求函数值域 、 周期的方法总结(适合高一)

合集下载

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

函数定义域值域求法总结 (1)

函数定义域值域求法总结 (1)

函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。

2、在同一对应法则作用下,括号内整体的取值范围相同。

一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。

因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。

一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。

定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。

一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

():f (x),f[g(x)]题型一已知的定义域求的定义域( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义, 而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ? ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ?2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[?1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中数学-函数值域的求法及应用

高中数学-函数值域的求法及应用

高中数学-函数值域的求法及应用高考要求函数的值域及其求法是近几年高考考查的重点内容之一本文主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题1.重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法配方法、分离变量法、单调性法、图像法、换元法、不等式法等无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力2.值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见基本函数的值域:一次函数的值域为R.二次函数,当时的值域为,当时的值域为.,反比例函数的值域为.指数函数的值域为.对数函数的值域为R.正,余弦函数的值域为,正,余切函数的值域为R.3.求函数值域(最值)的常用方法3.1.基本函数法对于基本函数的值域可通过它的图像性质直接求解.3.2配方法对于形如或类的函数的值域问题,均可用配方法求解.例1:求函数的值域:3.3换元法利用代数或三角换元,将所给函数转换成易求值域的函数:(1)形如的函数,令;(2)形如的函数,令;(3)形如含的结构的函数,可利用三角代换,令,或令.例2:求函数的值域:.分析:设则.所以原函数可化为进行求解3.4不等式法利用基本不等式,用此法求函数值域时,要注意条件“一正,二定,三相等”.如利用求某些函数值域(或最值)时应满足三个条件①;②为定值;③取等号成立的条件.三个条件缺一不可.例3:求函数的值域:.分析:一次比二次或者二次比一次的分式函数的通用方法是先换元再利用基本不等式求值域3.5函数的单调性法确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域,例如,.当利用不等式法等号不能成立时,可考虑利用函数的单调性解题.例4:f(x)=x+在区间[1,3]上的值域3.6数形结合法如果所给函数有较明显的几何意义,可借助几何法求函数的值域,如由可联想到两点与连线的斜率.例5:求函数的值域:分析:画出图像便能一目了然3.7函数的有界性法形如,可用表示出,再根据,解关于的不等式,可求的取值范围.3.8导数法设的导数为,由可求得极值点坐标,若函数定义域为,则最值必定为极值点或区间端点中函数值的最大值和最小值.例6:设f(x)=x3--2x+5,求f(x)在[-2,3]上的值域3.9判别式法例7:求函数的值域典型题例示范讲解例1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小?命题意图本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力知识依托主要依据函数概念、奇偶性和最小值等基础知识错解分析证明S(λ)在区间[]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决技巧与方法本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决例2已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围命题意图本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力知识依托本题主要通过求f(x)的最值问题来求a的取值范围,体现了转化的思想与分类讨论的思想错解分析考生不易考虑把求a的取值范围的问题转化为函数的最值问题来解决技巧与方法解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得例3设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)(1)证明当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M(2)当m∈M时,求函数f(x)的最小值(3)求证对每个m∈M,函数f(x)的最小值都不小于1学生巩固练习1 函数y=x2+ (x≤-)的值域是( )A(-∞,- B[-,+∞C[,+∞D(-∞,-]2 函数y=x+的值域是( )A (-∞,1B (-∞,-1C RD [1,+∞3 一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于()2千米,那么这批物资全部运到B市,最快需要_________小时(不计货车的车身长)4 设x1、x2为方程4x2-4mx+m+2=0的两个实根,当m=_________时,x12+x22有最小值_________5 某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位百台)(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大?(3)年产量多少时,企业才不亏本?6 已知函数f(x)=lg[(a2-1)x2+(a+1)x+1](1)若f(x)的定义域为(-∞,+∞),求实数a的取值范围;(2)若f(x)的值域为(-∞,+∞),求实数a的取值范围7 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台已知生产家电产品每台所需工时和每台产值如下表器电箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)8 在Rt△ABC中,∠C=90°,以斜边AB所在直线为轴将△ABC旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S1,△ABC的内切圆面积为S2,记=x(1)求函数f(x)=的解析式并求f(x)的定义域(2)求函数f(x)的最小值。

高中数学 函数值域求法十一种(详解)

高中数学  函数值域求法十一种(详解)

智愛高中數學 函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

1. 求函数x 1y =的值域。

解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞2. 求函数x 3y -=的值域。

解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法4. 求函数22x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+- (1)当1y ≠时,Rx ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,215. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

高一数学求函数值域的方法

高一数学求函数值域的方法

高一数学求函数值域的方法难度:高一数学中的函数是指一种依赖于某个变量或者变量集的关系式,它通常被用来描述一些实物或者抽象概念之间的相互关系。

在上述命题中,如果我们对该函数进行给定值的计算和运算,那么我们就能够得到该函数的函数值。

在数学中,函数值域通常被用来描述该函数能够生成的所有可能函数值的集合。

所以,如果我们在求函数的函数值域时想要得到一个准确的答案,那么我们就需要对该函数的定义域以及函数的具体形式进行有效的分析和推理。

本文就将为大家介绍一些高一数学求函数值域的方法,帮助大家更好地理解和掌握这一知识点。

方法一:利用求导法求函数的单调性在求函数值域时,我们可以先通过求函数的导数来了解该函数的单调性和函数的趋势变化。

具体来说,我们可以针对给定的函数f(x),按照以下步骤来计算该函数的导数:(1)求f(x)的一次导数,并得到f'(x)的函数式;(2)求f'(x)的零点,并把零点作为x轴的分界点将其分为若干段;(3)对于每一段区间,我们都能够了解到函数的单调性和函数的趋势方向,并用函数的取值范围来描述函数值域的全貌。

方法二:利用函数的图像来判断函数值域另外,我们在求函数值域的过程中,还可以通过函数的图像来了解函数的特征和函数值域的大致范围。

一般来说,函数图像的变化趋势会反应出函数的单调性和函数值域的特征,这样我们就可以根据函数图像来作出一些初步的推测和估计。

对于一些简单函数来说,我们可以直接根据函数的定义域和对应关系来求出函数的值域,而对于一些复杂函数来说,我们则需要利用一些数学方法和技巧进行较为深入的计算和推理。

需要注意的是,在利用反函数来求解函数值域时,我们需要保证原函数是可逆的,并且反函数也是一个良好定义的函数。

另外,在具体计算时,我们还需要对反函数的定义域和值域进行适当的限定和分析,从而得到准确的计算结果。

总结:综上所述,高一数学求函数值域的方法有很多种,大家可以根据自己的需求和具体情况选择适合的方法来进行计算和推导。

高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇高一新生对数学的函数知识是相当头疼的,函数知识面广,思维灵活,题型更是千奇百怪,要想学好函数,就需要一份准确的函数知识点归纳。

高一函数知识点归纳总结1函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。

f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。

高一函数归纳总结2一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:\2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

高一函数第三章知识点归纳

高一函数第三章知识点归纳

高一函数第三章知识点归纳函数是数学中的重要概念,在高一数学中,函数的学习是一个重要的环节。

在高一函数第三章中,我们学习了一些与函数相关的知识点,下面我将对这些知识点进行归纳总结。

一、函数的性质1. 定义域和值域:对于一个函数,其定义域是指可以使函数有意义的变量的取值范围,而值域是函数在定义域上所取得的全部函数值的集合。

2. 单调性:函数的单调性可以分为单调递增和单调递减两种类型。

如果对于定义域内的任意两个不同的实数,函数值满足随着自变量增大(减小)而增大(减小),则函数是单调递增(递减)的。

3. 奇偶性:当函数满足$f(-x)=f(x)$时,函数为偶函数;当函数满足$f(-x)=-f(x)$时,函数为奇函数。

4. 周期性:如果存在一个正数T,对于定义域内任意一点x,有$f(x+T)=f(x)$,则函数具有周期性。

5. 最值与最值点:函数在定义域内的最大值和最小值分别称为最大值和最小值,在最值点处取得最大值和最小值的点称为最值点。

二、函数的图像与性质1. 基本型函数的图像:包括常函数、一次函数、二次函数和绝对值函数等基本型函数,我们需要了解这些函数的图像和性质。

2. 函数的平移和伸缩:通过对基本型函数进行平移和伸缩变换,可以得到其他种类的函数。

平移和伸缩的参数可以使函数的图像发生左右平移、上下平移、水平压缩、垂直拉伸等变化。

3. 函数的对称性:函数的对称性分为关于y轴对称、关于x轴对称和关于原点对称三种情况。

通过函数的表达式可以确定函数是否具有对称性。

4. 零点和零点的个数:函数的零点是函数值为0的自变量的取值,函数可能存在一个或多个零点,我们可以通过方程的求解来确定函数的零点个数。

三、函数的运算1. 函数的加法和减法:两个函数的加法和减法的定义是将两个函数对应的函数值相加(或相减),而这两个函数在同一定义域上有意义。

2. 函数的乘法和除法:两个函数的乘法和除法的定义是将两个函数对应的函数值相乘(或相除),需要注意的是,当除法运算时,被除数函数的值不能为零。

高一数学函数的知识点总结

高一数学函数的知识点总结

高一数学函数的知识点总结高一数学函数的知识点总结 11. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a ︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B 中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一数学函数知识点总结(五篇)

高一数学函数知识点总结(五篇)

高一数学函数知识点总结函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(四)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。

函数值的集合{f(x│x∈A}叫做函数的值域。

(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。

②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。

3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。

(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。

2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。

3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。

常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。

(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

(完整版)求函数定义域及值域方法及典型题归纳

(完整版)求函数定义域及值域方法及典型题归纳

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)
构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

高一数学知识点总结

高一数学知识点总结

高一数学知识点总结高一数学知识点总结(集锦15篇)高一数学知识点总结1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法 (1)描点法 (2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学知识点总结2一、集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的解析式、定义域、值域的常用方法一、求函数的解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值(3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之(4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式二、求函数定义域的方法1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域5、分段函数的定义域是各个区间的并集6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域三、求函数值域的方法1、分离变量法2、配方法3、判别式法4、单调性法5、换元法一、求函数解析式1、换元法例1 已知22+1++1=x x x f x x ⎛⎫ ⎪⎝⎭,试求()f x2、构造方程组法例2 (1)已知21()+2()=3+4+5f x f x x x,试求()f x (2)已知2()+2(-)=3+4+5f x f x x x ,试求()f x例3 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f(3)已知x xx x x f 11)1(22++=+,求)(x f (4)已知3)(2)(3+=-+x x f x f ,求)(x f二、求函数定义域例1 求+3-4x y x 的定义域例2 求下列函数的定义域(1)35)(--=x x x f ; (2)x x x f -+-=11)( 例例4已知(f x ,(g x ,求=(g())y f x 值域 三、求函数的值域与最值1、分离变量法例1 求函数2+3=+1x y x 的值域2、配方法例2 求函数y =2x 2+4x 的值域说明:对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c3、判别式法例3 求函数2223456x x y x x ++=++的值域4、单调性法例4 求函数23y x-=+,x ∈[4,5]的值域5、换元法例5 求函数=2y x例6 求下列函数的值域: (1){}5,4,3,2,1,12∈+=x x y (2)1+=x y (3)2211xx y +-=(4))25(,322-≤≤-+--=x x x y练习1、函数y =f (x )的值域是[-2,2],则函数y =f (x +1)的值域是2、已知函数f (x )=x 2-2x ,则函数f (x )在区间[-2,2]上的最大值为3、一等腰三角形的周长为20,底边长y 是关于腰长x 的函数,那么其解析式和定义域是4、二次函数y =x 2-4x +4的定义域为[a ,b ](a<b ),值域也是[a ,b ],则区间[a ,b ]是5、函数y =f (x +2)的定义域是[3,4],则函数y =f (x +5)的定义域是6、函数22+2=3+4x y x x的值域是 7、若f (x )=(x +a )3对任意x ∈R 都有f (1+x )=-f (1-x ),则f (2)+f (-2)=8、若函数2()=-2f x x 的值域为1-,-3⎛⎤∞ ⎥⎝⎦,则其定义域为 9、求函数5-+3+4=+2x x y x 的定义域 11、已知2-2+1,2()=-,>2x x x f x x x ⎧≤⎪⎨⎪⎩,若f (a )=3,求a 的值12、已知函数f (x )满足2f (x )-f (-x )=-x 2+4x ,试求f (x )的表达式13、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 求不等式)1()(f x f >的解集 14、函数xax y 213-+=的值域为(,1)(1,)-∞--+∞U ,求实数a 的值为 15、已知函数()y f x =的定义域为(0,1),则2()f x 的定义域是16、已知函数221()1x f x x +=-,则在①()()f x f x -=,②1()()f f x x =-,③()()f x f x -=-,④1()()f x f x-= 中成立的个数是17、如果一元二次函数23y x mx m =+++有两个不同的零点,则m 的取值范围是18、已知函数[](),f x x x x R =-∈,其中[]x 表示不超过x 的最大整数,如[]352,33,222⎡⎤⎡⎤-=--=-=⎢⎥⎢⎥⎣⎦⎣⎦,则()f x 的值域是19、已知函数31(3)()3(3)x x f x x a x -⎧≠-⎪=+⎨⎪=-⎩的定义域与值域相同,则常数a =20、若函数(21)f x -的定义域是[0,1),则函数(13)f x -的定义域是21、已知二次函数2()f x ax bx =+,若12(1)(1)f x f x -=+其中122x x -≠,则12()f x x +的值为22、已知函数2()(1)f x x a x a =+-+,在区间[1,)-+∞上是增函数,则a 的取值范围是23、已知全集U R =,集合{}312A x m x m =-<<,{}13B x x =-<<,若A U C B ,求实数m 的取值范围24、已知一元二次函数()f x 满足(2)(2)()f k f k k R -+=--∈,且该函数的图象与y 轴交于点(0,1),在x 轴上截得的线段长为2225、已知集合{}2|1,A x y x x Z ==-∈,},1|{2A x x y y B ∈+==,则B A I =____26、若方程()[]24330,0,1x x k x -+-=∈没有实数根,求k 的取值范围 27、已知集合{}{}22221,350A x x x B x x ax a =--=-=-+-=,若A B B =I ,求实数a 的取值范围28、函数2()f x x bx c =-++()x R ∈满足(1)(3)f x f x -=-,且方程()0f x =的两个根12,x x 满足1222x x -=,求()f x 解析式29、已知二次函数)(x f y =的图象过点(0,3)-,且方程0)(=x f 的两个根的平方和为10,又对任意的x 都有)1()1(x f x f -=+(1)求二次函数)(x f y =的表达式;(2)求该二次函数在[0,3]上的最大最小值30、求函数212y x x =-的值域 31、已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为(1,3)(1)若方程0)(=x f 的两根一个大于-3,另一个小于-3,求a 的取值范围(2)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式31、已知集合}03)3(|{},03)32(|{222=-+-+==--+=m m x m x x B m x m x x A ,且满足条件:(1)B A ≠;(2).),0(B A m a B A a Y I 及求≠∈32、已知集合2{|0},{||1|1},2x A x B x x x -=<=->+I 则A B 等于 33、若函数2143mx y mx mx -=++的定义域为R ,则实数m 的取值范围是34、已知函数4()42xx f x =+, (1)若01a <<,求()(1)f a f a +-的值(2)求122008()()()200920092009f f f +++L 的值35、已知函数()f x 定义域为区间A ,若其值域也为区间A ,则称区间A 为()f x 的保值区间.一般来说,函数的保值区间有(,],[,],[,)m m n n -∞+∞三种形式(1)求函数2()1f x x x =-+的保值区间(2)函数1()1(0)g x x x =->是否存在形如[,]()a b a b <的保值区间,若存在,求出实数,a b 的值;若不存在,请说明理由。

高中数学必修一函数 解题方法

高中数学必修一函数 解题方法

函数习题课(I) 函数定义域和值域的求法一、求函数定义域的方法(一) 直接法求定义域关注一些特殊函数的定义域或关注一些特殊的取值,从而使得函数有意义,直接限制自变量的取值范围。

一般需要关注的解题要点:(1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠例1 求下列函数定义域①21)(-=x x f ②xx x f -++=211)( ③0)32(2)3lg()(-++-=x x x x f ④2143)(2-+--=x x x x f ⑤373132+++-=x x y(二)解题时要关注定义域函数的三要素是定义域,值域和对应关系。

其中定义域是规定函数自变量取值范围的关键,是题目限制条件的体现。

由于常常被忽略,因此是命题人常将隐含条件设计于其中。

若想正确地解决函数相关问题,必须在解题时关注定义域,把它明确地写出来。

例2 已知函数)91(log 2)(3≤≤+=x x x f ,求函数[])()(22x f x f +的最大值。

例3 求函数x x x f a 2log )(2-= )10(≠>a a 且的单调增区间。

(三)有关抽象函数的定义域问题抽象函数的自变量始终是x(或其他字母),但是由于对应法则所作用的x 形式不同(如x+2,x 2 等),于是就有了有关抽象函数的定义域问题。

解决抽象函数的定义域问题需要紧紧抓住一点:括号里面的所有代数式的取值范围是相同的。

例4 已知函数)(x f 的定义域为[0,2],求)12(+x f 的定义域。

例5 已知函数)12(+x f 的定义域为(-1,5],求)(x f 的定义域。

例6 已知函数)1(+x f 的定义域为[0,2],求)3(2x x f +的定义域。

二、求函数值域的方法(一)层层分析法(直接法)这种方法适合值域明显的复合函数或多个值域明显的函数相加减得到的函数求值域。

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式ag(x) b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x [a,b]时,求g(x)的值域(即f (x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由同增异减判定;3。

函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,y=xa(y=-xa)的对称曲线C2的方程为f(y—a,x a)=0(或f(-ya,—xa)=0);(4)曲线C1:f(x,y)=0点(a,b)的对称曲线C2方程为:f(2a—x,2b-y)=0;(5)若函数y=f(x)对x R时,f(ax)=f(a-x)恒成立,则y=f(x)图像直线x=a对称;(6)函数y=f(x-a)与y=f(b—x)的图像直线x=对称;4.函数的(1)y=f(x)对x R时,f(x a)=f(x-a)或f(x-2a )=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象直线x=a,x=b(a b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对xR时,f(xa)=—f(x)(或f(xa)=,则y=f(x)是周期为2的周期函数;5。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。

例1、 已知,试求。

解:设,则,代入条件式可得:,t ≠1。

故得:。

说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。

例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。

例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用得式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,得两个程就行了。

【解题过程】⑴设,由得, 由,得恒等式,得。

故所求函数得解析式为。

(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。

(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。

(4)因为 ① 用代替得 ② 解①②式得。

【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。

若函数程中同时出现,,则一般将式中得用代替,构造另一程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数值域 、 周期的方法总结(适合高一)
求值域
一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。

二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。

三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125
x y x -=+的值域。

四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函
数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法
求解。

例4.求函数2y x =
五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k x
k x y 的值域(k x <<0时为减函数;k x >时为
增函数))例5.求函数y x =
六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211
x y x -=+的值域。

七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。

除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥∆,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。

周期
一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立
则f (x )叫做周期函数,T 叫做这个函数的一个周期。

二.重要结论
1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;
2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数
4、 y=f(x)满足f(x+a)=
()
x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。

5、若函数y=f(x)满足f(x+a)= ()
x f 1-(a>0),则f(x)为周期函数且2a 是它的一个周期。

6、1()()1()
f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1()
f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一
个周期。

9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数
()f x 是以()2b a -为周期的周期函数;
10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;
11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

14、若奇函数y=f(x)满足f(x+T)=f(x)(x ∈R ,T≠0), 则f(
2T )=0.。

相关文档
最新文档