SPSS实现一元线性回归分析实例

合集下载

一元线性回归spss作业

一元线性回归spss作业

一元线性回归实验指导一、使用spss进行线性回归相关计算题目:为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)1.绘制散点图描述收入与广告支出的关系结果:(散点图粘贴在下面)从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系2.计算两个变量的相关系数r及其检验相关性结果表格:(粘贴在下面)从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。

3.一元线性回归分析计算回归分析;并输出标准化残差的pp图和直方图分析输出的结果:模型汇总表格:(粘贴在下面)这个表格给出相关系数R=()以及标准估计的误差()方差分析(ANOVA)表格:(粘贴在下面)这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p 值(),说明回归的线性关系(显著/不显著)系数表格:(粘贴在下面)上面这个表格给出的是参数估计和检验的有关内容,包括回归方程的常数项、非标准化回归系数、常数项和回归系数检验的统计量t和显著性水平sig,以及回归系数的%95置信区间从此表可以得出销售收入与广告支出的估计方程为()。

回归系数()表示广告支出每变动1万元,销售收入平均变动()万元。

4.残差的检验从上面的输出结果中可得到标准化残差的标准pp图和直方图(粘贴在下面)同时在数据表格中出现残差以及估计值和区间的上下界,其中PRE_1为点估计值;RES_1为非标准化残差;ZRE_1为标准化残差;LMCI_1和UMCI_1表示平均值的置信区间(均值的预测区间);LICI_1和UICI_1表示个别值的预测区间的上界和下界;下面绘制非标转化残差图:(粘贴在下面)从残差图上可以看出,各个残差随机分布于0轴两侧,没有任何固定模式,这表明在销售收入与广告支出的一元线性回归中,线性假定以及等方差的假定成立。

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。
既然具备相关性,那么我们将进一步做分析,建立回归分析,并且构建“一元线性方程”,如下所示:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方程)案例解析

SPSS实现一元线性回归分析实例

SPSS实现一元线性回归分析实例

SPSS实现一元线性回归分析实例2009-12-14 15:311、准备原始数据。

为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。

数据如图1所示。

SPSS17.0图12、判断是否存在线性关系。

制作直观散点图:(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:图2 (2)打开对话框如图3图3图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.(3)点击图3对话框中的plots按钮,如图4所示:图4将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。

单击主对话框OK.便生成散点图如图5所示:图5从以上散点图可看出,二者变量之间关系趋势呈线性关系。

2、回归方程菜单Analyze/Regression/linear Regression,在图3对话框的右边单击statistics如图6所示:图6regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。

点击continue返回主对话框,单击OK.结果如图7、图8所示:图7图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。

图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。

图8图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。

图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。

用spss做一元线性回归分析

用spss做一元线性回归分析

用SPSS做一元线性回归分析粮食生产是一个关系到国家生存与发展的一个重要问题,粮食产量波动,制约着国民经济发展,影响着粮食的价格。

因此,研究影响粮食产量波动的因素的意义不可小觑。

本次分析主要通过SPSS以及线性回归分析方法,研究分析粮食产量与土地灌溉面积之间的关系。

大致的操作过程为:首先做散点图,查看两因素之间是否线性相关;如果线性相关,接着做线性回归分析,揭示其数量关系。

最后对回归方程做显著性检验以及经济意义的检验。

一、模型设定我们的研究目的在于分析粮食产量与土地灌溉之间的数量关系,选取了2012年我国各个省份的粮食产量(万吨)和有效土地灌溉面积(千公顷)数据,将“粮食产量”作为被解释变量Y,“有效土地灌溉面积”作为解释变量X。

1.建立数据文件打开SPSS的数据编辑器,对变量视图中一些内容进行编辑,然后将EXCEL表格内数据拷贝到SPSS中。

云南1634.2 1673.6西藏245.3 93.7陕西1274.3 1194.7甘肃1291.8 1014.6青海251.7 103.4宁夏477.6 359.0新疆3884.6 1224.7表一2.画散点图从菜单上依次点选:图形—旧对话框—散点/点状,定义简单分布,设置Y为粮食产量,X 为有效土地灌溉面积,点击确定,即可出现下面的散点图。

图一由散点图发现,粮食产量与有效土地灌溉面积之间线性相关。

所以建立如下线性模型:二、线性回归分析从菜单上依次点选:分析—回归—线性,出现线性回归对话框。

在主对话框中设置因变量为“粮食产量”,自变量为“有效土地灌溉面积”,“方法”选择默认的“进入”,即自变量一次全部进入的方法。

然后,单击右侧“保存”(注意:在“保存”中被选中的项目,都将在数据编辑窗口显示),在出现的界面中勾选95%的置信区间单值,未标准化残差。

最后,关于“统计量”,在默认情况下有“估计”和“模型拟合度”复选框被选中,再勾选“R方变化”复选框。

上述操作完成后,单击确定。

SPSS操作一元线性回归

SPSS操作一元线性回归

一元线性回归
一、数据说明
以sock作为本次实验的数据。

在本例中以股票收益率为自变量,市场收益率为因变量。

二、回归模型的建立
(1)打开数据sock。

从菜单选择Analyze→Regression→Linear,弹出Linear Regression对话框。

(2)在左侧的源变量框中选择变量市场收益率作为因变量进入Dependent框中。

选择股票收益率变量作为自变量进入Independents框中。

(3)点击Save,进入下面的对话框
通过上图可知,可以存储的有:Predicted Values(预测值系列)、Residuals(残差系列)、Distances(距离系列)、Prediction Intervals(预测值可信区间系列)、Influence Statistics(波动统计量系列)。

在方框中勾选中相应选项,单击Continue。

(4)单击ok,得到结果:
看出:相关系数R=0.885 拟合优度R方=0.783 调整后的拟合优度=0.777
标准误差估计=5.85491
由上表可见,所用的回归模型F统计量值=119.224,显著性系数=0.000,因此我们用的这个回归模型是有统计学意义的。

由上表得出股票收益率与市场收益率之间的一元线性方程为:Y=0.625X+0.880
(5)关闭结果,回到数据编辑窗口:。

用spss软件进行一元线性回归分析2017

用spss软件进行一元线性回归分析2017

Case2目的: 分析平均气温和降雨量之间的数量关系
Case2习题要求: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量 关系 对回归方程做显著性检验,写出结论
Case2:气温&降雨量


给这个例子的目的是,看大家是否真的理解做散点 图的意义 当散点图都不呈现线性关系,那有多少同学接着就 做了一元线性回归?根本就没有在脑子里思考一下 它究竟是不是一元线性关系。 希望大家在以后的软件学习中,要问自己做每一步 操作的意义何在,不要机械的不思考的动手 Case3:大家用case1的数据,分析一下年蒸发量与 纬度的关系。
◦ 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们 用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验的结 果。
◦ 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与 系数的检验,在多元回归中这两者是不同的。
step4:线性回归结果

【输入/移去的变量】
◦ 此表是拟合过程中变量输入/移去模型的情况记录,由于我们只引 入了一个自变量,所以只出现了一个模型1(在多元回归中就会依 次出现多个回归模型),该模型中“纬度”为进入的变量,没有移 出的变量,具体的输入/移去方法为“输入”。
step4:线性回归结果
step4:线性回归结果

【Anova】 (analysisofvariance方差分析)
◦ 此表是所用模型的检验结果,一个标准的方差分析表。 ◦ Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性 概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果 sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义,应该换 一个模型来进行回归。

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。

一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。

二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。

(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。

以分析变量X对于变量Y的影响程度。

三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。

2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。

四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。

一元线性回归分析例题

一元线性回归分析例题

SPSS一元线性回归分析例题(体检数据中的体重和肺活量的分析)某单位对12名女工进行体检,体检项目包括体重(kg)和肺活量(L),数据如下:X(体重:kg) 42.00 42.00 46.00 46.00 46.00 50.0050.00 50.00 52.00 52.00 58.00 58.00Y(肺活量:L) 2.55 2.20 2.75 2.40 2.80 2.813.41 3.10 3.46 2.85 3.50 3.00用x表示体重,y表示肺活量,建立数据文件。

利用一元线性回归分析描述其关系。

基本操作提示:Step 1 建立数据文件,并打开该数据文件。

Step 2 选择菜单Analyz e→Regressio n→Linear,打开主对话框。

在“Dependent”(因变量)列表框中选择变量“肺活量”,作为线性回归分析的被解释变量;在“Independent”(自变量)列表框中选择变量“体重”,作为解释变量。

Step 3 单击“Statistics”按钮,在打开的对话框中,依次选择“Estimates”(显示回归系数的估计值)、“Confidence intervals”、“Model fit”(模型拟合)、“Descriptives”、“Casewise diagnostic”(个案诊断)和“All Cases”选项。

选择完毕后,单击“Continue”按钮,返回主对话框。

Step 4 单击“Plots”(图形)按钮,在打开的主对话框中,选择“DEPENDENT”(因变量)作为y轴变量,“*ZPRED”(标准化预测值)作为x轴变量;并在“Standardized Residual Plots”(标准化残差图)中选择“Histogram”(直方图)和“Normal probabilityplot”(正态概率图,即P-P图)选项。

选择完毕后,单击“Continue”按钮,返回主对话框。

Step 5 单击“Save”(保存)按钮,在打开的主对话框中,在“Predicted Values”(预测值)选项区域中选择“Unstandardized”和“S. E. ofmean predictions”(预测值均数的标准误差)选项;“PredictionIntervals”(预测区间)选项区域中选择“Mean”和“Individual”选项;“Residuals”(残差)选项区域中选择“Unstandardized”选项。

SPSS回归分析实验报告

SPSS回归分析实验报告

中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称: 回归分析_____________ 班级:___________________________ 学号:______________________________ 姓名:__________________________ 实验日期:2012.05.23 ____________实验成绩:________________ 指导教师签名: __________________实验目的一元线性回归简单地说是涉及一个自变量的回归分析个变量之间的线性关系,建立线性数学模型并进行评价预测一元线性回归的求解和多元线性回归理论与方法。

二. 实验环境中国计量学院现代科技学院机房310三. 实验步骤与内容1打开应用统计学实验指导书,新建excel表,主要功能是处理两本实验要求掌握新疆 3670.2 766852 •打开SPSS,将数据导入3 •打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度 统计里回归系数选估计,再选择模型拟合空旧I 圖囤 丨_ |韵虫| 叮鬥 口圭|冃 钥10 11 12 13 14 15W 17 1R19 2021232425 26 272831地区|供水管道|全年供水 天肄 1J 西对蒙古黒龙江:工芯 晰江 安徵 江西闕北云甫宁裏var var var var var var1ESS E6S22 W771 5669 5&36 21999 E385906G' 22099j 3663'f 24127627011406 15669 3572969231727 6063 12251 3275 5209 365 42705010393 T&39 367C120323165632 45198527425363 735S06212714390^921 76685-SP5S Data Editor訳肋(囲恚 E ■ T -S i.U64537 160132 110512 143240568949 134412 202417107777525 5^276 2田7氐185C92257787彳胎狞■!235535 20412B 230610 159570 153367 308309^ 360395"按继续再按确定会出来分析的结果7EB■* b |\M> Ww & Vslife Vtowfi2iZ736^91却朋134412 2W*i 71(177FE£EZ2第I*口川 鼻州出常-* MKlt "Ell“ f j. |4iJI+ Regressionbth De pe n den tVa rt attie'(万平方米)a. Predictors: (ConstamtJ.ft^Xa. Predittnrs: (Ccnstant ),ftzKr®Iff Io. Dcpen dent Vari at>le :(万平右米)3DependentVariabie'对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X (X 是自变量供水管道长度,丫是因 变量全年供水总量)(2)检验1) 拟合效果检验根据表2可知,R2=0.819 ,即拟合效果好,线性成立。

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。

如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。

3.用户在进行回归分析时,还可以选择是否输出方程常数。

SPSS第十讲线性回归分析

SPSS第十讲线性回归分析

步骤15:点击“Change”按钮
步骤16:点击“Old and New Values”按 钮
步骤17:将原变量中代表初中的“2”设为新变量的 “1”
步骤18:将原变量的其余取值都设为“0”
步骤19:点击“Continue”,回到主对话框
步骤20:点击“OK”,生成表示初中的虚拟变量edu2
步骤1:点击“Recode”,弹出对话框
步骤2:将四分类的教育变量拖入中间空白框
步骤3:在Name栏中填写第一个虚拟变量edu1
步骤4:在Label栏中填写变量名标签-小学
步骤5:点击“Change”按钮
步骤6:点击“Old and New Values”按 钮
步骤7:将原变量中表示小学的“1”设为新变量的“1”
步骤1:点击“Recode”,弹出对话框
注 意
通常选择Recode into Different Variable
步骤2:将性别拖入中间空白框
步骤3:在Name栏中填写虚拟变量名
步骤4:点击“Change”按钮
步骤5:点击“Old and New Values”按 钮
步骤6:将原变量的“1”设为新变量的“1”
变量的测量尺度
因变量:定距变量 自变量:定类、定序变量或定距变量, 对于分类变量需要转换成虚拟变量
回归方程
一元线性回归
Y=A+BX+ε
多元线性回归
Y=B0+B1X1+B2X2 +…+ BnXn +ε
线性回归的位置ຫໍສະໝຸດ 一元线性回归实例1 对受访者的性别和月收入进行 一元线性回归分析
注意
当自变量是分类变量时,需要将原 变量转换成虚拟变量,所有虚拟变量都 是 “1”和“0”取值的二分变量。(当原 变量是二分类变量时,我们只需要设定 一个“1”、“0”取值的虚拟变量,并且 把取值为“0”的那个类别作为参照项)

spss相关性和回归分析(一元线性方程)案例解析

spss相关性和回归分析(一元线性方程)案例解析

SPSS-相关性和回归分析(一元线性方程)案例解析2011-09-06 12:56任何事物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。

下面用SPSS采用回归—线性分析的方式来分析一下:居民总储蓄和“居民总消费”情况是否具备相关性,如果具备相关性,那相关关系的密切程度为多少。

下面以“居民总储蓄”和“居民总消费”的调查样本做统计分析,数据如下所示:第一步:我们先来分析“居民总储蓄”和“居民总消费”是否具备相关性(采用SPSS 19版本)1:点击“分析”—相关—双变量,进入如下界面:将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。

既然具备相关性,那么我们将进一步做分析, 建立回归分析,并且构建“一元线性方程”,如下所示:点击“分析”--回归----线性” 结果如下所示:将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”点击“统计量”进入如下界面:在“回归系数”中选择“估计” 在右边选择“模型拟合度” 在残差下面选择“Durbin-watson(u), 点击继续按钮再点击“绘制图”在“标准化残差图”下面选择“正太概率分布图”选项再点击“保存”按钮,在残差下面选择“未标准化”(数据的标准化,方法有很多,这里不介绍啦)得到如下结果:结果分析如下:1:从模型汇总 b 中可以看出“模型拟合度”为0.675,调整后的“模型拟合度”为0.652,就说明“居民总消费”的情况都可以用该模型解释,拟合度相对较高2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄其中在“样本数据统计”中,随即误差一般叫“残差” :从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“。

spss操作一元线性回归分析PPT课件

spss操作一元线性回归分析PPT课件
15
2020/1/13
16
1
例 某实验室用大白鼠做实验,研究一种代 乳粉的营养价值。
进食量和体重增加量表
动物编号
1 2 3 4 5 6 7 8 9 10
进食量X(g ) 820 780 720 860 690 787 934 679 639 820
体重增加Y(g )165 158 130 180 134 167 186 145 120 158
12
6.正态性检验图
13
7. 回 归 直 线 与 散 点 图
14
一元线性回归分析在医学上的应用:
1. 确定两个变量间是否存在线性关系,如存在,则 用回归方程表示它们之间的数量关系.
2. 根据一个较易测得的变量的值去推测另一个不易 测得的变量的值.
3. 用以进行对今后工作的预测. 4. 用以建立较为精确的正常值范围. 5. 用以修正观测值.
7
1. 描述性统计量
主要结果
2. 相关系数表
8
2020/1/13
9
3. 模型摘要
可决系数 R2 = .883
10
4. 方差分析表
统计量 F = 60.197 , P≈.000<.001,认为进 食量对大白鼠体重增加量的回归效果显著.
11
5. 回归系数表
回归方程: Y 17.357 0.222X
3
2. 程序选项 Analyze → Regression → Linear…
4
引入回归分析的因变量:体重增量 引入回归分析的自变量 :进食量 在Method:中选Enter(强迫引如法)
5
单击Statistics … (选项如下图)
6
单击Continue→Plos…

SPSS10一元线性回归

SPSS10一元线性回归

然后,定义变量。将数据录入之后(录入方法与 Excel 近似),即可进入 Variable View 定义变量(图 2)。这里只说定义名称——在 Name 下按顺序给出名称。Data View 的列对应于 Data View 的行(图 3)。
图 2 进入 Data View
1
图 3 定义变量名称
再说调入数据。也可以从 Excel 中调入数据,不过 Excel 的工作表 sheet 最好是干净 的,即除了原始数据以外没有其它内容。调入的方法是,在标题栏下的图标中点击 , 或者打开下拉菜单 File,选择 Open→Data (图 4),在随后弹出的对话框中将“文件类 型”改为“Excel( *.xls)”(图 5);然后在“查找范围( I)”中找到保存数据的目录 (图 6);再然后选中文件名称,点击“打开( O)”,再弹出的对话框中指定数据所在 的工作表( Worksheet )(图 7 )。点击“ OK ”确定, Excel 中保存的数据就会出现在 SPSS 的数据显示区(图 8)。只要在 Excel 中存在数据标志,SPSS 就会默认原来的数据 标志为变量名称,而不必再在 SPSS 中为变量命名(但好像只能显示前四位汉字,如“最 大积雪深度”的后面两个字就显示不了;如果在 Excel 中的变量名称前四位汉字同名,在 SPSS 中只能承认前面的一个变量,后一个变量必须重新命名)。

显然小于10%-15%,检验可以通过。
s 1.419 0.0388 y 36.53
a R es i du a ls St a ti s ti c s
Predicted Value Std. Predicted Value Standard Error of .449 .912 Predicted Value Adjusted Predicted 22.557 50.928 Value Residual -1.911 2.369 Std. Residual -1.347 1.670 Stud. Residual -1.758 1.897 Deleted Residual -3.257 3.059 Stud. Deleted Residual -2.100 2.393 Mahal. Distance .002 2.820 Cook's Distance .003 1.089 Centered Leverage Value .000 .313 a. Dependent Variable: 灌溉面积y(千亩)

spss一元回归分析详细操作与结果分析

spss一元回归分析详细操作与结果分析
Case1目的: 分析降水量和纬度之间的数量关系
Case1操作要点: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量关系 对回归方程做显著性检验
step1:建立数据文件
打开spss的数据编辑器,编辑变量视图
注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最 小为10才能全部显示。
step4:线性回归结果
【输入/移去的变量】
此表是拟合过程中变量输入/移去模型的情况记录,由于我们只引入了一 个自变量,所以只出现了一个模型1(在多元回归中就会依次出现多个回 归模型),该模型中“纬度”为进入的变量,没有移出的变量,具体的输 入/移去方法为“输入”。
step4:线性回归结果
【模型汇总】 此表为所拟合模型的情况汇总,显示在模型1中:
“模型拟合度”复选框:
模R2型和拟调合整过的程R2中, 进标入准、误退及出方的差变分量析的表列。表,以及一些有关拟合优度的检验:R,
“R方变化和p值的改变情况。
“描述性”复选框:
提的供相一关些矩变阵量。描述,如有效例数、均数、标准差等,同时还给出一个自变量间
【选项】按钮
注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
“步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F值 来设置。
“在等式中包含常量”复选框:用于决定是否在模型中包括常数项, 默认选中。
“缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不分 析任一选入的变量有缺失值的记录(按列表排除个案)而无论该缺 失变量最终是否进入模型;不分析具体进入某变量时有缺失值的记 录(按对排除个案);将缺失值用该变量的均数代替(使用均值替 代)。
【Anova】 (analysisofvariance方差分析)

用SPSS进行一元线性回归分析

用SPSS进行一元线性回归分析
中输入数据。建立因变量历期“历期” 在 SPSS 数据编辑窗口中,创建“年份”、“ 温度”和“发蛾盛期” 变量,并把数据输入相应的变量中。或者打 开已存在的数据文件“DATA6-1.SAV”。
2)启动线性回归过程 单击 SPSS 主菜单的“Analyze”下的“Regression”中“ Linear”项,将打开如图1-1所示的线性回归过程窗口。
8)其它选项 在主对话框里单击“Options” 按钮,将打开如图1-6所示的对话框。
图1-6 “ Options”设置对话框 ①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定。其中各项为: “Use probability of F” 如果一个变量的 F 值的概率小于所设置的进入值(Entry) ,那么这个变量将被选 入回归方程 中; 当变量的 F 值的概率大于设置的剔除值 (Removal) , 则该变量将从回归方程中被剔除。 由此可见,设置 “Use probability of F” 时,应使进入值小于剔除值。 “Ues F value” 如果一个变量的 F 值大于所设置的进入值( Entry) , 那么这个变量将被选入回归方程中; 当变量的 F 值小于设置的剔除值(Removal) ,则该变量将从回归方程中被剔除。同时,设置“ Use F value” 时,应使进 入值大于剔除值。 ②“Include constant in equation ”选择此项表示在回归方程中有常数项。 本例选中“Include constant in equation ”选项在回归方程中保留常数项。 ③“Missing Values”框用于设置对缺失值的处理方法。其中各项为: “Exclude cases listwise” 剔除所有含有缺失值的观测值。 “Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量。 “Replace with mean”用变量的均值取代缺失值。 本例选中“Exclude cases listwise” 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS实现一元线性回归分析实例
2009-12-14 15:31
1、准备原始数据。

为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。

数据如图1所示。

SPSS17.0
图1
2、判断是否存在线性关系。

制作直观散点图:
(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:
图2 (2)打开对话框如图3
图3
图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.
(3)点击图3对话框中的plots按钮,如图4所示:
图4
将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。

单击主对话框OK.便生成散点图如图5所示:
图5
从以上散点图可看出,二者变量之间关系趋势呈线性关系。

2、回归方程
菜单Analyze/Regression/linear Regression,
在图3对话框的右边单击statistics如图6所示:
图6
regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。

点击continue返回主对话框,单击OK.结果如图7、图8所示:
图7
图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。

图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。

图8
图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。

图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。

因此回归方程可表示为:
Y=1.34X+13.836。

X因变量,即数据表中的daily,Y是因变量,即数据表中的sunday.
SPSS实现一元线性回归分析实例
2009-12-14 15:31
1、准备原始数据。

为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。

数据如图1所示。

SPSS17.0
图1
2、判断是否存在线性关系。

制作直观散点图:
(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:
图2
(2)打开对话框如图3
图3
图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.
(3)点击图3对话框中的plots按钮,如图4所示:
图4
将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。

单击主对话框OK.便生成散点图如图5所示:
图5
从以上散点图可看出,二者变量之间关系趋势呈线性关系。

2、回归方程
菜单Analyze/Regression/linear Regression,
在图3对话框的右边单击statistics如图6所示:
图6
regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。

点击continue返回主对话框,单击OK.结果如图7、图8所示:
图7
图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。

图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。

图8
图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。

图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。

因此回
归方程可表示为:
Y=1.34X+13.836。

X因变量,即数据表中的daily,Y是因变量,即数据表中的sunday.。

相关文档
最新文档