人教版高中数学必修三 基本算法语句
人教版高中数学必修3“条件语句要点精析
“条件语句”要点精析所谓条件语句就是处理条件结构的算法语句,在程序设计中,它起到判断和选择的作用.学习时,要仔细体会条件语句的表示方法、结构和作用,能够用条件语句表示算法,不妨用它编一些简单程序,解决你学过的一些需要条件判断的数学问题.这样,你才会快速入门. 1.条件语句的基本格式IF—THEN—ELSE IF—THEN或(图2)(图1)说明:(1)在图1中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。
计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2。
(2)在图2中,“语句”表示满足条件时执行的操作内容,条件不满足时,结束程序;计算机在执行时首先对IF后的条件进行判断,如果条件符合就执行THEN后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句。
2.表达式2.1关系表达式在人教A版第18页例5的程序中,第5行是一个条件语句,其中的条件“d>=0”表达式,一般称为关系表达式,关系表达式是用关系运算符连接起来的式子,关系运算符常见有“大于>”、“小于等于<=”、“不等于<>”等.当关系表达式成立时其值为真(TRUE),当关系表达式不成立时其值为假(FALSE). 关系表达式的值既不是数值型量,也不是字符型量,而是一种新的数据类型——逻辑型(Boolean).2.2逻辑表达式在实际问题中,对于一些复杂的条件,还需要用几个关系表达式组合起来才能表示.比如,2<x<5就需要用2<x 和x<5这两个表达式来表示.将多个关系式用逻辑运算符连接起来的式子称为逻辑表达式.逻辑运算符有:(1)NOT (非):取操作数相反的值.即当操作数为真(TRUE )时,结果为假(FALSE).(2)AND (与):当两个操作数都为真时,结果才为真.(3)OR (或):当两个操作数都为假时,结果才为假.例如:(1)NOT (2>6)结果为TRUE ,NOT (7>6)的结果为FALSE.(2)(1<2)AND (2<3)的结果为TRUE ,(3<8)AND (5<9)的结果为FALSE.(3)(-1<5)OR (8<2)的结果为TRUE ,(6<0)OR (2<1)的结果为FALSE.3.条件语句的用法技巧3.1条件语句的THEN 或后面ELSE 都可以是语句组例1 从键盘上输入两个数,将它们从大到小的顺序打印出来,可用下面程序: 程序中ELSE 后面跟了一个由四个语句组成的语句组,其中前三句是实现了变量A 与B 值的变换.另外,条件语句中的条件都应该是具备逻辑值:真或假的表达式 ,BASIC 中的关系表达式和逻辑表达式都具有逻辑值.3.2条件语句可以嵌套.即条件语句中的THEN 或ELSE 后还可以跟条件语句.在多重嵌套时,应特别注意避免逻辑上的混乱,这里给出两种方法:一是将嵌套的内层条件语句放在外层条件语句中ELSE 的后面;二是采用多个并列的条件语句来完成,举两例说明.例2 已知函数()()()()⎪⎩⎪⎨⎧<-=+≥+=0530720122x x x x x x x f 编写一个程序,对每输入一个x 值,都得到相应的函数值.分析:这是一个分段函数,计算函数值必须先判断x 的范围,因而设计求函数值的算法必须用到条件结构,相应程序的书写也应用条件语句书写。
高中数学必修三之知识讲解_基本算法语句_基础
基本算法语句【学习目标】1、正确理解输入语句、输出语句、赋值语句的结构.2、会写一些简单的程序.3、掌握赋值语句中的“=”号的作用.4、正确理解条件语句和循环语句的概念,并掌握其结构的区别与联系.5、会应用条件语句和循环语句编写程序.【要点梳理】要点一、输入语句在程序中的INPUT语句就是输入语句.这个语句的一般格式是:其中,“提示内容”一般是提示用户输入什么样的信息.功能:可对程序中的变量赋值.要点诠释:①“提示内容”提示用户输入什么样的信息,必须加双引号,提示内容“原原本本”的在计算机屏幕上显示,提示内容与变量之间要用分号隔开;②变量是指程序在运行时其值是可以变化的量;③一个语句可以给多个变量赋值,中间用“,”分隔,但最后的变量的后面不需要;④要求输入的数据必须是常量,而不能是函数、变量或表达式;⑤无计算功能.例如,输入一个学生数学,语文,英语三门课的成绩,可以写成:INPUT “数学,语文,英语”;a,b,c要点二、输出语句在程序中的PRINT语句是输出语句.它的一般格式是:同输入语句一样,表达式前也可以有“提示内容”.功能:可输出表达式的值,计算.要点诠释:①“提示内容”提示用户输出什么样的信息,提示内容必须加双引号,提示内容要用分号和表达式分开;②表达式是指程序要输出的数据,可以是变量、计算公式或系统信息;③一个语句可以输出多个表达式,不同的表达式之间可用“,”分隔;④有计算功能,可以输出常量、变量或表达式的值以及字符.要点三、赋值语句用来表明赋给某一个变量一个具体的确定值的语句.它的一般格式是:赋值语句中的“=”叫做赋值号.功能:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值.要点诠释:①赋值号的左右两边不能对换,如“A=B”“B=A”的含义运行结果是不同的;②格式中右边“表达式”可以是一个数据、常量和算式,如果“表达式”是一个算式时,赋值语句的作用是先计算出“=”右边表达式的值,然后将该值赋给“=”左边的变量;③赋值号左边只能是变量名字,而不能是表达式,如:2=X 是错误的;④不能利用赋值语句进行代数式的演算(如化简、因式分解等);⑤对于一个变量可以多次赋值;⑥有计算功能;⑦赋值号与数学中的等号的意义是不同的.赋值号左边的变量如果原来没有值,则执行赋值语句后,获得一个值,如果已有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将“原值”冲掉.要点四、条件语句算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句.它的一般格式是:(IF-THEN-ELSE 格式)当计算机执行上述语句时,首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句1,否则执行ELSE 后的语句2.其对应的程序框图为:(如上右图)在某些情况下,也可以只使用IF-THEN 语句:(即IF-THEN 格式)计算机执行这种形式的条件语句时,也是首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句.其对应的程序框图为:(如上右图)要点诠释:条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去.需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理.IF 条件 THEN 语句END IF要点五、循环语句算法中的循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE 型)和直到型(UNTIL 型)两种语句结构.即WHILE 语句和UNTIL 语句.1.WHILE 语句的一般格式是:其中循环体是由计算机反复执行的一组语句构成的.WHLIE 后面的“条件”是用于控制计算机执行循环体或跳出循环体的.当计算机遇到WHILE 语句时,先判断条件的真假,如果条件符合,就执行WHILE 与WEND 之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到WEND 语句后,接着执行WEND 之后的语句.因此,当型循环有时也称为“前测试型”循环.其对应的程序结构框图为:(如上右图)2.UNTIL 语句的一般格式是:其对应的程序结构框图为:(如上右图)直到型循环又称为“后测试型”循环,从UNTIL 型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL 语句后执行其他语句,是先执行循环体后进行条件判断的循环语句.要点诠释当型循环与直到型循环的区别①当型循环是先判断后执行,直到型循环是先执行后判断;②当型循环用WHILE 语句,直到型循环用UNTIL 语句;③对同一算法来说,当型循环和直到型循环的条件互为反条件.【典型例题】类型一:输入语句、输出语句和赋值语句例1.判断下列输入、输出语句是否正确?为什么?(1)输入语句INPUT a ;b ;cWHILE 条件 循环体 WENDDO 循环体 LOOP UNTIL 条件(2)输入语句INPUT x=3(3)输出语句PRINT A=4(4)输出语句PRINT 20,3*2【解析】(1)错,变量之应用“,”隔开;(2)错,INPUT语句中只能是变量而不能是表达;(3)错,PRINT语句中不能用赋值号“=”;(4)对,PRINT语句可以输出常量、变量、表达的值。
高中数学必修3知识点总结
高中数学必修3知识点总结高中数学必修3知识点总结高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:2.算法的特点:(1)有限性;(2)确定性;(3)顺序性与正确性;(4)不唯一性;(5)普遍性;1.1.2程序框图(一)构成程序框的图形符号及其作用(二)、演算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
2、条件结构:条件结构是依据指定条件选择执行不同指令的控制结构。
依据条件P是否成立而选择执行A框或B框。
无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
一个预判判断结构可以有三十多个判断框。
3、循环结构:在一些算法中,经常会发生从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
1.2.1输入、输出语句和赋值语句AB1、输入语句一般格式Input“提示内容”;变量Print“提示内容”;表达式2、输出语句:一般格式3、赋值语句(1)赋值语句的一般格式变量=表达式(2)赋值语句的作用是将表达式所积极作用代表者的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中所的等号的意义是不同的。
赋值号的左右两边不必对换,它将赋值号右边的表达式的值赋给赋值号右边的变量;(4)赋值语句名号左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以真值十多次赋值。
1.2.2条件语句1、条件语句的一般格式:IF语句的一般格式为图1,对应的程序框图为图2。
if表达式语句序列1;else语句序列2;图1图2否满足条件?是语句1语句2end必修三IF语句的最简单格式为图3,对应的程序框图为图4。
1.2.3循环语句循环结构是由循环语句来实现的。
(完整版)人教版高中数学必修3各章知识点总结,推荐文档
高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
2014-2015学年高中数学(人教版必修三)课时训练第一章 1.2.4 算法语句的综合
跟 踪 训 练 2.某商场举行促销活动,活动规定,购物额在100元 及以内不予优惠,在100~300元之间优惠货款的5%,超过 300元之后,超过部分优惠8%,原优惠条件依然有效,画
栏 目 链 接
出购物额与应付货款之间关系的流程图,要求输入购物额,
能够输出应付货款;并用基本语句写出程序.
解析:设购物额用 x 表示,应付货款用 y 表示. x,0≤x≤100, y=0.95x,100<x≤300, 0.92,x>300. 285+ x-300
栏 目 链 接
跟 踪 训 练
1.写出用公式法求x2-2x-8=0的根的程序.
解析:题目明确要求用公式法求解,因此只要将a =1,b=-2,c=-8的值输入公式即可求解.程 序如下:
栏 目 链 接
题型二 多层条件结构的嵌套
例2 给定一个年份,写出该年是不是闰年的算法、
解析:利用UNTIL语句编写程序如下:
栏 目 链 接
点评:1.直到型循环语句中先执行一次循环体,再判
断条件是否满足,以决定继续循环还是退出循环. 2.循环次数的控制往往是判断条件,在循环体内要有 控制条件的改变,否则会陷入死循环. 3.控制循环次数的变量要综合考虑初始化时和LOOP UNTIL后两处,若初始值为1,则循环体中累加,若初始值 为循环的次数,则循环体中递减.
栏 目 链 接
程序框图和程序. 解析:(一)算法:
第一步,输入一个年份x.
第二步,若x能被100整除,则执行第三步;否则执 行第四步.
第三步,若x能被400整除,则x为闰年;否则x不为 闰年.
第四步,若x能被4整除,则x为闰年;否则x不为闰 年.
(二)程序框图:
高中数学必修三课后习题答案
高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
高中数学 1.2.1赋值、输入和输出语句课件 新人教B版必修3
第二十九页,共42页。
(3)∵a=2,b=-5, ∴a=a+b=-3,b=a-b=-3-(-5)=2, ∴a=a-2 b=-32-2=-2.5, b=a+2 b=-2.25+2=-0.25. 故运行的结果为:a=-2.5,b=-0.25.
(2)计算机执行到输入语句时,等候用户输入“提示内容” 所提示的数据,输入后回车,则程序继续运行,“提示内容” 及其后的“;”可省略.
(3)输出(shūchū)语句可以输出(shūchū)常量、变量或表达式 的值(输出(shūchū)语句有计算功能)或字符,程序中引号内的部 分将原始呈现.
第二十一页,共42页。
第三十页,共42页。
赋值、输入(shūrù)、输出语句在现实生活中的应 用
甲、乙、丙三名同学语文、数学、英
甲
85
92
73
乙
88
75
84
丙
79
98
83
设计一个程序,计算每个学生的总分和平均分. [分析] 先输入某个学生每科的成绩,然后(ránhòu)将它们 求和即可得到总分,将总分除以3便可以得到平均分.
第三十一页,共42页。
[解析] 程序如下: chn=input“请输入语文成绩”; math=input“请输入数学成绩”; en=input“请输入英语成绩” S=chn+math+en; aver=S/3; print%io2,S,aver;
第三十二页,共42页。
人教版高中数学必修三课件:1.1.1 算法的概念
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能
人教A版高中数学必修三基本算法语句教案(1)(1)
基本算法语句(2)教学目标:使学生能结合选择结构的流程图学习条件语句,能用条件语句编写程序. 教学重点:如何在伪代码中运用条件语句. 教学难点:如何在伪代码中运用条件语句. 教学过程: Ⅰ.课题导入某百货公司为了促销,采用购物打折的优惠办法:每位顾客一次购物 (1)在1000元以上者,按九五折优惠. (2)在2000元以上者,按九折优惠. (3)在3000元以上者,按八五折优惠. (4)在5000元以上者,按八折优惠. 编写程序求优惠价.解析:设购物款数为x 元,优惠价为y 元,则优惠付款公式为 y =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<.5000)( 8.0)5000(3000 85.0)3000(2000 9.0)2000(1000 95.0)1000( x x x x x x x x x x 用条件语句表示为: Read x If x <1000 theny =xElseIf x <2000 theny =0.95xElseIf x <3000 theny =0.9xElseIf x <5000 theny =0.85xElsey =0.8xEnd if Print y点评:在准确理解算法的基础上,学会条件语句的使用. Ⅱ.讲授新课例1:写出下面流程图所表述的算法的功能并用伪代码表示.开始结束答案:解:输出两个不同的数中小的一个数.用伪代码表示为 Begin Read a ,b If a >b then Print b Else Print a End if End例2:某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超过100度时,按每度0.57元计算;每月用电超过100度时,其中的100度仍按原标准收费,超过部分每度按0.50元计算.问:如何设计一个计算应交电费的算法?答案:解:设月用电x 度时,应交电费y 元,当x ≤100和x >100时,写出y 关于x 的函数关系式为y =⎩⎨⎧>-+≤<.100 )100(5.057,1000 57.0x x x x所以,计算应交电费的算法可以用伪代码表示为 Begin Read x If x ≤100 theny ←0.57xElsey ←57+0.5(x -100)End if Print y End例3:试用条件语句描述计算应纳税所得额的算法过程,其算法如下: S1 输入工资x (x ≤5000); S2 如果x ≤800,那么y =0;如果800<x ≤1300,那么y =0.05(x -800); 如果1300<x ≤2800, 那么y =25+0.1(x -1300), 否则y =175+0.15(x -2800); S3 输出税收y ,结束.答案:解:这个算法用条件语句描述为 Begin Read x If x ≤800 theny ←0Else if 800<x ≤1300 theny ←0.05(x -800)Else if 1300<x ≤2800 theny ←25+0.1(x -1300)Elsey ←175+0.15(x -2800)End if Print y End例4:在水果产地批发水果,100 kg 为批发起点,每100 kg 40元;100 kg 至1000 kg 8折优惠;1000 kg 至5000 kg ,超过1000 kg 部分7折优惠;5000 kg 至10000 kg ,超过5000 kg 的部分6折优惠;超过10000 kg ,超过部分5折优惠.请写出销售金额y 与销售量x 之间的函数关系,并用伪代码表示计算销售金额的算法.答案:y =⎪⎪⎩⎪⎪⎨⎧>+≤<+≤<+≤<.10000 6402.0,100005000 24024.0,50001000 4028.0,1000100 32.0x x x x x x x x这个算法用条件语句描述为BeginRead xIf 100<x≤1000 theny←0.32xElse if 1000<x≤5000 theny←0.28x+40Else if 5000<x≤10000 theny←0.24x+240Elsey←0.2x+640End ifPrint yEndⅢ.课堂练习课本P20 1,2,3.Ⅳ.课时小结算法中的选择结构可以用条件语句实现.if选择结构:if/else选择结构:开始Ⅴ.课后作业课本P24 3,4.。
人教A版高中数学必修三课件:1-2-3
数 学
必修③ ·人教 A版
第一章
算法初步
1.2 基本算法语句
1.2. 3 循环语句
1 2 3
自主预习 学 案 互动探究 学 案 课时作业 学 案
自主预习学案
• 循环是计算机解题的一个重要特征.由于 计算机运算速度快,最适宜做重复性质的 工作,所以当我们在进行程序设计时,总 是要把复杂的、不易理解的求解过程转换 为容易理解的、可操作的、多次重复的求 解过程.这样一方面降低了问题的复杂程 度,另一方面也减少了程序书写及输入的 工作量,同时也可以充分发挥计算机运算 速度快且可自动执行程序的优势.
[ 解析] 程序如下: S=1 i=2 DO S=S*i i=i+2 LOOP UNTIL i>100 PRINT S END
• 『规律总结』 UNTIL语句的适用类型及 执行方式
〔跟踪练习1〕 导学号 93750192 下面为一个求20个数的平均数的程序,在横线上应填充的语句为( A.i>20 C.i>=20 B.i<20 D.i<=20
[ 错解] 程序如下: S=5 000 i =0 WHILE S<40 000 S=S*1+0.1 i=i+1 WEND PRINT i END
• [辨析] 错解中的循环求出的S不是总销量
,而是每年的年销量.
• 用“m=m*(1+0. 1)”表示累乘,求出每
m=5000 年销量;用 “S=S+m”表示累加,求出 S=0 i=0 总销量. WHILE S<40000 S=S+ [正解 ]m 程序如下: m=m*1+0.1 i=i+1 WEND PRINT i END
[ 解析] 程序如下: i=2 p=0 DO p=p+i i=i+2 LOOP UNTIL i>99 PRINT P END
人教版高中数学【必修三】[知识点整理及重点题型梳理]_算法与程序框图_基础
人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习算法与程序框图【学习目标】1.初步建立算法的概念;2.让学生通过丰富的实例体会算法的思想;3.让学生通过对具体问题的探究,初步了解算法的含义;4.掌握程序框图的概念;5.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;6.掌握画程序框图的基本规则,能正确画出程序框图.【要点梳理】【算法与程序框图 397425 知识讲解1】要点一、算法的概念1、算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、算法的特征:(1)确定性:算法的每一步都应当做到准确无误、“不重不漏”.“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.(2)逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.(3)有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于一个问题可以有不同的算法.3、设计算法的要求(1)写出的算法,必须能解决一类问题(如:判断一个整数35是否为质数;求任意一个方程的近似解……),并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确.且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的.4、算法的描述:(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等.用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解.缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)程序框图:所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等特点.(3)程序语言:算法最终可以通过程序的形式编写出来,并在计算机上执行.要点诠释:算法的特点:思路简单清晰,叙述复杂,步骤繁琐,计算量大,完全依靠人力难以完成,而这些恰恰就是计算机的特长,它能不厌其烦地完成枯燥的、重复的繁琐的工作,正因为这些,现代算法的作用之一就是使计算机代替人完成某些工作,这也是我们学习算法的重要原因之一.事实上,算法中出现的程序只是用基本的语句把程序的主要结构描述出来,与真正的程序还有差距,所以算法描述的许多程序并不能直接运行,要运行程序,还要把程序按照某种语言的严格要求重新改写才行.【算法与程序框图 397425 知识讲解2】要点二、程序框图1、程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.23一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字.4、算法的三种基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构.见示意图和实例:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件P 是否成立,选择不同的执行框(A框、B框).无论P条件是否成立,只能执行A框或B框之一,不可能既执行A框又执行B框,也不可能A框、B框都不执行.A框或B框中可以有一个是空的,即不执行任何操作.见示意图要点诠释:条件结构中的条件要准确,不能含混不清,要清楚在什么情况下需要作怎样的判断,用什么条件来区分.(3)循环结构在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.①当型循环结构,如左下图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构,继续执行下面的框图.②直到型循环结构,如右下图所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立,依次重复操作,直到某一次给定的判断条件P成立为止,此时不再返回来执行A框,离开循环结构,继续执行下面的框图.见示意图要点诠释:循环结构中使用什么样的条件控制循环的开始和结束,要清楚满足某个条件的变量的次数与循环次数的联系与区别.误区提醒1、框图中的流程线不能出现交叉的现象.若有交叉,则程序语句无法写出;2、各种框图有其固定的格式和作用,不要乱用.如条件结构中不要忘了“是”与“否”,流程线不要忘记画箭头;3、条件分支结构的方向要准确;4、循环结构中,计数变量要赋初值,计数变量的自加不要忘记,自加多少不能弄错.另外计数变量一般只负责计数任务;5、循环结构中循环的次数要严格把握,区分“<”与“≤”等.循环变量的取值与循环结构(当型与直到型)有关,需区分清楚.另外,同一问题用两种不同的结构解决时,其判断条件恰是相反的;6、程序框图不要出现死循环(无限步的循环).【典型例题】类型一:算法的概念例1.(1)下列描述不能看作算法的是().A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生明确的结果.其中正确的有().A.1个B.2个C.3个D.4个【答案】(1)C (2)C【解析】(1)A、B、D都描述了解决问题的过程,可以看作算法.而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③④正确.而解决某一类问题的算法不一定是唯一的,故①错误.【总结升华】算法一般是机械的,有时需要进行大量的重复计算,只要按部就班去做,总能算出结果.通常把算法过程称为“数学机械化”,数学机械化的最大优点是它可以借助计算机来完成.实际上处理任何问题都需要算法,如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续…….举一反三:【变式1】我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的有().A.1个B.2个C.3个D.4个【答案】D类型二:算法的描述例2.写出求方程组32142x yx y-=⎧⎨+=-⎩①②的解的算法.【解析】可利用消元法或代入法求解.算法一:第一步:②×2+①,得到5x=14-4.③第二步,解方程③,可得x=2.④第三步,将④代入②,可得2+y=-2.⑤第四步,解⑤得y=-4.第五步,得到方程组的解为24 xy=⎧⎨=-⎩算法二:第一步,由②式移项可以得到x=-2-y.③第二步,把③代入①,得y=-4.④第三步,把④代入③,得x=2.第四步,得到方程组的解为24 xy=⎧⎨=-⎩.【总结升华】通过求解二元一次方程组可知,求解某个问题的算法不一定唯一.对于具体的实例可以选择合适的算法,尽量做到“省时省力”,使所用的算法是最优算法.举一反三:【变式1】试描述求解三元一次方程组1233162x y zx y zx y z++=⎧⎪--=⎨⎪--=-⎩①②③的算法步骤.【解析】算法1:第一步,①+③,得x=5.④第二步,将④分别代入①式和②式可得73 1y zy z+=⎧⎨+=-⎩⑤⑥.第三步,⑥-⑤,得y=-4.⑦第四步,将⑦代入⑤可得z=11.第五步,得到方程组的解为5411xyz=⎧⎪=-⎨⎪=⎩.算法2:第一步,①+②,得2x -y=14. ④ 第二步,②-③,得x -y=9. ⑤ 第三步,④-⑤,得x=5. ⑥第四步,将⑥代入⑤式,得y=-4. ⑦ 第五步,将⑥和⑦代入①式,得z=11.第六步,得到方程组的解为5411x y z =⎧⎪=-⎨⎪=⎩.类型三:算法的设计【算法与程序框图 397425 算法中的例1】例3.设计一个算法,从3个互不相等的数中选出最小的一个数.,并用数学语言表达. 【解析】第一步:假定这3个数中第一个是“最小值”;第二步:将第二个数与“最小值”比较,如果它小于此“最小值”,那么就用这个数取代“最小值”; 第三步:再重复第二步,将第三个数与最小值比较,如果它小于此“最小值”,那么就用这个数取代“最小值”;第四步:此时的“最小值”就是三个数中的最小值,输出最小值.所谓的算法,就是解决该类问题的一般步骤. 举一反三:【变式1】任意给定一个正整数n ,设计出判断n 是否为质数的一个算法. 【解析】第一步,当n =1时,n 既不是质数,也不是合数; 第二步,当n =2时,n 是质数;第三步,当n ≥3时,从2到n -1依次判断是否存在n 的因数(因数1除外),若存在,则n 是合数;若不存在,则n 是质数.类型四:顺序结构的应用【算法与程序框图 397425 程序框图中的例1】 例4.对于一个二次函数2y ax bx c =++,求出顶点坐标.【解析】算法步骤:S1 用户输入二次函数的系数a,b,c ;S2 计算顶点坐标24,24b ac b x y a a-=-=(赋值);S3 输出顶点坐标.举一反三:【变式1】已知x=40,y=3.画出计算z=15x+8y 的值的程序框图. 【答案】程序框图如下图所示.类型五:条件结构的应用例5.已知函数232 1 (0)1 (01)2 (1)x x y x x x x x -<⎧⎪=+≤<⎨⎪+≥⎩,写出求该函数的函数值的算法,并画出程序框图.【解析】该函数是分段函数,因此当给出一个自变量x 的值时,需先判断x 的范围,然后确定利用哪一段的解析式求函数值.画程序框图时,必须采用条件分支结构,因为函数解析式分了三段,所以需要两个判断框,即进行两次判断.算法如下:第一步,输入x .第二步,如果x <0,那么使y=2x -1,输出y ;否则,执行第三步. 第三步,如果0≤x <1,那么使y=x 2+1,输出y ;否则,执行第四步.第四步,y=x 2+2x 第五步,输出y .程序框图如下图所示.【总结升华】凡是必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断框,采用条件结构.而像本题求分段函数的函数值的程序框图的画法,如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需引入两个判断框;分四段的函数需引入三个判断框,依此类推.判断框内的内容是没有固定顺序的.举一反三:【变式1】已知函数 1 (0)()0 (0)1 (0)x f x x x ->⎧⎪==⎨⎪<⎩, 写出求函数()f x 的任一函数值的一个算法并画出程序框图.【解析】记y=f (x).算法:第一步:输入x .第二步:如果x >0,那么使y=-1;如果x=0,那么使y=0;如果x <0,那么使y=1. 第三步:输出函数值y . 程序框图如下图所示.【变式2】如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.【答案】开始结束类型六:循环结构的应用例6.设计一个计算1+3+5+7+…+999的值的算法,并画出程序框图.【解析】算法一:当型循环:第一步,令S=0,i=1.第二步,若i≤999成立,则执行第三步;否则输出S,结束算法.第三步,S=S+i.第四步,i=i+2,返回第二步,程序框图如图(1).算法二:直到型循环:第一步,令S=0,i=1.第二步,S=S+i.第三步,i=i+2.第四步,若i不大于999,转第二步;否则,输出S,结束算法.程序框图如图1-1-8(2).【总结升华】注意直到型循环和当型循环的区别.直到型循环先执行i=i+2,再判断i>999是否成立,若成立才输出S;而当型循环先判断i≤999是否成立,若成立,则执行i=i+2,直到条件i≤999不成立才结束循环,输出S.举一反三:【变式1】给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框处①和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤31?;p=p+i+1C.i≤31?;p=p+i D.i≤30?;p=p+i【答案】D【解析】由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30即①中应填写i≤30;又由第1个数是1;第2个数比第1个数大1,即1+1=2;第3个数比第2个数大1,即2+2=4;第4个数比第3个数大1,即4+3=7;…故②中应填写p=p+i故选:D.【变式2】(2016春河南周口期中)设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图:类型七:利用算法和程序框图解决实际问题例7.北京获得了2008年第29届奥运会主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.试画出该过程的程序框图.【解析】本题为算法中与现实生活相联系的题目,从选举的方法看,应选择循环结构来描述算法.如图所示:【总结升华】解决与现实相关的问题时首先要理清题意,此循环结构中对用哪一个步骤控制循环,哪一个步骤作为循环体,要有清晰的思路.举一反三:【变式1】儿童乘坐火车时,若身高不超过1.1 m,则无需购票;若身高超过1.1 m,但不超过1.4 m,可买半票;若超过1.4 m,应买全票,请设计一个算法,并画出程序框图.【解析】根据题意,该题的算法中应用条件结构,首先以身高为标准,分成买和免票,在买票中再分出半票和全票.买票的算法步骤如下:第一步:测量儿童身高h.第二步:如果h≤1.1 m,那么免费乘车,否则若h≤1.4 m,则买半票,否则买全票.精品文档 用心整理资料来源于网络 仅供免费交流使用 程序框图如下图所示.【总结升华】本题的程序框图中有两个判断点,一个是以1.1 m 为判断点,1.1 m 把身高分为两段,在大于1.1 m 的一段中,1.4 m 又将其分两段,因此1.4 m 这个判断是套在1.1 m 的判断里的.所以我们用到两个条件结构.。
2020-2021学年高中数学必修3人教A版课件:1.2.3 循环语句
[自主练习]
1.在循环语句的一般形式中有“UNTIL A”,其中 A 是( )
A.循环变量
B.循环体
C.终止条件
D.终止条件为真
解析: 由循环语句中 UNTIL 语句的格式可知选 C.
答案: C
2.下面算法语句的功能是( ) S=0 For i=1 To 100
S=S+i Next 输出 S A.求 1×2×3×…×100 的值 B.求 1×3×5×…×99 的值 C.求 1+2+3+…+100 的值 D.求 1+3+5+…+99 的值
(2)程序框图如图所示:
程序如下:
S=0 k=2 DO
S=S+k k=k+2 LOOP UNTIL k>99 PRINT S END
答案: (1)①S=S+i∧2 ②i=i+1 ③i>100
[规律方法] (1)UNTIL 语句的适用类型 直到型循环又称“后测试”循环,也就是我们所讲的“先执行后测试”“先 循环后判断”.
执行循环体,跳出循环体执行
循环体,跳出循环体,执行_W__E_N__D__
பைடு நூலகம்
_U__N_T_I_L___语句后面的语句
后面的语句
[名师指津] 当型循环(WHILE)语句与直到型循环(UNTIL)语句的区别
(1)当型循环先判断条件后执行,循环体可能一次也不执行. (2)直到型循环先执行一次循环体再判断条件,即循环体至少执行一次. (3)对同一个算法,当型循环语句与直到型循环语句中的条件是相反的.
人教版高中数学必修三基本算法语句
INPUT “R=”;R C=2*3.14*R S=3.14*R^2 PRINT “C=”;C
PRINT “S=”; S
END
〖练习3〗.
程序:
INPUT “a,b(a,b≠0)=”;a ,b X=a+b Y=a-b Z=a * b Q=a/b PRINT X,Y,Z,Q END
“\”用来取商.此处表示 x除以10的商.
“MOD”用来取余数.此处表 示x除以10所得余数为b.
PRINT x
[问题]如输入的数x=86,则输出
END IF
的结果是什么? 68 此程序用于交换一个两位数的
END
个位和十位数字.
INPUT “a,b,c=”; a,b,c IF a+b>c AND a+c>b AND b+c>a THEN
END
[变式引申]:在此程序的基础上,设计一个程序, 要求最后A的输出值是30.
A=10
程序:
A=A+15 PRINT A
A=A+5
PRINT A
END
〖例4〗交换两个变量A和B的值,并输出交换前后
的值。
分析:引入一个中间变量X,将A的值赋予X,又将B
的值赋予A,再将X的值赋予B,从而达到交换A,
注意: INPUT语句不但可以给单个变量赋值,还可以
给多个变量赋值,其格式为:
INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量 3,…
例如,输入一个学生数学,语文,英语三门课的成绩, 可以写成:
高中数学第一章算法初步123循环语句课件新人教B版必修3
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
程序与程序框图的对译
根据以下给出的程序,画出其相应的程序框图,并指明 该算法的功能.
n=1; S=1; while S<5000
S=S*n; n=n+1; end n=n-1; print(%io(2),n);
循环语句的概念及一般格式 (1)循环语句用来实现算法中的__循__环__结__构__. (2)循环语句主要有两种类型:__f_o_r_循__环___和__w_h_i_le__循__环__.
(3)for 循环的一般格式为
for 循环变量=初值:步长:终值 循环体;
end
(4)while 循环的一般格式为
解:该算法的程序框图如图所示.
1.循环语句主要有两种形式,即 for 语句与 while 语句,for 语句主要适用于预知循环次数的循环结构;而循环次数不确定 时,则要用 while 循环语句. 2.理解 for 循环的关键是理解计算机如何执行程序语句中第三 步“s=s+i”,这个执行过程实际上是每次循环赋给 s 的值都 比上一步增加一个“步长”,如此循环直至结束.而 while 循 环则是每次执行循环体之前,都要判断表达式是否为真,这样 重复执行,直至表达式为假时跳过循环体部分而结束循环.
复习课件
高中数学第一章算法初步1.2.3循环语句课件新人教B版必修3
2021/4/17
高中数学第一章算法初步123循环语句课件新人教B版必初步
1.了解程序框图转化为程序语句的过程. 2.理解循环 语句的概念及作用. 3.掌握循环语句的格式及程序框图的画法、程序的编写.
用 while 语句编写程序的一般过程 (1)对变量进行初始赋值; (2)确定执行循环体的条件; (3)确定循环体; (4)输出结果.
人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图
UNTIL型
WHILE型
i=1 s=0 DO s=s+i i=i+1 LOOP UNTIL i>100 PRINT s END 执行循环体直到满 足条件时跳出循环 (不满足条件时执行 循环体)
i=1 s=0 WHLIE i<=100 s=s+i i=i+1 WEND PRINT s END 当满足条件时,执行 循环体(直到不满 足条件时跳出循环)
3 . 则输出的 n 的值为________
第十四章 算法初步
第二节 基本算法语句
一.各种程序设计语言中都包含下列基本的算法语句: 输入语句 输出语句 赋值语句 条件语句 循环语句
二.基本算法语句 (一)输入语句 INPUT “提示内容”;变量
INPUT “ 提 示 内 容 1 , 提 示 内 容 2 , 提 示 内 容 3,…”;变量1,变量2,变量3,…
基础自测
1.(2009年汉沽模拟)已知变量a,b已被赋值,要交换a、b的
值,采用的算法是( D A.a=b,b=a C.a=c,b=a,c=a B.a=c,b=a,c=b D.c=a,a=b,b=c C
基础自测
2. 下边的程序语句输出的结果S为(A )
A.17
B.19
C.21
D.23
990 3. 下列程序执行后输出的结果是_________ i=1 WHILE i<8 S=2i+3 i=i+2 WEND PRINT S END i=11, S=1, DO s=s*i s=1 LOOP UNTIL i<9 PR图的两部分
开始
输入n i=2 求n除以i的余数r i=i+1 i≥n或r=0?
是
人教B版高中数学必修三课件第一章1.21.2.3循环语句
[通一类]
2.写出求满足1+2+3+…+n>2011的最小自然数n的
程序.
解:程序为:
S=0; n=1; While S<=2011; S=S+n; n=n+1; end n=n-1; print(%io(2),n)
[研一题] [例3] 写出求12-22+32-42+…+992-1002的值的程
名称 格式
for循环 for循环变量=:初值 :步长 终值
循环体
end
while循环
while 表达式 循环体 end
名称
for循环
while循环
适合
循环次数
用于预先知道的情形
条件
用于预先不知道次循数环的情 形
作用 用来控制有规律的或重者复在运程算序中需要对某些语句进行 重复的执行
[小问题·大思维] 1.在“for语句”中,步长代表什么?它可以为零吗?
S=0 i=1 while i<=100 S=S+i i=i+1 end M=-S print(%io(2),M)
[悟一法] (1)for语句和while语句的区别可总结为:for语句“先执行,后 判断”,while语句“先判断,后执行”. (2)理解for循环的关系是理解计算机如何执行循环体,例如“S =S+1”这个执行过程实际上是每次循环直至结束.而while 循环则是在每次执行循环体之前,都要判断表达式是否为 真.这样重复执行,一直到表达式为假时,就跳过循环体部 分,结束循环. (3)在Scilab界面内可直接输入程序,for(while)循环语句可以 写在同一行,但在循环条件后面要用“,”号分开,也可以分 行写,但要记住加end.
序.
[自主解答] 法一:程序如下:
M=0; N=0; for i=1:2:99 M=M+i^2; end for i=2:2:100 N=N-i^2; end S=M+N; print%io2,S
人教版高中数学必修三知识讲解,巩固练习(教学资料,补习资料):专题1.3 算法案例
知识1.求两个正整数的最大公约数的算法 (1)辗转相除法①定义:辗转相除法是用于求_____________的最大公约数的一种算法,这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.就是对于给定的两个正整数,用较大的数除以较小的数,若余数不为零,则将余数和较小的数构成一对新数,继续上面的除法,直到余数为零,则这时较小的数就是原来两个数的最大公约数. ②算法步骤用辗转相除法求两个正整数的最大公约数,其算法步骤如下: 第一步,给定两个正整数,m n . 第二步,计算m 除以n 所得的余数r . 第三步,,m n n r ==.第四步,若0r =,则,m n 的最大公约数等于m ;否则,返回第二步. ③程序框图如图所示:④程序如下:INPUT m ,n DOr=m MOD n m=n n=rPRINT m END或INPUT m ,nr=1 While r>0 r=m MOD n m=n n=rPRINT m END(2)更相减损术①定义:中国古代的数学专著《九章算术》中记载着“更相减损术”,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.” ②算法步骤第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步. 第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数. ③程序框图④程序如下:INPUT “a ,b=”;a ,b WHILE a≠b r=a-bIF b>r THEN a=b b=r ELSE a=r END IF WEND PRINT b END2.秦九韶算法(1)定义及原理:把一个n 次多项式1110()n n n n f a x a x x a x a --=++⋅⋅⋅++改写成如下形式:2110()((()))n n n f a x a x x a x a x a --=⋅⋅⋅+++⋅⋅+⋅+.求多项式的值时,首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212323,n n v v x a v v x a --=+=+,…,10n n v v x a -=+,这种求n 次多项式()f x 的值的方法叫做秦九韶算法.(2)秦九韶算法程序化的可行性探讨:观察秦九韶算法中的n 个一次式,可见计算k v 时要用到1k v -的值,若令0n v a =,我们可以得到下面的递推公式:0____________(1,2,,)n k v a v k n =⎧⎨==⋅⋅⋅⎩.这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现. (3)算法步骤第一步,输入多项式次数n 、最高次项的系数n a 和x 的值. 第二步,将v 的值初始化为n a ,将i 的值初始化为n -1. 第三步,输入i 次项的系数i a . 第四步,,1i v vx a i i =+=-.第五步,判断i是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.(4)程序框图如图所示:(5)程序如下:INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0PRINT “i=”;iINPUT “ai=”;av=v*x+ai=i-1WENDPRINT vEND3.进位制(1)定义:进位制是人们为了计数和运算方便而约定的记数系统,约定满二进一,就是二进制;满十进一,就是十进制;满六十进一,就是六十进制;等等.也就是说,“满几进一”就是几进制,几进制的基数就是几.一般地,若k 是一个大于1的整数,那么以k 为基数的k 进制数可以表示为一串数字连写在一起的形式:1210()110110(,,,,,0<,0,,,)n n n k n n n n a a a a a a a a a a k a a a k ----⋅⋅⋅⋅⋅⋅∈<≤⋅⋅⋅<N .说明:①若一个数为十进制数,其基数可以省略不写.②若是其他进位制的数,在没有特别说明的前提下,其基数必须写出,常在数的右下角标明基数. (2)将k 进制数转化为十进制数 ①算法步骤:计算k 进制数a 的右数第i 位数字i a 与1i k -的乘积1i i a k -⋅,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法,算法步骤如下: 第一步,输入,a k 和n 的值.第二步,将b 的值初始化为0,i 的值初始化为1. 第三步,1,1i i b b a k i i -=+⋅=+.第四步,判断i n >是否成立.若是,则执行第五步;否则,返回第三步. 第五步,输出b 的值. ②程序框图如图所示:③程序如下:INPUT “a ,k ,n=”;a ,k ,n b=0 i=1 t=a MOD 10 DOb=b+t*k^(i-1) a=a\10 t=a MOD 10 i=i+1LOOP UNTIL i>n PRINT b END(3)将十进制数转化为k 进制数 ①转化方法:十进制数化为k 进制数用____________,即先把十进制数a 除以k ,商为0q ,余数为0r ,再把0q 除以k ,商为1q ,余数为1r ,…,反复进行这种除法,直到商1n q -除以k 所得的商为0,余数是n r ,即1n n q r -=为止,此时将所有余数按从右到左排列就得到所要求的k 进制数10()n n k r r r -⋅⋅⋅. ②算法步骤:第一步,给定十进制正整数a 和转化后的数的基数k . 第二步,求出a 除以k 所得的商q ,余数r . 第三步,把得到的余数依次从右到左排列.第四步,若0q ≠,则a q =,返回第二步;否则,输出全部余数r 排列得到的k 进制数. ③程序框图如图所示:④程序如下:INPUT “a ,k=”;a ,k b=0 i=0 DO q=a\k r=a MOD k b=b+r*10^i i=i+1 a=qLOOP UNTIL q=0 PRINT b END知识参考答案: 1.(1)两个正整数2.(2)1k n k v x a --+3.(3)①除k 取余法重点重点辗转相除法、更相减损术、秦九韶算法、进位制难点用秦九韶算法求多项式的值,进位制间的转换易错易对秦九韶算法中的运算次数理解错误1.辗转相除法与更相减损术辗转相除法与更相减损术有着相同的算法依据,但要注意运算过程的差别.两者的区别是:(1)辗转相除法进行的是除法运算,即辗转相除,更相减损术进行的是减法运算,即辗转相减,但其实质都是一个不断的递推过程.(2)辗转相除法,下一次进行相除时,由上一次的除数和余数直接相除即可.而更相减损术下一次相减前必须有一个判断大小的过程,以区别谁做被减数.注意:用更相减损术求两正整数的最大公约数时,若两数为偶数,可先约去2,这时莫忘记求得的相等两数乘以约简的数才是所求的最大公约数.【例1】用辗转相除法和更相减损术求840与1764的最大公约数.【答案】840与1764的最大公约数是84.【解析】辗转相除法:1764=840×2+84,840=84×10+0,∴840与1764的最大公约数是84.更相减损术:1764–840=924,924–840=84,840–84=756,756–84=672,672–84=588,588–84=504, 504–84=420, 420–84=336, 336–84=252, 252–84=168, 168–84=84,∴840与1764的最大公约数是84.【例2】利用辗转相除法求3869与6497的最大公约数. 【答案】3869与6497的最大公约数为73.【名师点睛】辗转相除法计算次数少,而更相减损术计算次数多,但是更相减损术每一步的计算都是减法,比做除法运算要简单一些,所以一般当数较小时考虑用更相减损术,当数较大时考虑用辗转相除法. 2.秦九韶算法秦九韶算法的实质是:求多项式1110()n n n n f a x a x x a x a --=++⋅⋅⋅++的值时,转化为求n 个一次多项式的值,共进行n 次乘法运算和n 次加法运算.这种算法的运算次数较少,是多项式求值比较先进的算法. 【例3】 用秦九韶算法计算多项式f (x )=12+35x –8x 2+79x 3+6x 4+5x 5+3x 6在x =–4时的值时,V 3的值为A .–845B .220C .–57D .34【答案】C【解析】∵多项式f (x )=12+35x –8x 2+79x 3+6x 4+5x 5+3x 6=(((((3x +5)x +6)x +79)x –8)x +35)x +12, 当x =–4时,∴v 0=3,v 1=3×(–4)+5=–7,v 2=–7×(–4)+6=34,v 3=34×(–4)+79=–57.故选C .【例4】用秦九韶算法计算函数f (x )=2x 4+3x 3+5x –4在x =2时的函数值.【答案】62【名师点睛】利用秦九韶算法计算多项式的值的策略:(1)正确地将多项式改写,若在多项式中有几项不存在,可将这些项的系数看成0,即把这些项看做0n x ⨯. (2)由内向外逐次计算.(3)每一步计算结果准确,由于下一次计算用到上一次计算的结果,应认真、细致地计算每一步. 3.进位制把一个非十进制数转化为另一种非十进制数,通常是把这个数先转化为十进制数,然后再利用除k 取余法,把十进制数转化为k 进制数. 【例5】将八进制数127(8)化为十进制数. 【答案】87【解析】()21081271828786416787=⨯+⨯+⨯=++=.【例6】已知一个k 进制的数123(k )与十进制的数38相等,求k 的值. 【答案】5【解析】将转化为十进制,()210212312323k k k k k k =⨯+⨯+⨯=++, 由题意,得k 2+2k +3=38, 所以k 2+2k –35=0, 所以k =5或k =–7(舍) 所以k =5.【名师点睛】除k 取余法的两个关注点:①要连续除:用k 连续去除十进制数或所得的商,直到商为零为止. ②若是其他进位制的数,在没有特别说明的前提下,其基数必须写出,常在数的右下角标明基数.基础训练1.秦九韶算法的先进性主要体现在减少运算次数,下列说法正确的是A .可以减少加法运算次数B .可以减少乘法运算次数C .同时减少加法和乘法的运算次数D .加法次数和乘法次数都有可能减少2.用秦九韶算法求多项式652()7632f x x x x =+++,当4x =时的值,先算的是A .4×4=16B .7×4=28C .4×4×4=64D .7×4+6=343.把十进制的23化成二进制数是A .00 110(2)B .10 111(2)C .10 1111(2)D .11 101(2)4.若十进制数26等于k 进制数32,则k 等于A .4B .5C .6D .85.用更相减损术求294和84的最大公约数时,需要做减法的次数是A .3B .4C .5D .66.1 037和425的最大公约数是A .51B .17C .9D .37.已知多项式54321()4322f x x x x x x =++---,用秦九韶算法求(2)f -等于 A .1972-B .1972C .1832D .1832-8.用更相减损术求156与91的最大公约数时,需要做减法的次数是__________. 9.将45(6)改写成十进制数为__________.10.用秦九韶算法计算多项式5432()54321f x x x x x x =+++++当4x =时的值时,乘法运算的次数为__________.11.用更相减损术求288与153的最大公约数.12.用秦九韶算法求多项式5432()3532f x x x x x x =-+-+当2x =时的值.能力提升13.在下列四个数中,最小的数是A .(9)85B .(6)210C .(4)1000D .(2)11111114.用秦九韶算法计算多项式65432()256238103f x x x x x x x =+++-+-当4x =-时的值时,3v 的值为A .742-B .49-C .18D .18815.若98与63的最大公约数为a ,二进制数(2)110011化为十进制数为b ,则a b +=A .53B .54C .58D .6016.用更相减损术求123和48的最大公约数是A .3B .7C .9D .1217.计算机是将信息转换成二进制处理,二进制即“逢二进一”,如(2)1101表示二进制数.将它转化成十进制形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数1611111个(2)转换成十进制形式是A .217-2B .216-2C .216-1D .215-118.在下列各数中,最大的数是A .(9)85B .(6)210C .(4)1000D .(2)1111119.完成进位制之间的转化:(5)413=__________(7). 20.(1)把八进制数()87341化为十进制数;(2)把1285化为16进制数.21.先将412(5)化成十进制的数,然后用“除k取余法”再化成七进制的数.22.用辗转相除法和更相减损术求261与319的最大公约数.参考答案1 2 3 4 5 6 7 13 14 15 16 17 18B D B D B B A D BC A C B 1.【答案】B【解析】通过对秦九韶算法的理解,可知它的主要作用是减少乘法的次数,将原来的乘法次数由(1)2n n减少到n,而对加法没有影响.故选B.2.【答案】D3.【答案】B【解析】23÷2=11…1,11÷2=5…1,5÷2=2…1,2÷2=1…0,1÷2=0…1,故23(10)=10111(2).故选B.4.【答案】D【解析】由题意知,10 2632k k =⨯+⨯,解得8k =.故选D . 5.【答案】B【解析】()()()()()294,84210,84126,8484,4242,42→→→→. 6.【答案】B【解析】∵1 037=425×2+187,425=187×2+51,187=51×3+34,51=34×1+17,34=17×2,即1 037和425的最大公约数是17. 7.【答案】A【解析】∵1()((((43)2)1)1)2f x x x x x x =++---,∴197(2)2f -=-.8.【答案】5【解析】求最大公约数的过程如下:1569165-=,916526-=,652639-=,392613-=,261313-=.故13是最大公约数,共进行了5次减法运算. 9.【答案】29(10)【解析】由于45(6)=4×61+5×60=29(10).故答案为:29(10). 10.【答案】5【解析】5432((((54)3)2)1()54321)1f x x x x x x x x x x x =++++++++++=,不难发现要经过5次乘法,5次加法运算. 11.【答案】详见解析.【解析】288-153=135,153-135=18,135-18=117,117-18=99,99-18=81,81-18=63,63-18=45,45-18=27,27-18=9,18-9=9. 因此288与153的最大公约数为9. 12.【答案】详见解析.13.【答案】D【解析】因为(9)8589577=⨯+=,2(6)210261678=⨯+⨯=,3(4)10001464=⨯=,543210(2)11111122222263=+++++=,所以最小的数是(2)111111.故选D .14.【答案】B【解析】65432()256238103f x x x x x x x =+++-+- (((((25)6)23)8)10)3x x x x x x =+++-+-,则010212,52(4)53,63(4)618v v v x v v x ==+=⨯-+=-=+=-⨯-+=,322318(4)v v x =+=⨯-2349+=-,故选B . 15.【答案】C【解析】∵9816335=⨯+,6313528=⨯+,351287=⨯+,2874=⨯,∴98和63的最大公约数是7,即7a =.二进制数(2)110011化为十进制数为54321012120202121251⨯+⨯+⨯+⨯+⨯+⨯=,即51b =,则58a b +=.故选C . 16.【答案】A【解析】123-48=75,75-48=27,48-27=21,27-21=6,21-6=15,15-6=9,9-6=3,6-3=3,所以123和48的最大公约数是3. 17.【答案】C【解析】161111个(2)1514016=12+12++12=21⨯⨯⨯-.18.【答案】B19.【答案】213【解析】∵012(5)41335154535425108=⨯+⨯+⨯=++⨯=,012108371727=⨯+⨯+⨯,∴(7)(5)421313=.20.【答案】(1)3809;(2)()16505.【解析】(1)()87341=3210783848183809⨯+⨯+⨯+⨯=;(2)用16连续去除1285,直到商为0为止,所得到的余数依次从右向左排列,就得到()161285505=. 21.【答案】详见解析.【解析】412(5)=2×50+1×51+4×52=2+5+4×25=107, ∵107=7×15+2, 15=7×2+1, 2=7×0+2.∴把5进制的数412(5)化为7进制是212(7). 22.【答案】详见解析.【解析】辗转相除法: 319=261×1+58, 261=58×4+29, 58=29×2,所以261与319的最大公约数为29.。
人教A版高中数学必修三课件基本算法语句(1)
框图: 开始
输入x
y x3 3x2 24x 30
输出x,y 结束
新课讲解
例1.用描点法作函数的y 图x象3 时3,x2需要24求x 出30
自变量和函数的一组对应值,编写程序,分别计算当x=-5, -4,-3,-2,-1,0,1,2,3,4,5时的函数值。
INPUT“提示内容”;变 量
PRINT“提示内容”;表达 式
变量=表达式
1.“提示内容”和它后面 的 “;”可以省略; 2.一个语句可以给多个变 量赋值,中间用“,”隔
说明 开;
3.无计算功能,不能输入 表达式; 4.输入多个数据时用“,” 分隔,且个数要与变量 的个数相同。
1.“提示内容”和它后面的 “;”可以省略; 2.一个语句可以输出多个表 达式,不同的表达式之间 用“,”隔开; 3.表达式可以是变量,也可 以是计算公式; 4.有计算功能,能直接输出 计算公式的值。
取商 取余数
函数名 ABS(x) SQR(x)
LOG(x)
功能 注意事项
|x|
x
x0
Inx
x0
新课讲解
例2.编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
算法:
框图:
第一步:分别输入三科的成绩a,b,c;
开始
第二步:计算average=(a+b+c)/3;
第三步:输出三科平均分。
END
新课讲解
例3.分析下列程序,考虑输出的结果是什么?
程序1:a=1 x=aA=A+15 PRINTA END
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:BASIC语言中的标准函数SQR(x),表示数x 的算术平方根,ABS(x)表示x的绝对值等.
即: SQR( x) x , ABS(x)=|x|.
〖作业2〗
程序:
INPUT “a,b,h=”;a ,b,h p=a+b s=p*h/2 PRINT “s=”;s END
算法中的条件结构是由条件语句来表达的, 条件语句是处理条件分支逻辑结构的算法语句 . 条件语句的一般格式 只含一个“分支”的条件结构 写成条件语句为
“\”用来取商.此处表示 x除以10的商.
“MOD”用来取余数.此处表示 x除以10所得余数为b.
[问题]如输入的数x=86,则输出 的结果是什么? 68 此程序用于交换一个两位数的 个位和十位数字.
INPUT “a,b,c=”; a,b,c IF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSE PRINT “No.” END IF END
否
是
(2)UNTIL语句的一般格式是: 直到型循环结构 DO 循环体 LOOP UNTIL
循环体
条件
满足条件?
否
是
从UNTIL型循环结构分析,计算机执行该语句时,先 执行一次循环体,然后进行条件的判断,如果条件不 满足,继续返回执行循环体,然后再进行条件的判断, 这个过程反复进行,直到某一次条件满足时,不再执 行循环体,跳到LOOP UNTIL语句后执行其他语句, 是先执行循环体后进行条件判断的循环语句.
一.输入语句 输入语句的一般格式 INPUT “提示内容”;变量
说明: (1)输入语句的作用是实现算法的输入信息功能; (2)“提示内容”提示用户输入什么样的信息, 变量是指程序在运行时其值是可以变化的量; (3)输入语句要求输入的值只能是具体的常数, 不能是函数、变量或表达式; (4)提示内容与变量之间用分号“;”隔开, 若输入多个变量,变量与变量之间用逗号“,”隔开
〖例2〗:编写程序,使得任意输入的3个整 数按从大到小的顺序输出。 算法分析:用a,b,c表示输入的3个整数;为 了节约变量,把它们重新排列后,仍用a,b,c表 示,并使a≥b≥c.具体操作步骤如下。 第一步:输入3个整数a,b,c. 第二步:将a与b比较,并把小者赋给b,大者 赋给a. 第三步:将a与c比较. 并把小者赋给c,大者 赋给a,此时a已是三者中最大的。 第四步:将b与c比较,并把小者赋给c,大者 赋给b,此时a,b,c已按从大到小的顺序排列好。 第五步:按顺序输出a,b,c.
循环体 循环体
满足条件? 否
是
满足条件?
否
是
对应于程序框图中的两种循环结构,一般 程序设计语言中也有当型(WHILE型)和直到型 (UNTIL型)两种语句结构。
即WHILE语句和UNTIL语句。
(1)WHILE语句的一般格式是: WHILE 条件 循环体 WEND WHILE——当…… 时候
WEND——朝……方向 行走
(1)WHILE语句的一般格式是
(2)UNTIL语句的一般格式是: 直到型循环结构 DO 循环体 LOOP UNTIL DO——做什么 UNTIL——绕环回线走,直到达到某种 条件为止 思考:参照其直到型循环结构对应的程序框图,说说 计算机是按怎样的顺序执行UNTIL语句的? LOOP
循环体
条件
满足条件?
【例题解析】
〖例1〗:编写程序,输入一元二次方程ax2+bx+c=0的系 数,输出它的实数根。
算法分析: 一元二次方程的根有三种不同情况: 设判别式△=b2-4ac (1)当△>0时,一元二次方程有两个不等的实数根. b b b b x11 , ,xx2 x 2 2a a 2a 2a 2a 2 (2)当△=0时,一元二次方程有两个相等的实数根. b b p x1 x2 2a 2a (3)当△<0时,一元二次方程没有实数根.
否 语句2
是 语句1
当计算机执行上述语句时,首先对IF后的 条件进行判断,如果条件符合,就执行THEN后 的语句体1,否则执行ELSE后的语句体2.
条件语句的作用 在程序执行过程中,根据判断 是否满足约定的条件而决定是否需 要转换到何处去。需要计算机按条 件进行分析、比较、判断,并按判 断后的不同情况进行不同的处理。
INPUT “a=”; a IF a MOD 2 =0 THEN PRINT “Even.” ELSE PRINT “Odd.” END IF END
算法中的循环结构是由循环语句来实现的 .
循环结构有两种-----当型与直到型. 当型循环结构(当条件满 直到型循环结构(反复执 行循环体直到条件满足) 足时反复执行循环体)
q 2a
开始
输入a,b,c
【程序框图】
是 否
输出p
1
△=0?
2
△=b2-4ac
△≥0?
否 x1=p+q
是
b p 2a
q 2a
x2=p-q
输出x1,x2
原方程无实根
结束
1
2
【程序】
INPUT “ a,b,c =”;a,b,c d=b*b-4*a*c IF d>=0 THEN p=-b/(2*a) q=SQR(d)/(2*a) IF d=0 THEN PRINT “One real root:”;p ELSE x1=p+q x2=p-q PRINT “Two real roots:“;x1,x2 END IF ELSE PRINT “No real root!” END IF
满足条件?
是
否
语句
IF 条件 THEN 语句体 END IF
当计算机执行这种形式的条件语句时,首先对 IF后的条件进行判断,如果条件符合,就执行 THEN后的语句体,否则执行END IF之后的语句.
含两个“分支”的条件结构
满足条件?
写成条件语句为 IF 条件 THEN 语句体1 ELSE 语句体2 END IF
INPUT B PRINT A,B X=A A=B B=X PRINT A,B END
不能!!!!!!
〖练习1〗:编写一个程序,要求输入一个圆的半径, 便能输出该圆的周长和面积.( π取3.14) 分析:设圆的半径为R,则圆的周长C=2πR,面积 S=πR2,可以利用顺序结构中的INPUT语句,PRINT 语句和赋值语句设计程序。
其中循环体是由计算机反复执行的一组语句 构成的。WHLIE后面的“条件”是用于控制计算机 执行循环体或跳出循环体的。
WHILE 条件 循环体 当计算机遇到WHILE语句时, WEND 先判断条件的真假,如果条件 符合,就执行WHILE与WEND之间 的循环体;然后再检查上述条 当型循环结构 件,如果条件仍符合,再次执行 循环体,这个过程反复进行,直 循环体 到某一次条件不符合为止.这 时,计算机将不执行循环体,直 满足条件? 是 接跳到WEND语句后,接着执行 否 WEND之后的语句.
注意: INPUT语句不但可以给单个变量赋值,还可以 给多个变量赋值,其格式为:
INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,…
例如,输入一个学生数学,语文,英语三门课的成绩, 可以写成:
INPUT “数学,语文,英语”;a,b,c
二.输出语句 输出语句的一般格式 PRINT “提示内容”;表达式 说明: (1)“提示内容”提示用户输出什么样的信息,表 达式是指程序要输出的数据; (2)输出语句的用途: ①输出常量,变量的值和字符串等系统信息。 ②输出数值计算的结果。
Байду номын сангаас
例1 用描点法作函数y=x3+3x2-24x+30的图象 时,需要求出自变量和函数的一组对应值.编写程序, 分别计算当x=-5,-4,-3,-2,-1,0,1, 2,3,4,5时的函数值. 程序: INPUT “x=”;x -----------------输入语句 y=x^3+3*x^2-24*x+30---------赋值语句 PRINT x -------------------------打印语句 输出语句 PRINT y -------------------------打印语句 输出语句 END -------------------------表示结束
我们知道,顺序结构是任何一个算法 都离不开的基本结构。 输入、输出语句和 赋值语句基本上对应于算法中的顺序结构. (如右图) 计算机从上而下按照语 语句n 句排列的顺序执行这些语句. 输入语句和输出语句分 别用来实现算法的输入信息, 输出结果的功能.
语句n+1
输入语句和输出语句分别用来实现算法的 输入信息,输出结果的功能。
〖例4〗交换两个变量A和B的值,并输出交换前后 的值。 分析:引入一个中间变量X,将A的值赋予X,又将B 的值赋予A,再将X的值赋予B,从而达到交换A, B的值.(比如交换装满水的两个水桶里的水需要 再找一个空桶) 程序: INPUT A 问题:能否用下列赋值 语句交换A,B的值? A=B B=A
【例题解析】 〖例2〗:编写程序,计算一个学生数学、语文、 英语三门课的平均成绩。 分析:先写出算法,画出程序框图,再进行编程。 程序框图
开始 输入a,b,c
abc y 3
程序: INPUT “Maths,Chinese,English”;a,b,c y=(a+b+c)/3 PRINT “y=”;y END
【程序框图】
开始
输入a,b,c
交换a,b的值
b>a?
是
t=a
是
t=a a=c c=t
否 否
c>a?
a=b
b=t
c>b?