由平面向量的数量积判断三角形形状

合集下载

高考数学一轮复习第六章平面向量解三角形复数6.3平面向量的数量积与平面向量的应用人教A版

高考数学一轮复习第六章平面向量解三角形复数6.3平面向量的数量积与平面向量的应用人教A版

-2e1·e2-8������22. e1,e2 为单位向量,且
e1

e2
的夹角为π3,
所以 b1·b2=3-2×12-8=3-1-8=-6.
-15-
考点1
考点2
考点3
考点 2 平面向量的模及应用
例 2(1)在平面内,定点 A,B,C,D 满足|������������|=|������������|=|������������|,������������ ·������������ =
-13-
考点1
考点2
考点3
对点训练 1(1)已知△ABC 是边长为 1 的等边三角形,点 D,E 分别
是边 AB,BC 的中点,连接 DE 并延长到点 F,使得 DE=2EF,则������������ ·������������
的值为( B )
A.-58
B.18
C.14
D.181
(2)已知 a=(1,2),2a-b=(3,1),则 a·b=( D )
+
3 4
=
18,应选
B.
(2)因为a=(1,2),2a-b=(3,1),
所以b=2a-(3,1)=2(1,2)-(3,1)=(-1,3).
所以a·b=(1,2)·(-1,3)=-1+2×3=5.
(3)b1=e1-2e2,b2=3e1+4e2,则 b1·b2=(e1-2e2)·(3e1+4e2)
=3������12 因为
6.向量在三角函数中的应用 对于向量与三角函数结合的题目,其解题思路是用向量运算进行 转化,化归为三角函数问题或三角恒等变形等问题或解三角形问题.
7.向量在解析几何中的应用 向量在解析几何中的应用,主要是以向量的数量积给出一种条件, 通过向量转化,进而利用直线和圆锥曲线的位置关系等相关知识来 解答.

向量的知识点总结和解三角形

向量的知识点总结和解三角形

平面向量复习基本知识点结论总结一、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);例题 已知向量,则与其共线的单位向量为__________.(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量是-。

例题下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =。

(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______ 二、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法。

三,平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

例题(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =( )a +( )b ;(2)下列向量组中,能作为平面内所有向量基底的是( )A. 12(0,0),(1,2)e e ==-B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=- (3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___四、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。

向量的数量积(练习)(含解析)高一下学期数学(人教A版2019 必修第二册)

向量的数量积(练习)(含解析)高一下学期数学(人教A版2019 必修第二册)

6.2.4向量的数量积1.[2022·福建三明高一期末]在边长为2的正方形ABCD 中,E 为BC 中点,则AB → ·AE → =( )A .2B .4C .25D .52.[2022·山东东营高一期末]若向量a ,b 满足||a =||b =2,〈a ,b 〉=120°,则||a -b =( )A .4B .12C .2D .233.[2022·湖北武汉高一期末]已知|a |=2,|b |=3,a 与b 的夹角为135°,则a 在b 方向上的投影向量为________.4.已知|a |=4,|b |=2,且a 与b 的夹角为2π3,求: (1)a ·b ;(2)(a -2b )·(a +b ).5.[2022·河北石家庄高一期末]已知在边长为6的等边三角形ABC 中,BD → =12DC → ,则AD → ·AC → =( )A .24B .6C .18D .-246.[2022·江苏苏州高一期中]已知平面向量a ,b 满足||a =2,||b =1,a ·(a -b )=5,则向量a 与b 的夹角为( )A .π6B .π3C .2π3D .5π67.[2022·福建福州高一期末]设非零向量a ,b ,c 是满足a +b +c =0,a ⊥b ,(2a -b )⊥c ,若||a =2 ,则||b =________.8.[2022·河北邢台高一期末]已知向量a ,b 满足(2a +b )·(a -2b )=2,且|a |=2 ,|b |=2.(1)求a 与b 的夹角θ;(2)求||a +b .9.[2022·广东珠海高一期末]已知||a =2 ,|b |=1,且a 与a -2b 相互垂直.(1)求向量a 与向量b 的夹角θ的大小;(2)求||a +b .10.在△ABC 中,AB → =c ,BC → =a ,CA → =b ,且a ·b =b ·c =c ·a ,试判断△ABC 的形状.11.(多选)[2022·山东滨州高一期末]已知a ,b ,c 是任意的非零向量,则下列结论正确的是( )A .||a +b ≤||a +||bB .a ·b ≤||a ·||bC .若||a =||b ,则a =bD .若||a +b =||a -b ,则a ⊥b12.设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角θ为钝角,求实数t 的取值范围.答案:1.解析:由题设,AB → ·AE → =|AB → ||AE → |cos ∠BAE =|AB → |2=4.故选B.答案:B 2.解析:由||a =||b =2,〈a ,b 〉=120°,可得a ·b =||a ·||b cos 〈a ,b 〉=2×2×cos 2π3=-2, 所以||a -b =(a -b )2 =a 2+b 2-2a ·b =||a 2+||b 2-2a ·b =4+4-2×(-2)=23 .故选D.答案:D3.解析:因为a 在b 方向上的投影为||a cos 135°=-2 ,与b 同向的单位向量为b ||b =13 b ,所以a 在b 方向上的投影向量为-23b . 答案:-23b 4.解析:(1)由平面向量数量积的定义可得a ·b =|a |·|b |cos 2π3 =4×2×(-12)=-4; (2)(a -2b )·(a +b )=a 2-a ·b -2b 2=|a |2-a ·b -2|b |2=42+4-2×22=12.5.解析:因为BD → =12DC → , 所以BD → =13 BC → =13(AC → -AB → ), 所以AD → =AB → +BD → =AB → +13 (AC → -AB → )=23 AB → +13AC → . 因为等边三角形ABC 的边长为6,所以AC → ·AB → =6×6cos 60°=18,所以AD → ·AC → =(23 AB → +13AC → )·AC → =23 AB → ·AC → +13AC → 2 =23 ×18+13×36=24,故选A. 答案:A6.解析:因为||a =2,||b =1,a ·(a -b )=5,所以a ·(a -b )=a 2-a ·b =||a 2-a ·b =5,所以a ·b =-1,设向量a 与b 的夹角为θ,则cos θ=a ·b ||a ·||b =-11×2=-12 , 因为θ∈[]0,π ,所以θ=2π3.故选C. 答案:C 7.解析:因为a +b +c =0,可得c =-(a +b ),又因为a ⊥b ,(2a -b )⊥c ,且||a =2 ,可得(2a -b )·c =(2a -b )·[]-(a +b ) =-2a 2-a ·b +b 2=-2×(2 )2-0+||b 2=0, 解得||b 2=4,所以||b =2.答案:2 8.解析:(1)由(2a +b )·(a -2b )=2a 2-3a ·b -2b 2=4-3×2 ×2cos θ-8=2, 得cos θ=-22 ,因为θ∈[0,π],所以θ=3π4. (2)由题意得|a +b |=a 2+2a ·b +b 2 =2-42×22+4 =2 . 9.解析:(1)由题意,a ·(a -2b )=a 2-2a ·b =0,所以2-22 cos θ=0,可得cos θ=22,而0≤θ≤π,所以θ=π4. (2)由||a +b 2=a 2+2a ·b +b 2=2+2+1=5, 所以||a +b =5 .10.解析:在△ABC 中,易知AB → +BC → +CA → =0,即a +b +c =0,因此a +c =-b ,a +b =-c ,从而⎩⎪⎨⎪⎧(a +b )2=(-c )2,(a +c )2=(-b )2, 两式相减可得b 2+2a ·b -c 2-2a ·c =c 2-b 2,则2b 2+2(a ·b -a ·c )=2c 2,因为a ·b =c ·a =a ·c ,所以2b 2=2c 2,即|b |=|c |.同理可得|a |=|b |,故|AB → |=|BC → |=|CA → |,即△ABC 是等边三角形.11.解析:对A ,||a +b 2=a 2+b 2+2a ·b =||a 2+||b 2+2||a ·||b ·cos 〈a ,b 〉≤||a 2+||b 2+2||a ·||b =(||a +||b )2,当且仅当a ,b 同向时等号成立,所以||a +b ≤||a +||b ,故A 正确;对B ,因为cos 〈a ,b 〉≤1,所以a ·b =||a ·||b ·cos 〈a ,b 〉≤||a ·||b ,当且仅当a ,b 同向时等号成立,故B 正确;对C ,若||a =||b ,因为a ,b 方向不一定相同,所以a ,b 不一定相等,故C 错误; 对D ,若||a +b =||a -b ,两边平方可得a ·b =0,所以a ⊥b ,故D 正确.故选ABD. 答案:ABD12.解析:由向量2t e 1+7e 2与e 1+t e 2的夹角θ为钝角,得cos θ=(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2|·|e 1+t e 2|<0, ∴(2t e 1+7e 2)·(e 1+t e 2)<0,化简得2t 2+15t +7<0.解得-7<t <-12. 当向量2t e 1+7e 2与e 1+t e 2的夹角为180°时,也有(2t e 1+7e 2)·(e 1+t e 2)<0,但此时夹角不是钝角.设2t e 1+7e 2=λ(e 1+t e 2),λ<0,则⎩⎪⎨⎪⎧2t =λ,7=λt ,λ<0, 解得⎩⎪⎨⎪⎧λ=-14,t =-142. ∴所求实数t 的取值范围是(-7,-142 )∪(-142 ,-12 ).。

平面向量数量积的性质及其运算-精品

平面向量数量积的性质及其运算-精品

平面向量数量积的性质及其运算1、平面向量数量积的重要性质:设a,b都是非零向量,e是与b方向相同的单位向量,a与b和夹角为仇则:—♦T—♦T—•(1)a•e=e•a=lalcosG;(2)3=Z・E=();(判定两向量垂直的充要条件)(3)当W,E方向相同时,a*b=lallH;当彳,E方向相反时,a•b=-Iallbh特别地:W=l孑或可=5客(用于计算向量的模)(4)cose=- (用于计算向量的夹角,以及判断三角形的形状)lallbl(5)ll*bKldlbl2、平面向量数量积的运算律(1)交换律:a・b二b・a;(2)数乘向量的结合律:(入a)・b=A(a・b)=a・(入b);(3)分配律:(a•b)・cWa,(b,c)【平面向量数量积的运算】平面向量数量积运算的一般定理为①(W土E)2=/±2:**.②(W-E)(;+E)=a 2-b2.®b-C)丰(a-b)-o从这里可以看出它的运算法则和数的运算法则有些是相同的,有些不一样.【例题解析】例:由代数式的乘法法则类比推导向量的数量积的运算法则:①\n〃=mn”类比得到“黑三品•盛②“(〃z+〃)t=mt+nt ff类比得到“(a+b)e c=a•c+b・c”;③“0,侬=加=〃7=〃”类比得到晨声0,l-c=b->a=b w;④“依•川=|司・|川”类比得到⑤“(〃?•〃)t=m(〃•1)”类比得到“(a•»c=a•(b,c)”;―♦—♦-♦⑥“注二旦”类比得到冬二?第.以上的式子中,类比得到的结论正确的是①②.beb b,ca解:・・,向量的数量积满足交换律,A u mn=nm n类比得到“黑EV”,即①正确;・・,向量的数量积满足分配律,.•・"("+〃)t=mt+nf f类比得到“(a+b)・c=a•c+b,c”,即②正确;・・•向量的数量积不满足消元律,J“岸0,/加=加=加=〃”不能类比得到“3#0,W£三a=b",即③错误;,•,1a•HW|a|・|bl,・・・“依•川=|〃?|・|川”不能类比得到“|,,=可・|讣;即④错误;・・,向量的数量积不满足结合律,・・・“(〃?•〃)t=m(〃•,)”不能类比得到“G4)£=;•£:)”,即⑤错误;・・,向量的数量积不满足消元律,・・.反£二旦”不能类比得到乌工二,beb b-ca即⑥错误.故答案为:①②.向量的数量积满足交换律,由“〃〃?=〃〃?”类比得到二EG";向量的数量积满足分配律,故“(加+〃)t=mt+nt ff类比得到“G+三)・7=W・丁+b-c";向量的数量积不满足消元律,故"/WO, 不能类比得到“《卢。

平面向量的数量积及运算律

平面向量的数量积及运算律

平面向量的数量积及运算律【基础知识精讲】1.平面向量的数量积的定义及几何意义(1)两平面向量和的夹角:,是两非零向量,过点O作=、=,则∠AOB=θ(0°≤θ≤180°)就称为向量和的夹角,很显然,当且仅当两非零向量、同方向时θ=0°;当且仅,反方向时,θ=180°,当θ=90°,称与垂直,记作⊥.(2)两平面向是和的数量积:、是两非零向量,它们的夹角为θ,则数量||·||cosθ叫做向量与的数量积(或内积),记作·,即·=||·||·cosθ.因此当⊥时,θ=90°,cosθ=0,这时·=0特别规定,零向量与任一向量的数量积均为0.综上所述,·=0是⊥或,中至少一个为的充要条件两向量与的数量积是一个实数,不是一个向量,其值可以为正(当≠,≠,0°≤θ<90°时,也可以为负(当≠,≠,90°<θ≤180°时,还可以为0(当=或=或θ=90°时).(3)一个向量在另一向量方向上的投影:设θ是向量与的夹角,则||cosθ,称为向量在的方向上的投影:而||cosθ,称为向量在的方向上的投影.一个向量在另一个向量方向上的投影也是一个数,不是向量,当0°≤θ<90°时,它为正值:当θ=90°时,它为0;当90°<θ≤180°时,它为负值.特别地,当θ=0°,它就等于||;而当θ=180°时,它等于-||.我们可以将向量与的数量积看成是向量的模||与||在的方向上投影||cosθ的乘积.2.向量数量积的性质:设、是两非零向量,是单位向量,θ是与的夹角,于是我们有下列数量积的性质:(1) ·=·=||cosθ(2) ⊥·=0(3) 、同向·=||·||; ,反向·=-||||;特别地·=2=||2或||=.(4)cosθ= (θ为,的夹角)(5)|·|≤||·||3.平面向量的数量积的运算律(1)交换律:·=·(2)数乘向量与数量积的结合律:λ(·)=(λ)·=·(λ);(λ∈R)(3)分配律: (+)· =·+·【重点难点解析】两向量的数量积是两向量之间的一种乘法运算,它与两数之间的乘法有本质的区别:(1)两向量的数量积是个数量,而不是向量,其值为两向量的模与两向量夹角的余弦的乘弦的乘积.(2)当≠时,不能由·=0,推出=,因可能不为,但可能与垂直.(3)非零实数a,b,c满足消去律,即ab=bc a=c,但对向量积则不成立,即·=·=).(4)对实数的积应满足结合律,即a(bc)=(ab)c,但对向量的积则不满足结合律,即·(·)≠(·)·,因·(·)表示一个与共线的向量,而(·)·表示一个与共线的向量,而两向量不一定共线.例1已知、、是三个非零向量,则下列命题中真命题的个数(1)|·|=||·||∥(2) ,反向·=-||·|| (3)⊥|+|=|-| (4)||=|||·|=|·| A.1 B.2 C.3 D.4分析:需对以上四个命题逐一判断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则.解:(1)∵·=||·||cosθ∴由|·|=||·||及、为非零向量可得|cosθ|=1∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题.(2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆,故命题(2)是真命题.(3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题.(4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故命题(4)是假命题.综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C).说明:(1)两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或π,反过来若两向量的夹角为0或π,则两向量共线.(2)对于命题(4)我们可以改进为:||=||是|·|=|·|的既不充分也不必要条件.例2已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角.分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ.解:设与的夹角为θ.∵+3垂直于向量7-5,-4垂直于7-2,解之得 2=2·2=2·∴2=2∴||=||∴cosθ===∴θ=因此,a与b的夹角为.例3已知++=,||=3,||=1,||=4,试计算·+·+·.分析:利用||2=2,||2= 2,||2=2.解:∵++=∴(++)2=0从而||2+||2+||2+2·+2·+2·=0又||=3,||=1,||=4∴·+·+·=-(||2+||2+||2) =-(32+12+42) =-13例4已知:向量=-2-4,其中、、是两两垂直的单位向量,求与同向的单位向量.分析:与同向的单位向量为:·解:∵、、是两两垂直的单位向量∴2=2=2=1, ·=·=·=0∴2=(-2-4)(-2-4)=2+42+162-4· -8·+16·=21从而||=∴与同向的单位向量是·= (-2-4)=--例5求证:直径上的圆周角为直角.已知:如图,AC为⊙O的直径,∠ABC是直径AC上的圆周角.求证:∠ABC=90°分析:欲证∠ABC=90°,须证⊥,因此可用平面向量的数量积证·=0证明:设=,=,有=∵=+, =-且||=||∴·=(+)( -)=||2-||2=0∴⊥∴∠ABC=90°【难题巧解点拔】例1如图,设四边形P1P2P3P4是圆O的内接正方形,P是圆O上的任意点.求证:||2+||2+||+||2为定值.分析:由于要证:||2+||2+||+||2为定值,所以需将(i=1,2,3,4)代换成已知向量或长为定值的向量的和(或差),才能使问题证,而这里的半径、、、、等可供我们选择.证明:由于=+=- (i=1,2,3,4).∴有||2=(-)2=()2-2(·)+()2设⊙O的半径为r,则||2=2r2-2(·)∴||2+||2+||+||2=8r2-2(+++)·=8r2-2··=8r2(定值).例2设AC是□ABCD的长对角线,从C引AB、AD的垂线CE,CF,垂足分别为E,F,如图,试用向量方法求证:AB·AE+AD·AF=AC2分析:由向量的数量积的定义可知:两向量,的数量积·=||·||·cosθ(其中θ是,的夹角),它可以看成||与||在的方向上的投影||·cosθ之积,因此要证明的等式可转化成:·+·=,而对该等式我们采用向量方法不难得证:证明:在Rt△AEC中||=||cos∠BAC在Rt△AFC中||=||cos∠DAC∴||·||=||·||·cos∠BAC=·||·||=||·||cos∠DAC=·∴||·||+||·||=·+·=(+)·又∵在□ABCD中,+=∴原等式左边=(+)·=·=||2=右边例3在△ABC中,AD是BC边上的中线,采用向量法求证:|AD|2= (|AB|2+|AC|2-|BC|2)分析:利用|a|2=a·a及=+,=+,通过计算证明证明:依题意及三角形法则,可得:=+=-=+=+则||2=(-)(-)=||2+||2-·||2=(+)(+)=||2+||2+·所以||2+||2=2||2+||2移项得:||2= (||2+||2-||2)例4若(+)⊥(2-),( -2)⊥(2+),试求,的夹角的余弦值.分析:欲求cosθ的值,根据cosθ=,只须计算即可解:由(+)⊥(2-),( -2)⊥(2+)①×3+②得:2=2∴||2=||2③由①得:·=2-22=||2-2×||2=-||2④由③、④可得:cosθ= ==-∴,的夹角的余弦值为-.【典型热点考题】例1设、、是任意的非零平面向量,且它们相互不共线,下列命题①(·)·-(·)·)=;②||-||<|-|;③(·)·-(·)·不与垂直;④(3+2)·(3-2)=9||2-4||2.其中正确的有( )A.①②B.②③C.③④D.②④解:选D.②正确,因、不共线,在||-||≤|-|中不能取等号;④正确是明显的,①错误,因向量的数量积不满足结合律;③错误,因[(·)·-(·)·]·=(·)·(·)-(·)·(·)=0,则(·)·-(·)·与垂直.例2已知+=2-8,-=-8+16,其中,是x轴、y轴方向的单位向量,那么·= .=-3+4, =5-12∴·=(-3+4j)·(5-12)=-152+56·-482∵⊥,||=||=1,∴·=0∴·=-15||2-48||2=-63解法2:· =[(+)2-(-)2]=[4(-4)2-64(-2)2]=2-8·+16j2-16(2-4·+42) =-152+56·-482=-63解法3:在解法1中求得=-3+4,即向量的坐标是(-3,4),同理=(5,-12).∴·=-3×5+4×(-12)=63例3设、是平面直角坐标系中x轴、y轴方向上的单位向量,且=(m+1) -3,=+(m-1) ,如果(+)⊥(-),则m= .解法1:∵(+)⊥(-)∴(+)·(-)=0,即2-2=0∴[(m+1) -3]2-[+(m-1) ]2=0∴[(m+1) -3]||2-[6(m+1)+2(m-1)]·+[9-(m-1)2]·2=0∵||=||=1, ·=0,∴(m+1)2-(m-1)2+8=0,则m=-2.解法2:向量的坐标是(m+1,-3),的坐标是(1,m-1).由(+)·(-)=0,得||2=||2.解得m=-2评析:向量的运算性质与实数相近,但又有许多差异.尤其是向量的数量积的运算与实数的乘法运算,两者似是而非,极易混淆,是近年来平面向量在高考中考查的重点,应予以重视.例4在△ABC中,若=, =, =,且·=·=·,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等边三角形 D.A、B、C均不正确解:因为++=++=则有+=-,( +)2=2①同理:2+2+2·=2②①-②,有2-2+2(·-·)=2-2由于·=·所以2=2即是||=||同理||=||所以||=||=||△ABC为正三角形.∴应选C.。

考点10 平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)

考点10  平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
①数量积:a·b=|a||b|cosθ=x1x2+y1y2.
②模:|a|= = .
③夹角:cosθ= = .
④两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
⑤|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ · .
,注意与平面向量平行的坐标表示区分.
3.(2021年全国高考甲卷)若向量 满足 ,则 _________.
【答案】
【分析】根据题目条件,利用 模的平方可以得出答案
【详解】∵

∴ .
故答案为: .
4.(2021年全国新高考Ⅰ卷)已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
【答案】AC
2.三个常用结论
(1)O为△ABC的重心的充要条件是 + + =0;
(2)四边形ABCD中,E为AD的中点,F为BC的中点,则 + =2 ;
(3)对于平面上的任一点O, , 不共线,满足 =x +y (x,y∈R),则P,A,B共线⇔x+y=1.
注意向量共线与三点共线的区别.
3.平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
【答案】D
【分析】根据所给图形,由向量的线性运算,逐项计算判断即可得解.
【详解】 + + = + =0,A正确;
+ + = + + =0,B正确;
+ + = + = + = ,C正确;
+ + = +0= = ≠ ,D错误,
故选:D.
2.(2020内蒙古鄂尔多斯市第一中学)下列结论正确的是
A.若向量 , 共线,则向量 , 的方向相同

平面向量的三角形法则

平面向量的三角形法则

平面向量的三角形法则平面向量是解决几何和物理问题中常用的数学工具之一。

通过平面向量的运算和性质,我们可以方便地描述物理系统的位移、力和速度等概念。

其中,平面向量的三角形法则是非常重要的基础知识。

本文将详细介绍平面向量的三角形法则以及其应用。

一、平面向量的定义在平面直角坐标系中,平面向量可以表示为一个有方向的线段。

根据平面向量的定义,我们可以用其起点和终点的坐标表示一个平面向量。

例如,对于平面向量AB,其起点为A坐标(x1, y1),终点为B坐标(x2, y2),我们可以表示为向量AB = (x2 - x1, y2 - y1)。

二、平面向量的三角形法则平面向量的三角形法则是指当三个平面向量相互作用时,可以将它们的起点放在同一个点,然后将它们的终点连接起来形成一个三角形。

这个三角形的对角线是第三个平面向量的和向量。

具体来说,对于平面向量AB和AC,它们的和向量是平面向量AD,即AB + AC = AD。

三、平面向量的运算规则1. 平面向量的加法平面向量的加法满足交换律和结合律。

换言之,对于任意平面向量AB,AC和AD,满足AB + AC = AC + AB,以及(AB + AC) + AD =AB + (AC + AD)。

2. 平面向量的乘法平面向量的乘法有数量积和向量积两种形式。

(1)数量积数量积也称为点积,表示为AB · AC。

数量积的计算方法是将AB的横坐标与AC的横坐标相乘,再将AB的纵坐标与AC的纵坐标相乘,然后将两个结果相加。

即AB · AC = ABx * ACx + ABy * ACy。

其中,ABx为AB的横坐标,ACx为AC的横坐标,ABy为AB的纵坐标,ACy为AC的纵坐标。

(2)向量积向量积也称为叉积,表示为AB × AC。

向量积的计算方法是将AB的横坐标与AC的纵坐标相乘,再将AB的纵坐标与AC的横坐标相乘,然后根据坐标轴的正负关系确定结果的方向。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。

2023年湖北省孝感市高一期中考试高一数学试卷+答案解析(附后)

2023年湖北省孝感市高一期中考试高一数学试卷+答案解析(附后)

2023年湖北省孝感市高一期中考试高一数学试卷1. 已知复数z 满足,i 是虚数单位,则( )A.B.C.D.2.已知平面向量,,,若,,则为( )A. 5B.C. 2D.3. 如图,在中,,E 为CD 的中点,设,,则( )A. B.C.D.4. “”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 在中,,若BC 边上的高等于,则的值为( )A.B.C.D.6. 若非零向量、满足,且,则与的夹角为( )A. B.C. D.7. 将函数的图象向左平移个单位长度,再把所得图象上各点的横坐标缩短到原来的倍纵坐标不变,得到函数的图象,则( )A.B. C. D.8. 已知锐角的内角A ,B ,C 所对的边分别为a ,b ,c ,若,且外接圆半径为2,则的取值范围是( )A. B. C. D.9. 下列命题中错误的是( )A.B. 若,满足,且与同向,则C.若,则D. 若是等边三角形,则,10. 在中,内角A,B,C所对的边分别为a,b,c,下列各组条件中使得有两个解的是( )A. ,,B. ,,C. ,,D. ,,11. 函数且在一个周期内的图象如图所示,下列结论正确的是( )A. B.C. 在上单调递增D. ,都有12. 点O是所在平面内的一点,下列说法正确的有( )A. 若则O为的重心B. 若,则点O为的垂心C.在中,向量与满足,且,则为等边三角形D.若,,分别表示,的面积,则13. 的值为__________.14.若,,且,均为锐角,则__________.15. 在中,D为边AC上靠近点A的一个三等分点,P为线段BD上一动点,且满足,则的最小值为__________16. 赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设,若,则的值为__________17. 已知复数若复数z为纯虚数,求实数m的值;若复数z在复平面内对应的点在第四象限,求实数m的取值范围.18. 已知,,求的单调递增区间;若,求的值域.19. 如图,在平行四边形ABCD中,点P、Q分别为线段BC、CD的中点.若,求,的值;若,,,求与夹角的余弦值.20. 已知a、b、c分别为内角A、B、C的对边,且求若中线,求面积的最大值.21. 如图,在中,,的角平分线交BC于点求的值;若,,求AB的长.22. 已知O为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.设函数,试求的伴随向量记向量的伴随函数为,求当且时,的值;当向量时,伴随函数为,函数,求在区间上最大值与最小值之差的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查复数的四则运算,属于基础题.【解答】解:,2.【答案】A【解析】【分析】本题考查两向量垂直的条件以及向量的模长求解,考查运算求解能力,属于基础题.【解答】解:由得,解得,由,得,解得,3.【答案】D【解析】【分析】本题主要考查向量的线性运算,属于基础题.根据向量的加减法进行计算即可.【解答】解:根据题意故选4.【答案】B【解析】【分析】本题考查二倍角余弦公式,条件关系的判断,属于基础题.【解答】解:,解得,当,得,故“”是“”的必要不充分条件.5.【答案】D【解析】【分析】本题考查了直角三角形的边角关系、解三角形、余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.【解答】解:在中,边上的高AH等于,不妨设,则,,,,,为三角形的一个内角,则,故选:6.【答案】A【解析】【分析】本题考查向量数量积的计算,涉及向量的垂直,属于基础题.【解答】解:根据题意,设与的夹角为,由,则,由,得由以上两等式,可得又由,则,故选7.【答案】C【解析】【分析】本题主要考查函数的图像变换规律,属基础题.【解答】解:把函数的图象上所有点的横坐标变为原来的2倍纵坐标不变,可得的图象.再把图象向右平移个单位长度,得到的图象,即8.【答案】C【解析】【分析】本题主要考查余弦定理、正弦定理、三角形面积公式、利用基本不等式求最值,属于中档题.【解答】解:因为,由正弦定理知:,因为,故,解得或舍去,又因为是锐角三角形,因为外接圆的半径为2,由正弦定理知:,即,,是锐角三角形,,解得,得,可得又,故的取值范围是故选9.【答案】BC【解析】【分析】本题考查平面向量的基本概念,向量的加法,向量的数量积及夹角,属于基础题.【解答】解:对于A,由三角形法则可知A正确;对于B,两个向量不能比较大小,故B错误;对于C,当,与可以不相等,C错误;对于D,由等边三角形性质易知D正确.故选10.【答案】AB【解析】【分析】本题考查正弦定理、余弦定理解三角形,属于中档题;【解答】解:对于A,由正弦定理,可得,又,所以B有两解,即有两解;对于B,因为,所以A为锐角,且,可得,又,所以B有两解,即有两解;对于C,由余弦定理,可得,此时,,所以有唯一解;对于D,由正弦定理,可得,又,所以A有唯一解,即有唯一解.11.【答案】BD【解析】【分析】本题考查函数的图象与性质及其应用,属于中档题.由图象解得函数的解析式,通过该函数的性质逐一分析求解即可.【解答】解:对于A,由图象可得:,所以,又因为函数过点,所以,解得,即,因为,所以,则函数的解析式为,故A错误;对于B,因为故B正确;对于C,由得,区间不在函数的单调递增区间内,故C错误;对于D,当时,,函数的图象关于点对称,故,都有,故D正确.12.【答案】ACD【解析】【分析】本题考查平面向量的数量积的运算,三角形形状的判断,重心、外心的性质,属较难题.【解答】解:对于A:若,易知O为的重心,A正确;对于B:若,取AB的中点D,BD的中点E,可得,,则点O为三边的垂直平分线的交点,即的外心,B错误;对于C:,,分别为、方向上的单位向量,的角平分线与BC垂直,,,,,,,三角形为等边三角形,故C正确;对于D:若E、F分别是BC、AC的中点,则,,所以,故,即E,O,F共线且,过E,O,B作AC上的高,,,易知,,则,所以,故D正确.13.【答案】2【解析】【分析】本题考查和角的正切公式,属于基础题.【解答】解:所以,得14.【答案】【解析】【分析】本题考查和差角公式的计算,属于基础题.【解答】解:由已知得,,15.【答案】【解析】【分析】本题主要考查的是向量的综合运算,属于较难题.可结合条件求出向量,进而求出m与n的关系,即可得解.【解答】解:,,又为BD上一点,不妨设,,,,不共线,,当且仅当即时等号成立,即的最小值为,故答案为16.【答案】【解析】【分析】本题主要考查解三角形以及平面向量基本定理,熟记正弦定理和余弦定理、以及平面向量基本定理即可,属于中档题.【解答】解:,可设,,又由题意可得,,,延长AD交BC于M,记,,,,即,,又由题意易知,则,在三角形DBM中,由正弦定理可得:,即,,,,及,整理得,,又因为,由平面向量的基本定理可得,,17.【答案】解:由题意得:,解得:,综上:由题意得:解得:,所以,实数m的取值范围是【解析】本题考查纯虚数的概念,复数的几何意义,属于基本运算类题目.18.【答案】解:依题意得:由,,得,所以的单调递增区间为由知,,当时,,则,即,所以在时的值域为【解析】本题考查三角恒等变换,向量坐标运算,属基础题.19.【答案】解:因为点P、Q分别为线段BC、CD的中点,所以,,所以,又,则解得,由可知,,,则,,,所以,【解析】本题考查平面向量基本定理的应用,利用向量的数量积求向量的模、夹角,属于综合题.20.【答案】解:因为,由正弦定理可得,所以,即,,,所以,即,,,则,故,因此,由题意可得,,,所以,又,联立可得,因此,的面积即面积的最大值为【解析】本题考查正弦定理解三角形,三角形面积公式,向量数量积运算在解三角形中的应用,属于中档题.21.【答案】解:为的角平分线,,即,,又,由知,而,且,,,,在中,,在中,,,又代入解得,故【解析】本题考查余弦定理解三角形、三角形面积公式,属中档题.22.【答案】解:,所以,故函数的伴随向量,向量的相伴函数为,由于,所以,由于,所以,则,故的函数解析式,所以区间的长度为,函数的周期为,若的对称轴在区间内,不妨设对称轴在内,最大值为1,当即时,函数在区间上的最大值与最小值之差取得最小值为其它的对称轴在内时最大值与最小值之均大于若的对称轴不在区间内,则在区间内单调,在两端点处取得最大值与最小值,则最大值与最小值之差为:故函数在区间上的最大值与最小值之差的取值范围为【解析】本题考查平面向量的新定义问题,三角恒等变换的综合应用,三角函数的图象与性质,属于综合题.。

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。

三角形的形状判断(含解析)

三角形的形状判断(含解析)

【考点训练】三角形的形状判断-2(扫描二维码可查看试题解析)一、选择题(共20小题)1.(2014•静安区校级模拟)若,则△ABC为()A .等腰三角形B.直角三角形C.锐角三角形D.不能判断2.(2014秋•郑州期末)若△ABC 的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC()A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形3.(2014秋•祁县校级期末)A为三角形ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()A .锐角三角形B.钝角三角形C .等腰直角三角形D.等腰三角形4.(2014•天津学业考试)在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A .锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.(2014春•禅城区期末)已知:在△ABC中,,则此三角形为()A .直角三角形B.等腰直角三角形C .等腰三角形D.等腰或直角三角形6.(2014•南康市校级模拟)已知△ABC满足,则△ABC是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形7.(2014•马鞍山二模)已知非零向量与满足且=.则△ABC为()A .等边三角形B.直角三角形C .等腰非等边三角形D.三边均不相等的三角形8.(2014•蓟县校级二模)在△ABC中,a,b,c分别是角A,B,C所对的边,且2c2=2a2+2b2+ab,则△ABC是()A .钝角三角形B.直角三角形C.锐角三角形D.等边三角形9.(2014•黄冈模拟)已知在△ABC中,向量与满足(+)•=0,且•=,则△ABC为()A .三边均不相等的三角形B.直角三角形C .等腰非等边三角形D.等边三角形10.(2014•奉贤区二模)三角形ABC中,设=,=,若•(+)<0,则三角形ABC的形状是()A .锐角三角形B.钝角三角形C.直角三角形D.无法确定11.(2015•温江区校级模拟)已知向量,则△ABC的形状为()A .直角三角形B.等腰三角形C.锐角三角形D.钝角三角形12.(2014秋•景洪市校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且,则△ABC的形状为()A .等边三角形B.等腰直角三角形C .等腰或直角三角形D.直角三角形13.(2014•咸阳三模)△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A .直角三角形B.等边三角形C .非等边锐角三角形D.钝角三角形14.(2014•奎文区校级模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若,则△ABC的形状是()A.等边三角形B.钝角三角形C.直角三角形D .等腰三角形但不是等边三角形15.(2014秋•正定县校级期末)在△ABC中,tanA•sin2B=tanB•sin2A,那么△ABC一定是()A锐角三角形B直角三角形..C .等腰三角形D.等腰三角形或直角三角形16.(2014•漳州四模)在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC的形状为()A .直角三角形B.锐角三角形C .等边三角形D.等腰直角三角形17.(2014•云南模拟)在△ABC中,若tanAtanB>1,则△ABC是()A .锐角三角形B.直角三角形C.钝角三角形D.无法确定18.(2013秋•金台区校级期末)双曲线=1和椭圆=1(a>0,m>b>0)的离心率互为倒数,那么以a,b,m为边长的三角形是()A .锐角三角形B.钝角三角形C.直角三角形D.等腰三角形19.(2014•红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()A .充分不必要条件B.必要不充分条件C .充要条件D.既不充分又不必要条件20.(2014秋•德州期末)在△ABC中,若acosA=bcosB,则△ABC的形状是()A .等腰三角形B.直角三角形C .等腰直角三角形D.等腰或直角三角形二、填空题(共10小题)(除非特别说明,请填准确值)21.(2014春•沭阳县期中)在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为.22.(2014秋•思明区校级期中)在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.23.(2013•文峰区校级一模)已知△ABC中,AB=,BC=1,tanC=,则AC等于.24.(2013春•广陵区校级期中)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.25.(2014秋•潞西市校级期末)在△ABC中,已知c=2acosB,则△ABC的形状为.26.(2014春•常熟市校级期中)在△ABC中,若,则△ABC的形状是.27.(2014春•石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).28.(2013春•遵义期中)△ABC中,b=a,B=2A,则△ABC为三角形.29.(2013秋•沧浪区校级期末)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为(填锐角三角形、直角三角形、钝角三角形.)30.(2014春•宜昌期中)在△ABC中,sinA=2cosBsinC,则三角形为三角形.【考点训练】三角形的形状判断-2参考答案与试题解析一、选择题(共20小题)1.(2014•静安区校级模拟)若,则△ABC为()A .等腰三角形B.直角三角形C.锐角三角形D.不能判断考点:三角形的形状判断.专题:计算题.分析:利用平方差公式,由,推出AB=AC,即可得出△ABC为等腰三角形.解答:解:由,得:,∴故AB=AC,△ABC为等腰三角形,故选A.点评:本小题主要考查向量的数量积、向量的模、向量在几何中的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.2.(2014秋•郑州期末)若△ABC 的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC ()A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:根据题意,结合正弦定理可得a:b:c=4:6:8,再由余弦定理算出最大角C的余弦等于﹣,从而得到△ABC是钝角三角形,得到本题答案.解答:解:∵角A、B、C满足6sinA=4sinB=3sinC,∴根据正弦定理,得6a=4b=3c,整理得a:b:c=4:6:8设a=4x,b=6x,c=8x,由余弦定理得:cosC===﹣∵C是三角形内角,得C∈(0,π),∴由cosC=﹣<0,得C为钝角因此,△ABC是钝角三角形故选:C点评:本题给出三角形个角正弦的比值,判断三角形的形状,着重考查了利用正、余弦定理解三角形的知识,属于基础题.3.(2014秋•祁县校级期末)A为三角形ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()A .锐角三角形B.钝角三角形C .等腰直角三角形D.等腰三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:将已知式平方并利用sin2A+cos2A=1,算出sinAcosA=﹣<0,结合A∈(0,π)得到A为钝角,由此可得△ABC是钝角三角形.解答:解:∵sinA+cosA=,∴两边平方得(sinA+cosA)2=,即sin2A+2sinAcosA+cos2A=,∵sin2A+cos2A=1,∴1+2sinAcosA=,解得sinAcosA=(﹣1)=﹣<0,∵A∈(0,π)且sinAcosA<0,∴A∈(,π),可得△ABC是钝角三角形故选:B点评:本题给出三角形的内角A的正弦、余弦的和,判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识,属于基础题.4.(2014•天津学业考试)在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A .锐角三角形B.钝角三角形C.直角三角形D.等腰三角形考点:三角形的形状判断;两角和与差的余弦函数.专题:计算题.分析:对不等式变形,利用两角和的余弦函数,求出A+B的范围,即可判断三角形的形状.解答:解:因为在△ABC中,sinA•sinB<cosA•cosB,所以cos(A+B)>0,所以A+B∈(0,),C>,所以三角形是钝角三角形.故选B.点评:本题考查三角形的形状的判定,两角和的余弦函数的应用,注意角的范围是解题的关键.5.(2014春•禅城区期末)已知:在△ABC中,,则此三角形为()A .直角三角形B.等腰直角三角形C .等腰三角形D.等腰或直角三角形考点:三角形的形状判断.专题:计算题.分析:由条件可得sinCcosB=cosCsinB,故sin(C﹣B)=0,再由﹣π<C﹣B<π,可得C﹣B=0,从而得到此三角形为等腰三角形.解答:解:在△ABC中,,则ccosB=bcosC,由正弦定理可得sinCcosB=cosCsinB,∴sin(C﹣B)=0,又﹣π<C﹣B<π,∴C﹣B=0,故此三角形为等腰三角形,故选C.点评:本题考查正弦定理,两角差的正弦公式,得到sin(C﹣B)=0及﹣π<C﹣B<π,是解题的关键.6.(2014•南康市校级模拟)已知△ABC满足,则△ABC 是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形的形状判断.专题:计算题;平面向量及应用.分析:根据向量的加减运算法则,将已知化简得=+•,得•=0.结合向量数量积的运算性质,可得CA⊥CB,得△ABC是直角三角形.解答:解:∵△ABC中,,∴=(﹣)+•=•+•即=+•,得•=0∴⊥即CA⊥CB,可得△ABC是直角三角形故选:C点评:本题给出三角形ABC中的向量等式,判断三角形的形状,着重考查了向量的加减法则、数量积的定义与运算性质等知识,属于基础题.7.(2014•马鞍山二模)已知非零向量与满足且=.则△ABC为()A .等边三角形B.直角三角形C .等腰非等边三角形D.三边均不相等的三角形考点:三角形的形状判断.专题:计算题.分析:通过向量的数量积为0,判断三角形是等腰三角形,通过=求出等腰三角形的顶角,然后判断三角形的形状.解答:解:因为,所以∠BAC的平分线与BC垂直,三角形是等腰三角形.又因为,所以∠BAC=60°,所以三角形是正三角形.故选A.点评:本题考查向量的数量积的应用,考查三角形的判断,注意单位向量的应用,考查计算能力.8.(2014•蓟县校级二模)在△ABC中,a,b,c分别是角A,B,C所对的边,且2c2=2a2+2b2+ab,则△ABC是()A .钝角三角形B.直角三角形C.锐角三角形D.等边三角形考点:三角形的形状判断.专题:计算题.分析:整理题设等式,代入余弦定理中求得cosC的值,小于0判断出C为钝角,进而可推断出三角形为钝角三角形.解答:解:∵2c2=2a2+2b2+ab,∴a2+b2﹣c2=﹣ab,∴cosC==﹣<0.则△ABC是钝角三角形.故选A点评:本题主要考查了三角形形状的判断,余弦定理的应用.一般是通过已知条件,通过求角的正弦值或余弦值求得问题的答案.9.(2014•黄冈模拟)已知在△ABC中,向量与满足(+)•=0,且•=,则△ABC为()A .三边均不相等的三角形B.直角三角形C .等腰非等边三角形D.等边三角形考点:三角形的形状判断.专题:计算题.分析:设,由=0,可得AD⊥BC,再根据边形AEDF是菱形推出∠EAD=∠DAC,再由第二个条件可得∠BAC=60°,由△ABH≌△AHC,得到AB=AC,得到△ABC是等边三角形.解答:解:设,则原式化为=0,即=0,∴AD⊥BC.∵四边形AEDF是菱形,|•=||•||•cos∠BAC=,∴cos∠BAC=,∴∠BAC=60°,∴∠BAD=∠DAC=30°,∴△ABH≌△AHC,∴AB=AC.∴△ABC是等边三角形.点评:本题考查两个向量的加减法的法则,以及其几何意义,三角形形状的判断,属于中档题.10.(2014•奉贤区二模)三角形ABC中,设=,=,若•(+)<0,则三角形ABC的形状是()A .锐角三角形B.钝角三角形C.直角三角形D.无法确定考点:三角形的形状判断.专题:计算题;解三角形.分析:依题意,可知+=;利用向量的数量积即可判断三角形ABC的形状.解答:解:∵=,=,∴+=+=;∵•(+)<0,∴•<0,即||•||•cos∠BAC<0,∵||•||>0,∴cos∠BAC<0,即∠BAC>90°.∴三角形三角形.故选B.点评:本题考查三角形的形状判断,+=的应用是关键,考查转化思想与运算能力,属于中档题.11.(2015•温江区校级模拟)已知向量,则△ABC的形状为()A .直角三角形B.等腰三角形C.锐角三角形D.钝角三角形考点:三角形的形状判断;数量积表示两个向量的夹角.专题:平面向量及应用.分析:由数量积的坐标运算可得>0,而向量的夹角=π﹣B,进而可得B为钝角,可得答案.解答:解:由题意可得:=(cos120°,(cos30°,sin45°)=(,)•(,)==>0,又向量的夹角=π﹣B,故cos(π﹣B)>0,即cosB<0,故B为钝角,故△ABC为钝角三角形故选D点评:本题为三角形性质的判断,由向量的数量积说明角的范围是解决问题的关键,属中档题.12.(2014秋•景洪市校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且,则△ABC的形状为()A .等边三角形B.等腰直角三角形C .等腰或直角三角形D.直角三角形考点:三角形的形状判断.专题:计算题.分析:利用二倍角的余弦函数公式化简已知等式的左边,整理后表示出cosA,再利用余弦定理表示出cosA,两者相等,整理后得到a2+b2=c2,根据勾股定理的逆定理即可判断出此三角形为直角三角形.解答:解:∵cos2=,∴=,∴cosA=,又根据余弦定理得:cosA=,∴=,∴b2+c2﹣a2=2b2,即a2+b2=c2,∴△ABC为直角三角形.故选D.点评:此题考查了三角形形状的判断,考查二倍角的余弦函数公式,余弦定理,以及勾股定理的逆定理;熟练掌握公式及定理是解本题的关键.13.(2014•咸阳三模)△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A .直角三角形B.等边三角形C .非等边锐角三角形D.钝角三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:由,结合等腰三角形三线合一的性质,我们易判断△ABC为等腰三角形,又由△ABC的三个内角A、B、C成等差数列,我们易求出B=60°,综合两个结论,即可得到答案.解答:解:∵△ABC的三个内角A、B、C成等差数列,∴2B=A+C.又∵A+B+C=180°,∴B=60°.设D为AC边上的中点,则+=2.又∵,∴.∴即△ABC为等腰三角形,AB=BC,又∵B=60°,故△ABC为等边三角形.故选:B.点评:本题考查的知识点是平面向量的数量积运算和等差数列的性质,其中根据平面向量的数量积运算,判断△ABC为等腰三角形是解答本题的关键.14.(2014•奎文区校级模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若,则△ABC的形状是()A.等边三角形B.钝角三角形C.直角三角形D .等腰三角形但不是等边三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:将c+a+b=转化为以与为基底的关系,即可得到答案.解答:解:∵=﹣,=﹣,∴c+a+b=c﹣a+b(﹣)=即c+b﹣(a+b)=,∵P是BC边中点,∴=(+),∴c+b﹣(a+b)(+)=,∴c﹣(a+b)=0且b﹣(a+b)=0,∴a=b=c.故选A.点评:本题考查三角形的形状判断,突出考查向量的运算,考查化归思想与分析能力,属于中档题.15.(2014秋•正定县校级期末)在△ABC中,tanA•sin2B=tanB•sin2A,那么△ABC一定是()A .锐角三角形B.直角三角形C .等腰三角形D.等腰三角形或直角三角形考点:三角形的形状判断.专题:综合题.分析:把原式利用同角三角函数间的基本关系变形后,得到sin2A=sin2B,由A和B为三角形的内角,得到2A与2B相等或互补,从而得到A与B相等或互余,即三角形为等腰三角形或直角三角形.解答:解:原式tanA•sin2B=tanB•sin2A,变形为:=,化简得:sinBcosB=sinAcosA,即sin2B=sin2A,即sin2A=sin2B,∵A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰三角形或直角三角形.故选D.点评:此题考查了三角形形状的判断,熟练掌握三角函数的恒等变换把原式化为sin2A=sin2B是解本题的关键.16.(2014•漳州四模)在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC的形状为()A .直角三角形B.锐角三角形C .等边三角形D.等腰直角三角形考点:三角形的形状判断.专题:计算题.分析:通过两个等式推出b=c,然后求出A的大小,即可判断三角形的形状.解答:解:因为在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA所以,所以b=c,2bcosA=c,所以cosA=,A=60°,是正三角形.故选C.点评:本题考查三角形的形状的判断,三角函数值的求法,考查计算能力.17.(2014•云南模拟)在△ABC中,若tanAtanB>1,则△ABC是()A .锐角三角形B.直角三角形C.钝角三角形D.无法确定考点:三角形的形状判断.专题:综合题.分析:利用两角和的正切函数公式表示出tan(A+B),根据A与B的范围以及tanAtanB>1,得到tanA和tanB都大于0,即可得到A与B都为锐角,然后判断出tan(A+B)小于0,得到A+B为钝角即C为锐角,所以得到此三角形为锐角三角形.解答:解:因为A和B都为三角形中的内角,由tanAtanB>1,得到1﹣tanAtanB<0,>0,tanB>0,即A,B为锐角,所以tan(A+B)=<0,则A+B∈(,π),即C都为锐角,所以△ABC是锐角三角形.故答案为:锐角三角形点评:此题考查了三角形的形状判断,用的知识有两角和与差的正切函数公式.解本题的思路是:根据tanAtanB>1和A与B都为三角形的内角得到tanA和tanB都大于0,即A和B都为锐角,进而根据两角和与差的正切函数公式得到tan(A+B)的值为负数,进而得到A+B的范围,判断出C也为锐角.18.(2013秋•金台区校级期末)双曲线=1和椭圆=1(a>0,m>b>0)的离心率互为倒数,那么以a,b,m为边长的三角形是()A .锐角三角形B.钝角三角形C.直角三角形D.等腰三角形考点:三角形的形状判断;椭圆的简单性质;双曲线的简单性质.专题:计算题.分析:求出椭圆与双曲线的离心率,利用离心率互为倒数,推出a,b,m的关系,判断三角形的形状.解答:解:双曲线=1和椭圆=1(a>0,m>b>0)的离心率互为倒数,所以,所以b2m2﹣a2b2﹣b4=0即m2=a2+b2,所以以a,b,m为边长的三角形是直角三角形.故选C.点评:本题是中档题,考查椭圆与双曲线基本性质的应用,三角形形状的判断方法,考查计算能力.19.(2014•红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()A .充分不必要条件B.必要不充分条件C .充要条件D.既不充分又不必要条件考点:三角形的形状判断.专题:计算题.分析:利用平面向量的数量积运算法则化简已知的不等式,得到两向量的夹角为锐角,从而得到三角形的内角为钝角,即可得到三角形为钝角三角形;反过来,三角形ABC若为钝角三角形,可得B不一定为钝角,故原不等式不一定成立,可得前者是后者的充分不必要条件.解答:解:∵,即||•||cosθ>0,∴cosθ>0,且θ∈(0,π),所以两个向量的夹角θ为锐角,又两个向量的夹角θ为三角形的内角B的补角,所以B为钝角,所以△ABC为钝角三角形,反过来,△ABC为钝角三角形,不一定B为钝角,则“”是“△ABC为钝角三角形”的充分条件不必要条件.故选A点评:此题考查了三角形形状的判断,涉及的知识有平面向量的数量积运算,以及充分必要条件的证明,熟练掌握平面向量的数则是解本题的关键.20.(2014秋•德州期末)在△ABC中,若acosA=bcosB,则△ABC的形状是()A .等腰三角形B.直角三角形C .等腰直角三角形D.等腰或直角三角形考点:三角形的形状判断.专题:计算题.分析:利用正弦定理化简已知的等式,再根据二倍角的正弦函数公式变形后,得到sin2A=sin2B,由A和B都为三角形的内角,可得A=B或A+B=90°,从而得到三角形ABC为等腰三角形或直角三角形.解答:解:由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,∴sin2A=sin2B,∴sin2A=sin2B,又A和B都为三角形的内角,2A+2B=π,即A=B或A+B=,则△ABC为等腰或直角三角形.故选D点评:此题考查了三角形形状的判断,涉及的知识有正弦定理,二倍角的正弦函数公式,以及正弦函数的图象与性质,其中正弦定理很好得解决了三角形的边角关系,利用正弦定理化简已知的等式是本题的突破点.二、填空题(共10小题)(除非特别说明,请填准确值)21.(2014春•沭阳县期中)在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为等腰三角形.考点:三角形的形状判断.专题:计算题.分析:通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.解答:解:因为sinA=2sinBco(B+C)=2sinBcosC,所以sinBcosC﹣sinCcosB=0,即sin(B﹣C)=0,因为A,B,C是三角形内角,所以B=C.三角形的等腰三角形.故答案为:等腰三角形.点评:本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力.22.(2014秋•思明区校级期中)在△ABC中,若a=9,b=10,c=12,则△ABC的形状是锐角三角形.考点:三角形的形状判断.专题:计算题;解三角形.分析:因为c是最大边,所以C是最大角.根据余弦定理算出cosC是正数,得到角C是锐角,所以其它两角均为锐角,由此得到此三角形为锐角三角形.解答:解:∵c=12是最大边,∴角根据余弦定理,得cosC==>0∵C∈(0,π),∴角C是锐角,由此可得A、B也是锐角,所以△ABC是锐角三角形故答案为:锐角三角形点评:本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.23.(2013•文峰区校级一模)已知△ABC中,AB=,BC=1,tanC=,则AC等于2.考点:三角形的形状判断.专题:解三角形.分析:画出图形,利用已知条件直接求出AC的距离即可.解答:解:由题意AB=,BC=1,知C=60°,B=90°,三角形ABC是直角三角形,所以AC==2.故答案为:2.点评:本题考查三角形形状的判断,勾股定理的应用,考查计算能力.24.(2013春•广陵区校级期中)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是等腰三角形.考点:三角形的形状判断.专题:计算题.分析:等式即2cosBsinA=sin(A+B),展开化简可得sin(A﹣B)=0,由﹣π<A﹣B<π,得A﹣B=0,故三角形ABC是等腰三角形.解答:解:在△ABC中,若2cosBsinA=sinC,即2cosBsinA=sin(A+B)=sinAcosB+cosAsinB,∴sinAcosB﹣cosAsinB=0,即sin(A﹣B)=0,∵﹣π<A﹣B<π,∴A﹣B=0,故△ABC 为等腰三角形,故答案为:等腰.点评:本题考查两角和正弦公式,诱导公式,根据三角函数的值求角,得到sin(A﹣B)=0,是解题的关键.25.(2014秋•潞西市校级期末)在△ABC中,已知c=2acosB,则△ABC的形状为等腰三角形.考点:三角形的形状判断.专题:计算题.分析:由正弦定理可得sin(A+B)=2sinAcosB,由两角和的正弦公式可求得sin(A﹣B)=0,根据﹣π<A﹣B<π,故A﹣B=0,从而得到△ABC的形状为等腰三角形.解答:解:由正弦定理可得sin(A+B)=2sinAcosB,由两角和的正弦公式可得sinAcosB+cosAsinB=2sinAcosB,∴sin(A﹣B)=0,又﹣π<A﹣B<π,∴A﹣B=0,故△ABC的形状为等腰三角形,故答案为等腰三角形.点评:本题考查正弦定理的应用,已知三角函数值求角的大小,得到sin(A﹣B)=0,是解题的关键.26.(2014春•常熟市校级期中)在△ABC中,若,则△ABC的形状是等腰或直角三角形.考点:三角形的形状判断.专题:计算题;解三角形.分析:在△ABC中,利用正弦定理将中等号右端的边化为其所对角的正弦,再由二倍角公式即可求得答案.解答:解:在△ABC中,由正弦定理得:=,∴=,∴⇔=,∴sin2A=sin2B,又A,B为三角形的内角,∴2A=2B或2A+2B=π,∴A=B或A+B=.∴△ABC为等腰三角形或直角三角形.故答案为:等腰或直角三角形.点评:本题考查三角形的形状判断,着重考查正弦定理与二倍角公式的应用,属于中档题.27.(2014春•石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是钝角三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).考点:三角形的形状判断.专题:解三角形.分析:由正弦定理可得a2+b2<c2,则再由余弦定理可得cosC<0,故C为钝角,从而得出结论.解答:解:在△ABC中,若sin2A+sin2B<sin2C,由正弦定理可得a2+b2<c2,再由余弦定理可得cosC=<0,故C为钝角,故△ABC是钝角三角形,故答案为钝角.点评:本题主要考查正弦定理、余弦定理的应用,求出cosC<0,是解题的关键,属于中档题.28.(2013春•遵义期中)△ABC中,b=a,B=2A,则△ABC为等腰直角三角形.考点:三角形的形状判断.专题:计算题;解三角形.分析:利用正弦定理以及二倍角的正弦函数,求出A,然后求出B即可判断三角形的形状.解答:解:因为△ABC中,b=a,B=2A,所以由正弦定理可知:sinB=sinA,即sin2A=sinA,∴cosA=,∵A是三角形内角,∴A=,则B=,C=,∴△ABC为等腰直角三角形.故答案为:等腰直角.点评:本题主要考查了解三角形的应用和三角形形状的判断.解题的关键是利用正弦定理这一桥梁完成了问题的转化.29.(2013秋•沧浪区校级期末)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为钝角三角形(填锐角三角形、直角三角形、钝角三角形.)考点:三角形的形状判断.专题:计算题.分析:由正弦定理可得,△ABC的三边之比a:b:c=5:11:13,设a=5k,则b=11k,c=13k,由余弦定理可得cosC<0,故角C为钝角,故△ABC为钝角三角形.解答:解:由正弦定理可得,△ABC的三边之比a:b:c=5:11:13,设a=5k,则b=11k,c=13k,由余弦定理可得cosC==﹣<0,故角C为钝角,故△ABC形,故答案为:钝角三角形.点评:本题考查正弦定理、余弦定理的应用,求出cosC<0,是解题的关键.30.(2014春•宜昌期中)在△ABC中,sinA=2cosBsinC,则三角形为等腰三角形.考点:三角形的形状判断.专题:计算题.分析:由三角形的内角和及诱导公式得到sinA=sin(B+C),右边利用两角和与差的正弦函数公式化简,再根据已知的等式,合并化简后,再利用两角和与差的正弦函数公式得到sin(B﹣C)=0,由B与C都为三角形的内角,可得B=C,进而得到三角形为等腰三角形.解答:解:∵A+B+C=π,即A=π﹣(B+C),∴sinA=sin(B+C)osBsinC,又sinA=2cosBsinC,∴sinBcosC+cosBsinC=2cosBsinC,变形得:sinBcosC﹣cosBsinC=0,即sin(B﹣C)=0,又B和C都为三角形内角,∴B=C,则三角形为等腰三角形.故答案为:等腰三角形点评:此题考查了三角形形状的判断,涉及的知识有诱导公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键,同时注意三角形内角和定理及三角形内角的范围的运用.。

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题1. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-6x +5=0,点A ,B 在圆C 上,且AB =2,则的最大值是 .【答案】8【解析】 设AB 中点为M ,则.因为圆C :,AB =2,所以,因此的最大值是8. 【考点】直线与圆位置关系2. 在平面直角坐标中,的三个顶点A 、B 、C ,下列命题正确的个数是( ) (1)平面内点G 满足,则G 是的重心;(2)平面内点M 满足,点M 是的内心;(3)平面内点P 满足,则点P 在边BC 的垂线上;A.0B.1C.2D.3 【答案】B【解析】对(2),M 为的外心,故(2)错. 对(3),,所以点P 在的平分线上,故(3)错.易得(1)正确,故选B. 【考点】三角形与向量.3. 在△ABC 中,AB =2,D 为BC 的中点,若=,则AC =_____ __.【答案】1 【解析】假设.由.所以.由余弦定理可得.所以.【考点】1.解三角形知识.2.向量的运算.4. 在△ABC 中,D ,E 分别为BC ,AC 的中点,F 为AB 上的点,|AF|=|AB|。

若.【答案】3【解析】由题意可知,由平面向量加法的平行四边形法则可得,则,所以。

【考点】1平面向量的加法;2向量共线问题。

5. 已知e l 、e 2是两个单位向量,若向量a=e l -2e 2,b=3e l +4e 2,且a b=-6,则向量e l 与e 2的夹角是 A .B .C .D .【答案】C【解析】由已知,,所以,又,故,选.【考点】平面向量的数量积、模、夹角.6.直线与圆交于不同的两点,,且,其中是坐标原点,则实数的取值范围是()A.B.C.D.【答案】D【解析】设的重点为,则,,由得,,从而得,由点到直线的距离公式可得,解得.【考点】向量在几何中的应用;直线与圆相交的性质.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.已知O是锐角△ABC的外心,若(x,y∈R),则()A.x+y≤-2B.-2≤x+y<-1C.x+y<-1D.-1<x+y<0【答案】C【解析】如图,点在直线上,若,则;点在直线的另一侧,若,则;而,所以中.当圆心到AB的距离接近0时,中的值将无限增大,故选C.【考点】向量.10.设、都是非零向量,下列四个条件中,一定能使成立的是()A.B.C.D.【答案】A【解析】因为,、都是非零向量,分别是的单位向量,意味着方向相反 .所以,一定能使成立的是,选A.【考点】单位向量,共线向量,向量的线性运算.11.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()A.b2-a2 B.a2-b2C.a2+b2 D.ab【答案】A.【解析】,【考点】向量的运算.12.△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为( )A.B.3C.D.-3【答案】A【解析】过作的垂线,垂足为,,即,即,∴即为边长为2的菱形,,,,,由定义,在上的投影为.【考点】向量投影的定义.13.已知点、、不在同一条直线上,点为该平面上一点,且,则()A.点P在线段AB上B.点P在线段AB的反向延长线上C.点P在线段AB的延长线上D.点P不在直线AB上【答案】B.【解析】点在线段的反向延长线上,故选B.【考点】1.共线向量定理;2.向量加减法的三角形法则.14.设,向量,b=(3,—2),且则|a-b|=()A.5B.C.D.6【答案】B【解析】因为所以6-2x=0,解得x=3,=(-1,5),所以|a-b|=.故选C.【考点】向量垂直的充要条件和向量的模.15.在直角中,,,,为斜边的中点,则 .【答案】.【解析】由于为直角三角形,且,,所以,由正弦定理得,,.【考点】1.正弦定理;2.平面向量的数量积16.在平行四边形中,,,,则【答案】【解析】因为,,,所以,由平面向量的线性运算及,得到即由,得,即而平行四边形中,,所以,所以,.【考点】平面向量的线性运算17.设、都是非零向量,下列四个条件中,一定能使成立的是()A.B.C.D.【答案】A【解析】由得,而表示与同向的单位向量,表示与反向的单位向量,则与反向.故当,与反向,从而推出题中条件,易知都不正确.故选.【考点】1.向量的平行;2.单位向量的意义.18.已知向量的模为1,且满足,则在方向上的投影等于 .【答案】-3【解析】∵,∴①,∵,∴②,②-①得:,投影为:.【考点】1.模式的处理;2.投影的求解方式.19.中,边的高为,若,,,,,则A.B.C.D.【答案】D【解析】如图,在直角三角形中,,则,所以,所以,即,选D.20.已知向量,,,则与夹角的最小值和最大值依次是()A.B.C.D.【答案】C【解析】设与夹角为,∵,,∴点A在以点C(2,2)为圆心半径为的圆上,由题意点B在x轴上,可知直线OA为圆的切线时与夹角取得最小值和最大值,设切线为y=kx,则由得k=,故当k=时与夹角为最小,此时,=,当k=时与夹角为最大,此时,=,故选C21.在边长为1的等边中,设( )A.B.0C.D.3【答案】A【解析】本题考查向量的夹角的概念,向量的数量积.如图:为正三角形,所以的夹角为的夹角为的夹角为;又所以,则故选A22.在平行四边形中,与交于点是线段的中点,的延长线与交于点.若,,则()A.B.C.D.【答案】B【解析】本题考查加法的平行四边形法则及平面几何知识.因为是的中点,所以又因为所以即所以又则则故选B23.(本小题满分12分)将圆按向量平移得到,直线与相交于、两点,若在上存在点,使求直线的方程.【答案】或.【解析】解:由已知圆的方程为,按平移得到.(1分)∵∴.即. (5分)又,且,∴.∴. (7分)设,的中点为D.由,则,又.∴到的距离等于. (9分)即,∴.∴直线的方程为:或. (12分)24.已知是所在平面内一点,为边中点,且,那么()A.B.C.D.【答案】A【解析】略25.平面内有两定点A,B,且|AB|=4,动点P满足,则点P的轨迹是 .【答案】以AB为直径的圆【解析】略26.已知P为ΔABC所在平面内一点,若,则点P轨迹过ΔABC的()A.内心B.垂心C.外心D.重心【答案】D【解析】略27.设点P是ΔABC内一点,且,则x的取值范围是,y的取值范围是。

用向量法研究三角形的性质

用向量法研究三角形的性质

用向量法研究三角形的性质1.说明“向量是近代数学中重要和基本的数学概念之一,向量理论具有丰富的物理背景、深刻的数学内涵。

向量既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁,是进一步学习和研究其他数学领域的基础,在解决实际问题中发挥着重要作用。

它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景……能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.”为了深入研究新课标、新课程、新理念,笔者在上述理念的启导下,在自己所在学校开设了一节公开课——用向量法研究三角形的性质(选自人教社必修第二册第六章),受到了其他教师的一致好评.现对这节课的课堂教学过程简录如下,并根据课后大家的点评以及个人的体会和看法做些分析,供大家参考,如有不妥之处敬请同行批评指正.1.教学过程简录2.1导言引入,设置悬念教师:前面我们一起学习了向量的线性运算和数量积运算,因为有了运算,向量的力量无限.(学生笑了笑,并示意的点了点头)教师:今天我要带领大家再一次来回味一下本章内容的章节导言.(“哦!……”学生发出一阵诧异和期待的声音)教师:课本1页平面向量的章节导言中有着这么两段话:(多媒体课件演示,以下不再注明)向量是近代数学中重要和基本的数学概念之一,向量理论具有丰富的物理背景、深刻的数学内涵。

向量既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁,是进一步学习和研究其他数学领域的基础,在解决实际问题中发挥着重要作用。

向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.教师:哪句话大家看后有特别深的体会啊?学生:向量有深刻的几何背景,是解决几何问题的有力工具.学生:向量是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中有广泛的应用.教师:是的.我们在学习向量的线性运算和坐标表示的时候,就体会到了向量通过坐标运算可以把几何问题转化成代数问题.今天我们要通过研究几个具体的问题来进一步认识向量是沟通代数、几何、三角函数的一种工具.教师:首先我们先看看向量是怎么沟通代数的,下面大家请看屏幕这道题目.2.1深化导言,层层递进例1、在△ABC中,求证:.巡视片刻,部分学生采用余弦定理来证明,部分同学采用正弦定理来证.不管是用正弦定理还是余弦定理,都能很快地完成该题的证明。

高中平面向量及其应用知识点和相关练习试题

高中平面向量及其应用知识点和相关练习试题

一、多选题1.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=-⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 2.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥3.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅=B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=4.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =5.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+6.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C =B .若sin 2sin 2A B =,则a b =C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C7.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +8.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒9.ABC 中,4a =,5b =,面积S =c =( )A BC D .10.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-11.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D 12.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量13.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-14.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形15.题目文件丢失!二、平面向量及其应用选择题16.在矩形ABCD 中,3,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( ) A .0B .83C .-4D .417.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin 7BAD ∠=,则CD 等于( )A .233B .33C .332D .3318.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-19.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +20.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .25921.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A 7B .3C 11D 1922.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7223.已知向量(22cos 3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫- ⎪⎝⎭上是增函数24.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-25.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12- B .12C .-2D .226.题目文件丢失!27.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 28.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1429.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .430.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8331.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅= 32.已知ABC 中,1,3,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°33.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+34.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵,,与的夹角为锐角, ∴ ,且(时与的夹角为0), 所以且,故A 错误; 对于B 解析:ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0),所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a ab a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.2.ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.3.ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解解析:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.5.ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABDA. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.6.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 7.AC【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;解析:AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;2cos ,21a b a b a b⋅<>===⋅+,又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.8.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为csin sin 1B C b ==<,且c b >,所以角C 有两解;对于选项C 中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以,所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB 【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB 【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.10.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.11.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos 3B ==±. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.12.AC 【分析】根据共线向量的定义判断即可. 【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC 【分析】根据共线向量的定义判断即可. 【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意;对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意;对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意. 故选:AC. 【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.13.AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确. 故选:AB. 【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.14.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论. 【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确;对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos C A B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题.15.无二、平面向量及其应用选择题16.C 【分析】先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果. 【详解】 如图所示,AB AF2232,3cos 1133BE EC BE BC AF DF α=⇒==→→=⇒=⇒=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则()()230,3,3,1,,33B FE ⎛⎫⎪ ⎪⎝⎭,因此()BFAEBF233,2,323264→=-→→=⨯-⨯=-=-,故选C.【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 17.A 【分析】首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值.【详解】222cos AB AC BC AC BC C =+-⋅⋅1312232332=+-⨯⨯=,2223cos222323AB BC ACBAB BC+-∴===⋅⨯⨯,又因为角B是三角形的内角,所以6Bπ=,90BAC∴∠=,27sin7BAD∠=,221cos1sin7BAD BAD∴∠=-∠=,21sin cos7DAC BAD∴∠=∠=,在ABD△中,由正弦定理可得sinsinBD BADBAD⋅=∠,在ADC中,由正弦定理可得sinsinDC CADDAC⋅=∠,()1323222721DC DC-⨯⨯∴=,解得:23DC=.故选:A【点睛】本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.18.D【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC∆,其中角B为直角,则垂心H与B重合,O为ABC∆的外心,OA OC∴=,即O为斜边AC的中点,又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D . 【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力. 19.D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 20.C 【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BCR A=求解. 【详解】在ABC 中,5AB AC ==,6BC =,由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===, 所以258R =, 此三角形的外接圆半径是258故选:C 【点睛】本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题. 21.A 【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解. 【详解】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=. 故选:A. 【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 22.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 23.D 【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin163x ππ+=≠±,∴f (x )不关于直线12x π=对称;当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈-,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项.24.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+, 56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.25.A【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点,根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OCOC OC ⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-. 故选:A.【点睛】 本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.26.无27.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案.【详解】 利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD 1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).28.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+ 又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比 所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.29.B【解析】【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数.【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误;②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确;③因为()(2)0OB OC OB OC OA -⋅+-=,即()0CB AB AC ⋅+=;又因为AB AC CB -=,所以()()0AB AC AB AC -⋅+=,即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误.综上可得,正确的命题个数为2.故选:B .【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力. 30.C【分析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值. 【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=, 由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩, 解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C.【点睛】 本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 31.C【分析】利用已知条件得到O 为垂心,再根据四边形内角为2π及对顶角相等,得到AOB C π∠=-,再根据数量积的定义、投影的定义、比例关系得到::cos :cos :cos OA OB OC A B C =,进而求出::A B C S S S 的值,最后再结合“奔驰定理”得到答案.【详解】如图,因为OA OB OB OC OC OA ⋅=⋅=⋅,所以()00OB OA OC OB CA ⋅-=⇒⋅=,同理0OA BC ⋅=,0OC AB ⋅=, 所以O 为ABC ∆的垂心。

辽宁省沈文新高考研究联盟2025届高三上学期10月月考数学试题(解析版)

辽宁省沈文新高考研究联盟2025届高三上学期10月月考数学试题(解析版)

2024-2025(上)10月月度质量监测高三数学一、单选题(本大题共8小题,每小题5分,共40分,在每小题所给的四个选项中,有且只第Ⅰ卷选择题(共58分)有一项是符合题目要求的)1. 已知集合{}2A x x =∈Z,{}ln(1)B x y x ==−,则A B ∩中的元素个数为( )A. 3B. 4C. 5D. 6【答案】A 【解析】【分析】先求集合A 、B ,再根据交集的定义求出A B ∩即可求解.【详解】解:因为集合{}{}22,1,0,1,2A x x =∈=−−Z ,{}1B x x =<,所以{}2,1,0A B =−− , 故选:A .2. 已知12i +是方程250()x mx m ++=∈R 的一个根,则m =( ) A. -2 B. 2C. iD. -1【答案】A 【解析】【分析】法一:将复数代入二次方程,利用复数相等求解;法二:利韦达定理求解.【详解】方法1:由题意知2(12i)(12i)50m ++++=,即2(42)i 0m m +++=,解得2m =−. 方法2:根据虚根成对知1-2i 也是方程的根,由韦达定理得(12i)(12i)m ++−=−,所以2m =−. 故选:A.3. 不等式2320x x ++>成立的一个充分不必要条件是( ) A. (1,)−+∞B. [1−,)∞+C. (−∞,2][1−∪−,)∞+D. (1−,)(+∞−∞∪,2)−【解析】【分析】解不等式,根据集合的包含关系求出答案即可. 【详解】2320x x ++> ,(1)(2)0x x ∴++>,解得:1x >−或2x <−,故不等式2320x x ++>成立的一个充分不必要条件是(1,)−+∞, 故选:A .【点睛】本题考查了充分必要条件,考查不等式问题,是一道基础题.4. 已知π0,2θ ∈,且cos 2πsin 4θθ=−tan 2θ=( ). A.724B.247C. 724±D. 247±【答案】D 【解析】【分析】由余弦的二倍角公式和两角差正弦公式可得7cos sin 5θθ+=, 结合22cos sin 1θθ+=求出tan θ的值,再根据正切的二倍角公式即可.【详解】)cos2cos sin s in 4θθθπθ+ − 故7cos sin 5θθ+=, 又因为π0,2θ∈,且22cos sin 1θθ+=.故3cos 5θ=,4sin 5θ=或4cos 5θ=,3sin 5θ=,则4tan 3θ=或34,故22tan 24tan21tan 7θθθ==±−,5. 若a ,b是两个单位向量,则下列结论中正确的是( ) A. a b =B. a b∥C. 1a b ⋅=D. 22a b =【答案】D 【解析】【分析】a ,b是两个单位向量,则1ab == ,但a ,b 方向不能确定,即可判断AB ;利用数量积的定义与性质可判断CD .【详解】a ,b是两个单位向量,则1ab == ,但a ,b 方向不能确定,故选项AB 错误; cos co ,,s a b a b b a b a ⋅== ,只有a ,b同向共线时,才有cos ,1a b = ,故选项C 错误;221a a == ,221b b == ,22a b ∴= ,选项D 正确.故选:D.6. 如图,在直角梯形ABCD 中,AD ,AB BC ⊥,222BC AD AB ===,将直角梯形ABCD 沿对角线折起,使平面ABD ⊥平面BCD ,则异面直线AC 与BD 所成角的余弦值为( )A. 0B.C.D.【答案】B 【解析】【分析】取BD 的中点F ,连接AF ,则AF BD ⊥,通过面面垂直的性质定理可得到AF ⊥平面BCD . 过C 作CE ,且使12CE BD =,连接AE ,EF ,BE ,FC 则ACE ∠为所求的角, 在AEC △分别求出CE AC ,的大小,即可求出答案.【详解】在直角梯形ABCD 中,因为222BC AD AB ===,AD ,AB BC ⊥,所以,BD CD ==BD 的中点F ,连接AF ,则AF BD ⊥.又因为平面ABD ⊥平面BCD 且交于BD ,所以AF ⊥平面BCD .过C 作CE ,且使12CE BD =,连接AE ,EF ,BE ,FC 则ACE ∠为所求的角.在Rt AFC △中,AC =Rt AFE 中,AE =.因为CE =AEC △为直角三角形.所以cos CEACE AC∠=AC 与BD故选:B.7. 设正实数,x y 满足23x y +=,则下列说法错误的是( ) A.3y x y+的最小值为4 B. xy 的最大值为98C. +的最大值为2D. 224x y +的最小值为92【答案】C 【解析】【分析】根据基本不等式以及“1”的妙用判断各选项.【详解】对于A ,32224y y x y y x x y x y x y ++=+=++≥+=,当且仅当1xy ==时取等号,故A 正确;对于B ,21121992222248x y xy x y + =⋅⋅≤×=×= ,当且仅当2x y =,即33,24x y ==时取等号,故B 正确;对于C ,223336x y +=++≤+=+=,≤,当且仅当2x y =,即33,24x y ==时,故C 错误;对于D ,222994(2)49482x y x y xy +=+−≥−×=,当且仅当33,24x y ==时取等号,故D 正确. 故选:C.8. 定义在()0,∞+上的单调函数()f x ,对任意的()0,x ∈+∞有()ln 1f f x x −=恒成立,若方程()()f x f x m ⋅′=有两个不同的实数根,则实数m 的取值范围为( )A. (),1−∞B. ()0,1C. (]0,1D. (],1−∞【答案】B 【解析】【分析】由条件单调函数()f x ,对任意的()0,x ∈+∞都有()ln 1f f x x −=,故必有 ()ln f x x t −=,且()1=f t ,即可求得()f x ,再根据导数研究函数的性质,求得方程()()f x f x m ⋅′=有两个不同的实根满足的条件,求得m 的取值范围. 【详解】由于函数()f x 为单调函数,则不妨设()ln f x x t −=,则()1=f t , 且()ln 1ln f t t t t −=−=,解得1t =,所以()()1ln 1,f x x f x x′=+=. 设()()()ln 1x g x f x f x x=′+=⋅, 则方程()()f x f x m ⋅′=有两个不同的实数根等价于函数()ln 1x g x x+=与y m=有两个不同的交点. ()222ln 11ln 1ln x x x g x xx x x x ′−′=+=−=−, 易得当(0,1)x ∈时,()0g x ′>;当(1,)x ∈+∞时,()0g x ′<, 所以函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以max()(1)0g x g ==. 又10g e=,且当x →+∞时,()0g x →. 故函数()ln 1x g x x+=与y m=有两个不同的交点则()0,1m ∈.故选:B二、多选题(本大题共3小题,每小题6分,共18分,在每小题所给的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 以下是真命题的是( )A. 已知a ,b为非零向量,若a b a b +>− ,则a 与b 的夹角为锐角 B. 已知a ,b ,c为两两非共线向量,若a b a c ⋅=⋅ ,则()a cb ⊥−C. 在三角形ABC 中,若cos cos a A b B ⋅=⋅,则三角形ABC 是等腰三角形D. 若三棱锥的三条侧棱与底面所成的角相等,则顶点在底面的射影是底面三角形的外心 【答案】BD 【解析】【分析】A :将已知条件两边同时平方,整理得到0a b ⋅>,结合平面向量的数量积的定义得到cos ,0a b >,由平面向量的夹角范围可得,0,2a b π ∈,进而可以判断选项;B :将已知条件变形为()0a b c ⋅−=,结合平面向量数量积即可判断选项;C :结合正弦定理化简整理即可判断三角形的形状;D :作出图形,证得PAO PBO PCO ≅≅ ,即可得到AO BO CO ==,结合三角形外心的性质即可判断.【详解】A :因为a b a b +>− ,两边同时平方,得()()22a ba b +>− ,即222222a b a b a b a b ++⋅>+−⋅,所以0a b ⋅> ,因此cos ,0a b > ,因为[],0,a b π∈ ,所以,0,2a b π ∈,因此a 与b的夹角为锐角或零角,故A 错误;B :因为a b a c ⋅=⋅ ,所以()0a b c ⋅−= ,又因为a ,b ,c 为两两非共线向量,则0,0a b c ≠−≠ ,所以()a cb ⊥−,故B 正确;C :因为cos cos a A b B ⋅=⋅,结合余弦定理得sin cos sin cos A A B B ⋅=⋅,所以sin 2sin 2A B =,所以22A B =或22A B π+=,即A B =或2A B π+=,所以角形ABC 是等腰三角形或直角三角形,故C 错误; D :设三棱锥P ABC −的顶点P 在底面ABC 的射影为O ,所以⊥PO 底面ABC ,又因为AO ⊂底面ABC ,BO ⊂底面ABC ,CO ⊂底面ABC ,所以,,PO AO PO BO PO CO ⊥⊥⊥,又因为三棱锥的三条侧棱与底面所成的角相等,所以PAO PBO PCO ∠=∠=∠,所以PAO PBO PCO ≅≅ ,所以AO BO CO ==,所以点O 是ABC 的外心,故D 正确;故选:BD.10. 八一广场位置处于解放碑繁华地段,紧挨着得意世界、大融城、八一好吃街等.重庆解放碑是抗战胜利纪功碑暨人民解放纪念碑,是抗战胜利的精神象征,是中国唯一一座纪念中华民族抗日战争胜利的纪念碑.现某兴趣小组准备在八一广场上对解放碑的高度进行测量,并绘制出测量方案示意图,A 为解放碑的最顶端,B 为解放碑的基座(即B 在A 的正下方),在广场内(与B 在同一水平面内)选取C ,D 两点,则根据下列各组中的测量数据,能计算出解放碑高度AB 的是( )A. CD ,ACB ∠,BCD ∠,BDC ∠B. CD ,ACB ∠,BCD ∠,ADC ∠C. CD ,ACB ∠,BCD ∠,ACD ∠D. BC ,BD ,2ACB ADB π∠+∠=【答案】ABD 【解析】【分析】A 、B 、C 根据正弦定理、余弦定理和直角三角形性质判断所给条件是否构成解三角形条件;D 选项根据相似三角形性质判断.【详解】由题意可知AB ⊥平面BCD ,由此进行下列判断:A 选项,在BCD △中,根据CD ,BCD ∠,BDC ∠,可利用正弦定理求得BC ,再根据tan ACB ∠求得AB ,故A 正确;B 选项,由ACB ∠,BCD ∠借助直角三角形和余弦定理,用AB 和CD 表示出BC ,BD ,AC ,AD ,然后结合ADC ∠在ACD 中利用余弦定理列方程,解方程求得AB ,故B 正确;C 选项,CD ,ACB ∠,BCD ∠,ACD ∠四个条件,无法通过解三角形求得AB ,故C 错误; D 选项,根据π2ACB ADB ∠+∠=,可得ABC 与DBA 相似,根据相似比AB BDBC AB =可解方程求得AB ,故D 正确, 故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x ′和()g x ′.若()()42f x g x −−=,()()2g x f x ′′=−,且()2f x +为奇函数,则( ). A. R x ∀∈,()()40f x f x ++−=B. ()()354g g +=C.()202310k f k ==∑D.()202310k g k ==∑【答案】AC 【解析】【分析】由()2f x +为奇函数,结合奇函数的性质判断A ,由条件证明()f x 为周期为4的函数,利用组合求和法求()20231k f k =∑判断C ,根据条件证明()()22g x f x =−−,由此判断BD.【详解】对A ,又∵()2f x +奇函数,则()y f x =图像关于()2,0对称,且()()220f x f x ++−=, 为所以()()40f x f x ++−=,A 正确; 对于C ,∵()(2)g x f x ′′=−,则()()2g x f x a =−+,则()()42g x f x a −=−+,又()()42f x g x −−=, 所以()()22f x f x a =−++,令1x =,可得20a +=,即2a =−.所以()(2)f x f x =−,又()()40f x f x ++−=所以()()()22f x f x f x +=−−+=−, 所以()()()24f x f x f x =−+=+, ∴()y f x =的周期4T =,所以()()04f f =,由()()220f x f x ++−=可得, ()()130f f +=,()()400f f +=,()20f =,所以()00f =,()40f =,∴[]20231()505(1)(2)(3)(4)(1)(2)(3)0k f k f f f f f f f ==++++++=∑,C 正确;对B ,()()22g x f x =−−,则()g x 是周期4T =的函数,()()()()3512324g g f f +=−+−=−,B错误; 对D ,()()()1120242023f f f −=−+=,()()()()022********f f f f ==+=,所以2023202311()(1)2(0)2(1)2(2021)2()22023k k g k f f f f f k ==−−+−+−+…+−=−×∑∑,所以20231()4046k g k ==−∑,D 错误.故选:AC.【点睛】知识点点睛:本题考查导数的运算,奇函数的性质,抽象函数周期性的证明,分组求和法等知识点,属于综合题,考查逻辑推理和首项运算的核心素养.第Ⅱ卷 非选择题(共92分)三、填空题(本大题共3小题,每小题5分,共15分)12. 设函数()log a f x x =(0a >且1a ≠),若()1220211010f x x x ⋅⋅⋅=,则()()()222122021f x f x f x ++⋅⋅⋅+=______.【答案】2020 【解析】 【分析】根据对数的运算法则计算.【详解】∵()1220211010f x x x ⋅⋅⋅=,∴()122021log 1010a x x x ⋅⋅⋅=; ∴()()()()()()222222122021122021log log log a a a f x f x f x x x x =++⋅⋅⋅+++⋅⋅⋅+()()222212320211220212l 2020og a f x x x x x x x =+=⋅⋅⋅.故答案为:2020.13. 如图,在ABC 中,4AB =,3AC =,90A ∠=°,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ⋅的取值范围是__.【答案】[6,4]− 【解析】【分析】利用平面向量的线性运算可得出,BP AP AB CQ AQ AC AP AC =−=−=−−,运用平面向量数量积的运算性质解决即可.【详解】由题知,ABC 中,4AB =,3AC =,90A ∠=°,若PQ 为圆心为A 的单位圆的一条动直径,所以A 为PQ 的中点,1,,5AP AP QA BC ===, 因为,BP AP AB CQ AQ AC AP AC =−=−=−−,所以()()()()BP CQ AP AB AP AC AB AP AC AP ⋅=−⋅−−=−+2()1AB AC AP AP AB AC AP CB =⋅−+⋅−=−+⋅ ,因为AP CB AP CB AP CB −⋅≤⋅≤⋅ ,即55AP CB −≤⋅≤所以614AP CB −≤−+⋅≤ ,当且仅当,AP CB同向时取最大值,反向时取最小值,所以BP CQ ⋅的取值范围是[6,4]−,故答案为:[6,4]−14. 已知棱长为2的正方体1111ABCD A B C D −中,M 为AB 的中点,P 是平面ABCD 内的动点,且满足条件13PD PM =,则动点P 在平面ABCD 内形成的轨迹是 . 【答案】圆 【解析】【分析】分别以1,,DA DC DD 为x 轴,y 轴,z 轴,利用空间两点距离的坐标表示求轨迹方程即可. 【详解】分别以1,,DA DC DD 为x 轴,y 轴,z 轴,则1(0,0,2),(2,1,0)D M ,设(,,0)P x y ,由题意可得22222(02)9[(2)(1)]x y x y ++−=−+−, 化简可得2299410248x y x y +−−+=,易知轨迹是圆. 故答案为:圆四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步骤)15. 在①1n n a a +−=+;② 184n n a a n −−=−(2n ≥)两个条件中,任选一个,补充在下面问题中,并求解.问题:已知数列{}n a 中,13a =,__________ (1)求n a ;.(2)若数列1n a的前n 项和为n T ,证明:1132n T ≤<.【答案】条件选择见解析;(1)241=−n a n ;(2)证明见解析.【解析】 【分析】若选① :(1)由1n n a a +−=2=,根据是首项为2,公差为2的等差数列,可得结果;(2)由2111114122121n a n n n ==− −−+利用裂项求和方法求和得n T ,进一步可证1132n T ≤<. 若选② :(1)由184n n a a n −−=−(2n ≥)利用累加法可求得n a ;(2)由2111114122121n a n n n ==− −−+ 利用裂项求和方法求和得n T ,进一步可证1132nT ≤<. 【详解】若选① :(1)由1n n a a +−=,13a =2=,2=,2=,所以是首项为2,公差为2的等差数列,2n =,所以241=−n a n ; (2)证明:由(1)得2111114122121n a n n n ==− −−+, 所以1111111213352121nT n n =−+−++− −+111221n −+ 11242n =−+, 因为1042n >+,所以12n T <,又因为11242n T n =−+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.若选② :(1)由184n n a a n −−=−(2n ≥)可得:当2n ≥时,112211()()()n n n n n a a a a a a a a −−−=−+−++−+ (84)(812)123n n −+−+++ [(84)12](1)32n n −+−+241n −,当1n =时,13a =,符合241=−n a n , 所以当*n N ∈时,241=−n a n ; (2)证明:由(1)得2111114122121na n n n ==− −−+, 所以1111111213352121nT n n =−+−++− −+111221n −+ 11242n =−+, 因为1042n >+,所以12n T <,又因为11242n T n =−+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.【点睛】方法点睛:求数列通项公式常用的七种方法:一、公式法:根据等差或等比数列的通项公式1(1)n a a n d =+−或11n n a a q −=进行求解;二、前n 项和法:根据11,1,2n nS n a S S n −= = −≥ 进行求解;三、n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项;四、累加法:当数列中有1()n n a a f n −−=,即第n 项与第1n −项的差是个有规律的数时,就可以用这种方法;五、累乘法:当数列{}n a 中有1()nn a f n a −=,即第n 项与第1n −项的积是个有规律的数时,就可以用这种方法;六、构造法:①一次函数法:在数列{}n a 中有1n n a ka b −=+(,k b 均为常数,且0k ≠), 一般化方法:设1()n n a m k a m −+=+,得到(1)b k m =−,1b m k =−,根据数列1{}1n ba k −+−是以k 为公比的等比数列,可求出n a ;②取倒数法:这种方法适用于11n n n ka a ma p−−=+(nn ≥2,nn ∈NN ∗)(,,k m p 均为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; ③取对数法:一般情况下适用于1kln n a a −=(,k l 为非零常数)七、“1nn n a ba c +=+(,b c 为常数且不为0,*n N ∈)”型的数列求通项n a ,方法是等式的两边同除以1n c+,得到一个“1n n a ka b −=+”型的数列,再用上面的六种方法里的“一次函数法”便可求出nn a c的通项,从而求出n a .16. 已知函数()2cos 2cos 1f x x x x a =+−+(a 为常数). (1)求()f x 的单调递增区间; (2)若()f x 在0,2π上有最小值1,求a 的值. 【答案】(1)(),36k k k Z ππππ−+∈;(2)2. 【解析】【分析】(1)利用三角恒等变换思想化简函数()y f x =的解析式为()2sin 26f x x a π=++,然后解不等式()222262k x k k ππππ−≤+≤π+∈Z ,可得出函数()y f x =的单调递增区间; (2)由0,2x π∈计算出26x π+的取值范围,利用正弦函数的基本性质可求得函数()y f x =的最小值,进而可求得实数a 的值.【详解】(1)()2cos 2cos 12cos 2f x x x x a x x a=+−+=++122cos 22sin 226x x a x a π++=++, 令()222262k x k k ππππ−≤+≤π+∈Z ,解得()36k x k k Z ππππ−≤≤+∈所以,函数()y f x =的单调递增区间为(),36k k k Z ππππ−+∈; .(2)当02x π≤≤时,72666x πππ≤+≤,所以1sin 2126x π−≤+≤,所以()min 12112f x a a=×−+=−=,解得2a =. 【点睛】本题考查正弦型函数的单调区间和最值的求解,解答的关键就是利用三角恒等变换思想化简函数解析式,考查计算能力,属于中等题.17. 已知圆229x y +=,A (1,1)为圆内一点,P ,Q 为圆上的动点,且∠PAQ=90°,M 是PQ 的中点. (1)求点M 的轨迹曲线C 的方程;(2)设9111(,),(,)2222E D 对曲线C 上任意一点H ,在直线ED 上是否存在与点E 不重合的点F ,使HE HF 是常数,若存在,求出点F 的坐标,若不存在,说明理由【答案】(1)2211422x y −+−=;(2)见解析. 【解析】【分析】(1)利用直角三角形的中线定理及垂径定理,得到1||||||2AMPQ PM ===利用两点距离公式求出动点的轨迹方程.(2)先设出F 的坐标,将HE HF用点点距表示出,化简得到215(12)4248t x t x −++−,利用212815244t t −=−+解得t 的值即可.【详解】(1)设点(,)M x y ,由90PAQ ∠=°,得1||||||2AM PQ PM ===化简得22702x y x y +−−−=, 即2211422x y −+−=. (2)点91,22E,11,22D,直线ED 方程为12y =,假设存在点19,22F t t  ≠   ,满足条件,设,()H x y ,则有2211422x y −+−=,22291||22HE x y=−+− 2291424822x x x −+−−− ,2221||()2HF x t y=−+− 222115()4(12)24x t x t x t =−+−−=−++,当||||HE HF 是常数,2215(12)||4||248t x t HE HF x −++ =−是常数, ∴212815244t t −=−+,∴32t =或92t =(舍),∴32t =, ∴存在31,22F满足条件. 【点睛】本题考查了轨迹方程的求法,考查了分式型定值问题的求解,考查了运算能力,属于中档题. 18. 已知数列{}n a 与等比数列{}n b 满足3(N )n an b n ∗=∈. (1)试判断{}n a 是何种数列;(2)若813a a m +=,求1220b b b . 【答案】(1)数列{}n a 是等差数列; (2)103m 【解析】【分析】(1)由13log n n a a q +−=可知{}n a 为等差数列; (2)利用等差数列前n 项和以及指数运算的性质即可求解. 【小问1详解】设数列{}n b 的公比为q ,则0q >, 因为3nn a b =,所以113a b =,所以1133n a a n n b q −=⋅=. 方程两边取以3为底的对数, 得11313log (3)(1)log an n a qa n q −=⋅=+−,由于[]113133(log )(1)log log n n a a a n q a n q q +−=+−+−=, 所以数列{}n a 是以3log q 为公差的等差数列.的【小问2详解】因为120813a a a a m +=+=, 所以120122020()2a a a a a ++++==10m ,所以2012201210122033333aa a aaamb b b +++=== .19. 已知函数()ln f x x x =,()()1f x g x x+=.(1)求函数()f x 单调区间;(2)当12x x <,且()()12g x g x =时,证明:122x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】【分析】(1)利用导函数的符号求单调区间; (2)分析法将问题化为证2121212ln 0x x xx x x −>>,再应用换元及导数研究恒成立,即可证. 【小问1详解】由题设,()f x 的定义域为()0,∞+()1ln 0f x x =+=′,得1ex =. 当1e x >时,()0f x ′>,()f x 在1,e +∞上单调递增;当10e x <<时,()0f x ′<,()f x 在10,e上单调递减. 所以()f x 单调递减区间为10,e,单调递增区间为1,e +∞. 【小问2详解】因为()ln f x x x =,故()()11ln f x g x x x x+==+,(xx >0). 由()()12g x g x =(12x x <),得121211ln ln x x x x +=+,即212121ln 0x x xx x x −=>. 要证122x x +>,需证()212121212ln x x xx x x x x −+⋅>,即证2121212ln x x x x x x −>.的设21x t x =(1t >),则要证12ln t t t−>(1t >). 令()12ln h t t t t=−−且1t >,则()22121110h t t t t′=+−=−> . 所以()h t 在()1,+∞上单调递增,则()()10h t h >=,即12ln t t t−>. 所以122x x +>,得证.。

第五章 5.3平面向量的数量积

第五章 5.3平面向量的数量积

1.两个向量的夹角 (1)定义已知两个非零向量a ,b ,作OA →=a ,OB →=b ,则∠AOB 称作向量a 和向量b 的夹角,记作〈a ,b 〉. (2)范围向量夹角〈a ,b 〉的范围是[0,π],且〈a ,b 〉=〈b ,a 〉. (3)向量垂直如果〈a ,b 〉=π2,则a 与b 垂直,记作a ⊥b .2.向量在轴上的正射影已知向量a 和轴l (如图),作OA →=a ,过点O ,A 分别作轴l 的垂线,垂足分别为O 1,A 1,则向量O 1A 1→叫做向量a 在轴l 上的正射影(简称射影),该射影在轴l 上的坐标,称作a 在轴l 上的数量或在轴l 的方向上的数量.OA →=a 在轴l 上正射影的坐标记作a l ,向量a 的方向与轴l 的正向所成的角为θ,则由三角函数中的余弦定义有a l =|a |cos θ. 3.向量的数量积(1)平面向量的数量积的定义|a||b |cos 〈a ,b 〉叫做向量a 和b 的数量积(或内积),记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)向量数量积的性质①如果e 是单位向量,则a·e =e·a =|a |cos 〈a ,e 〉; ②a ⊥b ⇔a·b =0; ③a·a =|a |2,|a |=a·a ;④cos 〈a ,b 〉=a·b |a||b |(|a||b |≠0);⑤|a·b |__≤__|a||b |. (3)数量积的运算律 ①交换律:a·b =b·a .②对λ∈R ,λ(a·b )=(λa )·b =a ·(λb ). ③分配律:(a +b )·c =a·c +b·c . (4)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则 ①a·b =a 1b 1+a 2b 2; ②a ⊥b ⇔a 1b 1+a 2b 2=0;③|a |=a 21+a 22;④cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22·b 21+b 22.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)向量在另一个向量方向上的正射影为数量,而不是向量.( × )(3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A.150° B.90° C.60° D.30°答案 D解析 设向量a 与向量a +2b 的夹角为θ. ∵|a +2b |2=4+4+4a ·b =8+8cos 60°=12, ∴|a +2b |=23, a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6, ∴43cos θ=6,cos θ=32, ∵θ∈[0°,180°],∴θ=30°,故选D.2.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的正射影的数量为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的正射影的数量为|b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A.20B.15C.9D.6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的正射影都是CB →, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的正射影的数量最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用向量的正射影.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP→=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD→-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A.1B. 2C. 3D.2(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=(a +b )2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)的距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1. 命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________________________________________________________________. 答案 (1)A (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B.2 C. 6D.6答案 (1)223 (2)C解析 (1)∵|a |= (3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1, ∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A.-43B.-45C.45D.34答案 A解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.7.向量夹角范围不清致误典例 (12分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[7分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[10分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[12分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件.(2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:35分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A.22+ 3 B.2 3 C.4 D.12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52D.72 答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去).4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A.正三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以P A →·(PB →+PC →)=P A →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________. 答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的正射影的数量.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,故向量BA →在BC →方向上的正射影的数量为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:25分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC→|的最大值为( )A.6B.7C.8D.9答案 B解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D.2 答案 B解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23. 13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF→=2,则AE →·BF →的值是( )A. 2B.2C.0D.1答案 A解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0=2,故选A.14.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案 ⎣⎡⎦⎤-12,12 解析 设Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0) =(2x +π3,12sin x ), 由⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), 所以y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是⎣⎡⎦⎤-12,12. 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状;(2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积.解 (1)由AB →·AC →=BA →·BC →=1,得bc ·cos A =ac ·cos B ,由正弦定理,得sin B cos A =sin A cos B ,∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形.(2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2, 又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8,∴b =2,又c =2,∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。

平面向量的数量积与几何意义

平面向量的数量积与几何意义

平面向量的数量积与几何意义平面向量是代表了平面上的位移和方向的量,而数量积则是用来衡量两个向量之间的关系的一种运算。

它不仅仅是一个数值结果,还有着重要的几何意义。

本文将探讨平面向量的数量积及其几何意义。

一、数量积的定义与性质数量积,也叫点积或内积,是指两个向量的乘积与两个向量夹角的余弦值的乘积。

设有向量a和向量b,其数量积记为a·b。

数量积的定义如下:a·b = |a|·|b|·cosθ其中,|a|表示向量a的模长,|b|表示向量b的模长,θ表示a与b之间的夹角。

根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积的模长:|a·b| = |a|·|b|·|cosθ|4. 垂直性:若a·b=0,则a和b垂直二、数量积的几何意义数量积不仅仅是一个数值结果,还蕴含着重要的几何意义。

下面我们将从两个方面来解释数量积的几何意义。

1. 夹角的余弦值在数量积的定义中,夹角的余弦值cosθ是数量积的一个因子。

夹角的大小可以通过夹角的余弦值来衡量。

当夹角为锐角时,cosθ大于0;当夹角为钝角时,cosθ小于0;而当夹角为直角时,cosθ等于0。

由此可以得到以下结论:- 若a·b > 0,夹角θ为锐角;- 若a·b < 0,夹角θ为钝角;- 若a·b = 0,夹角θ为直角。

2. 平行与垂直根据数量积的性质4,若a·b=0,则a和b垂直。

这个性质给出了判定两个向量是否垂直的方法。

另外,当两个向量的数量积大于0时,可以说明它们的方向相似,即平行;当数量积小于0时,可以说明它们的方向相反,即反平行。

这些几何意义使得数量积在解决几何问题中有着广泛的应用。

三、数量积的应用举例1. 判断两个向量的方向通过判断两个向量的数量积的正负,可以得知它们的方向关系。

平面向量的数量积和叉积的三角形法则

平面向量的数量积和叉积的三角形法则

平面向量的数量积和叉积的三角形法则平面向量是二维空间中的一种矢量,用于表示平面上的位移或变化。

平面向量具有数量积和叉积两种运算法则,其中数量积用于计算向量间的夹角和投影,而叉积用于计算向量间的垂直关系和面积。

一、数量积的定义和三角形法则数量积,也称为点积或内积,是平面向量之间的一种运算。

设有两个平面向量A和B,它们的数量积记作A·B,定义为:A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示A和B之间的夹角。

根据数量积的定义,我们可以得到平面向量的三角形法则:1. 三角形法则的第一条是数量积的交换律,即A·B = B·A,表明向量的数量积满足交换性。

2. 三角形法则的第二条是线性法则,即(A + B)·C = A·C + B·C,表示将向量的加法应用到数量积中,可以分别对各个向量进行数量积的计算。

3. 三角形法则的第三条是数量积的分配律,即(A·B) + (A·C) = A·(B + C),表示将数量积应用到向量的加法中,可以得到等效的数量积计算。

利用平面向量的三角形法则,我们可以方便地计算向量之间的数量积和夹角,从而进行向量运算和问题求解。

二、叉积的定义和三角形法则叉积,也称为向量积或外积,是平面向量之间的一种运算。

设有两个平面向量A和B,它们的叉积记作A × B,定义为:A × B =|A||B|sinθn,其中|A|和|B|分别表示向量A和B的模长,θ表示A和B之间的夹角,n表示与A和B所在平面垂直的单位法向量。

叉积运算进一步拓展了平面向量的运算法则,它具有以下性质:1. 叉积的乘法结合律:(A × B) × C = A × (B × C),表示叉积运算具有结合性。

2. 叉积的分配律:A × (B + C) = A × B + A × C,表示将叉积应用到向量的加法中,可以得到等效的叉积计算。

杭州市育才中学选修一第一单元《空间向量与立体几何》检测(答案解析)

杭州市育才中学选修一第一单元《空间向量与立体几何》检测(答案解析)

一、选择题1.如图,正方体1111ABCD A B C D -中,12AP PA =,点M 在侧面11AA B B 内.若1D M CP ⊥,则点M 的轨迹为( )A .线段B .圆弧C .抛物线一部分D .椭圆一部分2.已知点P 是平行四边形ABCD 所在的平面外一点,如果()2,1,4AB =--,(4,2,0)AD =,(1,2,1)AP =--.对于结论:①||6AD =;②AP AD ⊥;③AP 是平面ABCD 的法向量;④AP//BD .其中正确的是( ) A .②④B .②③C .①③D .①②3.设,,,A B C D 是空间不共面的四点,且满足AB AC 0⋅=,AB AD 0⋅=,AC AD 0⋅=,则BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形4.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( ) A .平行B .垂直C .相交但不垂直D .无法判定5.如图所示,在三棱锥P –ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .3010-B .305-C .305D .30106.在直三棱柱111ABC A B C -中,120ABC ∠=,1AB BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .34-B .34-C .34D 37.如图,在棱长为2的正方体1111ABCD A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1A P 平行于平面AEF ,则线段1A P 长度的最小值为( )A .2B .322C .3D .58.已知(),(3,0,1),(131,2,3,1),55a b c =-==--给出下列等式:①a b c a b c ++=--;②()()a b c a b c +⋅=⋅+;③2222()a b c b c a =++++ ④()()a b c a b c ⋅⋅=⋅⋅.其中正确的个数是 A .1个B .2个C .3个D .4个9.ABC 中,90ACB ∠=︒,22AB BC ==,将ABC 绕BC 旋转得PBC ,当直线PC 与平面PAB 所成角正弦值为66时,P 、A 两点间的距离为( )A .2B .22C .42D .410.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为A .30B .45︒C .60︒D .90︒11.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C .104D .10212.在正方体1111ABCD A B C D -中,在正方形11DD C C 中有一动点P ,满足1PD PD ⊥,则直线PB 与平面11DD C C 所成角中最大角的正切值为( ) A .1B .2C .312+ D .512+ 13.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN x AB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .2二、填空题14.已知向量()()0,1,1,4,1,0,29a b a b λ=-=+=,且0λ>,则λ=____________.15.平行六面体1111ABCD A B C D -中,1160A AB A AD BAD ∠=∠=∠=︒,且1AB =,2AD =,13AA =,则1AC 等于______.16.设空间任意一点O 和不共线三点A B C ,,,且点P 满足向量关系OP xOA yOB zOC =++,若,,,P A B C 四点共面,则x y z ++=______.17.一个结晶体的形状为平行六面体,以同一个顶点为端点的三条棱长均为6,且它们彼此的夹角均为60︒,则以这个顶点为端点的晶体的对角线长为_________. 18.已知向量(1,2,1)a =-,(2,2,0)b =-,则a 在b 方向上的投影为________. 19.已知向量()()2,1,3,1,2,1a b =-=-,若()a ab λ⊥-,则实数λ的值为______. 20.ABC ∆的三个顶点分别是(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,则AC 边上的高BD 长为__________.21.如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别是棱111,,AA BC C D 的中点,设M 是该正方体表面上的一点,若(,)EM xEF yEG x y =+∈R ,则点M 的轨迹所形成的长度是________.22.如图,矩形ABCD 中,1,AB BC a ==,PA ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ DQ ⊥,则a 的值等于________.23.如图,平行六面体1111ABCD A B C D -的所有棱长均为1,113BAD A AD A AB π∠=∠=∠=,E 为1CC 的中点,则AE 的长度是________.24.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,122AA AB AC ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为3π,当1B M 最小时,AMB ∠=__________.25.点(1,A 2,1),(3,B 3,2),(1,C λ+4,3),若,AB AC 的夹角为锐角,则λ的取值范围为______.26.平面α的法向量u =(x,1,-2),平面β的法向量v =1-1,,2y ⎛⎫⎪⎝⎭,已知α∥β,则x+y=______.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先建立空间直角坐标系,利用向量数量积的坐标表示求点M 的轨迹. 【详解】如图建立空间直角坐标系,设棱长为3,()3,0,2P ,()0,3,0C,()10,0,3D ,()3,,M y z ,()13,,3D M y z =-,()3,3,2CP =-, ()193230D M CP y z ⋅=-+-=,整理为:3230y z --=,点M 的轨迹方程是关于,y z 的二元一次方程,所以轨迹是平面11ABB A 平面内,直线3230y z --=内的一段线段.故选:A 【点睛】关键点点睛:本题考查利用几何中的轨迹问题,本题的关键是解题方法,建立空间直角坐标系后,转化为坐标运算,根据方程形式判断轨迹.2.B解析:B 【分析】求出||25AD =①不正确;根据 0AP AD ⋅=判断②正确;由AP AB ⊥,AP AD ⊥判断③正确;假设存在λ使得λ=AP BD ,由122314λλλ-=⎧⎪=⎨⎪-=⎩无解,判断④不正确.【详解】由(2AB =,1-,4)-,(4AD =,2,0),(1AP =-,2,1)-,知: 在①中,||164056AD =++=≠,故①不正确;在②中,4400AP AD ⋅=-++=,∴⊥AP AD ,AP AD ∴⊥,故②正确; 在③中,2240AP AB ⋅=--+=, AP AB ∴⊥,又因为AP AD ⊥,AB AD A ⋂=,知AP 是平面ABCD 的法向量,故③正确;在④中,(2BD AD AB =-=,3,4),假设存在λ使得λ=AP BD ,则122314λλλ-=⎧⎪=⎨⎪-=⎩,无解,故④不正确; 综上可得:②③正确. 故选:B . 【点睛】本题考查命题真假的判断,考查空间向量垂直、向量平行等基础知识,考查了平面的法向量以及空间向量的模,考查推理能力与计算能力,属于基础题.3.B解析:B 【分析】由0AB AC ⋅=,0AB AD ⋅=,0AC AD ⋅=,可得()()20BC BD AC AB AD AB AB ⋅=--=>,B ∠是锐角,同理可得D ∠,C ∠都是锐角,从而可得结果. 【详解】因为0AB AC ⋅=,0AB AD ⋅=,0AC AD ⋅=, 所以()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=--=⋅-⋅-⋅+=>,cos 0BC BD B BC BD⋅∴=>⋅,故B ∠是锐角,同理0CB CD ⋅>,0DC DB ⋅>,可得D ∠,C ∠都是锐角, 故BCD 是锐角三角形,故选B . 【点睛】本题主要考查向量的数量积的运算以及向量运算的三角形法则,属于中档题.判断三角形的形状有两种基本的方法:①看三角形的角;②看三角形的边.4.B解析:B 【分析】根据题意,求得向量AD 和BC 的坐标,再结合空间向量的数量积的运算,即可得到两直线的位置关系,得到答案. 【详解】由题意,点()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -, 可得()3,1,6AD =--,()2,0,1BC =, 又由()()2310610AD BC ⋅=⨯+-⨯+-⨯=, 所以AD BC ⊥,所以直线AD 与BC 垂直. 故选:B . 【点睛】本题主要考查了空间向量的数量积的运算及其应用,其中解答中熟记空间向量的坐标运算,以及空间向量的数量积的运算是解答本题的关键,着重考查了推理与运算能力,属于基础题.5.D解析:D 【解析】因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP =(−4,2,2),AD =(2,0,1).所以cos 〈AD ,CP 〉=AD CP AD CP⋅⋅==−.设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD ,CP 〉|=.6.C解析:C 【分析】作出图形,分别取AC 、11A C 的中点O 、1O ,连接OB 、1OO ,然后以点O 为坐标原点,OA 、OB 、1OO 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设12AB BC CC ===,利用空间向量法可求出异面直线1AB 与1BC 所成角的余弦值.【详解】设12AB BC CC ===,分别取AC 、11A C 的中点O 、1O ,连接OB 、1OO , 在直三棱柱111ABC A B C -中,四边形11AAC C 为平行四边形,则11//AC A C 且11AC A C =,O 、1O 分别为AC 、11A C 的中点,所以,11//AO AO 且11AO A O =,所以,四边形11AAO O 为平行四边形,11//OO AA ∴,1AA ⊥底面ABC ,1OO ∴⊥底面ABC ,AB BC =,O 为AC 的中点,OB AC ∴⊥,以点O 为坐标原点,OA 、OB 、1OO 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,由于120ABC ∠=,则)3,0,0A、()0,1,0B 、()10,1,2B 、()13,0,2C ,()13,1,2AB =-,()13,1,2BC =--, 1111113cos ,42222AB BC AB BC AB BC ⋅===⨯⋅,因此,异面直线1AB 与1BC 所成角的余弦值为34. 故选:C.【点睛】本题考查利用空间向量法求异面直线所成角的余弦值,考查计算能力,属于中等题.7.B解析:B 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z ,建立空间直角坐标系,利用向量法能求出线段1A P 长度取最小值. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,()()()()12,0,0,1,2,0,0,2,1,2,0,2A E F A ,(1,2,0),(2,2,1)AE AF =-=-,设平面AEF 的法向量(),,n x y z =,则20220n AE x y n AF x y z ⎧⋅=-+=⎨⋅=-++=⎩,取1y =,得()2,1,2n =,设(),2,,02,02P a c a c ≤≤≤≤,则()12,2,2A P a c =--, ∵1A P 平行于平面AEF ,∴()()1222220A P n a c ⋅=-++-=,整理得3a c +=, ∴线段1A P 长度1||(A P a ===,当且仅当32a c ==时,线段1A P 长度取最小值2. 故选:B. 【点睛】本题考查线段长的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8.D解析:D 【详解】由题设可得197(,3,)55a b c ++=,则635255a b c ++==; 923(,1,)55a b c --=-,63525a b c --=,则①正确;因1346()(4,2,2)(,1,)205555a b c +⋅=⋅--=-+-=, 1481424()(1,2,3)(,1,)205555a b c ⋅+=⋅-=+-=,故②正确;又因2635127()255a b c ++==,而22235714,10,255a b c ====, 所以22271272455a b c ++=+=,即③正确; 又3030a b ⋅=+-=,则()0a b c ⋅⋅=, 而330055b c ⋅=-++=,故()0a b c ⋅⋅=,也即④正确. 故选:D .9.B解析:B 【分析】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由题意得到∠CPE 就是直线PC 与平面PAB 所成角,利用直线PC 与平面PAB 所成角的正弦值为66,PC =3,求出CE ,再求出CD ,可得PD ,即可得出结论. 【详解】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由已知得BC ⊥CA , BC ⊥CP , CA CP C =,则BC ⊥平面PAC , 得到BC ⊥PA ,CD BC C ⋂=,可得PA ⊥平面BCD ,又PA ⊂平面PAC ∴平面BCD ⊥平面PBA ,平面BCD 平面PBA =BD ,由两个平面互相垂直的性质可知:CE ⊥平面PBA , ∴∠CPE 就是直线PC 与平面PAB 所成角, ∵直线PC 与平面PAB 所成角的正弦值为6,PC =AC =3, ∴CE =622PC =, 设CD =x ,则BD =21x +,21121122x x ∴⋅⋅=⋅+⋅, ∴x =1,∵PC =3,∴PD =2,∴PA =2PD =22. 故选:B .【点睛】本题考查直线与平面所成角的求法,考查空间想象能力和分析推理能力以及计算能力,属于中档题.10.A解析:A 【分析】建立空间坐标系,计算1AA 坐标,计算平面11AB C 的法向量,运用空间向量数量积公式,计算夹角即可. 【详解】取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而 ()()111,0,3,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-,111 1,?2|?|m AA cos m AA m AA ==.故1AA 与平面11AB C 所成角的大小为030,故选A . 【点睛】考查了空间向量数量积坐标运算,关键构造空间直角坐标系,难度偏难.11.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为14,求出t 的值,由此能求出AE 与平面11BCC B 所成角的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B , ()0,2,0C ,33,22E t ⎛⎫⎪ ⎪⎝⎭,31,22F t ⎛⎫ ⎪ ⎪⎝⎭ , 31,22AE t ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BF t ⎛⎫= ⎪ ⎪⎝⎭,因为AE 和BF BF 所成角的余弦值为14, 所以222112cos ,411t AE BF AE BF AE BFt t -⋅===++, 解得:1t =所以31,12AE ⎛⎫=- ⎪ ⎪⎝⎭,平面11BCC B 的法向量()1,0,0n =,所以AE 与平面11BCC B 所成角的正弦值为362sin 421AE nAE nα⋅===⨯ 故选:B 【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.12.D解析:D 【分析】根据题意,可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点.由BPC ∠即为直线PB 与平面11DD C C 所成的角可知当PC 取得最小值时,PB 与平面11DD C C 所成的角最大.而连接圆心E 与C 时,与半圆的交点为P ,此时PC 取得最小值.设出正方体的棱长,即可求得PC ,进而求得tan BPC ∠. 【详解】正方体1111ABCD A B C D -中,正方形11DD C C 内的点P 满足1PD PD ⊥ 可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点,设圆心为E,如下图所示:当直线PB 与平面11DD C C 所成最大角时,点P 位于圆心E 与C 点连线上 此时PC 取得最小值.则BPC ∠即为直线PB 与平面11DD C C 所成的角 设正方体的边长为2,则51PC EC EP =-=,2BC = 所以51tan 51BC BPC PC +∠===-故选:D 【点睛】本题考查了空间中动点的轨迹问题,直线与平面夹角的求法,对空间想象能力要求较高,属于中档题.13.B解析:B 【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+ 故12x y z ++=- 故选:B 【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.二、填空题14.3【分析】利用向量的坐标运算求得求出根据空间向量模的公式列方程求解即可【详解】因为所以可得因为解得故答案为3解析:3 【分析】利用向量的坐标运算求得求出()4,1,a b λλλ+=-,根据空间向量模的公式列方程求解即可. 【详解】因为()()0,1,1,4,1,0,29a b a b λ=-=+=, 所以()4,1,a b λλλ+=-, 可得()2216129λλ+-+=, 因为0λ>,解得3λ=,故答案为3.15.5【分析】将已知条件转化为向量则有利用向量的平方以及数量积化简求解由此能求出线段的长度【详解】平行六面体中即向量两两的夹角均为则因此故答案为:5【点睛】本题考查向量的数量积和模在求解距离中的应用考查解析:5 【分析】将已知条件转化为向量则有11AC AB BC CC →→→→=++,利用向量的平方以及数量积化简求解,由此能求出线段1AC 的长度. 【详解】平行六面体1111ABCD A B C D -中, 1160A AB A AD BAD ∠=∠=∠=︒,即向量1,,AB AD AA→→→两两的夹角均为1601,2,3AB AD AA →→→︒===,,则11AC AB BC CC →→→→=++ 22221111222149212cos60213cos60223cos6025AC AB BC CC AB BC BC CC CC AB →→→→→→→→→→︒︒︒=+++⋅+⋅+⋅=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=因此15AC →=. 故答案为:5. 【点睛】本题考查向量的数量积和模在求解距离中的应用,考查学生转化与划归的能力,难度一般.16.【分析】先根据不共线三点用平面向量基底表示;再根据平面向量基本定理表示求和即得结果【详解】因为四点共面三点不共线所以因为因为是任意一点故可不共面所以故故答案为:1【点睛】本题考查用基底表示向量以及平 解析:1【分析】先根据不共线三点A B C ,,,用平面向量基底AB AC ,表示PA ;再根据平面向量基本定理表示,,x y z ,求和即得结果. 【详解】因为,,,P A B C 四点共面,三点A B C ,,不共线, 所以,,,m n R PA mAB nAC ∃∈=+()(),(1)OA OP m OB OA n OC OA OP m n OA mOB nOC -=-+-∴=++--因为OP xOA yOB zOC =++,因为O 是任意一点,故,,OA OB OC 可不共面,所以1,,x m n y m z n =++=-=-, 故1x y z ++=. 故答案为:1 【点睛】本题考查用基底表示向量以及平面向量基本定理应用,考查基本分析求解能力,属基础题.17.【分析】设根据平行四边形法则对角线再结合条件利用向量的模即可求出对角线长【详解】解:设因为所以所以对角线故答案为:【点睛】本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构 解析:66【分析】设AB a =,AD b =,1AA c =,根据平行四边形法则,对角线1AC a b c =++,再结合条件,利用向量的模即可求出对角线长. 【详解】解:设AB a =,AD b =,1AA c =, 因为11AC AB AD AA a b c =++=++, 所以()222221222363636666cos60216AC a b ca b c a b a c b c =++=+++++=+++⨯⨯⨯︒=,所以对角线166AC =. 故答案为:66.【点睛】本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.18.【分析】根据向量投影的计算公式计算出在方向上的投影【详解】依题意在方向上的投影为【点睛】本小题主要考查向量在另一个向量上的投影的计算考查空间向量的数量积的坐标运算属于基础题解析: 【分析】根据向量投影的计算公式,计算出a 在b 方向上的投影. 【详解】依题意a 在b 方向上的投影为()22222a b b⋅===-+-.【点睛】本小题主要考查向量在另一个向量上的投影的计算,考查空间向量的数量积的坐标运算,属于基础题.19.2【分析】由题意知向量所以由空间向量的坐标运算即可求解【详解】由题意知向量所以又由解得【点睛】本题主要考查了空间向量的坐标运算及空间向量的数量积的运算其中解答中熟记空间向量的数量积的运算公式准确运算解析:2 【分析】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,由空间向量的坐标运算,即可求解. 【详解】由题意知,向量()a ab λ⊥-,所以()0a a b λ⋅-=, 又由()()()()22222132112311470a a b a a b λλλλ⎛⎡⎤⋅-=-⋅=-++--⨯-+⨯+⨯=-=⎪⎣⎦⎝⎭,解得2λ=. 【点睛】本题主要考查了空间向量的坐标运算,及空间向量的数量积的运算,其中解答中熟记空间向量的数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.20.5【解析】分析:设则的坐标利用求得即可得到即可求解的长度详解:设则所以因为所以解得所以所以点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加减或数乘运算(2)解析:5 【解析】分析:设AD AC λ=,则,OD BD 的坐标,利用BD AC ⊥,求得45λ=-,即可得到 912(4,,)55BD =-,即可求解BD 的长度. 详解:设AD λAC =,则()()()OD OA λAC 1,1,2λ0,4,31,14λ,23λ=+=-+-=-+-,所以()BD OD OB 4,54λ,3λ=-=-+-,因为BD AC ⊥, 所以()BD AC 0454λ9λ0⋅=+++=,解得4λ5=-, 所以912BD 4,,55⎛⎫=- ⎪⎝⎭,所以()222912BD 4555⎛⎫⎛⎫=-++= ⎪ ⎪⎝⎭⎝⎭.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.21.【分析】首先确定点的轨迹再求长度【详解】在平面上取的中点则点的轨迹是正六边形轨迹长度是正六边形的周长故答案为:【点睛】关键点点睛:本题的关键是确定在平面上并能作出平面与正方体的交线 解析:32【分析】首先确定点M 的轨迹,再求长度. 【详解】(,)EM xEF yEG x y =+∈R ,M ∴在平面EFG 上,取11A D ,AB ,1CC 的中点,,N H P ,则点M 的轨迹是正六边形EHFPGN ,轨迹长度是正六边形的周长,632l EN ==.故答案为:32【点睛】关键点点睛:本题的关键是确定M 在平面EFG 上,并能作出平面EFG 与正方体的交线.22.【详解】连接AQ 取AD 的中点O 连接OQ ∵PA ⊥平面ABCDPA ⊥DQPQ ⊥DQ ∴DQ ⊥平面PAQ 所以DQ ⊥AQ ∴点Q 在以线段AD 的中点O 为圆心的圆上又∵在BC 上有且仅有一个点Q 满足PQ ⊥DQ ∴BC 与 解析:2【详解】连接AQ ,取AD 的中点O ,连接OQ . ∵PA ⊥平面ABCD ,PA ⊥DQ ,PQ ⊥DQ , ∴DQ ⊥平面PAQ ,所以DQ ⊥AQ .∴点Q 在以线段AD 的中点O 为圆心的圆上, 又∵在BC 上有且仅有一个点Q 满足PQ ⊥DQ ,∴BC 与圆O 相切,(否则相交就有两点满足垂直,矛盾.) ∴OQ ⊥BC ,∵AD ∥BC ,∴OQ =AB =1,∴BC =AD =2, 即a =2. 故答案为:2.考点:直线与平面垂直的性质.23.【分析】根据向量的线性运算得出根据向量的数量积运算即可求出结果【详解】解:由题可知所以得故答案为:【点睛】本题考查向量的运算涉及到线性运算和向量的数量积同时考查学生的化归和转化思想 17 【分析】根据向量的线性运算,得出112AE AB BC CC =++,根据向量的数量积运算,即可求出结果. 【详解】解:由题可知,112AE AB BC CC =++, 所以2211()2AE AB BC CC =++222111124AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅22211112cos60cos60cos604AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅11111711242224=+++⨯++=得17AE =. 故答案为:17. 【点睛】本题考查向量的运算,涉及到线性运算和向量的数量积,同时考查学生的化归和转化思想.24.【分析】根据题意建立空间直角坐标系设出的长写出各个点的坐标求得平面与平面的法向量利用法向量及二面角大小求得的等量关系即可判断当取最小时各自的长即可求得的正切值进而求得的大小【详解】因为三棱柱中两两互 解析:6π【分析】根据题意,建立空间直角坐标系,设出,CN BM 的长,写出各个点的坐标,求得平面AMN 与平面ABC 的法向量,利用法向量及二面角大小,求得,CN BM 的等量关系.即可判断当1B M 取最小时,CN BM 各自的长.即可求得AMB ∠的正切值,进而求得AMB ∠的大小. 【详解】因为三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,建立如下图所示的空间直角坐标系:122AA AB AC ==,M ,N 是线段1BB ,1CC 上的点可设,,1BM a CN b AB ===,则12,1AA AB == 所以()()0,0,0,1,0,0A B ,()()1,0,,0,1,M a N b 则()()1,0,,0,1,AM a AN b == 设平面AMN 的法向量为(),,m x y z =则00AM m AN m ⎧⋅=⎨⋅=⎩,代入可得00x az y bz +=⎧⎨+=⎩,令1z =代入解得x a y b =-⎧⎨=-⎩所以(),,1m a b =--平面ABC 的法向量()0,0,1n =由题意可知平面AMN 与平面ABC 所成(锐)二面角为3π 则由平面向量数量积定义可知2cos3m n m n a π⋅==⋅ 化简可得223a b +=1B M 最小值,即a 取得最大值,当0b =时,a取得最大值为a = 所以tan 3AB AMB MB ∠=== 所以6AMB π∠=故答案为:6π 【点睛】本题考查了空间向量在立体几何中的应用,由法向量法结合二面角求值,属于中档题. 25.【分析】根据的夹角为锐角可得且不能同向共线解出即可得出【详解】12的夹角为锐角且不能同向共线解得则的取值范围为故答案为【点睛】本题主要考查了向量夹角公式向量共线定理考查了推理能力与计算能力属于中档题 解析:()()2,44,∞-⋃+【分析】根据,AB AC 的夹角为锐角,可得0AB AC ⋅>,且不能同向共线.解出即可得出.【详解】 (2,AB =1,1),(,AC λ=2,2),,AB AC 的夹角为锐角,2220AB AC λ∴⋅=++>,且不能同向共线.解得2λ>-,4λ≠.则λ的取值范围为()()2,44,∞-⋃+.故答案为()()2,44,∞-⋃+.【点睛】本题主要考查了向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.26.【解析】【分析】由α∥β可得∥利用向量共线定理即可得出【详解】因为α∥β所以u ∥v 则即故x+y=【点睛】本题考查了空间面面平行与法向量的关系向量共线定理考查了推理能力与计算能力属于中档题解析:15 4【解析】【分析】由α∥β,可得u∥v.利用向量共线定理即可得出.【详解】因为α∥β,所以u∥v.则1-21 -12 xy==,即4,1-,4xy=⎧⎪⎨=⎪⎩故x+y=154.【点睛】本题考查了空间面面平行与法向量的关系、向量共线定理,考查了推理能力与计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由平面向量的数量积判断三角形形状
河北 张军红
由平面向量的数量积定义及其几何意义可知数量积是数与形的结合点,利用平面向量的数量积可以处理有关长度,角度和垂直的问题,从而较容易判断三角形的形状。

本文总结如下:
例1:在△ABC 中,AB a =,BC b =,且0a b ⋅>,则△ABC 是什么三角形( )
A.锐角三角形
B.直角三角形
C. 钝角三角形
D.等腰直角三角形
解:0AB BC ⋅>,即│AB │·│BC │cos(π-B)>0,∴cosB<0∴△ABC 是钝角三角形
例2:以O(0,0),A(a,b),B(b+a,b -a)为顶点的三角形的形状是( )
A 直角三角形
B 等腰三角形
C 等边三角形
D 等腰直角三角形
解∵OA =(a,b),AB =(b,-a),∴()0OA AB ab b a ⋅=+-=∴OA ⊥AB 又∵│AB │=22b a +,│OA │=22b a +,∴│AB │=│OA │所以△ABC 为等腰直角三角形
说明:向量如果用坐标表示,应用数量积的坐标运算,先看AB 、BC 、AC 是否有一对垂直。

例3:若O 为△ABC 所在平面内一点,且满足()(2)0OB OC OB OC OA -+-=则△ABC 的形状为( )
A.等腰三角形
B.直角三角形
C. 等边三角形
D.等腰直角三角形
解:原式可化为()0CB OB OA OC OA -+-=即()0CB AB AC +=
结合图可知平行四边形ABCD 为菱形, 所以△ABC 为等腰三角形
例4:若O 为△ABC 所在平面内一点,且满足0OB OC CO CO OA BC ++=,则△ABC 的形状为( )
A.等腰三角形
B.直角三角形
C. 等边三角形
D.等腰直角三角形
解:原式可变为()0OC OB OC OA BC -+=∴0OC CB OA BC +=
即()00CB OC OA CB AC -=∴=∴CB AC ⊥∴△ABC 为直角三角形
说明:以上两例式子中都含与三角形无关的O ,应先通过向量知识使式子中不含有O ,再通过数量积求解。

例5:已知AB 、AC 是非零向量且满足(AB -2AC ) ⊥AB ,(AC -2AB ) ⊥AC ,则△ABC 的形状是( )
A.等腰三角形
B.直角三角形
C. 等边三角形
D.等腰直角三角形
解:(AB -2AC ) ⊥AB (AB -2AC ) ·AB =0即AB ·AB -2AC ·AB =0 AB AC +C B A
(AC -2AB ) ⊥AC (AC -2AB ) ·AC =0即AC ·AC -2AB ·AC =0
∴AB ·AB =AC ·AC =2AB ·AC 即│AB │=│AC │
而cos ∠A=AB AC AB AC ⋅=12
∴∠A=60°所以△ABC 为等边三角形 说明:本题对数量积的性质及运算率基本上都考到了,是一道值得研究的好题。

例6:在△ABC 中,若BC a =,CA b =,AB c =,且a b b c c a ⋅=⋅=⋅,则△ABC 的形状是( )
A.等腰三角形
B.直角三角形
C. 等边三角形
D.等腰直角三角形
解:由画图可知0a b c ++=∴22()a b c a b c c a c b c c +=-∴+⋅=-∴⋅+⋅=-, 22()a c b a c b b a b c b b +=-∴+⋅=-∴⋅+⋅=-,又∵a b a c ⋅=⋅∴22c b =同理可得 222c b a ==所以△ABC 是等边三角形
方法2:如图延长AB 至D 点,使AB=BD 连CD
∵a b b c ⋅=⋅()0b a c ⋅-=又∵a c DC -=∴AC ⊥CD 即△ACD 为Rt
△,又∵AB=BD ∴AB=BC 同理可得AC=BC=AB,所以△ABC 是等边三角
形 c c
a b a c -A B D。

相关文档
最新文档