ,其中1c 得优.从123,,a a a ,12,b b 和12,c c 中分别抽出一份试卷的所有结果如下:111{,,}a b c 112{,,}a b c 121{,,}a b c 122{,,}a b c 211{,,}a b c 212{,,}a b c 221{,,}a b c 222{,,}a b c311{,,}a b c 312{,,}a b c 321{,,}a b c 322{,,}a b c所有结果共有12种可能,其中3份都得优的有111{,,}a b c 121{,,}a b c 211{,,}a b c 221{,,}a b c ,共4种.设“从被抽出的选择,,A B C 题作答的的试卷中各随机选1份,这3份试卷都得优”为事件M ,故所求概率41123P ==. …………………………… 13分18.(本小题满分14分)解:(Ⅰ)证明:由已知,DA DM =.因为点O 是线段AM 的中点, 所以DO AM ⊥.又因为平面ADM ⊥平面ABCM ,平面ADM I 平面ABCM AM =,DO ⊂平面ADM ,所以DO ⊥平面ABCM .因为DO ⊂平面DOB ,所以平面DOB ⊥平面ABCM . ……………………………………………… 5分 (Ⅱ)证明:因为在矩形ABCD 中,2AB AD =,且M 为CD 的中点,所以2AM BM AB ===, 所以AM BM ⊥.由(Ⅰ)知,DO ⊥平面ABCM ,因为BM⊂平面ABCM ,所以DO BM ⊥.因为DO ⊂平面ADM ,AM ⊂平面ADM ,且DO AM O =I ,所以BM⊥平面ADM .而AD ⊂平面ADM ,所以AD BM ⊥. …………………………………………………………… 10分 (Ⅲ)过D 点不存在一条直线l ,同时满足以下两个条件:(1)l Ì平面BCD ; (2)//l AM . 理由如下:(反证法)假设过D 点存在一条直线l 满足条件, 则因为//l AM ,l Ë平面ABCM ,AM ⊂平面ABCM ,所以//l 平面ABCM .又因为l Ì平面BCD ,平面ABCM I 平面BCD BC =, 所以//l BC .于是//AM BC ,由图易知AM ,BC 相交,矛盾.所以,不存在这样的直线l . ……………………………………… 14分19.(本小题满分14分)解:(Ⅰ)不妨设直线l 在x 轴的上方,则,A B 两点关于y 轴对称.设11(,)A x y ,11(,)B x y -11(0,0)x y <>,则11(,)OA x y =uu r ,11(,)OB x y =-uu u r.由90AOB?o,得0OA OB?uu r uu u r,所以2211y x =.又因为点A 在椭圆上,所以221114x y +=. 由于10x <,解得1x =-1y = 则(A -,B .所以142555OAB S D =创=. …………………………………………5分 (Ⅱ)当直线l 的斜率存在时,设其方程为y kx m =+,设11(,)A x y ,22(,)B x y .联立方程组 22,4 4.y kx m x y ì=+ïïíï+=ïî 整理得222(41)8440k x kmx m +++-=. 由方程的判别式0D >,得22410k m -+>, (※)则 122841kmx x k -+=+,21224441m x x k -=+.由90AOB?o,得0OA OB?uu r uu u r,即12120x x y y +=,而1212()()y y kx m kx m =++,则2212121212(1)()0x x y y k x x mk x x m +=++++=.所以 2222244(8)(1)04141m km k mk m k k --+++=++. 整理得 225440m k --=,把22454k m =-代入(※)中,解得 234m >而224540k m =-?,所以 245m ³,显然满足234m >. 直线l 始终与圆222x y r +=相切,得圆心(0,0)到直线l 的距离d 等于半径r .则22221m r d k ==+,由224455m k =+,得245r =,因为0r >,所以5r =.当直线l 的斜率不存在时,直线l 的方程为x =?,此时,直线l 与圆2245x y +=相切,5r =.综上所述5r =. ………………………………………………………… 14分20.(本小题满分13分) 解:(Ⅰ)因为1a ³,π[0,]4x Î,所以()cos sin cos sin 0f x a x x x x ¢=-??.故()f x 在区间π[0,]4上是单调递增函数. ………………………………… 4分(Ⅱ)令()0f x ¢=,得cos sin a x x =, 因为在区间π[0,]4上cos 0x ¹,所以tan a x =. 因为(0,1)a Î,tan [0,1]x Î, 且函数tan y x =在π[0,]4上单调递增,所以方程tan a x =在π(0,)4上必有一根,记为0x ,则000()cos sin 0f x a x x ¢=-=. 因为()cos sin f x a x x ¢=-在π[0,]4上单调递减, 所以,当0(0,)x x Î时,0()()0f x f x ⅱ>=; 当0(,)4x x p Î时,0()()0f x f x ⅱ<=. 所以()f x 在0(0,)x 上单调递增,在0π(,)4x 上单调递减, 所以max 000()()sin cos f x f x a x x ==+.又因为00cos sin a x x =,且2200sin cos 1x x +=,所以220(1)cos 1a x +=,2021cos 1x a =+,故2max 00()()(1)cos f x f x a x ==+=.依题意,(0,1)a Î22t at ++恒成立,即(0,1)a Î时,2(2)20t a t -++>,恒成立. 令2()(2)2h a =t a t -++,则 (0)0,(1)0,h h ì³ïïíï³ïî 即2220,0.t t t ìï+?ïíï+?ïî 解得 1t ?或0t ³. ……………………………………………………… 13分。
2014年高三二模数学(文)北京市朝阳区试题Word版带解析
北京市朝阳区高三年级第二次综合练习数学学科测试(文史类)2014.5(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于(). (A )()UA B (B )A B (C )A B (D )()UA B解析:根据集合的运算性质,验证选项,答案为A. 考点:集合与常用逻辑用语-----集合的运算 难度系数:2(2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为().(A )sin y x =(B )ln y x =(C )3y x =(D )2x y =解析:A,C 是奇函数,A 不是一致单调函数;B,D 非奇非偶。
所以答案C 。
考点:函数与导数------------函数-----------函数的单调性;函数与导数------------函数-----------函数的奇偶性 难度系数:2(3)已知抛物线22x y =,则它的焦点坐标是().(A )1,04⎛⎫⎪⎝⎭(B )10,2⎛⎫ ⎪⎝⎭(C )10,4⎛⎫ ⎪⎝⎭(D )1,02⎛⎫⎪⎝⎭解析:根据抛物线的性质,抛物线是开口向上的,交点,答案B 。
考点:解析几何-----------圆锥曲线----------抛物线 难度系数:2(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是().(A )2 (B )3 (C )4 (D )5解析:第一次循环a=9,i=1;第二次循环a=21,i=2;第三次循环a=45,i=3;第四次循环 A=93,i=4,输出结果,答案为C.考点:算法与框图---------算法和程序框图 难度系数:3(5)由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界)用不等式组可表示为().10,2⎛⎫⎪⎝⎭(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩(B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩(C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩(D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩解析:做出平面区域,带入特殊点验证,答案为A.考点:不等式------线性规划------二元一次不等【组】表示的平面区域难度系数:3(6)在区间ππ[-,]上随机取一个实数x ,则事件:“cos 0x ≥”的概率为(). (A )14(B )34(C )23(D )12解析:该题考察解概率模型,画出余弦函数,结合函数图像答案为D. 考点:概率与统计---------概率--------几何概率 难度系数:3(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n nS a +的最小值为().(A )10(B )92(C )72(D)12+解析:11(1)(1)888(1)81922(1)222n nn n n n a n d S n a a n d n n +++++++===+≥=+-,答案为B 。
2014年北京高考数学文科试题及答案
绝密★启封并使用完毕前2014年普通高等学校招生全国统一考试 数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟,考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共40分) 选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项合题目要求的一项。
(1)若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}3(2)下列函数中,定义域是R 且为增函数的是( ) (A )xy e -= (B )y x = (C )ln y x = (D )y x =(3)已知向量()2,4a =,()1,1b =-,则2a b -=( ) (A )()5,7 (B )()5,9 (C )()3,7 (D )()3,9(4)执行如图所示的程序框图,输出的S 值为( ) (A )1 (B )3 (C )7 (D )15(5)设a 、b 是实数,则“a b >”是“22a b >”的( ) (A) 充分而不必要条件 (B) 必要而不必要条件 (C) 充分必要条件 (D) 既不充分不必要条件(6)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )(A)()0,1 (B)()1,2 (C)()2,4 (D)()4,+∞(7)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )(A )7 (B )6 (C )5 (D )4(8)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) (A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京市朝阳区高考数学二模试卷(文科)(附答案解析版)
2014年北京市朝阳区高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 若全集U={a, b, c, d},A={a, b},B={c},则集合{d}等于()A.∁U(A∪B)B.A∪BC.A∩BD.∁U(A∩B)2. 下列函数中,既是奇函数又是区间(0, +∞)上的增函数的是( )A.y=x 12 B.y=x−1 C.y=x3 D.y=2x3. 已知抛物线x2=2y,则它的焦点坐标是()A.(14, 0) B.(0, 12) C.(0, 14) D.(12, 0)4. 执行如图所示的程序框图.若输入a=3,则输出i的值是()A.2B.3C.4D.55. 由直线x−y+1=0,x+y−5=0和x−1=0所围成的三角形区域(包括边界)用不等式组可表示为()A.{x−y+1≤0x+y−5≤0x≥1B.{x−y+1≥0x+y−5≤0x≥1C.{x−y+1≥0x+y−5≥0x≤1D.{x−y+1≤0x+y−5≤0x≤16. 在区间[−π, π]上随机取一个数x,则事件:“cos x≥0”的概率为()A.14B.34C.23D.127. 设等差数列{a n}的公差为d,前n项和为S n.若a1=d=1,则S n+8a n的最小值为()A.10B.92C.72D.12+2√28. 已知平面上点P∈{(x, y)|(x−x0)2+(y−y0)2=16,其中x02+y02=4,当x0,y0变化时,则满足条件的点P在平面上所组成图形的面积是()A.4πB.16πC.32πD.36π二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.计算1+2i1−i=________.已知两点A(1, 1),B(−1, 2),若BC→=12BA→,则C点坐标是________.圆心在x轴上,半径长是4,且与直线x=5相切的圆的方程是________.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是________;表面积是________.设一列匀速行驶的火车,通过长860m的隧道时,整个车身都在隧道里的时间是22s.该列车以同样的速度穿过长790m的铁桥时,从车头上桥,到车尾下桥,共用时33s,则这列火车的长度为________m.在如图所示的棱长为2的正方体ABCD−A1B1C1D1中,作与平面ACD1平行的截面,则截得的三角形中面积最大的值是________;截得的平面图形中面积最大的值是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC中,a,b,c分别是角A,B,C的对边.已知a=2√3,A=π3.(1)若b=2√2,求角C的大小;(2)若c=2,求边b的长.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75, 80),[80, 85),[85, 90),[90, 95),[95, 100](单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.如图,在四棱锥P−ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD.(1)若E,F分别为PC,BD中点,求证:EF // 平面PAD;(2)求证:PA⊥CD;(3)若PA=PD=√22AD,求证:平面PAB⊥平面PCD.已知函数f(x)=a⋅e xx(a∈R, a≠0).(1)当a=1时,求曲线f(x)在点(1, f(1))处切线的方程;(2)求函数f(x)的单调区间;(3)当x∈(0, +∞)时,若f(x)≥1恒成立,求a的取值范围.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1.(1)求椭圆C 的标准方程;(2)若直线l:mx +y +1=0与椭圆C 交于A ,B 两点,是否存在实数m ,使|OA →+OB →|=|OA →−OB →||成立?若存在,求m 的值;若不存在,请说明理由.已知函数f(x)对任意x ,y ∈R 都满足f(x +y)=f(x)+f(y)+1,且f(12)=0,数列{a n }满足:a n =f(n),n ∈N ∗.(1)求f(0)及f(1)的值;(2)求数列{a n }的通项公式;(3)若b n =(14)a n −(12)3+a n ,试问数列{b n }是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.参考答案与试题解析2014年北京市朝阳区高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【答案】A【考点】交、并、补集的混合运算【解析】根据题意确定出所求集合即可.【解答】解:∵全集U={a, b, c, d},A={a, b},B={c},∴A∪B={a, b, c},则∁U(A∪B)={d}.故选:A.2.【答案】C【考点】函数单调性的判断与证明函数奇偶性的判断【解析】y=x12定义域为[0, +∞)不关于原点对称,;y=x−1为(0, +∞)上减函数;对于y=2x,是指数函数;y=x3是幂函数,指数大于零为增函数;又f(−x)=f(x).【解答】解:A,y=x 12定义域为[0, +∞),不关于原点对称,不具有奇偶性,故A不符合题意;B,y=x−1在(0, +∞)上是减函数,故B不符合题意;C,y=x3是幂函数,在[0, +∞)上为增函数,又f(−x)=−f(x),所以是奇函数,符合题意;D,y=2x是指数函数,不具有奇偶性,故D不符合题意;故选C.3.【答案】B【考点】抛物线的求解【解析】利用抛物线方程求得p,根据焦点在y轴上求得抛物线的焦点坐标.【解答】解:∵抛物线方程为x2=2y,∴2p=2,p=1,∵焦点在y轴上,∴抛物线焦点为(0, 12),故选B4.【答案】C【考点】程序框图【解析】由已知中的程序框图及已知中输入a=3,可得:进入循环的条件为a>45,模拟程序的运行结果,即可得到输出的i值.【解答】解:当a=9时,i=1;当a=21时,i=2;当a=45时,i=3;当a=93时,i=4;结束循环故选:C5.【答案】A【考点】简单线性规划【解析】作出对应的平面区域,根据二元一次不等式组与平面之间的关系即可得到结论.【解答】解:作出对应的平面区域,则三角形区域在直线x=1的右侧,∴x≥1,在x−y+1=0的上方,则x−y+1≤0,在x+y−5=0的下方,则x+y−5≤0,则用不等式组表示为{x−y+1≤0x+y−5≤0x≥1,故选:A.6.【答案】D【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】解:求出cos x≥0的等价条件,利用几何概型的概率公式即可得到结论.【解答】解:在[−π, π]由cos x≥0得−π2≤x≤π2,则由几何概型的概率公式可得:“cos x≥0”的概率P=π2−(−π2)π−(−π)=π2π=12,故选:D7.【答案】B【考点】等差数列的前n项和【解析】由已知条件推导出S n+8a n =n+n(n−1)2+81+n−1=n2+8n+12,由此利用均值定理S n+8a n取最小值.【解答】解:∵等差数列{a n}的公差为d,前n项和为S n.a1=d=1,∴S n+8a n =n+n(n−1)2+81+n−1=1+n−12+8n=n2+8n+12≥2√n2⋅8n+12=92,当且仅当n2=8n,即n=4时,S n+8a n取最小值92.故选:B.8.【答案】C【考点】圆的标准方程【解析】先根据圆的标准方程求出圆心和半径,然后研究圆心的轨迹,根据点P在平面内所组成的图形是一个环面进行求解即可.【解答】解:由题意可得,点P在圆)|(x−x0)2+(y−y0)2=16上,而且圆心(x0, y0)在以原点为圆心,以2为半径的圆上.满足条件的点P在平面内所组成的图形的面积是以6为半径的圆的面积减去以2为半径的圆的面积,即36π−4π=32π,故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.【答案】−12+32i,【考点】复数代数形式的乘除运算【解析】本题考查了复数的运算法则,属于基础题.【解答】解:原式=(1+2i)(1+i)(1−i)(1+i)=−1+3i2=−12+32i,故答案为:−12+32i,【答案】(0,32)【考点】平面向量的坐标运算【解析】利用向量的坐标运算和数乘运算即可得出.【解答】解:∵BC→=12BA→,∴OC→=OB→+12(OA→−OB→)=12OB→+12OA→=12[(−1,2)+(1,1)]=(0,32).故答案为:(0,32).【答案】(x−1)2+y2=16和(x−9)2+y2=16【考点】圆的标准方程【解析】设圆心的坐标为(a, 0),则圆心到直线x=5的距离等于半径,即|a−5|=4,求得a的值,可得所求的圆的方程.【解答】解:设圆心的坐标为(a, 0),则圆心到直线x=5的距离等于半径,即|a−5|=4,求得a=1,或a=9,故所求的圆的方程为(x−1)2+y2=16和(x−9)2+y2=16,故答案为:(x−1)2+y2=16和(x−9)2+y2=16.【答案】8√23,8√3【考点】由三视图求体积【解析】几何体为两个完全相同的正四棱锥底面对接的组合体,根据三视图判断四棱锥的底面边长与高,并计算侧面上的斜高,把数据代入棱锥的表面积公式与体积公式计算.【解答】解:由三视图知:几何体为两个完全相同的正四棱锥底面对接的组合体,四棱锥的底面边长为4,高为√2,∴侧面上的斜高为√3,∴几何体的体积V=2×13×22×√2=8√23;几何体的表面积S=8×12×2×√3=8√3.故答案为:8√23,8√3.【答案】200【考点】根据实际问题选择函数类型【解析】根据条件设列出长度为x,建立方程关系即可得到结论.【解答】解:设列车长度为x,则由题意得在桥上的速度为790+x33,则隧道里速度为860−x22,则有790+x33=860−x22,解得x=200,故答案为:200【答案】2√3,3√3【考点】棱柱的结构特征【解析】截得的三角形中面积最大是以正方体的表面正方形的对角线所构成的等边三角形,结合图形判断截面为正六边形时,截面的面积最大,利用梯形的面积公式计算可得最大面积.【解答】解:截得的三角形中面积最大是以正方体的表面正方形的对角线所构成的等边三角形,如图中的△A1C1B,∵正方体ABCD−A1B1C1D1的棱长为2,∴A1C1=C1B=A 1B=2√2,∴S△A1C1B=12×2√2×√32×2√2=2√3,如图平面α截正方体所得截面为正六边形,此时,截面面积最大,其中MN=2√2,GH=√2,OE=√1+12=√62,截面面积S=2×√2+2√22×OE=3√3.故答案为:2√3,3√3.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】解:(1)由正弦定理asin A=bsin B,∴sin B=ba⋅sin A=√22√3×√32=√22,∴B=π4或3π4,∵b<a,∴B=π4,∴C=π−π3−π4=5π12.(2)依题意,cos A=b2+c2−a22bc,即12=b2+4−124b.∴b2−2b−8=0,又b>0,∴b=4.【考点】正弦定理余弦定理【解析】(1)根据正弦定理和已知条件求得sin B的值,进而求得B,最后利用三角形内角和求得C.(2)用余弦定理列出关于b的表达式,整理求得b.【解答】解:(1)由正弦定理asin A =bsin B,∴sin B=ba ⋅sin A=√22√3√32=√22,∴B=π4或3π4,∵b<a,∴B=π4,∴C=π−π3−π4=5π12.(2)依题意,cos A=b 2+c2−a22bc,即12=b2+4−124b.∴b2−2b−8=0,又b>0,∴b=4.【答案】解:(1)由题意可知,参加社区服务在时间段[90, 95)的学生人数为20×0.04×5=4(人),参加社区服务在时间段[95, 100]的学生人数为20×0.02×5=2(人),所以参加社区服务时间不少于90小时的学生人数为4+2=6(人).(2)设所选学生的服务时间在同一时间段内为事件A.由(1)可知,参加社区服务在时间段[90, 95)的学生有4人,记为a,b,c,d;参加社区服务在时间段[95, 100]的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率P(A)=715.【考点】频数与频率古典概型及其概率计算公式【解析】(1)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;(2)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(1)由题意可知,参加社区服务在时间段[90, 95)的学生人数为20×0.04×5=4(人),参加社区服务在时间段[95, 100]的学生人数为20×0.02×5=2(人),所以参加社区服务时间不少于90小时的学生人数为4+2=6(人).(2)设所选学生的服务时间在同一时间段内为事件A.由(1)可知,参加社区服务在时间段[90, 95)的学生有4人,记为a,b,c,d;参加社区服务在时间段[95, 100]的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率P(A)=715.【答案】(1)证明:如图,连结AC.因为底面ABCD是正方形,所以AC与BD互相平分.又因为F是BD中点,所以F是AC中点.在△PAC中,E是PC中点,F是AC中点,所以EF // PA.又因为EF⊄平面PAD,PA⊂平面PAD,所以EF // 平面PAD.…(2)证明:因为平面PAD⊥底面ABCD,且平面PAD∩平面ABCD=AD,又CD⊥AD,所以CD⊥面PAD.又因为PA⊂平面PAD,所以CD⊥PA.故PA⊥CD.…(3)证明:在△PAD中,因为PA=PD=√22AD,所以PA⊥PD.由(2)可知PA⊥CD,且CD∩PD=D,所以PA⊥平面PCD.又因为PA⊂平面PAB,所以面PAB⊥平面PCD.…【考点】平面与平面垂直的判定直线与平面平行的判定【解析】(1)连结AC.由正方形性质得AC与BD互相平分,由三角形中位线定理得EF // PA.由此能证明EF // 平面PAD.(2)由线面垂直得CD⊥AD,所以CD⊥面PAD.由此能证明PA⊥CD.(3)由勾股定理得PA⊥PD.再由PA⊥CD,得PA⊥平面PCD.由此能证明面PAB⊥平面PCD.【解答】(1)证明:如图,连结AC.因为底面ABCD是正方形,所以AC与BD互相平分.又因为F是BD中点,所以F是AC中点.在△PAC中,E是PC中点,F是AC中点,所以EF // PA.又因为EF⊄平面PAD,PA⊂平面PAD,所以EF // 平面PAD.…(2)证明:因为平面PAD⊥底面ABCD,且平面PAD∩平面ABCD=AD,又CD⊥AD,所以CD⊥面PAD.又因为PA⊂平面PAD,所以CD⊥PA.故PA⊥CD.…(3)证明:在△PAD中,因为PA=PD=√22AD,所以PA⊥PD.由(2)可知PA⊥CD,且CD∩PD=D,所以PA⊥平面PCD.又因为PA⊂平面PAB,所以面PAB⊥平面PCD.…【答案】解:(1)由f(x)=a⋅e xx,得:f′(x)=ax⋅e x−ae xx2=ae x(x−1)x2,x≠0.当a=1时,f′(x)=e x(x−1)x2.依题意f′(1)=0,即在x=1处切线的斜率为0.把x=1代入f(x)=e xx 中,得f(1)=e.则曲线f(x)在x=1处切线的方程为y=e.(2)函数f(x)的定义域为{x|x≠0}.由于f′(x)=ax⋅ex−ae xx2=ae x(x−1)x2.①若a>0,当x>1时,f′(x)>0,函数f(x)为增函数;当x<0和0<x<1时,f′(x)<0,函数f(x)为减函数.②若a<0,当x<0和0<x<1时,f′(x)>0,函数f(x)为增函数;当x>1时,f′(x)<0,函数f(x)为减函数.综上所述,a>0时,函数f(x)的单调增区间为(1, +∞);单调减区间为(−∞, 0),(0, 1).a<0时,函数f(x)的单调增区间为(−∞, 0),(0, 1);单调减区间为(1, +∞).(3)当x∈(0, +∞)时,要使f(x)=a⋅exx≥1恒成立,即使a≥xe x在x∈(0, +∞)时恒成立.设g(x)=xe x,则g′(x)=1−xe x.可知在0<x<1时,g′(x)>0,g(x)为增函数;x>1时,g′(x)<0,g(x)为减函数.则g(x)max=g(1)=1e.从而a≥1e.【考点】利用导数研究曲线上某点切线方程利用导数研究函数的单调性利用导数研究函数的极值【解析】(1)求出原函数的导函数,代入a=1,求得f′(1),再求出f(1)的值,利用直线方程的点斜式求曲线f(x)在点(1, f(1))处切线的方程;(2)由(1)中求出的f′(x),然后对a进行分类讨论,根据a>0和a<0分别求出函数的增区间和减区间;(3)当x∈(0, +∞)时,f(x)≥1恒成立,等价于a≥xe x在x∈(0, +∞)时恒成立.构造辅助函数g(x)=xe x,由导数求出函数g(x)的最大值,则a的取值范围可求.【解答】解:(1)由f(x)=a⋅exx,得:f′(x)=ax⋅e x−ae xx2=ae x(x−1)x2,x≠0.当a=1时,f′(x)=ex(x−1)x2.依题意f ′(1)=0,即在x =1处切线的斜率为0. 把x =1代入f(x)=e x x中,得f(1)=e .则曲线f(x)在x =1处切线的方程为y =e . (2)函数f(x)的定义域为{x|x ≠0}. 由于f′(x)=ax⋅e x −ae xx 2=ae x (x−1)x 2.①若a >0,当x >1时,f′(x)>0,函数f(x)为增函数;当x <0和0<x <1时,f′(x)<0,函数f(x)为减函数. ②若a <0,当x <0和0<x <1时,f′(x)>0,函数f(x)为增函数; 当x >1时,f′(x)<0,函数f(x)为减函数.综上所述,a >0时,函数f(x)的单调增区间为(1, +∞);单调减区间为(−∞, 0),(0, 1). a <0时,函数f(x)的单调增区间为(−∞, 0),(0, 1);单调减区间为(1, +∞). (3)当x ∈(0, +∞)时,要使f(x)=a⋅e x x≥1恒成立,即使a ≥xe x 在x ∈(0, +∞)时恒成立. 设g(x)=x ex ,则g′(x)=1−x e x.可知在0<x <1时,g′(x)>0,g(x)为增函数; x >1时,g′(x)<0,g(x)为减函数. 则g(x)max =g(1)=1e . 从而a ≥1e . 【答案】解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c . 依题意{e =ca =12a −c =1.解得c =1,a =2,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程是x 24+y 23=1.(2)不存在实数m ,使|OA →+OB →|=|OA →−OB →|,证明如下:把y =−mx −1代入椭圆C:3x 2+4y 2=12中,整理得(3+4m 2)x 2+8mx −8=0. 由于直线l 恒过椭圆内定点(0, −1),所以判别式△>0.设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=−8m4m 2+3,x 1⋅x 2=−84m 2+3. 依题意,若|OA →+OB →|=|OA →−OB →|,平方得OA →⋅OB →=0. 即x 1x 2+y 1y 2=x 1x 2+(−mx 1−1)•(−mx 2−1)=0, 整理得(m 2+1)x 1x 2+m(x 1+x 2)+1=0,所以(m 2+1)−84m 2+3−8m 24m 2+3+1=0, 整理得m 2=−512,矛盾.所以不存在实数m ,使|OA →+OB →|=|OA →−OB →|. 【考点】 椭圆的定义 【解析】(1)根据离心率为12,右焦点到右顶点的距离为1,可得{e =ca =12a −c =1.,即可求椭圆C 的标准方程;(2)依题意,若|OA →+OB →|=|OA →−OB →|,平方得OA →⋅OB →=0.把y =−mx −1代入椭圆C:3x 2+4y 2=12中,整理得(3+4m 2)x 2+8mx −8=0,利用韦达定理,即可得出结论. 【解答】解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c .依题意{e =ca =12a −c =1.解得c =1,a =2,所以b 2=a 2−c 2=3.所以椭圆C 的标准方程是x 24+y 23=1.(2)不存在实数m ,使|OA →+OB →|=|OA →−OB →|,证明如下:把y =−mx −1代入椭圆C:3x 2+4y 2=12中,整理得(3+4m 2)x 2+8mx −8=0. 由于直线l 恒过椭圆内定点(0, −1),所以判别式△>0.设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=−8m4m 2+3,x 1⋅x 2=−84m 2+3. 依题意,若|OA →+OB →|=|OA →−OB →|,平方得OA →⋅OB →=0. 即x 1x 2+y 1y 2=x 1x 2+(−mx 1−1)•(−mx 2−1)=0, 整理得(m 2+1)x 1x 2+m(x 1+x 2)+1=0, 所以(m 2+1)−84m 2+3−8m 24m 2+3+1=0, 整理得m 2=−512,矛盾.所以不存在实数m ,使|OA →+OB →|=|OA →−OB →|.【答案】 解:(1)在f(x +y)=f(x)+f(y)+1中,取 x =y =0,得f(0)=−1, 在f(x +y)=f(x)+f(y)+1中,取x =y =12,得f(1)=1,(2)在f(x +y)=f(x)+f(y)+1中,令x =n ,y =1, 得f(n +1)=f(n)+2,即a n+1−a n =2,所以数列{a n }是等差数列,公差为2,又首项a 1=f(1)=1,所以a n =2n −1,n ∈N ∗.(3)数列{b n }存在最大项和最小项, 令t =(12)a n =(12)2n−1,则b n =t 2−18t =(t −116)2−1256,显然0<t ≤12,又因为n ∈N ∗,所以当t =12,即n =1时,数列{b n }的最大项为b 1=316.当t =132,即n =3时,数列{b n } 的最小项为b 3=−31024. 【考点】抽象函数及其应用 【解析】(1)利用赋值法,分别令x =y =0,x =y =12,求得f(0)及f(1)的值;(2)令x =n ,y =1,得f(n +1)=f(n)+2,即a n+1−a n =2,问题得以解决; (3)数列{b n }存在最大项和最小项,利用换元和配方法,去求最值 【解答】 解:(1)在f(x +y)=f(x)+f(y)+1中,取 x =y =0,得f(0)=−1, 在f(x +y)=f(x)+f(y)+1中,取x =y =12,得f(1)=1,(2)在f(x +y)=f(x)+f(y)+1中,令x =n ,y =1, 得f(n +1)=f(n)+2,即a n+1−a n =2,所以数列{a n }是等差数列,公差为2,又首项a 1=f(1)=1,所以a n =2n −1,n ∈N ∗. (3)数列{b n }存在最大项和最小项,令t =(12)a n =(12)2n−1,则b n =t 2−18t =(t −116)2−1256, 显然0<t ≤12,又因为n ∈N ∗,所以当t =12,即n =1时,数列{b n }的最大项为b 1=316.当t =132,即n =3时,数列{b n } 的最小项为b 3=−31024.。
2014年高考北京文科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项. (1)【2014年北京,文1,5分】若集合{}0,1,2,4A =,{}1,2,3B =,则A B =( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}3 【答案】C【解析】因为{1,2}A B =,故选C .【点评】本题考查交集及其运算,是基础题. (2)【2014年北京,文2,5分】下列函数中,定义域是R 且为增函数的是( )(A )x y e -= (B )y x = (C )ln y x = (D )y x =【答案】B【解析】对于选项A ,在R 上是减函数;选项C 的定义域为),0(+∞;选项D ,在)0,(-∞上是减函数,故选B . 【点评】本题主要考查函数定义域和单调性的判断,比较基础.(3)【2014年北京,文3,5分】已知向量()2,4a =,()1,1b =-,则2a b -=( )(A )()5,7 (B )()5,9 (C )()3,7 (D )()3,9【答案】A【解析】因为2(4,8)a =,所以2(4,8)(1,1)(5,7)a b -=--=,故选A .【点评】本题考查平面向量的数乘及坐标减法运算,是基础的计算题. (4)【2014年北京,文4,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )3 (C )7 (D )15 【答案】C【解析】当0k =时,1S =;当1k =时,123S =+=;当2k =时,347S =+=;当3k =时,输出7S =,故选C .【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键. (5)【2014年北京,文5,5分】设a 、b 是实数,则“a b >”是“22a b >”的( )(A )充分必要条件 (B )必要而不必要条件 (C )充分必要条件 (D )既不充分不必要条件 【答案】D【解析】若0,2a b ==-,则22a b <,故不充分; 若2,0a b =-=,则22a b >,而a b <,故不必要,故选D . 【点评】判断充要条件的方法是:①若p q ⇒为真命题且q p ⇒为假命题,则命题p 是命题q 的充分不必要条件; ②若p q ⇒为假命题且q p ⇒为真命题,则命题p 是命题q 的必要不充分条件; ③若p q ⇒为真命题且q p ⇒为真命题,则命题p 是命题q 的充要条件;④若p q ⇒为假命题且q p ⇒为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.(6)【2014年北京,文6,5分】已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )(A )()0,1 (B )()1,2 (C )()2,4 (D )()4,+∞ 【答案】C【解析】因为3(2)410,(4)202f f =->=-<,所以由根的存在性定理可知,故选A . 【点评】本题考查还是零点的判断,属基础题.(7)【2014年北京,文7,5分】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )(A )7 (B )6 (C )5 (D )4 【答案】B【解析】由题意知,点P 在以原点()0,0为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两个圆有交点即可,所以15m -=,故选B .【点评】本题主要直线和圆的位置关系,求得圆C 上的点到点O 的距离的最大值为6,是解题的关键,属于中档题.(8)【2014年北京,文8,5分】加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )(A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟 【答案】B【解析】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,所以930.71640.82550.5a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得0.2, 1.5,2a b c =-==-.2215130.2 1.520.2()416p t t t =-+-=--+,当153.754t ==时,p 取最大值,故选B .【点评】本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分. (9)【2014年北京,文9,5分】若()()i i 12i x x R +=-+∈,则x = . 【答案】2【解析】由题意知:i 112i x -=-+,所以由复数相等的定义知2x =. 【点评】本题考查复数相等的充要条件,属基础题.(10)【2014年北京,文10,5分】设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为 . 【答案】221x y -=【解析】由题意知:1c a ==,所以2221b c a =-=,又因为双曲线的焦点在x 轴上,所以C 的方程为221x y -=.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题. (11)【2014年北京,文11,5分】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为______.【答案】【解析】由三视图可知:该几何体为一条侧棱垂直底面的三棱锥,底面为边长为2的等边三角形,棱锥的高为2=.【点评】本题考查点、线、面间的距离计算,考查空间图形的三视图,考查学生的空间想象能力,考查学生分析解决问题的能力.(12)【2014年北京,文12,5分】在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = .【答案】2【解析】由余弦定理得:22212cos 52244c a b ab C =+-=-⨯⨯=,故2c =;因为4417cos 2228A +-==⨯⨯,正(主)视图所以sin A =【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.(13)【2014年北京,文13,5分】若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y =+的最小值为_______.【答案】1【解析】画出不等式组表示的平面区域,可知区域为三角形,平移直线z y =+可得,当直线经过两条直线1y =与10x y +-=的交点()0,1时,z 取得最小值1.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. (14)【2014年北京,文14,5分】顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成则最短交货期为 工作日.【答案】42【解析】因为第一件进行粗加工时,工艺师什么都不能做,所以最短交货期为6152142++=天. 【点评】本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)【2014年北京,文15,13分】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -为等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.解:(1)设等差数列{}n a 的公差为d ,由题意得41123333a a d --===, 所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得344112012843b a q b a --===--,解得2q =.所以()11112n n n n b a b a q ---=-=. (2)由(1)知()13212n n b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×.所以,数列{}n b 的前n 项和为()31212n n n ++-.【点评】本题主要考查学生对等差数列及等比数列的通项公式和前n 项和公式的应用,考查学生的基本的运算能力,属基础题.(16)【2014年北京,文16,13分】函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值; (2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.解:(1)()f x 的最小正周期为π,07π6x =.03y =.(2)因为ππ212x ⎡⎤∈--⎢⎥⎣⎦,,所以π5π2066x ⎡⎤+∈-⎢⎥⎣⎦,.于是当π206x +=,即π12x =-时,()f x 取得最大值0;当ππ262x +=-,即π3x =-时,()f x 取得最小值3-. 【点评】本题考查三角函数的图象和性质,属基础题. (17)【2014年北京,文17,14分】如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥, 12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ;(3)求三棱锥E ABC -的体积.解:(1)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥.又因为AB BC ⊥.所以AB ⊥平面11B BCC .所以平面ABE ⊥平面11B BCC .(2)取AB 中点G ,连结EG ,FG .因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC =.因为11AC AC ∥,且11AC AC =,所以1FG EC ∥,且1FG EC =.所以四边形1FGEC 为平行四边形.所以1C F EG ∥. 又因为EG ⊂平面ABE ,1C F ⊄平面ABE ,所以1C F ∥平面ABE . (3)因为12AA AC ==,1BC =,AB BC ⊥,所以AB =所以三棱锥E ABC -的体积111112332ABC V S AA =⋅=⨯⨯=△.【点评】本题考查线面平行、垂直的证明,考查三棱锥E ﹣ABC 的体积的计算,正确运用线面平行、垂直的判定定理是关键.(18)【2014年北京,文18,13分】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: (1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a ,b 的值; (3)假设同一组中的每个数据可用该组区间 的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论). 解:(1)根据频数分布表,100名学生中课外阅读时 间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距.课外阅读时间落在组[810),的有25人,频率为0.25,所以0.250.1252b ===频率组距. (3)样本中的100名学生课外阅读时间的平均数在第4组.【点评】本题考查了频率分布表与频率分布直方图,再频率分布直方图中频率=小矩形的面积=小矩形的高×组距=频数样本容量. (19)【2014年北京,文19,14分】已知椭圆22:24C x y +=.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(1)由题意,椭圆C 的标准方程为22142x y +=.所以24a =,22b =,从而2222c a b =-=.C 1B 1A 1FE CBAG C 1B 1A 1FE CBA阅读时间频数因此2a =,c =C的离心率c e a ==. (2)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得002y t x =-.又22024x y +=,所以()()222002AB x t y =-+- ()22000022y x y x ⎛⎫=++- ⎪⎝⎭2220002044y x y x =+++()2202002024442x x x x --=+++()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为【点评】本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算能力,属于中档题. (20)【2014年北京,文20,13分】已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论).解:(1)由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛= ⎝⎭()11f f ==-⎝⎭,所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝⎭(2)设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,切线斜率2063k x =-, 所以切线方程为()20063y y x -=-()0x x -,()()20631t y xx -=--.整理得32004630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个 不同零点”.()()21212121g x x x x x '=-=-. ()g x 与()g x '的情况如下:所以,g 当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点. 当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点, 所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分别在 区间[)10-,,[)01,和[)12,上恰有1个零点.由于()g x 在区间()0-∞,和()1+∞,上单调, 所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--,. (3)过点()12A -, 存在3条直线与曲线()y f x =相切;过点()210B ,存在2条直线与曲线()y f x =相切;过点()02C , 存在1条直线与曲线()y f x =相切.【点评】本题主要考查利用导数求切线方程及判断函数的单调性求最值等知识,考查转化划归思想及分类讨论思想的运用能力和运算能力,属难题.。
2014朝阳二模教师版
故选D.
6. 若双曲线x2 −
y2
=
1(b
>
0) 的一条渐近线与圆x2
+
(y
−
2 2)
=
1 至多有一个交点,则双曲线离心率的取值范围是(
).
2
b
A. (1, 2]
B. [2, +∞)
C. (1, √3]
D. [√3, +∞)
答案 A
解析
/30 由题意得a2 = 1 双曲线的一条渐近线方程为y = bx ,圆心坐标为(0, 2) ,半径r = 1 ,因为渐近线与圆至多有一
= 49
,
3
所以a = 7 .
(2) 求cos 2B的值.
答案
71
cos 2B =
.
98
解析
由
a
b
=
7
3
得, =
3 √3
,所以sin B =
.
sin A
sin B
√3
sin B
14
2
所以 . 2
71
cos 2B = 1 − 2sin B =
98
30 16. 某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200学生参加社区服务的 /12/ 数据,按时间段[75, , 80) [80, , 85) [85, , 90) [90, , 95) [95, 100](单位:小时)进行统计,其频率分布直方图如图所 2017 示.
) =π=
, ⇒ ω = 2
3
12
ω
π
π
π
又f ( ) = 0 ⇒
⋅ 2 + φ = π + 2kπ ⇒ φ =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第二次综合练习数学学科测试(文史类)2014.5 (考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分 第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于(A )()U A B ð (B )A B (C )A B (D )()U AB ð (2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为(A ) sin y x = (B )ln y x = (C )3y x = (D ) 2x y =(3)已知抛物线22x y =,则它的焦点坐标是(A )1,04⎛⎫ ⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫ ⎪⎝⎭(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是(A )2 (B ) 3 (C ) 4 (D ) 5 (5)由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界) 用不等式组可表示为(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩(B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩(C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩(D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩(6)在区间ππ[-,]上随机取一个数x ,则事件:“cos 0x ≥”的概率为(A )14 (B ) 34 (C )23 (D )12(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n n S a +的最小值为 (A )10 (B )92 (C )72 (D )12+( 8 )已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是(A) 4π (B) 16π( C) 32π (D )36π第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.计算12i1i+=-.10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点坐标是 .11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .12.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是 ;表面积是 .13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m . 14.在如图所示的棱长为2的正方体1111ABCD A B C D -中,作与平面1ACD 平行的截面,则截得的三角形中面积最大的值是___;截得的平面图形中面积最大的值是___.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在ABC 中,a ,b ,c 分别是角A B C ,,的对边.已知a =,π3A =.(Ⅰ)若b =C 的大小; (Ⅱ)若2c =,求边b 的长.16. (本小题满分13分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示. (Ⅰ)求抽取的20人中,参加社区服务时间不少A 22俯视图侧视图正视图(第12题图)于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率. 17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ;(Ⅱ)求证:PA ⊥CD ;(Ⅲ)若PA PD AD==,求证:平面PAB ⊥平面PCD . 18.(本小题满分13分)已知函数e ()xa f x x ⋅=(a ∈R ,0a ≠). (Ⅰ)当1a =时,求曲线()f x 在点()1,(1)f 处切线的方程;(Ⅱ)求函数()f x 的单调区间; (Ⅲ)当()0,x ∈+∞时,若()f x 1≥恒成立,求a 的取值范围.19.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B+=-成立?若存在,求m 的值;若不存在,请说明理由.20.(本小题满分13分)已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}na 满足:()n a f n =,*n ∈N .(Ⅰ)求(0)f 及(1)f 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若311()()42n na a nb +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.北京市朝阳区高三年级第二次综合练习数学学科测试文史类答案2014.5 一、选择题(满分40分)三、解答题(满分80分) 15. (本小题满分13分)(Ⅰ)解:由正弦定理sin sin a b A B =,得=,解得sin 2B =. 由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. ………6分 (Ⅱ)依题意,222cos 2b c a A bc +-=,即2141224b b +-=.整理得2280b b --=,又0b >,所以4b =. ………13分 另解:由于sin sin a c A C =,所以2sin C=,解得1sin 2C =. 由于a c >,所以π6C =.由π3A =,得π2B =.由勾股定理222b c a =+,解得4b =. ………13分 16.(本小题满分13分)解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人),参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人).所以参加社区服务时间不少于90小时的学生人数为4+26=(人).………5分(Ⅱ)设所选学生的服务时间在同一时间段内为事件A.由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d;参加社区服务在时间段5,100[9]的学生有2人,记为,A B.从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB共15种情况.事件A包括,,,,,,ab ac ad bc bd cd AB共7种情况.所以所选学生的服务时间在同一时间段内的概率7()15P A=.………13分17. (本小题满分14分)证明:(Ⅰ)如图,连结AC.因为底面ABCD是正方形,所以AC与BD互相平分.又因为F是BD中点,所以F是AC中点.在△PAC中,E是PC中点,F是AC中点,所以EF∥PA.又因为EF⊄平面PAD,PA⊂平面PAD,所以EF∥平面PAD.………4分(Ⅱ)因为平面PAD⊥底面ABCD,且平面PAD平面=ABCD AD,又CD AD⊥,所以CD⊥面PAD.又因为PA⊂平面PAD,所以CD PA⊥.即PA⊥CD.………9分(Ⅲ)在△PAD中,因为2PA PD AD==,所以PA PD⊥.A由(Ⅱ)可知PA ⊥CD ,且=CD PD D ,所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以面PAB ⊥平面PCD . ………14分 18. (本小题满分13分)(Ⅰ)22e e e (1)()x x x ax a a xf x x x ⋅--'==,0x ≠.当1a =时,2e (1)()x x f x x -'=. 依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x =中,得(1)e f =. 则曲线()f x 在1x =处切线的方程为e y =. ………………….4分 (Ⅱ)函数()f x 的定义域为{}0x x ≠.由于22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.(2)若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数; 当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.…….9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1xa x ⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()e x xg x -'=.可知在01x <<时,()0g x '>,()g x 为增函数;1x >时,()0g x '<,()g x 为减函数.则max 1()(1)e g x g ==.从而1e a ≥.另解:(1)当0a <时,()e 1af a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1e a ≥.综上所述,1e a ≥. ………………….13分19. (本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y ab +=()0a b >>,半焦距为c . 依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=. 所以椭圆C 的标准方程是22143x y +=. ………………….4分(Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>.设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+.依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=. 即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=,整理得21212(1)()10m x x m x x ++++=, 所以2(1)m +2843m -+2281043m m -+=+,整理得2512m =-,矛盾.所以不存在实数m ,使||||OA OB OA OB +=-.…….14分20. (本小题满分13分)解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-,在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,…………2分(Ⅱ)在()()()1f x y f x f y+=++中,令x n=,1y=,得(1)()2f n f n+=+,即12n na a+-=.所以{}na是等差数列,公差为2,又首项1(1)1a f==,所以21na n=-,*n∈N.…………6分(Ⅲ){}nb存在最大项和最小项令2111()()22na nt-==,则22111()816256nb t t t=-=--,显然12t<≤,又因为Nn*∈,所以当12t=,即1n=时,{}n b的最大项为1316b=.当132t=,即3n=时,{}n b的最小项为331024b=-.…………13分。