2018中考数学几何辅助线题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学几何辅助线题

中考压轴题专题几何(辅助线)

图中有角平分线,可向两边作垂线。 角平分线平行线,等腰三角形来添。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线加一倍。 梯等式子比例换,寻找相似很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,弦高公式是关键。 计算半径与弦长,弦心距来站中间。 圆上若有一切线,切点圆心半径连。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 要想作个外接圆,各边作出中垂线。 还要作个内切圆,内角平分线梦园。 如果遇到相交圆,不要忘作公共弦。 若是添上连心线,切点肯定在上面。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验 切勿盲目乱添线,方法灵活应多变。

精选1.如图,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD

的长为 .

精选2.如图,△ABC 中,∠C =60°,∠CAB 与∠CBA 的平分线AE ,BF 相交于点D , 求证:DE =DF .

精选3.已知:如图,⊙O 的直径AB=8cm ,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,连接AC . (1) 若∠ACP=120°,求阴影部分的面积;

(2)若点P 在AB 的延长线上运动,∠CPA 的平分线交AC 于

D

E

F

精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图)

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A.

①求证:△OCP∽△PDA;

②若△OCP与△PDA的面积比为1:4,求边AB的长;

(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;

(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.

(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;

(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?

精选8、等腰Rt△ABC 中,∠BAC=90°,点A 、点B 分别是x 轴、y 轴两个动点,直角边AC 交x 轴于点D ,斜边BC 交y 轴于点E ;

(1)如图(1),若A (0,1),B (2,0),求C 点的坐标; (2)如图(2),当等腰Rt △ABC 运动到使点D 恰为AC 中点时,连接DE ,求证:∠ADB=∠CDE (3)如图(3),在等腰Rt △ABC 不断运动的过程中,若满足BD 始终是∠ABC 的平分线,试探究:线段OA 、OD 、BD 三者之间是否存在某一固定的数量关系,并说明理由.

精选9.如图,正方形ABCD 的四个顶点分别在四条平行线1l 、2l 、3l 、4l 上,这四条直线中相邻两条之间的距离依次为1h 、2h 、3h 123(000)h h h >>>,,.

(1)求证:3

1

h h =;

(2)设正方形ABCD 的面积为S ,求证:2

2

1

2

1

()S h h h =++; (3)若123

12h h +=,当1

h 变化时,说明正方形ABCD 的面积 S

随1

h 的变化情况.

l 1 l 2 l 3

l 4

h 3 h 2

h 1

A

D B 第题

参考答案

精选1

解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC ===5,

∵DE垂直平分AC,垂足为O,

∴OA =AC =,∠AOD=∠B=90°,

∵AD∥BC,

∴∠A=∠C,

∴△AOD∽△CBA,

∴=,即=,解得AD =.

故答案为:.

精选2

证明:在AB上截取AG,使AG=AF,

易证△ADF≌△ADG(SAS).

∴DF=DG.∵∠C=60°,

AD,BD是角平分线,易证∠ADB=120°.

∴∠ADF=∠ADG=∠BDG=∠BDE=60°.

易证△BDE≌△BDG(ASA).

∴DE=DG=DF.

精选3、

解:(1)连接OC.

∵PC为⊙O的切线,

∴PC⊥OC.

∴∠PCO=90度.

∵∠ACP=120°

∴∠ACO=30°

∵OC=OA,

∴∠A=∠ACO=30度.

∴∠BOC=60°

∵OC=4

∴S阴影=S△OPC﹣S扇形BOC =;

(2)∠CMP的大小不变,∠CMP=45°

由(1)知∠BOC+∠OPC=90°

∵PM平分∠APC

∴∠APM=∠APC

D

E F

G

相关文档
最新文档