第四章 非稳态导热分析计算
传热学第四章非稳态导热1125
2 sin( n ) ( x, ) x a 2 cos( n ) exp( 2 n ) 0 n 1 n sin n cos n
Fo a 2
傅里叶准则
2 2 单位时间通过 面积厚为的导热量 2 Fo a 3 c 单位时间体积为 3的内能变化
(b) (c)
边界条件(3)代入(b) 得
将 右端整理成:
y h
tg ( )
h
h 1
Bi
注意,这里Bi数的尺度为 平板厚度的一半。 显然,β是两曲线交点 对应的所有值。式(c) 称为特征方程。 β称 为特征值。分别为β1、 β2…… βn。
至此,我们获得了无穷个特解:
( x, ) 2 sin 1 x cos( 1 ) e 0 1 sin 1 cos 1
2 1 F0
(0, ) m ( ) 2 sin 1 e 0 0 1 sin 1 cos 1
2 1 F0
( x, ) 2 sin 1 x F cos( 1 ) e 0 1 sin 1 cos 1
以上两式的通解为:
C1e
于是
a 2
X C2 cos( x) C3 sin( x)
( x, ) e
a 2
[ A cos( x) B sin( x)]
( x, ) e
a 2
[ A cos( x) B sin( x)]
( a)
此处Bn为离散面(特征值)
2 n a
n n 若令 则上式可改写为:
2 sin n ( x , ) x cos( n ) e 0 n 1 n sin n cos n
(20、21)第四章 4.3 非稳态导热
1主要内容本节介绍非稳态导热的分析解法,最后简要介绍导热问题的数值解法。
4.3 非稳态导热 4.3非稳态导热:温度场随时间变化的导热过程。
2非稳态导热非稳态导热的类型:(1)周期性非稳态导热:(2)非周期性非稳态导热:在周期性变化边界条件下发生的导热过程,如内燃机汽缸壁的导热、一年四季大地土壤的导热等。
在瞬间变化的边界条件下发生的导热过程,例如热处理工件的加热或冷却等。
讨论一维非周期性非稳态导热的分析解法及求解特殊非稳态导热问题的集总参数法。
了解和掌握非稳态导热过程中温度场的变化规律及换热量的计算方法。
本节主要内容:主要目的: 1.一维非稳态导热问题的分析解3第三类边界条件下大平壁、长圆柱及球体的加热或冷却是工程上常见的一维非稳态导热问题。
(1)无限大平壁冷却或加热问题的分析解简介假设:厚度为δ、热导率λ、热扩散率a 为常数,无内热源,初始温度与两侧的流体相同并为t 0。
两侧流体温度突然降低为t ∞,并保持不变,平壁表面与流体间对流换热表面传热系数h 为常数。
考虑温度场的对称性,选取坐标系如图,仅需讨论半个平壁的导热问题。
这是一维的非稳态导热问题。
41)数学模型:(对称性)引进无量纲过余温度、无量纲坐标,Fo 是无量纲特征数,称为傅里叶数称为毕渥数令过余温度5傅里叶数的物理意义:Fo 为两个时间之比,是非稳态导热过程的无量纲时间。
毕渥数的物理意义:Bi 为物体内部的导热热阻与边界处的对流换热热阻之比。
由无量纲数学模型可知,Θ是Fo 、Bi 、X 三个无量纲参数的函数确定此函数关系是求解该非稳态导热问题的主要任务。
2)求解结果:6解的函数形式为无穷级数,式中β1,β2,···,βn 是下面超越方程的根根有无穷多个,是Bi 的函数。
无论Bi 取任何值,β1,β2,···,βn 都是正的递增数列,Θ的解是一个快速收敛的无穷级数。
2y 由解的函数形式可以看出,Θ确实是Fo 、Bi 、X 三个无量纲特征数的函数7(2)分析解的讨论1)傅里叶数Fo 对温度分布的影响分析解的计算结果表明,当Fo ≥0.2时,可近似取级数的第一项,对工程计算已足够精确,即因为,所以将上式左、右两边取对数,可得,m 为一与时间、地点无关的常数,只取决于第三类边界条件、平壁的物性与几何尺寸。
课件:非稳态导热问题的数值解法
允许的最大迭代次数
第四章 导热问题的数值解法
24
开始
输入M,N,EPS,K,TTB,TLB,TRB,TBB
ti 1 TBB ti,M 1 TTB ti,j TLB tN 1,j TRB
迭代次数IT=0
TTi,j Tij
Ti ,j
1 4
(Ti
1,j
Ti 1,j
Ti,j 1 Ti,j 1 )
也可以写出其隐式差分格式即
1
t k 1 1 2
t2k 1 x 3
h4(tfk 1
t1k 1)
ec
x
2
tk 1 1
t1k
xt
x
h(t tf)
X
O
x
第四章 导热问题的数值解法
18
整理上式,得
t2k 1
t1k 1
hx
(
t
k f
1
t1k 1
)
ecx2 2
( t1k 1
t1k
)
令 Bi
h x
i-1
(m,i-1)
0 x
m-1, m, m+1 Mx
时间步长:从一个时层到下一个时层的间隔 称为时间步长
i 表示形式
第四章 导热问题的数值解法
3
一维、有内热源、常物性的非稳态导热问题离散方程 的建立过程——热平衡法建立内部节点的离散方程
考察(m,i)点,则扩散项可直接写出:
z
tm(i)1 tm(i) x
tk 1
tk 2
x
h(tfk
tk 1
)
c
x
2
t k 1 1
tk 1
边界的热容项
第四章 导热问题的数值解法
第四章 非稳态导热的分析计算
由式(4-1)可得
dt d ' d ( )(e cV
'
A cV
)
所以导热体在单位时间内传递给流体的热量为
dt Q cV 'Ae d
A cV
W
(4-2)
因导热体被冷却,故dt/dτ<0,加负号以使Q 为正值。
利用上式,可得导热体在τ=0到τ=τ时 间内传入流体的总热量:
Q Qd cV (1 e
' 0
A cV
)J
(4-3)
二、计算判断
毕渥数的定义:
L Bi 1
L
毕渥数的物理意义:固体的导热热阻与对 流换热热阻之间的对比关系。
V A 0.1 M Biv
* 负号是由于dt为负值 令过余温度θ=t-tf ,则dt=dθ,代入上式得:
d
A d cV
当V、A、α、ρ、c等为已知定值时,对上式积 分得: d A d ' 0 d A cV d cV A ln cV '
第四章 非稳态导热的分析计算
§4-1 概述
1.定义:温度场随时间变化
2.分类:* 周期性非稳态导热
* 非周期性非稳态导热(瞬态导热)
3.目的:* 在加热或冷却时,确定物体内部某一 位置达到预定温度所需要的时间,以及在该时间 内物体吸收或放出的热量;
* 对物体加热或冷却一定时间后,确定 物体内部的温度分布和温度场随时间的变化率
'
t tf 上式是采用集总参数法求解非稳态导热问题的 基本公式,可用于已知温度求时间,或反之。
第4章 非稳态导热
2
材料
铸铁 砂型 金属型 46.5 0.314 61.64 753.6 963.0 544.3 7000 1350 7100
例题4-1 一大型平壁状铸铁件在砂型中凝固冷却。设砂 型内侧表面温度维持1200℃不变,砂型初始温度为 20℃,热扩散率������ = 2.41 × 10−7 m2 s,试求浇注后 1.5h砂型中离内侧表面50mm处的温度
4.3 伴有相变边界的一维非稳态导热
ⅆ������ ′ ������������ = −������������ ⅆ������ ������ ⟵ ������ + ������ ������������ − ������������
′ ������������
������ 砂 型 ������0 ⅆ������ ⅆ������
������
∞
1.温度场求解 常物性一维非稳态无内热源导热微分方程: ������������ ������ ������ 2 ������ ������ 2 ������ ������ 2 ������ ������ = + 2+ 2 + 2 ������������ ������������ ������������ ������������ ������������ ������������
������������ =0 边界条件: ������ = 0, ������������ ������������ ������ = ������, −������ = ℎ������ ������������
采用分离变量法求解:
������������ ������������
2 n
2sin n ( x, ) e 0 sin cos n 1 n n n
传热学-第4章-非稳态导热的计算与分析
10
4.2 对流边界条件下的一维非稳态导热
❖ 对几何形状简单、边界条件不太复杂的情形,仍然可 以通过数学分析的方法获得分析解
❖ 这里以(无限大)平壁被流体对称加热的非稳态导热 过程为例,说明非稳态导热的基本特征、分析方法和 过程
❖ 定性地、定量两个方面
11
4.2.1 平壁内非稳态过程的基本特征
问题描述: ❖ 厚为2δ、无内热源的常物性平壁 ❖ 初始时刻温度分布均匀,为t0 ❖ 某时刻突然投入到温度为t∞的高
conduction):物体内任意位置的温度随时间持续升高 (加热过程)或连续下降(冷却过程) 边界条件或内热源不变时,过程将最终逐渐趋于某个 新的稳定温度场
6
4.1 概述
研究目的:
❖ ——确定非稳态过程中的温度场:在此基础上确定物体中
某个部位到达某个预定温度所需经历的时间,或者在预定时间 内可以达到的温度,或者物体的温度对时间的变化速率。
8
4.1 概述
研究方法与过程:与稳态导热的完全相同 (1)简化假设给出物理模型 (2)给出数学模型(方程+定解条件) (3)采用适当的数学方法求解 (4)分析讨论
9
4.1 概述
❖ 非稳态导热的控制方程:
τ
ρct
x
λ
t x
y
λ
t y
z
λ
t z
Φ
❖ t=f(x,y,z,t)
❖ 控制方程:偏微分方程,数学求解难度很大
❖ 随着时间的延续,壁面加热的波及区域将继续向平壁中
心推进
16
4.2.1 平壁内非稳态过程的基本特征
17
4.2.1 平壁内非稳态过程的基本特征
❖ 当温度扰动刚刚传到平壁对称 面的那个时刻,称为穿透时间, 记作τc
第四章 非稳态导热(5)14
④ 某一时刻物体表面的热流量或从某一时刻起经一定时间后表面传递的总热量。
5
2)求解方法:主要有分析解法、数值解法、图解法和热电模拟法等。 本章仅介绍分析解法,而且只针对第三类B、C下一维非稳态导热的求解。
二、一维非稳态导热的分析解及诺谟图
工程上常见的非稳态导热问题分以下三种:
一维非稳态导热问题:
无限大平壁 无限长圆柱体
一、概 述
1.1 定义:非稳态导热是指发生在非稳态温度场内的导热过程。
其数学表达式为:t f (x, y, z, )
按照其过程进行的特点,可分为以下二种:
(1)周期性非稳态导热:导热物体内的温度随时间周期性地 变化。
(2)非周期性非稳态导热(瞬态导热):物体内的温度随时 间不断的 升高或降低。
2
1.2 非稳态导热过程的特点
大平壁非稳态导热分析
由左侧表面导入的热量到达右侧表面之前的一段时间。
② 正常情况阶段。
当左侧表面导入的热量到达右侧表面之后,使右侧壁温不断升高,直到它达
到新的平衡状态的这段时间。
4
B)大平壁两侧被加热过程
一初始温度均匀为t0的无限大平壁,突 然投入到温度为tf的热流体中对称加热。平 壁内发生了非稳态导热过程。平壁中的温
1.3 求解的目的和方法
1) 求解非稳态导热问题主要目的有四个:
① 物体的某一部分从初始温度上升或下降到某一确定温度所需的时间,或经某 一时间后物体各部分的温度是否上升或下降到某一指定值;
② 物体在非稳态导热过程中温度分布,为求材料热应力和热变形提供必要资料; ③ 物体在非稳态导热过程中的温升速率;
二维非稳态导热问题:短圆柱体、长的方柱体
三维非稳态导热问题:短方柱体、长方体
第四章 非稳态导热
−l
l
l
∫l sin kπ x s= in nπ x 0 (k ≠ n)
−l
l
l
利用三角函数族是正交的,可求得f(x)展开为傅里叶级 数表达式中的展开系数为:
任意时刻平壁温度分布在壁面处的变
化率为:
- ∂t
= t x=δ − t∞
∂x x=δ
λh
- ∂t
= t x=δ − t∞
∂x x=δ
λh
∴ x' =λ =δ
h Bi
点O’距离壁面的距离为λ/h或δ/Bi
任何时刻,壁表面温度分布的切线都通过坐标
为(δ +λ/h,t∞)或(δ +δ/Bi,t∞)的O’点——第三类边
物体处于恒温介质中非稳态导热过程与物 体外表面的对流换热热阻和内部导热热阻有关。 表征这两个热阻比值的无量纲数称为毕渥数 (Biot number)。
δ
= Bi
物体内部导热热阻 =
物体表面对题 1分
初始温度为t0的平壁(厚度为2δ)浸没在温度为t∞的流体 中进行冷却,当Bi→0时,平壁中的温度分布为:
得: X ( x) ⋅ Γ' (τ ) = aΓ (τ ) ⋅ X '' ( x)
令:
1 Γ' = X '' = ±β 2
aΓ X
其中,β为待定常数,称为特征值。 偏微分方程转化为两个常微分方程为:
dΓ
dτ
β
2aΓ
=0
d2X dx2
β2X
=
0
(3) (4)
( ) 方程(3)的解为:Γ (τ=) C exp ±aβ 2τ
界条件的定向点。
4.2 有限厚度物体的非稳态导热:分离变量法
第四章 非稳态导热(6)14
(b)
36 .8%
可以得出内部热阻可被忽略的非稳 态导热过程具有以下二个特点: (1)物体温度 随时间按指数函数关系下降,如 图所示,开始下降快,随后变化减慢。
0
, t t f 0,即t t f
Tτ
集总参数系统θ -τ曲线
τ
(2)物体温度随周围流体温度变化的快慢与该物体的时间常数Tτ有关。 什么是时间常数?式(b)中 ρcV/(hA) 具有时间的量纲,此外,对于常物 性物体,一旦几何尺寸确定( V/A 确定), ρcV/(hA) 的值也就确定了。 cV T 在以上二个意义上,把 ρcV/(hA) 称为时间常数,记为Tτ,即 。 hA
代人(a)式得 cV
Ah(t t f ) V
集总参数系统的微分方程
dt = Ah (t t f ) d
(2)根据能量守恒定律:物体内能(焓)的变化等于物体表面对外散去的热量:
cV
dt =Ah (t t f ) d
3
求解微分方程:
引入过余温
初始条件:
t tf
d = Ah , 上式变成 cV d
o
d
hAo (
cV
hA
o
)(e
hA cV
hA cV
o
1)
Φ的单位—W或kW; Qτ的单位—J或kJ。
cVo (1 e
)
请大家思考:瞬时的传热量Φ和总传热量Qτ的单位是什么?
7
三、集总参数法的适用条件
集总参数法比较简单,但应用它是有条件的,必须满足: Bi
1 R R 2l V BiV Bi 0.05 L 2 2 2Rl A
非稳态导热分析解法课件
非稳态导热问题常常涉及到复杂的边界条件和几何形状,给分析带来很大挑战。未来发展需要研究更高效的数值方法 ,以处理更复杂的导热问题。
多物理场耦合
许多实际导热问题涉及到多物理场的耦合,如热-力、热-流体等。未来发展需要研究多物理场耦合的非稳态导热问题 ,以提高对复杂系统的理解和预测能力。
高效能材料和新能源技术
随着高效能材料和新能源技术的发展,非稳态导热问题将更加复杂和多样化。未来发展需要加强与相关 领域的交叉融合,以应对不断出现的新的挑战和机遇。
核能利用
在核能利用中,非稳态导热分析可用于研究反应堆的冷却系统、核废料的处理和存储等。 通过优化导热性能,可以提高核能系统的安全性和稳定性。
风能利用
在风能利用中,非稳态导热分析可用于研究风力发电机的散热性能和风能转换效率。通过 改进导热设计,可以提高风能发电的经济性和可靠性。
非稳态导热面临的挑战和未来发展方向
物理模拟实验
物理模拟实验是通过模拟实际系统的物理过程来研究其行为的方法。
在非稳态导热分析中,物理模拟实验通常采用加热棒、散热片等模拟导热过程,通 过测量温度场、热流密度等参数来研究非稳态导热规律。
物理模拟实验具有直观、可重复性高等优点,但实验条件和操作难度较高,且难以 模拟复杂实际系统的非稳态导热过程。
有限体积法
有限体积法是一种将连续的求解域离散化为 有限个小的体积,通过求解每个体积的近似 解来逼近原问题的数值解法。
有限体积法的基本思想是将导热问题分解为 若干个小的体积,每个体积具有简单的几何 形状和边界条件,然后通过求解每个体积的 近似解来逼近原问题的解。这种方法在处理 复杂的几何形状和边界条件时具有较高的精
度和可靠性。
CHAPTER
第4章-非稳态导热的分析与计算-简化
h
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/分析解
x, x 2 a Cn exp n 2 cos n 0 n 1
4sin n Cn 2n sin 2n
t |x h t |x t x
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/数学模型
完整的数学模型:
t 2t 控制方程: a 2 x
0 x , 0
初始条件: cV t t0
非稳态导热过程所传递的最大热量
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/吸热量
从初始时刻开始的某时间段的吸热量:
Q c t x, t0 dV cA t x, t0 dx V V
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/分析解
x, 0
x x 2 f Fo, Bi, Cn exp n Fo cos n n1
当Fo>0.2时,取Cn= Fo>0.2:
当Fo>0.2后:
x, x cos 1 0,
——θ(x,τ)与θ(0,τ) 的比值却与τ无关,仅取决于平壁的几
何位置(x/δ)和Bi数 ——初始条件的影响已经消失:正规状况阶段
第4章 非稳态导热的分析与计算
4.2 对流边界条件下的一维非稳态导热/分析解
几何上:平壁
物理上:沿高度和宽度方向的换 热均匀一致
传热学基础(第二版)第四章教学课件非稳态导热
23/250291/4/16
0~τ范围内积分,得凝固层厚度的表达式
2 b L t w c ttp 0tw K
此式称为平方根定律,即凝固层厚度与凝固时 间的平方根成正比。式中
K2 b L t w c ttp 0tw
ms12
K 称为 凝固系数
24/250291/4/16
几种材质在不同冷却条件下的K值
由于砂型的导热系数较小,型壁较厚,所以平面 砂型壁可按半无限大平壁处理。本节得到的公式 应用于铸造工艺,可以计算砂型中特定地点在τ 时刻达到的温度和0~τ时间内传入砂型的累积热量。 瞬时热流密度qw和累计热量Q w都与蓄热系数成正 比,所以选择不同造型材料,即改变蓄热系数, 就成为控制凝固进程和铸件质量的重要手段。
物性的这种组合可表成: a c
cb W /m (2Cs1/2)
a b称为蓄热系数。它完全由材料的热物性构 成,它综合地反映了材料的蓄热能力,也是个热 物性。
15/250291/4/16
铸铁和铸型蓄热系数b的参考值。
热物性 材料
铸铁
导热系数 比热容 密度 热扩散率 蓄热系数
λ
c
ρ
a
b
46.5 753.6 7000 8.82×10-6 15600
5 /59 2021/4/16
积蓄(或放出)热 量随时间而变化是过 程的又一个特点。于 是在工程计算中,确 定瞬时热流密度和累 计热量也是非稳态导 热问题求解的任务。 在图中,累计热量由 指定时间τ与纵坐标 间曲线下的面积表示。
6/59 2021/4/16
4-2 第一类边界条件下的一维非稳态导热
式:
qw ' Lctptw
d d
与式
第四章 非稳态导热
边界条件 常用的三类
求解方法:
分析解法、数值解法、实验模拟法、图解法等
首先求出温度分布t f ( x, y, z, ); 然后由傅里叶定律算出 各点的瞬时热流量。
9
10
第四章 / 第三节 非稳态导热
二、非稳态导热问题的求解及诺模图
以第三类边界条件下的 无限大平壁的非稳态导热为例
11
第四章 / 第三节 非稳态导热
工程中:
机器启动、停机、变工况时部件的导热过程; 冶金、热加工、热处理工艺中工件的加热及冷却过程等; 石油工程中钻井、焖井、采油等过程中热量在地层内的扩散过程。
具有实际意义。
2
第三节
本节讨论:
非稳态导热
——基本概念和特点
——非稳态导热问题的求解及诺模图
——集总参数法
3
(一)无限大平壁的分析解及诺模图 1、平壁内温度分布的求解
物理模型:
常物性、无内热源、一维平壁
数学模型:
两侧受流体对称加热,中心面为对称面,
只需研究半厚的平壁。 将坐标原点置于平壁中心面,建立如图 直角坐标系。
t 2t a 2 x
定解条件
0 x , 0
原因:各处本身温度变化要积蓄(或放出)热量。
6
第四章 / 第三节 非稳态导热
一、 概述
3、研究目的
(1)确定非稳态过程中的温度场
——物体中某个部位到达某个预定温度所需的时间; ——在预定时间内物体可以达到的温度; ——物体的温度对时间的变化速率。 (2)确定非稳态过程的热流量
——物体在某一瞬间每一位置处的热流密度;
—出现在特征数中的几何尺度 —不同情况下,不同形状的物体特征长度是不同的。 Fo 数 、 Bi数称为特征数,习惯上又称准则数, 具有特定的物理意义。
传热学课件第四章非稳态导热
圆
球 Bi hR
Fo
a 2
BiV
h
FoV
a 2
Fo
a
R2
BiV
h(R / 2)
FoV
a
(R / 2)2
Fo a
R2
h(R / 3)
BiV
a
FoV (R / 3)2
(2)对于形状如平板、柱体或球的物体,只要满足 Bi0.1,就可以使用集总参数法计算,偏差小于5%。
x 1
w tw t f 500 1000 0.51 0 to t f 20 1000
查图可知:在平板表面上 w m 0.81
平板中心的无量纲过余温度
m w w 0.51 0.63 0 0 m 0.81
查图可知 Fo 1.2
2
Fo
正规状况阶段 新稳态阶段 两个特点: 1. 在非稳态导热的过程中,物体内的温度变化 是逐层“传播”的,各点的温度随时间不断地变化。 2. 在与热流方向相垂直的各个截面上的热流量 处处不等,即使在同一截面上,不同时刻的热流量 也不相等,物体内有能量的积聚或散失。
第二节 集总参数法
当Bi0.1时,物体内部的导热热阻远小于其表面 的对流换热热阻,可以忽略,物体内部各点的温度 在任一时刻都近似于均匀,物体的温度只是时间的 函数。对于这种情况,只须求解物体温度随时间的 变化规律以及物体放出或吸收的热量。
• 例4-1 一块厚20mm的钢板,加热到 500℃后置于20℃的空气中冷却。设 冷却过程中钢板两侧面的平均换热
系数为80 W /(m K),钢板的导热系 数为45 W /(m K),热扩散率为 1.37× 105 m2 / s 。试确定使钢板冷 却到30℃时所需的时间。
第4章-非稳态导热的计算分析
如果导热体的热容量( Vc )小、换热条件
好(hA大),那么单位时间所传递的热量大、导
热体的温度变化快,时间常数 ( Vc / h A) 小 热电偶测温时,r越小越能反映被测流体温度 的变化
反映了系统处于一定的环境中所表现出来的传热动 态特征,与其几何形状、密度及比热有关,还与环 境的换热情况相关。可见,同一物质不同的形状其 时间常数不同,同一物体在不同的环境下时间常数 也是不相同。 当物体冷却或加热过程所 经历的时间等于其时间常 数时,即 τ=τr,
3、热量变化
物体投入到流体 中后,由于开始时表 面的传热温差最大, 表面热流量立即达到 最大值,以后随着tw 的增大而减小,最后 趋于0,阴影部分面 积表示总的吸热量Q。
4、学习非稳态导热的目的:
(1)
物体某一部分加热(冷却)到某一确定温度
所需的时间
(2)
物体在非稳态导热过程中的温度分布,热应
力、热变形分析
Bi v
h (V
A)
Fo
v
(V
a A)
2
Fo v
是傅立叶数
e
hA
0
Vc
e
Biv Fov
物体中的温度 呈指数分布
方程中指数的量纲:
W 2 2 m hA w 1 m K Vc J s k g Jk g 3 3 K [ m ] m
2
Fo a
Bi h
x
— 无量纲距离
f (Bi, Fo, x )
( x, ) 0
可见,大平壁中离中心平面任一距离x处的无 量纲过余温度是Bi,Fo和无量纲距离的函数。
2011-第4章非稳态导热--02
t0
t∞
t∞
O
x
第三类边界条件下一维非稳态
hitaiqing@ 航空航天热物理研究所
(C)
h
与
的数值较接近
t
h 等价于
为有限值
t0
v这时,平板内不同时 刻的温度分布介于上 述两种极端情况之 间。
t∞
t∞
O
x
第三类边界条件下一维非稳态
无穷 级数
工程近似 分析解的级数第一项绘制的图线 科莫图 使用要求Fo>0.2
hitaiqing@
航空航天热物理研究所
什么情况下可利用集总参数法预测固体因热 环境变化而导致的瞬态响应? 数的物理意义是什么? 哪些参数决定了集总参数固体的瞬态热响应 有关的时间常数?增大对流换热系数会使这 种影响加速或减速?增大固体的密度或比热 容呢? 傅里叶数( )的物理意义是什么? 集总参数法更适用于热的铜质固体还是铝质 固体的冷却?
上堂课 复习
hitaiqing@ 航空航天热物理研究所
半无限大物体: 控制方程:常物性一维非稳态导热
∂t ∂ 2t =a 2 ∂τ ∂x
初始条 温度场分布 τ = 0, t x = t0 = const 件: f (0, t)=tw 第一类条件(定壁 温) 隐含边界条件 f (∞, t)=t
第三类边界条件下一维非稳态
hitaiqing@ 航空航天热物理研究所
Fo
a 2 l
l a
2
分子
是从边界上开始发生热扰动的时刻 起到所计算时刻为止的时间间隔。
2 m 2 l a m2 s
分母
⇒ s
可视为使边界上发生有限大小 的热扰动穿过一定厚度的固体 2 层扩散到 l 面积上所需的时间
第四章 非稳态导热
f (0 , h, , , a, , x)
15
第四章 / 第三节 非稳态导热
(一)无限大平壁的分析解及诺模图
1、平壁内温度分布的求解
无穷级数
x , x 2 a 分析解: Cn exp n 2 cos n 0 n 1
2
2 a
分子—表示边界上发生热扰动时刻算起到计算时刻 为止的时间; 从过程开始到 时刻的时间 分母δ /温度变化波及到 a—表示热扰动经过一定厚度的固体层传播到 2面积所需的时间 面积δ2上所需要的时间。 Fo数看成是反映非稳态进程的无量纲时间。 Fo数越大,边界上的热扰动就能更深入地传播到 物体内部,非稳态过程进行得越充分。
物体内的温度分布受初始温度的影响很大,温度分布呈现部 壁面温差引起 分为非稳态导热规律和部分为初始温度区的混合分布。
B 正规状况阶段——整个物体参与变化
物体内的温度分布不再受初始温度的影响,而只受控于非 稳态导热的规律(边界条件、物性和几何因素的影响)。
热应力,会致 热变形!
(2)在非稳态导热热量传递的路径中,每一个与热流 方向垂直的截面上的热流量是处处不等的。
13
第四章 / 第三节 非稳态导热
(一)无限大平壁的分析解及诺模图
1、平壁内温度分布的求解
t 2t a 2 0 x , 0 x
初始条件: t | 0 t 0
0 x
边界条件: t | 0 (对称性) x 0
x
t |x h t |x t f x
(例如半无限大物体的导热)。
22
第四章 / 第三节 非稳态导热
第4章-非稳态导热3
4.8 集中热源作用下的非稳态导热
i 2 a
r r 2 r r2 s 0 r exp 4a exp 4a r dr (4 36)
假定s为微小量:
(4 43)
物理基础:
连续热源可看作是无数个瞬时热源在不同瞬间的 共同作用; 移动热源可看作是无数个瞬时热源在不同瞬间不 同位置的共同作用。
例4-1 一温度计的水银泡呈圆柱形,长20mm, 内径为4mm,初始温度为t0 ,今将其插入到 温度较高的储气罐中测量气体温度。设水银 泡同气体间的对流换热表面传热系数 h=11.63W/(m2K),水银泡一层薄玻璃的作用 可以忽略不计,试计算此条件下温度计的时 间常数,并确定插入5min后温度计读数的过 余温度为初始过余温度的百分之几?水银的 物性参数如下: 3 10.36 W m K , 13110kg m ,
t x, y, z t x t y t z
齐次问题
t 2 a t
非齐次问题
t 2 a t a g r ,
区域 R 内, 0
t i hi t 0 ni
区域 R 内, 0
t i hi t fi r , ni
hA
教材P77(d )
教材P80(4 31)
4.7 不同形状物体加热或冷却 速度的比较
2.忽略外阻( Bi 1 )
m 0
1.0
1
2 Fo
0.001 0
6 5
4
3
1—无限大平板 l 2 2—无限长正方柱体 3—无限长圆柱体 4—立方体 5—长度等于直径的柱体 6—球 lR
第四章 非稳态导热
对厚为2δ的无限大平板
M =1 1 M= 2 1 M= 3
对半径为R的无限长圆柱
对半径为R的球
三、 一维非稳态导热的分析解 1、加热或冷却的分析解法
二、零维问题的分析法—集中参数法 零维问题的分析法 集中参数法
定义:忽略物体内部导热热阻、 1、 定义:忽略物体内部导热热阻、认为物体温度均匀 分析方法。此时, 一致的 分析方法。此时, Bi → 0 ,温度分布只与时 与空间位置无关,因此, 间有 关,即 t = f (τ ),与空间位置无关,因此,也称 为零维问题。 零维问题。 问题 2、 温度分布 如图所示, 如图所示,任意形状的物 参数均为已知。 体,参数均为已知。
− λ[− Aβ sin( β x)]e
= hA cos( β x) e
− aβ 2τ x =δ − a β 2τ
− λ[− A β sin( β δ )] e
λβ βδ = ctg ( βδ ) ⇒ = ctg ( βδ ) hδ h ( ) λ
− a β 2τ
= hA cos( β δ ) e
hδ
θ
0
dθ
⇒
θ hA ln =− τ θ0 ρVc
⇒
t −tf θ = =e θ 0 t0 − t f
过余温度比
−
hA τ ρ Vc
其中的指数: 其中的指数: hA hV λ A2 τ= τ ⋅ 2 ρ cV λ A ρc V
=
h(V A)
λ
aτ ⋅ = Biv ⋅ Fov 2 (V A)
第四章 非稳态导热(5)14
13
注
意
① 图4-4纵坐标为对数坐标,而图4-5和图4-6横坐标为对数坐标。三个图均为半 对数坐标系。 ② 图4-4中为直线关系,只在 Fo 0.2 时才是这样,即当过程进入正规状态阶段, 求解的无穷级数只取第一项( n 1)即满足精确要求。因此,成简单的指数函数 关系,它们在半对数坐数上为线性关系。否则,第二项以后的余项不能舍去,结果 就不是简单的指数函数关系,线图就不是图4-4的形式。 当 Fo 0.2 时会是什么样?例如:取数据: a 1.489105 m2 s, 100mm,求 得 134 s ,相对时间很短,一般工程上都不会加热或冷却这样短的时间,由图 4-4可见,数据集中在左上角很小的范围内,在整个图上占的份额很小。 如果确实需要计算 Fo 0.2 时,可用式(4-13)计算,即无穷级数解多取几级。 上述分析解的应用范围可以作三点推广:
2 1 2 2 1 2
m / e m 0 0 1 sin 1 cos 1
x 2 sin 1 cos(1 )
a
a
11
通过上述两个线算图分别查出 m ,
,利用 如果已知温度分布 t、x、Bi ,求τ,可以先计算出 ,再由图查出 0 m 1 m 公式 和 反查图得出 Fo 数,求出加热或冷却到此温度 m ,求出 o 0 m o Bi
(1)对无限大平板问题的分析是以平板被加热的情况为例的,上述结果对物体被冷 却的情况同样适用; (2)从无限大平板问题的数学描述式可以看出,分析解也适用于一侧绝热、另一侧 为第三类边界条件的厚为δ 的平板情形; (3) 当固体表面与流体间的表面传热系数趋于无穷大时,固体的表面温度就趋近于流 体温度,因而 Bi 时的上述分析解就是物体表面温度发生突然变化然后保 持不变时的解, 即第一类边界条件的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一温度均匀的物体,两侧被具有 恒定温度tf的高温介质所包围
§4-2 集总参数分析法
当所需求解的温度仅为时间 τ的函数而与坐标无关, 即 t=f(τ) 条件: 导热热阻<<对流换热热阻 集 总 参 数 分 析 法 (Lumped Parameter Analysis):壁内各 处温度相差不大,温度梯度 极小,可以把整个导热系数 看作一个处于平均温度下的 物体。
* 负号是由于dt为负值 令过余温度θ=t-tf ,则dt=dθ,代入上式得:
d
A d cV
当V、A、α、ρ、c等为已知定值时,对上式积 分得: d A d ' 0 d A cV d cV A ln cV '
第四章 非稳态导热的分析计算
§4-1 概述
1.定义:温度场随时间变化
2.分类:* 周期性非稳态导热
* 非周期性非稳态导热(瞬态导热)
3.目的:* 在加热或冷却时,确定物体内部某一 位置达到预定温度所需要的时间,以及在该时间 内物体吸收或放出的热量;
* 对物体加热或冷却一定时间后,确定 物体内部的温度分布和温度场随时间的变化率
与流体接触 的面积
大平壁: M=1 长圆柱(正方形长柱体): M= 1/2 球(正立方体): M=1/3
作业:4-1;4-2;4-3
ρcV/(αA)称为时间常数τc 如果导热体的热容量(ρcV)小,换热条件好(αA ) 大,则单位时间所传递的热量大,导热体的温 度变化快,将使导热体的温度迅速接近流体温 度。
当τ=4τc= 4ρcV/(αA)时,则:
'
e
A cV
e
4
0.0183 1.83%
工程上习惯认为,τ=4τc时导热体已达到热平 衡状态。 时间常数关系到测温仪表的响应时间。
由式(4-1)可得
dt d ' d (e d d d
A Biblioteka VA ) ( )(e cV
'
A cV
)
所以导热体在单位时间内传递给流体的热量为
dt Q cV 'Ae d
A cV
W
(4-2)
因导热体被冷却,故dt/dτ<0,加负号以使Q 为正值。
一、基本计算公式
初始温度为t' 被周围温度为tf的流体冷却 换热系数α为定值 导热体的平均温度t
经dτ时间后,由于散热,温度下降dt。 由能量平衡,散热量=△导热体本身能量,即:
dt A(t t f ) cV (散热) d
dt A(t f t ) cV (吸热) d
利用上式,可得导热体在τ=0到τ=τ时 间内传入流体的总热量:
Q Qd cV (1 e
' 0
A cV
)J
(4-3)
二、计算判断
毕渥数的定义:
L Bi 1
L
毕渥数的物理意义:固体的导热热阻与对 流换热热阻之间的对比关系。
V A 0.1 M Biv
'
t tf 上式是采用集总参数法求解非稳态导热问题的 基本公式,可用于已知温度求时间,或反之。
ttf
'
e
A cV
(4-1)
当时间τ=ρcV/(αA)
t tf ' e ' t tf
A cV
e 0.368 36.8%
1
即导热在此时的过余温度θ已下降到初始过余 温度θ′的36.8%