随机过程第二章期末练习题
随机过程-习题-第2章
2.1 设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<< 121。
试证明:)/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n即一个马尔可夫过程的反向也具有马尔可夫性。
证明:首先,由条件概率的定义式得),,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++=根据马尔可夫性将上式中的分子和分母展开,并化简得)()()/()()/()/()()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++==n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n于是,)/()(),(),,/(1/11,1,,/1111++++++++++==n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n2.2 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。
随机过程第二章作业及参考答案
第二章 平稳过程2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。
试证 (1)若t T ∈,而{}12T = ,,,则(){}12X t t = ,,,是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){}0X t t ≥,不是平稳过程。
证明:由题意,U 的分布密度为:()10220u f u ππ⎧<<⎪=⎨⎪⎩,,其它数学期望()()[]sin X m t E X t E Ut ==⎡⎤⎣⎦()()2220001111sin sin cos cos 212222ut du ut d ut ut t t t t ππππππππ=⋅==-=--⎰⎰.相关函数()()()()()sin sin X X R R t t E X t X t E Ut U t ττττ=+=+=⋅+⎡⎤⎡⎤⎣⎦⎣⎦,()()()2200111sin sin cos 2cos 222ut u t du ut u u du ππτττππ⎛⎫=⋅+⋅=⋅-+--⎡⎤ ⎪⎣⎦⎝⎭⎰⎰ ()()2220001111cos 2cos sin 2sin 442u t u du u t u t πππττττππττ⎡⎤=-+-=-+-⎡⎤⎢⎥⎣⎦+⎢⎥⎣⎦⎰()()11sin 22sin 2424t t πτπτπτπτ=-+++.(1)若t T ∈,而{}12T = ,,时,()0X m t =,()X R τ只与τ有关,二者均与t 无关,因此,(){}12X t t = ,,,是平稳过程。
(2)若t T ∈,而[)0T =+∞,时,()X m t 可能取到不是常数的值,所取到的值与t 有关,()X R τ取到的值也与t 有关,因此,(){}0X t t ≥,不是平稳过程。
3. 设随机过程()()0cos X t A t ωΦ=+,t -∞<<+∞其中0ω是常数,A 和Φ是独立随机变量。
随机过程期末试题及答案(2)
{N(t),t ≥ 0} 独立,令 X(t)=∑X(t)] = λ tE {Y1} 。
k=1
N(t)
2
证明:由条件期望的性质 E [X(t) ] = E E ⎡ ⎣ X(t) N(t) ⎤ ⎦ ,而 E ⎡ ⎣ X(t) N(t) = n ⎤ ⎦ = E⎢
P(X(t) ≤ x X(t1 )=x1 , X(t 2 )=x 2 , X(t n )=x n ) = P(X(t)-X(t n ) ≤ x-x n X(t1 )-X(0)=x1 , X(t 2 )-X(0)=x 2 , X(t n )-X(0)=x n ) = P(X(t)-X(t n ) ≤ x-x n ) ,又因为 P(X(t) ≤ x X(t n )=x n )= P(X(t)-X(t n ) ≤ x-x n X(t n )=x n ) = P(X(t)-X(t n ) ≤ x-x n ) ,故 P(X(t) ≤ x X(t1 )=x1 , X(t 2 )=x 2 , X(t n )=x n ) = P(X(t) ≤ x X(t n )=x n )
2 2
0 0 1 4 0
4 0
0⎤ ⎥ 0⎥ ⎥ 1 ⎥ 4⎥ 1⎥ ⎦
(2) p33 = 1, 而p30,p31,p32 均为零,所以状态 3 构成一个闭集,它是吸收态,记 C1 = {3} ;0, 1 两个状态互通,且它们不能到达其它状态,它们构成一个闭集,记 C2 = {0, 1},且它们都是正常返 非周期状态;由于状态 2 可达 C1,C 2 中的状态,而 C1,C 2 中的状态不可能达到它,故状态 2 为非 常返态,记 D= {2} 。 (3)状态空间 I 可分解为: E=D ∪ C1 ∪ C2 四.简答题(6 分)简述指数分布的无记忆性与马尔科夫链的无后效性的关系。 答: (略)
概率统计随机过程-期末试卷-参考答案
7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
南京大学随机过程练习题附中文解释及答案
8、(3.8)An unbiased die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a six and a five. Find (a) E[X], (b) E[X|Y=1] 相继地掷一颗不均匀的骰子。令 X 和 Y 分别记得到一个 6 和一个 5 所必须的抛 掷次数。求(a)E[X],(b)E[X|Y=1]。 重要:E[E[X|Y]]=E[X]
3、(4.32) Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off? 在一天中两个开关或者开或者关。在第 n 天,每个开关独立地处于开的概率是[1+ 第 n-1 天是开的开关数]/4。例如,如果在第 n-1 天两个开关都是开的,那么在第 n 天,每个开关独立地处于开的概率是 3/4。问两个开关都是开的天数的比例是 多少?两个开关都是关的天数的比例是多少?
[应用随机过程][习题][01]
Page 17
上海理工大学
2010-7-30
第三章习题
(2)在宽平稳的基础上讨论各态历经性 时间均值:
1 T 1 X (t ) = lim ∫T X (t )dt = Tlim 2T T →∞ 2T →∞ 1 T 1 +T = ∫ s (t + )dt = ∫ s (θ )dθ T 0 T = E[ X (t )]
∫
T
T
s (t + )dt
X(t)的均值具有各态历经性
Page 18
上海理工大学
2010-7-30
第三章习题
时间相关性:
1 T X (t ) X (t + τ ) = lim X (t ) X (t + τ )dt T → ∞ 2T ∫T 1 T = lim s (t + ) s (t + τ + )dt T →∞ 2T ∫T 1 T = ∫ s (t + ) s (t + τ + )dt T 0 1 +T = ∫ s (θ ) s (θ + τ )dθ = RX (t ) T
Page 7 上海理工大学 2010-7-30
第二章习题
R X (t1 , t 2 ) = E[ X (t1 ) X (t 2 )] = E{[ A cos(ω 0 t1 ) + B sin(ω 0 t1 )][ A cos(ω 0 t 2 ) + B sin(ω 0 t 2 )]} = E[ A 2 cos(ω 0 t1 ) cos(ω 0 t 2 ) + B 2 sin(ω 0 t1 ) sin(ω 0 t 2 )] = E[ A 2 ] cos(ω 0 t1 ) cos(ω 0 t 2 ) + E[ B 2 ] sin(ω 0 t1 ) sin(ω 0 t 2 ) = σ 2 [cos(ω 0 t1 ) cos(ω 0 t 2 ) + sin(ω 0 t1 ) sin(ω 0 t 2 )] = σ 2 cos[ω 0 (t1 t 2 )]
《随机过程》第二章补充习题
1、 设有状态空间为}4,3,2,1,0{=S 的齐次Markov 链}0;{≥n X n ,其初始分布为),,,,()0(43210p p p p p =π一步转移矩阵为 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000000000000000001p q p q p qP 试回答以下问题: (1) 求出该马氏链进入各常返类的概率;(2) 求出该马氏链平均多长时间进入常返类集;(3) 计算:nn P ∞→lim 。
2、 (网球比赛):网球一局比赛在两个选手(发球者和接发球者)之间进行,网球的记分制是:15、30、40、和60分。
平分是指第五球后双方分数相同。
平分后,从第六球开始,如果发球者得分/失分,则此时发球者占先/接发球者占先。
如果发球者在发球占先后再得分,则发球者赢得该局。
如果接发球者在接发球后占先后再得分,则接发球者赢得该局。
若发球者发一球获胜的概率为p ,输的概率为q ,1=+q p ,试回答以下问题:(1) 试用马氏链建模网球一局比赛过程,确定其状态,画出状态转移图;(2) 分析各状态的性质;(3) 试确定一局网球比赛发球者获胜的概率;(4) 试确定一局比赛平均需要发几个球才能结束。
3、 设有状态空间为}4,3,2,1,0{=S 的齐次Markov 链}0;{≥n X n ,其一步转移概率为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2/12/10004/14/104/14/1002/12/10004/34/1000001P 试回答以下问题:(1) 研究此马氏链的状态性质,并对各状态进行分类;(2) 针对状态1和2,确定其平稳分布;(3) 若i 和j 是非常返状态,试求ii f 、ij f 、ji f 和jj f ;(4) 假设该链起始的时候等概率处于非常返状态,试求该链进入常返状态集的期望步数;(5) 假设该链起始的时候等概率处于非常返状态,求出该马氏链进入各常返类的概率;(6) 计算:}12{35==X X P ;(7) 计算:nn P ∞→lim 。
随机过程第二章期末练习题
湖南大学信息科学与工程学院
第二章练习题 判断题
确定信号为特殊的随机信号, 如果称某个确定信号为平稳的, 意味着该信号为常量。 (V) 则该随机过程一定隐含周 若平稳随机过程的功率谱密度函数在 0 处含有冲激, 期性。 (X) 平稳随机过程一定是各态历经的。 (X) 平稳随机过程经过线性变换后一定是平稳的。 (V) 如果平稳随机过程的任意样本函数是连续的, 则该过程依均方意义连续, 反之亦然。 若平稳随机过程的协方差函数 K X ( ) 不满足 K X () 0 ,则该过程必定隐含周期 性。 (V) 对随机过程作重复多次的观测时, 各次所得到的时间 t 的函数具有相同的形式。 (X) 可用研究多维随机变量的方法来研究随机过程。 (V) 数学期望和方差不仅描述了随机过程在各个时刻上取值的特性, 还能反映随机过程 不同时刻取值之间的内存联系。 (X) 具有相同的数学期望和方差的两个随机过程统计特性相同。 (X) 自相关函数的绝对值越大,表示相关性越强。 (V) 一般而言,自相关函数的两个时刻相隔越远,自相关函数的绝对值就越小。 (V) 自相关函数可以反映随机过程两个时刻之间的相关性,协方差函数则不能。 (X) 二阶矩过程的自相关函数必定存在。 (V) 平稳随机过程的统计特性在相当长的时间内是不变的。 (V) 如果随机过程 X(t)的任意 n 维概率密度在时间上平移任意△t 后,此函数不变,则 称 X(t)为广义平稳随机过程。 (X) 狭义平稳随机过程的任意维概率密度与时间起点无关, 即 X(t)与 X(t+△t) 有相同的 统计特性。 (V) 广义平稳随机过程必定是狭义平稳的,而狭义平稳的随机过程则未必是广义平稳 的。 (X) 相关时间小, 意味着相关系数随τ的增大而迅速减小, 这说明随机过程随时间而激 烈变化;反之,相关时间大,则说明随机过程随时间变化缓慢。 (V) 自相关函数是实偶函数。 (X) 设随机过程 X(t)=u sin(ω t+Φ),其中 u 和ω 皆为常数,Φ为 [0,2π]上均匀分 m m 0 0 布的随机变量,则 X(t)为一平稳随机过程。 (V) 设随机过程 X(t)=At,A 为在[0,1]上均匀分布的随机变量,则 X(t)是平稳过程。 (X) 设随机过程 Z(t)=Xcost+Ysint,-∞<t< ∞,其中 X,Y 为相互独立的随机变量,并 分别以概率 2/3、1/3 取值-1 和 2。则 Z(t)既是广义平稳随机过程,又是狭义平稳随 机过程。 (X) 设随机过程 X(t)=X (k) ,k=…-2, -1,0,1,2…, X (k)为相互独立且具有相同分布的随
《随机过程》第二章习题
S 0 { 0} 为吸收态集, 为瞬时态集, 且转移矩阵为 P
~
P P0 , 其中 P0 ( I P) e , 0 1
e (1,1,1) 。定义从瞬时态集到吸收态集的首达时间为:
inf{ n : n 0, X n S 0 } 。
g
k 0
kk 。Biblioteka k 1 P0 P k 1 ( I P)e ;
1
(b) 对于任意 0 1 ,有: G( ) 0 ( I P) ( I P)e 。 13、 设有一生灭过程 { (t ); t 0} ,其中参数 n , n n , 和 均为大于零的
(1) 试求概率 P{ X 0 0, X 1 1, X 2 1} ; (2) 计算 p 01 ;
( 2)
中国科学院大学 2014~2015 第一学期
随机过程讲稿
孙应飞
(3) 试求首达概率 f 00 , n 1,2,3, ;
(n)
(4) 写出四个状态的常返性、周期性;此链是否遍历?说明理由。 9、 考虑三个状态的齐次马氏链,其转移概率矩阵为
j k t
) k (1 e t ) j k , j k 1 是上述方程的解,并计算
E{ X (s t ) X (s) X (s) m }。
15、 在 一 个 线 性 生 灭 过 程 中 , 假 定 人 口 中 每 个 人 在 间 隔 (t , t t ) 内 以 概 率
知正常工作的机器在某天出故障的概率为 a , 机器处于故障修理状态在某天恢复正常工 作的概率为 b ,其中 0 a, b 1 。令 X n 表示第 n 天车间正常工作的机器数,试求: (1) 证明 X n ; n 1,2, 是一齐次马氏链,并写出其一步转移概率矩阵; (2) 此马氏链是否存在极限分布?存在的话,计算其平稳分布; (3) 若车间里有 m 台独立工作的机器,假设条件不变,问其平稳分布是什么? 12、 设 { X n ; n 0} 是一齐次马氏链, 状态空间为 S S 0 S , 其中: S {1, 2,, m}
期末随机过程试题及答案
《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则这个随机过程的状态空间。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t+a 。
评卷人二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A )=P(B A )P(C AB)。
2.设{X (t ),t ?0}是独立增量过程,且X (0)=0,证明{X (t ),t ?0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ijik kjk Ip p p l l ∈=∑,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
(解答)《随机过程》第二章习题
(解答)《随机过程》第二章习题第二章 Markov 过程习题解答1、设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323=== =========?======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====?========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ?====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
随机过程第2章习题
= x m-1 • exp{− xm xm −1} ( xm ≥ 0, xm −1 ≥ 0)
4
fξ (m)/ξ (1),ξ (2),L,ξ (m-1) ( x m /x1 , x 2 , L, x m-1 ) 只与 ξ ( m − 1) 有关,该过程是马尔可夫过程。
第7题 有三个黑球和三个白球。把这六个球任意等分给甲、乙两个袋中,并把甲袋中的白球数 定义为该过程的状态,则有四种状态:0,1,2,3。现每次从甲、乙两袋中各取一球,然后 相互交换,即把从甲袋取出的球放入乙袋,把从乙袋取出的球放入甲袋,经过 n 次交换,过 程的状态为 ξ ( n ), n = 1,2,3, L 。 (1)试问该过程是否为马尔可夫链; (2)计算它的一步转移概率矩阵。 解(1) : 该过程是马尔可夫链; 解(2) :
⎧e − x1 ( x1 ≥ 0) f ξ (1) ( x1 ) = f1 ( x1 ) = ⎨ ⎩0 (其它xi 值)
ξ (1), ξ (2), L , ξ ( m) 的 m 维联合概率密度为
⎧f1,2,L,m (x1 ,x 2 ,L ,x m ) ⎪ ⎪ = x1x 2 L x m-1 • exp{−( xm xm −1 + xm −1 xm − 2 + L + x2 x1 + x1 )} ⎨ ( x1 ≥ 0, x2 ≥ 0,L , xm ≥ 0) ⎪ ⎪f1,2,L,m (x1 ,x 2 ,L ,x m ) = 0 (其它xi 值) ⎩
= ftm+2 / tm+1 ( xm + 2 / xm +1 ) ftm+1 / tm ( xm +1 / xm ) = ftm=1 ,tm+2 / tm ( xm +1 , xm + 2 / xm )
《概率论与随机过程》第2章习题答案
a2 2
cos(0
)
2.12
若随机过程并
t
的导数存在,求证:
t
d t
dt
dR t,t
dt
t
d t
dt
E
X
(t
)
lim
t 0
X (t
t) t
X (t)
证:
lim
t 0
3
f (x,6) 1 (x 2) (x 5) (x 7)
3
F(x,6) 1 U(x 2) U(x 5) U(x 7)
3
fX
(
x1,
x2
,
2,
6)
1 3
(
x1
3)
( x2
5)
( x1
4)
( x2
7)
(
x1
6)
F
x;1 以及二维分布
F
x1
,
x2
;
1 2
,1
解: f x, 1 0.5 x 0.5 x 1
2
Fx
x,
1 2
0.5 pcos
2
x
0.5 p2 *
1 2
x
0.5 px
0
3
3
E[X(6)]= 1 (2 5 7) 14
南京大学随机过程练习题附中文解释及答案
南京⼤学随机过程练习题附中⽂解释及答案(以第九版为准)第⼆章Random Variables 随机变量1、(2.16)An airline knows that 5percent of the people making reservations on a certain flight will not show up.Consequently,their policy is to sell 52tickets for a flight that can hold only 50passengers.What is the probability that there will be a seat available for every passenger who shows up?航空公司知道预订航班的⼈有5%最终不来搭乘航班。
因此,他们的政策是对于⼀个能容纳50个旅客的航班售52张票。
问每个出现的旅客都有位置的概率是多少?答:05.0*95.0*52-95.0-15152)()(2、(2.25略变动)Suppose that two teams are playing a series of games,each of which is independently won by team A with probability p and by team B with probability 1-p.The winner of the series is the first team to win i games.If i =4,find the probability that a total of 7games are played.Find the p that maximizes/minimizes this probability.假定两个队玩⼀系列游戏,A 队独⽴地赢的概率是p ,B 队独⽴地赢的概率是1-p 。
期末随机过程试题及答案
《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。
2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。
8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。
3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。
9. 更新方程tK t H t K t sdF s 解的0 一般形式为。
10. 记EX n ,对一切a 0,当t 时,M。
4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。
6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。
7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。
2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。
3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。
4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。
《随机过程》第二章题目与答案
第二章一、填空题1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类.2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度.3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__.4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__.5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__.二、计算题1、已知Γ分布,X~Γ(α,β),若其中α,β>0,试求Γ分布的特征函数.2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数.3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.4、设随机过程:0),sin()cos()(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数.5、设随机变量Y 具有概率密度f(y),令)0,0(,)(>>=-Y t t X eYt,求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2).6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从N(0,)的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t}的均值函数m(t)和相关函数R(s,t).参考答案:一、填空题1、离散参数链,连续参数链,随机序列,随机过程2、均值函数m X(t),方差函数D X(t),协方差函数B X(s,t),相关函数R X(s,t)3、q+p4、5、二、解答题1、1、g(t)===其中:Γ(α)=2、g(t)= = ===3、由于X与Z是相互独立的正态随机变量,故其线性组合仍为正态随机变量,要计算{X(t),t>0}的一、二维随机概率密度,只要计算数字特征m x(t),D X(t),即可. m x(t)=E(Y+Zt)=EY+tEZ=0,D X(t)=D(Y+Zt)=DY+t2DZ=1+t2,B X(s,t)=EX(s)X(t)- m x(s) m x(t)=E(Y+Zs)(Y+Zt)=1+st,==,故随机过程{X(t),t>0}的一、二维概率密度分别为f t(x)=exp{-},t>0,f s,t(x1,x2)=.exp{[]}, s,t>0,其中4、由数学期望的性质)sin()cos()]sin()cos([)(=+=+=EZ t EY t t Z t Y E t EX θθθθ又因为Y 、Z 相互独立,故])cos[()()sin()sin()()cos()cos()]sin()cos()][sin()cos([)]()([),(),(σ222θθθθθθθθθs t Z E t s Y E t s t Z t Y s Z s Y E t X s X E t s t s RBxX-=+=++===DX(t)=5、有随机变量函数的概率密度公式知:X(t)的一维概率密度:0,/)/ln ()(/)()()()(>-='='=t tx t x f y x y f x y y f x fX(t)的均值函数和相关函数为:dy e y f E t EX ytYte ⎰∞--==0)()()( dy y f e eeE t X t X E t t R t t y Yt Yt x )(][)]()([),(0)(21212121⎰∞+---===6、m(t)=E(Z t )=E[]=0,R(s,t)=E(Zs )=E===。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
<答案> X(t)的均值和相关函数都具有各态历经性 7、平稳过程 X(t)=u sin(ω t+ Φ)是否具有各态历经性? m 0 <答案>具有各态历经性
计算题
1、已知随机过程 X(t)和 Y(t)的功率谱密度为
分别求 X ( t ) 和 Y ( t ) 的自相关函数和均方值。 2、随机过程 X ( t ) 定义为 X ( t ) = f ( t + ε ) ,其中 f ( t ) 是具有周期 T 的周期信号,ε是在 区间[0,T]内均匀分布的随机变量。证明 X ( t ) 是平稳随机过程。 (提示:利用周期函数的性 质 )
3
1
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
2 2 机变量序列,已知 E[X (k)]=0, E[X (k)] = σ 。则 X(t)既是广义平稳随机过程, X 又是狭义平稳随机过程。 (V)
填空题
1、自然界的信号通常可以分两大类:____信号和____信号。 2、随机过程 X(t)的一维分布函数取决于____和____。 3、随机过程的数学期望表示____。 4、随机过程的方差描述了____。 5、自相关函数反映了____。 6、____、____与____是刻画随机过程在某个孤立时刻状态的数字特征, 而____和____则是刻画随机过程自身在两个不同时刻状态之间的线性依从关系的 数字特征。 7、对于均值为 mX 、相关函数为 RX ( ) 的各态经历随机过程的任意样本函数 x(t ) ,必 有: lim
1 T 2T
T
T
x(t )dt
, lim
1 T 2T
T
T
x(t ) x(t )dt
பைடு நூலகம்
。
8、若平稳随机过程 X (t ) 的相关函数为 RX ( ) 为 。
1 2| | 1 e ,则该过程的直流功率 4 4
2 | |
9、若各态经历随机过程 X (t ) 的均值为正,相关函数为 R X ( ) X e 则对于任意样本函数 x(t ) ,必有 lim
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
第二章练习题 判断题
确定信号为特殊的随机信号, 如果称某个确定信号为平稳的, 意味着该信号为常量。 (V) 则该随机过程一定隐含周 若平稳随机过程的功率谱密度函数在 0 处含有冲激, 期性。 (X) 平稳随机过程一定是各态历经的。 (X) 平稳随机过程经过线性变换后一定是平稳的。 (V) 如果平稳随机过程的任意样本函数是连续的, 则该过程依均方意义连续, 反之亦然。 若平稳随机过程的协方差函数 K X ( ) 不满足 K X () 0 ,则该过程必定隐含周期 性。 (V) 对随机过程作重复多次的观测时, 各次所得到的时间 t 的函数具有相同的形式。 (X) 可用研究多维随机变量的方法来研究随机过程。 (V) 数学期望和方差不仅描述了随机过程在各个时刻上取值的特性, 还能反映随机过程 不同时刻取值之间的内存联系。 (X) 具有相同的数学期望和方差的两个随机过程统计特性相同。 (X) 自相关函数的绝对值越大,表示相关性越强。 (V) 一般而言,自相关函数的两个时刻相隔越远,自相关函数的绝对值就越小。 (V) 自相关函数可以反映随机过程两个时刻之间的相关性,协方差函数则不能。 (X) 二阶矩过程的自相关函数必定存在。 (V) 平稳随机过程的统计特性在相当长的时间内是不变的。 (V) 如果随机过程 X(t)的任意 n 维概率密度在时间上平移任意△t 后,此函数不变,则 称 X(t)为广义平稳随机过程。 (X) 狭义平稳随机过程的任意维概率密度与时间起点无关, 即 X(t)与 X(t+△t) 有相同的 统计特性。 (V) 广义平稳随机过程必定是狭义平稳的,而狭义平稳的随机过程则未必是广义平稳 的。 (X) 相关时间小, 意味着相关系数随τ的增大而迅速减小, 这说明随机过程随时间而激 烈变化;反之,相关时间大,则说明随机过程随时间变化缓慢。 (V) 自相关函数是实偶函数。 (X) 设随机过程 X(t)=u sin(ω t+Φ),其中 u 和ω 皆为常数,Φ为 [0,2π]上均匀分 m m 0 0 布的随机变量,则 X(t)为一平稳随机过程。 (V) 设随机过程 X(t)=At,A 为在[0,1]上均匀分布的随机变量,则 X(t)是平稳过程。 (X) 设随机过程 Z(t)=Xcost+Ysint,-∞<t< ∞,其中 X,Y 为相互独立的随机变量,并 分别以概率 2/3、1/3 取值-1 和 2。则 Z(t)既是广义平稳随机过程,又是狭义平稳随 机过程。 (X) 设随机过程 X(t)=X (k) ,k=…-2, -1,0,1,2…, X (k)为相互独立且具有相同分布的随
b 2 ( >0) ,
1 T 2T
T
T
x(t )dt
。
简答题
1、随机过程按状态和时间的连续性可以分成几类? <答案>连续型随机过程;连续的随机序列;离散型随机过程;离散的随机序列 2、随机相位信号包含了多少个样本函数? <答案>无穷多 3、平稳随机过程的主要特点是什么? <答案>其统计特性不随时间的平移而变化,它的初始时间可以任意选择,其统计特性与 时间起点的选择无关。 4、什么是相关理论? <答案>只限于研究随机过程一、二阶矩的理论 5、平稳随机过程的两个条件是什么? <答案>数学期望为一常数;相关函数仅与时间间隔相关 6、随机过程 X(t)为各态历经过程的条件是什么?