大学物理第十章答案讲解
大学物理第三版第10章部分习题解答
第10章部分习题解答
1 2 E3 2 0 2 0 0
(2)
E1 0 2 0 2 0
1
2
3
E2 2 0 2 0 0
E3 0 2 0 2 0
x
2010.5.22
第10章部分习题解答
P369题10.3.10 半径为R的无限长直圆柱体均匀带电,体 电荷密度为 .试求:场强分布,并画出E-r曲 线 解: 带电圆柱的电场分布具有 轴对称性,取半径为r,高为l,以 r l 带电圆柱的轴为轴的圆柱面为 高斯面(如图),则 R (1) 圆柱体内r<R
第10章部分习题解答
(1) (2) (3)
AAB q(U A U B ) 3.6 10 J
ACD q(UC U D ) 3.6 106 J
ABD q(U B U D ) 0
6
2010.5.22
第10章部分习题解答
P371题10.3.26 电荷Q均匀地分布在球体内,试求球内外 的电势 解: 场强分布为
A
s a
2a
1 1 q E ds q 4 6 0 24 0 s
注:只有交于A点三个面存在电通量
第10章部分习题解答 P372题10.3.32 正电荷q均匀分布在半径为R的细圆环上. 试求:(1) 环轴线上距环心为x处的点P的电势; (2) 通过电势梯度求P点的场强.
1 dq 解: (1) dU P 4πε0 r 1 q UP d q 4πε0 r 4πε0 r q 4πε0 x 2 R 2
Qr r 3 0 4 0 R
Q 4 0 r
2
E
(r R)
大学物理第10章题解
习题10.1 两平行金属板A 、B ,带有等量异号电荷,相距为5.0mm,两板的面积都是150cm 2,电荷量的大小都是2.66×10-8C ,A 板带正电荷并接地,设地的电势为零,并忽略边缘效应,求B 板的电势及A B 间离A 板1.0mm 处的电势。
解:因平行板间电荷的散布的电场是匀强电场,有由高斯定理得)(100.20.50.1100.10.1,)(100.11015010854.8100.51066.201)1(23341238V V Ed Ed U mm A B A V V Q d d B QPB p PA BABAA B U sU U s⨯-=⨯⨯-=-=-=-=⨯-=⨯⨯⨯⨯⨯⨯-=︒-=E -=⋅E -=︒=︒=E ⎰⎰⎰-----处的电势为:板间离板的电势为:)得由(εεεσ 10.2 如下图,三块平行的金属板A 、B 和C ,面积都为200 cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm, B 和C 都接地。
若是使A 板带+ 3.0×10-7的电荷,略去边缘效应,问B 、C 两板上的感应电荷各是多少?以地的电势为零,A 板的电势为多少?解:因B ,C 两板都接地,故知B ,C 两板上只有向着A 的那里有感应电荷,设电荷的面密度别离为)(103.21020010854.8100.4100.1)(100.2)100.1(24)(100.1100.324210410987,,6e e e 5e 4320103412370077770E E V V sA C C C C C AB AC A B A B A C B A d Qd d E U QQd ddQ Q dd Qddd d d UU d d QQQ QQ ABBAB BABABAC AACABACBBACABCBAC AB C AB B AB AB AC C CBAC AB CAC AC ABABACBACABCBAB BACCAC AB C B⨯=⨯⨯⨯⨯⨯⨯==-=⋅=⨯-=⨯-⨯=⨯-=⨯⨯+-=+===∴-==-==-==-=+--=+∴=+=+--------εεσσσεσεσεσεεεσσσσσσσσσσσσσ板的电势为:)联立得:),(由()(两边乘以板的面积即得)()(得)(,则由间的距离为间的距离为,设)()(间的电场强度为:,指向量,从为垂直于板面的单位矢式中)(间的电场强度为:,由高斯定理得)(的关系为:得三块板上电荷量两间两边乘以鞭的面积,便)()()(理得,则由对称性和高斯定和则由度分别为的两面上电荷量的面密和板向着,和10.3 半径为10cm 的金属球A 带电1.0×10-8C 。
《大学物理》第十章气体动理论习题参考答案
第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
大学物理第十章课后习题答案
题库
第十章 静电场中的导体和电介质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?
并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大
大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]
q 6 0 q ;如果它包含 q 所在 24 0
2 2
对于边长 a 的正方形,如果它不包含 q 所在的顶点,则 e 顶点则 e 0 .
(3) 因为通过半径为 R 的圆平面的电通量等于通过半径为 R x 的球冠面的电通 量,而球冠面积*
S 2π( R 2 x 2 )[1
P R q r P'
2q a O a 3q a
+Q q a
R
d
∞
题 10-10 图
题 10-11 图
题 10-12 图
10-12 如图所示.试验电荷 q , 在点电荷 Q 产生的电场中,沿半径为 R 的整个圆弧 的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功多大?从 d 点移到无穷远处的过程中, 电场力做功为多少? 解:因为在点电荷 Q 产生的电场中, U a U d 。故试验电荷 q 在点电荷 Q 产生的电 场中, 沿半径为 R 的整个圆弧的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功 Aad 0 ; 从 d 点移到无穷远处的过程中,电场力做功为
q0 2.0 105 C .试求该点电荷所受的电场力。
点电荷所在处产生场强为: d E
dx
4 0 d x
2 l
。整个杆上电荷在该点的场强为:
E
4 0
d x
0
dxLeabharlann 2l4 0 d d l
点电荷 q0 所受的电场力大小为:
F
方向:沿 x 轴负向
A q U d U qU d
[或另解: A
qQ 4 0 R
]
R
qE d r
大学物理第十章课后答案
题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。
解:(1)设B 、C 板上的电荷分别为B q 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
大学物理课后习题详解(第十章)中国石油大学
根据高斯定理可得 方向由的正负确定
10-22 如图所示,在xOy平面内有与y轴平行、位于和处的两条无限长平 行均匀带电直线,电荷线密度分别为和。求z轴上任一点的电场强度。
[解] 无限长带电直线在线外任一点的电场强度 所以 P点的场强 由对称性知合场强的z方向分量为零,x方向分量 而
所以 方向指向x轴负方向 10-23 如图所示,在半径为R,体电荷密度为的均匀带电球体内点处放
所以 证毕。
10-27 电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离 为a的点P的电势(以无穷远为零电势点)。 [解] 取如图所示的电荷元dq,,它在P点产生的电势为
则整个带电直线在P点产生的电势为
10-28 如图所示,在点电荷+q的电场中,若取图中点P处为电势零点, 则点M的电势为多少? [解] 取P点为电势零点,则M点电势为
10-10 如图所示,一厚度为b的无限大带电平板,其体电荷密度为 (0≤x≤b),式中k为正常量。求:(1)平板外两侧任一点和处的场强大小; (2)平板内任一点P处的电场强度; (3)场强为零的点在何处? [解] (1)过点作一圆柱体穿过无限大带电平板,由高斯定理
即 所以 因此平板外一点的场强与距平板的距离无关, (2)板内(即0≤x≤b区域) (3)若电场强度为0,则 此时,此即为场强为0的点。
10-1l 一半无限长的均匀带电直线,线电荷密度为。试证明:在通过带 电直线端点与直线垂直的平面上,任一点的电场强度 E的方向都与这直 线成45°角。 [解] 如图选择直角坐标系,在棒上取电荷元
它在过棒端的垂直面上任意点贡献场强为
由于
且
所以
总场强的分量为 它与负y方向的夹角是
10-12 一带电细线弯成半径为R的半圆形,线电荷密度,式中为一常 量,为半径R与x轴所成的夹角,如图所示。试求环心O处的电场强度。 [解] 取电荷元
大学物理参考答案(白少民)第10章 波动学基础
3.5 u 15 = 28 cm , 进而可求得波的频率为 ν = = = 0.54 Hz π /4 λ 28 10.14 证 明 y = A cos( kx −ω t ) 可 写 成 下 列 形 式 : y = A cos k ( x − u t ) , x x 1 x y = A cos 2π ( − ν t ) , y = A cos 2π ( − ) ,以及 y = A cos ω( − t ) 。 λ T u λ ω 2πν t ) = k ( x − ut ) 证明 : kx − ω t = k ( x − t ) = k ( x − k 2π / λ 所以波函数可写为: y = A cos k ( x − ut ) 2π x x x − 2πν t = 2π ( −νt ) ,则波函数还可写为 y = A cos 2π ( −ν t ) 又 kx − ω t = λ λ λ 1 x t 由ν = 则还可得: y = A cos 2π ( − ) T λ T k x x kx − ω t = ω( x − t ) = ω( − t ) ,则波函数还可写为 y = A cos ω( − t ) ω u u 10.15 波源 做 简谐振动,位移与时间的关系为 y = ( 4.00 ×10 −3 ) cos 240π t m ,它所 激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。 解:由波源的振动方程 y = ( 4.00 ×10 −3 ) cos 240πt m 知振动角频率 ω = 240π . 而波的频率就等于波源的振动频率,所以波的频率和周期分别为 ω 1 1 ν= = 120 Hz , T = = = 8.33 ×10 −3 s ν 120 2π u 30.0 = 0.25 m 进一步计算波长为 λ = = ν 120 x x −3 )m 最后可写出波函数为 y = A cos ω(t − ) = ( 4.00 ×10 ) cos 240π (t − u 30 10.16 沿 绳子 行进的 横 波波函数为 y =10 cos(0.01π x − 2π t ) ,式中长度的 单 位是 cm,时间的单位是 s。试求:(1)波的振幅、 频率、传播速率和波长;(2)绳上某质点的最 大横向振动速率。 解:(1)由 y = 10 cos(0.01π x − 2π t ) = 10 cos 2π (t − 5.0 ×10 −3 x ) 知: ω 2π ν= = = 1 Hz ; 波 长 振 幅 A = 10cm = 0.1m ; 频 率 2π 2π
大学物理教程第10章习题答案
思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。
10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。
10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。
入射光强度增加一倍时,饱和电流增加一倍。
(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。
10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。
10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。
10.6 完成下列核衰变方程。
(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。
如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。
大学物理第十章有导体和电介质时的静电场习题解答和分析
第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有AC AB U U =。
解:(1)设B 、C 板上的电荷分别为Bq 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ① 又因为: AC AB U U = 而: 2AC AC d U E =⋅AB AB U E d =⋅∴ 2AC AB E E =于是:02C Bσσεε =⋅两边乘以面积S 可得:2C BS S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-1题10-1解图d(2) 00222C C A AC C AC AC q d d dU U U U E S σεε =+==⋅=⋅=⋅ 7334122102102.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ; (2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
《大学物理》第二版课后习题答案第十章
习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x xπϕπϕππλλ∆∆∆==∆==(2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=•的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=• 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======•=•=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-• 所以1max 0.0510 1.57()v m s π-=⨯=•各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-• 所以22max 0.05(10)49.3()a m s π-=⨯=•10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
大学物理教程第10章习题答案报告
思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。
10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。
10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。
入射光强度增加一倍时,饱和电流增加一倍。
(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。
10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。
10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。
10.6 完成下列核衰变方程。
(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。
如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。
大学物理第三版第10章部分习题解答解读
ABC
(3) 从D点移动到B点.
r
q1
a/2 a/2
D q2
第10章部分习题解答
解: 由电势叠加原理得
UA
q1
4 0r 4 0
q2 r2 a2
1.8103V
同理得
UC
3108
4 0 0.1
3108
4 0 0.06
1.8103V
UB UD 0
第10章部分习题解答
(1) AAB q(U A U B ) 3.6 10 6 J (2) ACD q(UC U D ) 3.6 10 6 J (3) ABD q(UB UD ) 0
解:点电荷处在中心,电力线呈球
对称分布发射,每个面上的电通量
+q
应相等.
E ds 6
E
ds
1
q
E ds
s
1q
s
6 0
0
s a
A
s
a
如果点电荷移到立方体的一个顶角上?
建立以顶点电荷为中心,棱边长为 2a,且与原棱边平行的大立方体.
对大立方体而言,每个面
的面积为 4a2 ,它又由4个 面积为a2 的小平面组成.
E3 2 0 2 0 0
2010.5.22
第10章部分习题解答
P369题10.3.10
半径为R的无限长直圆柱体均匀带电,体
电荷密度为 .试求:场强分布,并画出E-r曲
线
解: 带电圆柱的电场分布具有
轴对称性,取半径为r,高为l,以
带电圆柱的轴为轴的圆柱面为
lr
高斯面(如图),则
R
(1) 圆柱体内r<R
1
4 0
q2q3 r22
福州大学大学物理习题解答-第10章静电场
a dx 0 0
xa时
U E dx E dx
x a a a 0 0
a dx 0 0
a xa时
U E dx
x x 0 0
x dx 0 0
10-13(1)充满介质时 E1
1
0
' ' ' 0
E 2 πrl
1
0
r 2πr ldr
0
r
E
0r 2 3 0
1
当 r R 时,同样应用高斯定理
E 2πrl
0
R
0
0 r ' 2πr 'ldr '
4
福州大学-大学物理习题解答
E
0 R3 3 0 r
10-10 细棒上任一电荷元带电量
dq
q S 0 r1
d1
q S 0 r 2
d2
d1 r 2 d 2 r1 q S 0 r1 r 2
二极板间电容为
C
q S 0 r1 r 2 U d1 r 2 d 2 r1
1 S 0 r1 r 2U 2 50 104 8.85 1012 4 2 2002 We CU 2 4.4 10 7 (J) 3 3 2 2(d1 r 2 d 2 r1 ) 2 (2 10 2 3 10 4)
32
0
q a (1 ) 2 0 a2 R2
10-8
腔内电场强度等于半径为 R1 ,体电荷密度为 的带电球体在腔内电场强度 E1 减去半
径为 R 2 ,体电荷密度为 的带电球体在腔内的电场强度 E 2 ,应用高斯定理
大学物理答案第10章
第十章 静电场中的导体与电介质10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地题 10-2 图分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εqV E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( )(A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解 根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7 一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E =r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +== 得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9 地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解 由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1 =6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解 建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RRd ελU -=lnπ0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C题 10-10 图10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12 一片二氧化钛晶片,其面积为1.0 cm 2,厚度为0.10 mm .把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V 电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2) 电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQζ 晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-ζεζr (3) 晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13 如图所示,半径R =0.10 m 的导体球带有电荷Q =1.0 ×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10 m ,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm 、15 cm 、25 cm 处的D 和E ;(2) 离球心为r =5 cm 、15 cm 、25 cm 处的V ;(3) 极化电荷面密度ζ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r Q D =;202π4r εεQE r = r >R +d Q r D =⋅23π423π4r Q D =;203π4rQ E ε= 将不同的r 值代入上述关系式,可得r =5 cm 、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外. r 1 =5 cm ,该点在导体球内,则01=r D ;01=r Er 2 =15 cm ,该点在介质层内,εr=5.0,则2822m C 105.3π42--⋅⨯==r Q D r 12220m V 100.8π42-⋅⨯==r εεQE r r r 3 =25 cm ,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2) 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r Er 2 =15 cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Qd R Q r Q V r r dR d R εεεεεrE r E r 1 =5 cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E (3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0 ,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP ζr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP ζr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V/m 108.960⨯==rεεζE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15 如图(a )所示,有两块相距为0.50 的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K 内,金属盒上、下两壁与A 、B 分别相距0.25 mm ,金属板面积为30 mm ×40 mm .求(1) 被屏蔽后电容器的电容变为原来的几倍;(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析 薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容.解 (1) 由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C == ,因此A 、B 间的总电容12C C =(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16 在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U A C 、U CD 和U D B .题 10-16 图解 (1) 由电容器的串、并联,有μF 1221=+=C C C AC μF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4 μF .(2) 由于AB D B CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1) 空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011空气中电场强度()δd εδUεS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度 02='E 空气中电场强度δd UE -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18 为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr 的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0 为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析 导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17 的分析. 解 由分析可知,该装置的电容为()d d d SC r r -+=00εεε 则介质的厚度为()()C εSεεd εεC εS εεC d εd r rr r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19 有一电容为0.50 μF 的平行平板电容器,两极板间被厚度为0.01 mm 的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量. 分析 通过查表可知聚四氟乙烯的击穿电场强度E b =1.9 ×107 V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1) 电容器两极板间的电势差V 190b max ==d E U(2) 电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εζR ελE ==查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出ζ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εζ显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε 14122210mm J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21 一空气平板电容器,空气层厚1.5 cm ,两极间电压为40 k V ,该电容器会被击穿吗? 现将一厚度为0.30 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10 MV· m -1.则此时电容器会被击穿吗?分析 在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17 可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40 k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿.解 未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿. 插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E > ,空气层被击穿,击穿后40 k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.10-22 某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅ ,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大. 解 介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0 k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047 μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1) 电容器能量的改变;(2) 此过程中外力所作的功,并讨论此过程中的功能转换关系.分析 在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1) 极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221SεQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2) 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。
大学物理知识总结习题答案(第十章)量子物理基础
其中,m为粒子的质量,U为粒子在外力场中的势能函数,E是粒子的总能量。
·在无限深方势阱中的粒子能量为
整数n称为量子数。每一个可能的能量值称为一个能级。
·在势垒有限的情况下,粒子可以穿过势垒到达另一侧,这种现象叫做势垒贯穿。
7.电子运动状态
·量子力学给出的原子中电子的运动状态由以下四个量子数决定
·在不同的热力学温度T下,单色辐射本领的实验曲线存在一个峰值波长 ,维恩从热力学理论导出T和 满足如下关系
其中b是维恩常量。
3.斯忒藩—玻尔兹曼定律
·斯忒藩—玻尔兹曼定律表明黑体的辐射出射度 与温T的关系
其中 为斯忒藩—玻尔兹曼常量。对于一般的物体
称发射率。
4.黑体辐射
·黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率 成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量 被称为一个量子。黑体辐射的能量为 ,其中n=1,2,3,…,等正整数,h为普朗克常数。
解:每个光子能量为 ,其中 为普朗克常量且
则,100个波长为550nm的光子的光功率为
10-5(1)广播天线以频率1MHz、功率1kW发射无线电波,试求它每秒发射的光子数;(2)利用太阳常量I0=1.3kW/m2,计算每秒人眼接收到的来自太阳的光子数(人的瞳孔面积约为 ,光波波长约为550nm)。
解:(1)每个光子能量为 ,由
10-7“光的强度越大,光子的能量就越大”,对吗?
答:不对,光的强度是单位时间内照射在单位面积上的光的总能量。一定频率的光强度越大,表明光子数量越多,但每个光子的能量是一定的,只与频率有关,与光子数目无关。
10-8什么是康普顿效应?
答:考察X射线通过物质时向各个方向的散射现象发现,在散射的X射线中,除了存在波长与原有射线相同的成分外,还有波长较长的成分,这种波长改变的散射称为康普顿散射,也称康普顿效应。
大学物理下册第10章课后题答案
习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M 移到不带电的导体N 附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N 的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N ,或导体N 的负电荷入地。
故正确答案为(A )。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d 。
设无穷远 处为零电势,则在导体球球心O 点有[ ] (A) 0E =,04πε=q V d(B) 204πε=qE d ,04πε=qV d(C) 0E =,0V = (D) 204πε=q E d , 04πε=qV R答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E =。
导体球球心O 点的电势为点电荷q 及感应电荷所产生的电势叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章一、填空题易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。
(4510J -⨯,0.628s )易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。
(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m )易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。
(200N/m ,10rad/s )易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。
(0.02m ,2.5m ,100Hz ,250m.s -1)易:5、两个谐振动合成为一个简谐振动的条件是 。
(两个谐振动同方向、同频率)易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。
(相同)易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。
(偶数)易:8、弹簧振子系统周期为T 。
现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。
(T )易:9、作谐振动的小球,速度的最大值为,振幅为,则振动的周期为;加速度的最大值为。
(34π,2105.4-⨯)易:10、广播电台的发射频率为 。
则这种电磁波的波长为 。
(468.75m )易:11、已知平面简谐波的波动方程式为 则时,在X=0处相位为 ,在处相位为 。
(4.2s,4.199s)易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅;圆频率;初相。
(10m,1.2-s rad π,0)中:13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。
(5Hz , 0.2s , 0.03m ,23π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12cos(05.0πω-=t x )中:15、A 、B 是在同一介质中的两相干波源,它们的位相差为π,振动频率都为100Hz ,产生的波以10.0m/s的速度传播。
波源A 的振动初位相为3π,介质中的P 点与A 、B 等距离,如图(15)所示。
A 、B 两波源在P 点所引起的振动的振幅都为10.0210m -⨯。
则P 点的振动是 (填相长或相消)。
(相消)中:16、沿同一直线且频率相同的两个谐振动,,,A1和的合振动的振幅为.(21A A +)中:17、一横波的波动方程为若 ,则X=2处质点的位移为 ,该处质点的振动速度为 ,加速度为 。
(-0.01m,0)难:18、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示,若t =0时:(1)振子在负的最大位移处,则初位相为 ;(π) (2)振子在平衡位置向正方向运动,则初位相为 ;(0) (3)振子在位移为2A 处,且向负方向运动,则初位相为 ;(3π) 难:19、频率为100HZ 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的位相差为: (π4.0)难:20、如图(20)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是 (填相长或相消)。
(相消)二、选择题易:1、下列叙述中的正确者是 ( ) (A )机械振动一定能产生机械波;(B )波动方程中的坐标原点一定要设在波源上; (C )波动传播的是运动状态和能量; (D )振动的速度与波的传播速度大小相等。
易:2、一列机械波从一种介质进入另一种介质,下列说法正确的是( )(A )波长不变; (B )频率不变; (C )波速不变; (D )以上说法都不正确。
易:3、一平面简谐波在弹性介质中传播,在介质质元从平衡位置运动到最大位移处的过程中( )(A)它的动能转换成势能; (B)它的势能转换成动能;(C)它从相邻的一段质元获得能量,其能量逐渐增大; (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小。
易:4、频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为31,则此两点相距 ( )(A )2m ; (B)2.19m ; (C) 0.5m ; (D)28.6m 。
易:5、人耳能辨别同时传来的不同的声音,是由于 ( ) A .波的反射和折射; B.波的干涉; C.波的独立传播特性; D.波的强度不同。
易:6、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的14时,其动能为振动势能的 ( )(1)916; (2)1116; (3)1316; (4)15。
易:7、一单摆装置,摆球质量为m .摆的周期为T 。
对它的摆动过程,下述哪个说法是错误的?(设单摆的摆动角很小) ( )(A) 摆线中的最大张力只与振幅有关,而与m 无关; (B)周期T 与m 无关;(C)T与振幅无关(D)摆的机械能与m和振幅都有关。
易:8、一弹簧振子作简谐振动,当其偏离平衡位置的位移大小为振幅的1/4时,其势能为振动总能量的()A.1/16 ; B.15/16 ;C.9/16 ;D.13/16。
易:9、对于机械横波,在波峰处相应质元的能量为()(A)动能为零,势能最大;(B)动能为零,势能为零;(C)动能最大,势能为零;(D)动能最大,势能最大。
易:10、一平面简谐波在弹性媒质中传播时,在波线上某质元正通过平衡位置,则此质元的能量是()(A)动能为零,势能为零;(B)动能为零,势能最大;(C)动能最大,势能最大;(D)动能最大,势能为零。
易:11、人耳能辨别同时传来的不同频率的声音,这是因为()(A)波的反射和折射;(B)波的干涉;(C)波的独立传播特性;(D)波的叠加原理。
易:12、一质点作简谐振动x=6cos。
某时刻它在处,且向x轴负向运动,它要重新回到该位置至少需要经历的时间为()(A) (B)(C) (D)易:13、一质点以周期T作谐振动,试从下列所给数值中找出质点由平衡位置到最大位移一半处的时间为()(A)(B)(C)(D)易:14、两个小球1与2分别沿轴作简谐振动,已知它们的振动周期各为,在时,小球2的相位超前小球1的相位。
当s t 31=时,两球振动的相位差为( )(A)(B) (C)(D)易:15、将一物体放在一个沿水平方向作周期为1s 的简谐振动的平板上,物体与平板间的最大静摩擦系数为0.4。
要使物体在平板上不致滑动,平板振动的振幅最大只能为( )(A) (B)(C)(D)中:16、横波以波速υ沿x 轴负向传播,t 时刻波形曲线如图16,则该时刻( )(1)A 点振动速度大于零;(2)B 点静止不动;(3)C 点向下运动;(4)D 点振动速度小于零;中:17、有两个沿X 轴作谐振动的质点,它们的频率ν,振幅A 在X=-A /2处也向负向运动,则两者的相位为( )A.π/2;B.2π/3;C.π/6;D.5π/6 。
中:18、一远洋货轮,质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,设水的密度为ρ,且不计水的粘滞阻力。
货轮在水中作振幅较小的竖直自由运动是简谐运动,则振动周期为( )(1)2mgsρπ; (2)mgsρπ21 (3)gsmρπ2 ; (4)gsmρπ21中:19、两个质点各自作简谐振动,它们的振幅相同,周期相同,第一个质点的震动方程为1cos()x A t ωα=+,当第一个质点从平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:( )(1)21cos()2x A t ωαπ=++; (2)21cos()2x A t ωαπ=+-; (3)23cos()2x A t ωαπ=--; (4)2cos()x A t ωαπ=-+; 中:20、两个质点各自作简谐振动,它们的振幅相同,周期相同,第一个质点的震动方程为1cos()x A t ωα=+,当第一个质点从平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:( )(1)21cos()2x A t ωαπ=++; (2)21cos()2x A t ωαπ=+-; (3)23cos()2x A t ωαπ=--; (4)2cos()x A t ωαπ=-+; 中:21、一平面简谐波表达式为0.05sin (12)()y x SI π=--,则该波的频率、波速及波线上各点的振幅依次为( )(1)11,,0.0522-; (2)1,1,0.052-;(3)11,,0.0522; (4)2,2,0.05;中:22、在波动方程 中, 表示( )(A )波源振动相位; (B )波源振动初相;(C )X 处质点振动相位; (D )X 处质点振动初相。
难:23、一质点沿X 轴作简谐振动,振动方程为:))(212cos(1042SI t X ππ+⨯=-,从t=0时刻起,到质点位置在x=-2cm 处,且向x轴正方向运动的最短时间间隔为 ( )(A )18s ; (B )14s ; (C )512s ; (D )13s 。
难:24、质点作简谐振动,震动方程为cos()x A t ωφ=-,当时间12t T =(T 为周期)时,质点的速度为: ( )(1)sin A ωφ-; (2) sin A ωφ; (3)cos A ωφ-; (4)cos A ωφ。
难:25、一平面谐波沿X 轴负方向传播。
已知处质点的振动方程为,波速为 ,则波动方程为( )A.])(cos[ϕυω+++=x b t A yB. ])(cos[ϕυω++-=xb t A y C. ])(cos[ϕυω+-+=xb t A y D. ])(cos[ϕυω+--=xb t A y三、判断题易:1、篮球在泥泞的地面上的跳动是简谐振动。
( √ ) 易:2、波动图像的物理意义是表示介质中的各个质点在不同时刻离开平衡位置的情况。
( √ )易:3、作简谐振动的弹簧振子,在平衡位置时速度具有最大值。
( √ ) 易:4、驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的一种特殊形式的衍射现象。
( × )易:5、波动过程是振动状态和能量的传播过程。