大学物理实验报告-磁滞回线研究
动态磁滞回线实验报告
![动态磁滞回线实验报告](https://img.taocdn.com/s3/m/08273a2ef342336c1eb91a37f111f18583d00c3d.png)
一、实验目的1. 理解铁磁材料的磁滞现象及其在工程中的应用。
2. 学习使用示波器观察和测量动态磁滞回线。
3. 掌握磁滞回线中关键参数(如饱和磁感应强度、矫顽力、剩磁等)的测量方法。
4. 分析磁滞回线形状与材料特性之间的关系。
二、实验原理铁磁材料在外加磁场的作用下,其磁化强度B与磁场强度H之间的关系并非线性,而是呈现非线性关系。
当磁场强度H增加到一定值时,B几乎不再随H的增加而增加,此时的B值称为饱和磁感应强度(Bs)。
当外磁场去除后,铁磁材料仍保留一定的磁性,此时的B值称为剩磁(Br)。
矫顽力(Hc)是指使剩磁为零所需的反向磁场强度。
动态磁滞回线是指铁磁材料在交变磁场作用下,磁化强度B与磁场强度H之间的关系曲线。
通过测量动态磁滞回线,可以获得铁磁材料的磁性能参数,如饱和磁感应强度、矫顽力、剩磁等。
三、实验仪器1. 示波器2. 交流电源3. 铁磁材料样品4. 磁场发生器5. 测量装置四、实验步骤1. 将铁磁材料样品固定在磁场发生器上。
2. 接通电源,调节磁场发生器输出交变磁场。
3. 将示波器的X轴输入端连接到磁场发生器的输出端,Y轴输入端连接到测量装置的输出端。
4. 观察示波器屏幕上的动态磁滞回线,记录关键参数(如饱和磁感应强度、矫顽力、剩磁等)。
5. 改变磁场发生器的输出频率,重复上述步骤,观察磁滞回线形状的变化。
五、实验结果与分析1. 通过实验,我们观察到铁磁材料的动态磁滞回线呈现非线性关系,且存在饱和磁感应强度、矫顽力、剩磁等关键参数。
2. 随着磁场发生器输出频率的增加,磁滞回线形状发生变化,饱和磁感应强度和矫顽力降低,剩磁增加。
3. 分析磁滞回线形状与材料特性之间的关系,发现磁滞回线形状与材料的磁导率、矫顽力、剩磁等参数有关。
六、实验结论1. 动态磁滞回线实验可以有效地测量铁磁材料的磁性能参数,为工程应用提供重要依据。
2. 磁滞回线形状与材料特性密切相关,通过分析磁滞回线可以了解材料的磁性能。
磁滞回线实验报告
![磁滞回线实验报告](https://img.taocdn.com/s3/m/2dc7de2449d7c1c708a1284ac850ad02de8007b4.png)
磁滞回线实验报告磁滞回线实验报告引言:磁滞回线实验是物理学中的基础实验之一,通过观察和分析磁场强度与磁化强度之间的关系,可以了解材料的磁性特性。
本实验旨在探究不同材料的磁滞回线形状及其对磁场的响应。
实验原理:磁滞回线是指在磁场强度逐渐增加和减小的过程中,磁化强度发生变化的曲线。
在磁场强度逐渐增加时,材料的磁化强度也逐渐增加,但当磁场强度开始减小时,磁化强度并不立即减小,而是形成一个闭合的回线。
这种现象被称为磁滞回线。
实验步骤:1. 准备实验所需材料:磁铁、铁砂、铁钉、铜线、磁场强度计等。
2. 将铁砂填充至玻璃试管中,并用胶带封口,确保铁砂不会外溢。
3. 将铁钉缠绕铜线,形成线圈,并将线圈固定在试管外部。
4. 将磁场强度计放置在试管旁边,并将其连接至计算机。
5. 将磁铁靠近试管,使磁场强度计读数开始增加。
6. 缓慢移动磁铁,观察磁场强度计读数的变化,并记录下来。
7. 当磁场强度计读数达到最大值后,缓慢将磁铁远离试管,继续观察并记录读数的变化。
8. 根据记录的数据,绘制磁滞回线图。
实验结果及分析:通过实验观察和数据记录,我们得到了一条典型的磁滞回线。
在磁场强度逐渐增加时,磁化强度也随之增加,但在磁场强度减小时,磁化强度并不立即减小,而是形成一个闭合的回线。
根据实验结果,我们可以得出以下几点结论:1. 不同材料的磁滞回线形状不同。
铁砂的磁滞回线相对较宽,而铁钉的磁滞回线相对较窄。
这是因为不同材料的磁性特性不同,磁滞回线的形状取决于材料的磁化过程和磁化强度的变化。
2. 磁滞回线的形状与外加磁场的变化速度有关。
当外加磁场的变化速度较快时,磁滞回线的形状可能会发生变化,呈现出不规则的曲线。
这是因为快速变化的磁场会导致材料内部的磁畴无法充分调整,从而影响磁滞回线的形状。
3. 磁滞回线的形状与材料的磁饱和性有关。
磁饱和性是指材料在外加磁场作用下,磁化强度达到最大值后无法继续增加的能力。
当材料的磁饱和性较强时,磁滞回线的形状相对较窄,而当磁饱和性较弱时,磁滞回线的形状相对较宽。
大学物理实验磁滞回线
![大学物理实验磁滞回线](https://img.taocdn.com/s3/m/4df8e422bcd126fff7050b72.png)
铁磁材料的磁滞回线和基本磁化曲线【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2. 测定样品的基本磁化曲线,作μ-H曲线。
3. 测定样品的H D、B r、B S和(H m·B m)等参数。
4. 测绘样品的磁滞回线,估算其磁滞损耗。
【实验仪器】DH4516型磁滞回线实验仪,数字万用表,示波器。
【实验原理】铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。
图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。
当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。
图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S次序变化,相应的磁感应强度B则沿闭合曲线'变化,这闭合曲线称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁SR'DS RD'S心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。
磁滞回线的测量实验报告
![磁滞回线的测量实验报告](https://img.taocdn.com/s3/m/3abc2513814d2b160b4e767f5acfa1c7aa0082b0.png)
磁滞回线的测量实验报告一、实验目的1.了解磁滞回线的概念和特点;2.学习使用霍尔传感器测量磁场强度;3.掌握利用实验数据绘制磁滞回线的方法。
二、实验仪器和材料仪器:霍尔元件、磁力计、示波器、直流电源;材料:螺线管、磁铁、导线、万用表。
三、实验原理磁滞回线是磁化物质在外磁场作用下,磁感应强度与磁场强度之间的关系曲线。
当外磁场强度H由小到大变化时,磁感应强度B不仅不是单调变化的,而且在H改变方向时,B经过零点有回弹现象。
这种B-H的关系曲线即为磁滞回线。
磁滞回线可以揭示磁材料的磁化、变磁和反磁过程中的磁场调整以及应力状态等内部状况,对于磁性材料的性能评价具有重要的意义。
四、实验步骤1.准备工作:搭建实验电路,连接霍尔元件、示波器和直流电源;2.将磁力计放置在霍尔元件附近并调整合适的位置;3.施加一定外磁场强度H,并记录示波器上测得的霍尔输出电压UH 与电流电压表测得的霍尔电流IH的数值;4.改变外磁场强度的大小和方向,重复第三步,直到完成一次完整的磁滞回线的测量;5.将测得的磁场强度H和磁感应强度B的数据进行整理。
五、实验注意事项1.实验过程中需保持实验环境的稳定和安静;2.实验中需注意安全,避免磁铁和螺线管等物品的碰撞和意外伤害;3.在调整霍尔元件和磁力计位置时,需保证测量准确性和稳定性;4.测量数据需及时记录并整理,以免丢失。
六、实验结果及数据处理根据实验步骤记录的UH、IH数据,可以得到对应的磁感应强度B和磁场强度H的测量结果。
整理数据后,可以将B-H数据绘制成磁滞回线图。
七、实验结果分析通过实验数据的分析,可以得到磁滞回线的面积、对称性、磁饱和状态等信息。
此外,对于不同材料的磁滞回线,还可以比较其形状和性能差异。
八、实验总结通过本次实验,我们了解了磁滞回线的概念和特点,学习并掌握了使用霍尔传感器测量磁场强度的方法,熟悉了利用实验数据绘制磁滞回线的步骤和技巧。
此外,我们还通过实验结果对不同材料的磁滞回线进行了分析比较,深入了解了磁材料的性能差异和应用前景。
实验9-实验报告示例-磁滞回线
![实验9-实验报告示例-磁滞回线](https://img.taocdn.com/s3/m/225fa80e227916888486d79b.png)
实验报告(示例)【实验名称】铁磁材料的磁化曲线和磁滞回线【实验目的】1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。
2、学会用示波法测绘基本磁化曲线和磁滞回线。
3、根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。
4、研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度Bs、剩磁Br和矫顽力Hc数值。
5、改变不同的磁性材料,比较磁滞回线形状的变化。
【实验仪器】实验使用的仪器由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成。
测试样品有两种,一种是圆形罗兰环,材料是锰锌功率铁氧体,磁滞损耗较小;另一种是EI型硅钢片,磁滞损耗较大些。
信号源的频率在20~200Hz 间可调;可调标准电阻R1的调节范围为0.1~11Ω;R2的调节范围为1~110kΩ;标准电容有0.1μF~11μF可选。
实验样品的参数如下:样品1:平均磁路长度L=0.130m,铁芯实验样品截面积S=1.24×10-4m2,线圈匝数:N1=150T,N2=150T;N3=150T。
样品2:平均磁路长度L=0.075m,铁芯实验样品截面积S=1.20×10-4m2,线圈匝数:N1=150T,N2=150T;N3=150T。
【实验原理】1、磁化曲线此处说明什么是磁化曲线,什么是起始磁化曲线2、磁滞回线此处图示说明以下几个概念:起始磁化曲线,磁滞回线,退磁曲线,剩磁,矫顽力,磁滞现象,极限磁滞回线,基本磁化曲线,磁锻炼3、示波器显示B—H曲线的原理此处图示说明以下概念与公式:图1 B —H 曲线的原理图加在示波器X 端和Y 端的U X 和U Y ,各参数的意义H U N LR X 11=B CR SN U Y 22=3、示波器相关旋钮的功能与操作步骤及H-X 、B-Y 的关系式 此处说明示波器相关旋钮的功能与操作步骤及H-X 、B-Y 的关系式中各参数的含义【实验内容】1、显示和观察2种样品在25Hz 、50Hz 、100Hz 、150Hz 交流信号下的磁滞回线图形。
磁滞回线实验报告精选全文完整版
![磁滞回线实验报告精选全文完整版](https://img.taocdn.com/s3/m/fb326d5166ec102de2bd960590c69ec3d5bbdb83.png)
〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。
〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。
〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。
设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。
抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。
除了磁导率高以外,铁磁材料还具有特殊的磁化规律。
对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。
图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。
如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。
磁滞回线实验报告
![磁滞回线实验报告](https://img.taocdn.com/s3/m/33158d4cf08583d049649b6648d7c1c708a10b2e.png)
一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。
二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。
在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。
磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。
三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。
四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。
五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。
图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。
3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。
矫顽力越大,材料越难退磁,即磁滞特性越好。
(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。
饱和磁感应强度越大,材料的磁导率越高。
(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。
剩磁越大,材料的剩磁特性越好。
铁磁材料的磁滞回线实验报告
![铁磁材料的磁滞回线实验报告](https://img.taocdn.com/s3/m/f3622a82ab00b52acfc789eb172ded630b1c98a2.png)
铁磁材料的磁滞回线实验报告一、实验目的。
本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。
二、实验原理。
磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。
铁磁材料的磁滞回线特性是其重要的磁性能指标之一。
三、实验仪器与设备。
1. 电磁铁。
2. 电源。
3. 示波器。
4. 铁磁材料样品。
四、实验步骤。
1. 将铁磁材料样品放置在电磁铁中间位置。
2. 调节电源输出电压,使电磁铁通电,产生磁场。
3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。
4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。
五、实验数据记录与分析。
根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。
从曲线图中可以清晰地看出铁磁材料的磁化特性。
在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。
六、实验结论。
通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。
磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。
通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。
七、实验注意事项。
1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。
2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。
八、参考文献。
1. 《材料物理学实验指导》。
2. 《磁性材料与器件》。
以上为铁磁材料的磁滞回线实验报告。
磁滞回线实验报告
![磁滞回线实验报告](https://img.taocdn.com/s3/m/2ad194fe1b37f111f18583d049649b6649d70955.png)
磁滞回线实验报告一、实验原理磁滞回线是指在磁场强度变化的情况下,铁磁性材料的磁化强度随之变化的曲线。
当磁场强度为零时,铁磁性材料的磁化强度也为零。
当磁场强度增加时,材料的磁化强度随之增加,直到达到饱和磁化强度。
当磁场强度减小到一定程度时,磁化强度并不立即变为零,而是保持一定的残留磁化强度。
当磁场强度继续减小,磁化强度也随之减小,直到达到磁场强度为零时,磁化强度也为零。
如果再反向施加磁场强度,材料的磁化强度不会立即变为零,而是由于材料的磁滞效应,会出现一个磁滞回线。
二、实验步骤1. 准备工作:将铁磁性材料样品固定在磁通线圈上,并将磁通线圈与电源连接好。
2. 测量饱和磁化强度:在电流为零的情况下,先用磁通线圈产生如图1所示的磁场强度H1,然后逐渐增加电流大小,直到得到磁通线圈产生的最大磁场强度H2,此时的磁化强度即为样品的饱和磁化强度。
3. 测量残留磁化强度:在电流为零的情况下,用磁通线圈产生如图2所示的磁场强度H3,然后逐渐减小电流大小,直到样品的磁化强度随之减小到一定程度时,读取此时的磁场强度H4,即为样品的残留磁化强度。
4. 测量磁滞回线:将磁通线圈电流逆向,产生反向磁场强度,然后逐渐增加电流大小,测量出铁磁材料的磁通强度随之变化的曲线,即为磁滞回线。
三、实验结果与分析本次实验使用的铁磁性材料样品为普通的磁铁,其饱和磁化强度为1.14 Tesla,残留磁化强度为0.13 Tesla。
样品的磁滞回线如图3所示。
根据磁滞回线,可知当铁磁材料被磁化后,其磁通强度并不会立即随磁场强度的变化而变化,而是存在一定的磁滞效应。
当磁场强度减小到一定程度时,铁磁性材料的磁化强度才会随之减小。
此外,残留磁化强度也表明样品的磁滞效应比较明显,即在样品被磁化后,即使磁场强度减小到零,样品仍然保留一定的磁性。
四、实验结论本次实验通过测量铁磁性材料的磁滞回线,进一步认识了铁磁性材料在外加磁场作用下的磁化规律,得出的饱和磁化强度和残留磁化强度值,也为材料的使用提供了基础数据。
大学物理实验报告-磁滞回线研究
![大学物理实验报告-磁滞回线研究](https://img.taocdn.com/s3/m/d3a3aedc9ec3d5bbfd0a74c5.png)
磁滞回线研究一、 实验目的:a. 研究磁性材料的动态磁滞回线;a) b.了解采用示波器测动态磁滞回线的原理;b) c. 利用作图法测定磁性材料的饱和磁感应强度B,磁场强度H二、 实验仪器:普通型磁滞回线实验仪DH 4516。
实验原理:当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。
曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。
当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。
材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。
当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r 称为剩余磁感应强度。
要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。
为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。
1 .示波器测量磁滞回线的原理图2.3.2-2所示为示波器测动态磁滞回线的原理电路。
将样品制成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所谓的罗兰环。
交流电压u 加在磁化线圈上,R 1为取样电阻,其两端的电压u 1加到示波器的x 轴输入端上。
副线圈N 2与电阻R 2和电容串联成一回路。
电容C 两端的电压u 加到示波器的y 输入端上。
(1)u x (x 轴输入)与磁场强度H 成正比,若样品的品均周长为l ,磁化线圈的匝数为N 1,磁化电流为i 1(瞬时值),根据安培环路定理,有H l =N 1 i 1,而111i R u =,所以H N l R u 111= (1) 由于式中R 1、l 和N 1皆为常数,因此,该式清楚地表明示波器荧光屏上电子束水平偏转的大小(u 1)与样品中的磁场强度(H )成正比。
磁滞回线的测量实验报告
![磁滞回线的测量实验报告](https://img.taocdn.com/s3/m/00fc96c07d1cfad6195f312b3169a4517723e51b.png)
磁滞回线的测量实验报告一、实验目的本次实验旨在掌握磁滞回线的测量方法,了解不同材料的磁性特性,并通过实验数据分析得出相关结论。
二、实验原理1. 磁滞回线磁滞回线是指在恒定外加磁场下,材料的磁化强度随着外加磁场强度的变化而发生变化,并且在去除外加磁场后,材料的残留磁化强度不为零而呈现出一个闭合曲线。
这个曲线就是该材料的磁滞回线。
2. 测量方法测量方法有两种:一种是利用霍尔效应测量样品处于不同磁场下的霍尔电压值,得到样品对应的霍尔电压-外加磁场强度曲线;另一种是利用电桥法测量样品处于不同磁场下电桥平衡时,所需的平衡电流或电压值,得到样品对应的平衡电流/电压-外加磁场强度曲线。
三、实验步骤1. 准备工作:将霍尔元件和样品固定在恒温水槽中,将电桥接线好,并调整电桥平衡状态。
2. 霍尔效应法:分别调节外加磁场强度,记录样品对应的霍尔电压值,并绘制出霍尔电压-外加磁场强度曲线。
3. 电桥法:分别调节外加磁场强度,记录样品对应的平衡电流/电压值,并绘制出平衡电流/电压-外加磁场强度曲线。
4. 数据处理:根据实验数据绘制出样品的磁滞回线,并计算出相关参数。
四、实验结果分析1. 样品的磁滞回线根据实验数据绘制出样品的磁滞回线图像,可以看到该样品呈现出一个闭合曲线,在去除外加磁场后仍有一定的残留磁化强度。
通过对该曲线进行分析可以得到该材料的饱和磁化强度、剩余磁化强度、铁损耗等参数。
2. 不同材料的特性比较通过对不同材料进行实验测量并比较它们的磁滞回线图像和参数可以发现,不同材料之间存在明显差异。
例如,某些材料的饱和磁化强度较高,而剩余磁化强度较低;某些材料的铁损耗较小,而饱和磁化强度较低。
这些差异反映了不同材料的磁性特性和应用领域。
五、实验结论本次实验通过霍尔效应法和电桥法测量了样品处于不同磁场下的电学参数,并绘制出了样品的磁滞回线图像。
通过对该曲线进行分析得出了相关参数,并比较了不同材料的特性。
实验结果表明,磁滞回线是描述材料磁性特性的重要指标,可以用于材料选型、质量检测等方面。
磁滞回线实验
![磁滞回线实验](https://img.taocdn.com/s3/m/8f94d03326284b73f242336c1eb91a37f011325d.png)
磁滞回线实验报告一、实验目的1、用示波器观测软磁材料的交流磁滞回线2、学习标定磁场强度,磁感应强度,测量样品的磁参数3、了解铁磁材料的磁化过程及磁化规律 二、仪器用具磁滞回线实验仪器(两个待测样品、一个软铁、一个硅钢片等),低压交流源,电感,示波器,直流电压源,数字万能表,导线若干。
三、实验原理磁滞回线表现磁场强度周期性变化时,强磁性物质磁滞现象的闭合磁化曲线。
四、实验内容与步骤1、电路连接:选样品1按实验仪上所给电路图连接电路,令1R =2.5Ω,“U 选择”置于0位,H U 和B U 分别接入示波器的“X 输入”和“Y 输入”,插孔为公共端。
2、样品退磁:开启实验仪电源,顺时针方向转动“U 选择”按钮,令U 从0增至3V ,然后逆时针转动旋钮,将U 从最大降至0,消除剩磁。
3、观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U=2.2V ,并分别调节示波器X 和Y 轴灵敏度,使显示屏出现图形大小合适的磁滞回线。
4、绘制基本磁化曲线:按步骤二对样品进行退磁,从U=0开始,逐档提高励磁电压,记录下这些磁滞回线第一象限顶点的坐标,其连线就是样品的基本磁化曲线B -H ;再做μ-H 曲线。
5、调节U=1.2V ,1R =2.5Ω,测定样品一的一组UB 和UH ,记录测量数据。
计算出D H 、r B 、m B 和H B ,绘出样品一的磁滞回线。
五、数据记录及处理 1、绘制基本磁化曲线(H U LR N 1H =, B U nS R 22C B = , HB=μ)2、测定样品一的一组UB、UH值六、注意事项1、磁滞回线顶部出现小环,降低励磁电压予以消除。
2、建议选择样品一做实验,测得数据绘制的磁滞回线的图形比较饱满,实验数据更好测量。
3、无信号接入时,因为噪声会产生峰值,但是接入了信号后噪声产生的峰值会消除。
磁滞回线实验报告数据
![磁滞回线实验报告数据](https://img.taocdn.com/s3/m/e30e2f5c54270722192e453610661ed9ad515507.png)
磁滞回线实验报告数据分析磁滞回线实验是物理学实验中常见的一种。
通过测量材料在磁场作用下的磁化过程,绘制出磁化曲线,即可获得磁滞回线。
本次实验旨在探究材料的磁滞性质及磁导率。
实验过程1. 将待测材料铁心绕上绕组,接上电源和电流表。
2. 调节电源输出电压,使电流从0开始逐渐加大,同时记录电流表和磁感应强度计的读数。
3. 当电流达到一定值时,非线性磁化开始表现出来,此时记录磁感应强度计的读数。
4. 当电流达到最大值后,逐渐将电流减小,同时记录磁感应强度计的读数。
5. 循环进行上述步骤,直至测量三次的数据具有较好的一致性。
实验结果通过实验测量,我们获得了三组数据,具体如下表所示:电流/I 磁感应强度/B1.0 10.12.0 19.23.0 26.34.0 31.65.0 35.84.0 32.13.0 27.52.0 20.31.0 10.40.0 0.0-1.0 -10.5-2.0 -19.0-3.0 -26.1-4.0 -31.2-5.0 -35.1-4.0 -31.5-3.0 -27.5-2.0 -20.1-1.0 -10.20.0 0.0通过对实验数据的处理,我们得出以下结论:1. 实验结果表明,在磁场作用下,材料的磁化曲线呈现出饱和、非线性的特性,即磁滞性。
2. 随着电流的逐渐增大,材料开始发生磁化,此时磁感应强度也随之增大;当电流达到一定值时,材料的磁化逐渐趋于饱和,磁感应强度达到最大值。
3. 当电流从最大值逐渐减小时,由于材料的磁滞特性,磁感应强度并不会立即跟随电流下降,而是形成了一个环形的回线。
4. 磁滞回线的大小和形状与材料的性质密切相关,可以通过对磁滞回线的分析来探究材料的磁性质。
实验结论通过本次磁滞回线实验,我们成功地获得了材料的磁滞回线数据,并探索了材料的磁性质。
下一步需要对数据进行更进一步的处理和分析,深化对材料磁性质的认识。
磁滞回线实验报告
![磁滞回线实验报告](https://img.taocdn.com/s3/m/a0857fb6f80f76c66137ee06eff9aef8941e48c4.png)
磁滞回线实验报告
实验目的:
通过磁滞回线实验,探究磁性材料在外加磁场作用下的磁化特性,了解磁滞回线对磁性材料的影响。
实验原理:
磁滞回线是指在磁化过程中,当外加磁场从零开始增加,然后再减小至零时,磁化强度不完全回复到零的现象。
磁滞回线实验通过测量磁化强度随外加磁场的变化曲线,可以得到磁滞回线的形状和大小,从而分析磁性材料的磁化特性。
实验仪器:
1. 磁滞回线测试仪。
2. 磁性材料样品。
3. 外加磁场源。
实验步骤:
1. 将磁性材料样品置于磁滞回线测试仪中。
2. 通过外加磁场源对样品施加不同大小的外加磁场。
3. 观察并记录磁化强度随外加磁场的变化曲线。
4. 分析磁滞回线的形状和大小,得出磁性材料的磁化特性。
实验结果:
通过实验测量和分析,得到了磁性材料的磁滞回线。
磁滞回线的形状和大小反映了磁性材料的磁滞特性和磁化强度的变化规律。
实验结果表明,不同磁性材料的磁滞回线形状和大小各不相同,这与其磁化特性有关。
实验结论:
磁滞回线实验结果表明,磁性材料在外加磁场作用下会出现磁化强度不完全回复的现象,这是磁性材料的磁滞特性。
通过磁滞回线实验,可以了解磁性材料的磁化特性,为磁性材料的应用和研究提供重要参考。
总结:
磁滞回线实验是研究磁性材料磁化特性的重要手段,通过实验可以得到磁性材料的磁滞回线,从而分析其磁化特性。
磁滞回线实验结果对于磁性材料的应用和研究具有重要意义,为进一步深入研究磁性材料提供了重要参考。
以上为磁滞回线实验报告内容,希望对您有所帮助。
磁滞回线实验报告磁导率
![磁滞回线实验报告磁导率](https://img.taocdn.com/s3/m/bb9cacae988fcc22bcd126fff705cc1754275f53.png)
磁滞回线实验报告 - 磁导率1. 引言磁滞回线是指在磁化和去磁化过程中,材料的磁化强度与磁场强度之间的关系曲线。
磁滞回线的形状与材料的磁导率密切相关。
本实验旨在通过测量磁滞回线,研究不同材料的磁导率。
2. 实验设备和材料•电源•电流表•铁芯线圈•铁芯样品•磁场强度计(霍尔效应磁场传感器)3. 实验步骤3.1 准备工作•将铁芯线圈连接至电源,并将电流表与线圈串联,以测量通过线圈的电流。
•将磁场强度计连接至电源,以测量磁场强度。
3.2 测量铁芯样品的磁滞回线1.将铁芯样品置于铁芯线圈中心,并调整线圈的电流,使得磁场强度为零。
2.逐渐增加线圈电流,记录不同电流值下的磁场强度。
3.当线圈电流达到最大值时,逐渐减小电流,同样记录不同电流值下的磁场强度。
4.根据记录的磁场强度和电流数据,绘制磁滞回线图。
3.3 计算磁导率根据磁滞回线图,可以计算出磁芯样品的磁导率。
磁导率可以通过下式计算得出:磁导率 = 斜率 * 磁场强度 / 电流其中,斜率为磁滞回线上的斜率,磁场强度为磁滞回线上的纵坐标值,电流为通过线圈的电流值。
4. 结果和讨论根据实验测量得到的磁滞回线图,我们可以得到铁芯样品的磁导率。
通过对不同材料的磁滞回线进行比较,可以得出不同材料的磁导率差异。
这对于材料的选取和应用具有重要意义。
5. 结论通过本实验,我们成功测量了铁芯样品的磁滞回线,并计算出了磁导率。
磁滞回线实验是研究材料磁性特性的重要手段之一,可以为材料的应用提供参考依据。
6. 参考文献[1] 张三, 李四. 磁滞回线实验原理与方法. 物理实验教程, 20XX.[2] 王五, 赵六. 磁导率的测量与计算. 物理研究, 20XX.。
磁滞回线 大物实验报告
![磁滞回线 大物实验报告](https://img.taocdn.com/s3/m/c0d954b5aff8941ea76e58fafab069dc5122477a.png)
磁滞回线大物实验报告一、实验目的本实验的目的是通过测量铁磁材料的磁滞回线来了解材料的磁性质,并观察磁滞回线的特征。
二、实验原理磁滞回线是描述铁磁材料磁化过程的一种曲线。
当外加磁场的强度逐渐增加时,材料开始磁化,产生磁化强度。
当外加磁场达到一定强度时,材料的磁化强度达到饱和值,此时再增大外加磁场对材料的磁化强度影响较小。
当外加磁场逐渐减小时,材料的磁化强度仍保持较大值,直到外加磁场减小到一个临界值,材料的磁化强度迅速消失,回到初始状态,形成一个完整的磁滞回线。
磁滞回线的特征可以用来描述铁磁材料的磁性质,如磁导率、矫顽力等。
三、实验器材和材料- 铁磁材料样品- 恒定磁场源- 恒定电流源- 数据记录仪四、实验步骤1. 将铁磁材料样品放置在恒定磁场源中心,确保样品处于无外加磁场状态。
2. 打开恒定磁场源,设置恒定磁场的强度,并保持一定的时间,使得材料达到饱和磁化状态。
3. 按照预设的实验步骤,逐渐减小恒定磁场的强度,记录每个磁场强度下材料的磁感应强度。
4. 将实验数据输入到数据记录仪中,绘制磁滞回线曲线。
五、实验结果和分析根据实验步骤得到的数据,我们可以绘制出铁磁材料的磁滞回线曲线。
磁滞回线曲线的横轴表示磁场的强度,纵轴表示材料的磁感应强度。
通过观察磁滞回线曲线,我们可以得到以下结论:1. 磁滞回线呈现出环形曲线的特征,环的面积代表了材料的磁化程度。
面积越大,表示材料越易磁化。
2. 磁滞回线曲线的对称轴表示正负磁场对材料磁化的影响是对称的,说明该铁磁材料具有良好的磁导率。
3. 磁滞回线曲线中的纵坐标的最大值表示了材料的饱和磁感应强度,即在给定磁场下,材料可以达到的最大磁化程度。
4. 磁滞回线曲线上的斜率可以用来表示材料的矫顽力,斜率越大,材料的矫顽力越大,说明材料对外加磁场的影响越大。
六、实验总结本实验通过实际测量铁磁材料的磁滞回线曲线,了解了磁滞回线的特征和其对材料磁性质的描述,提高了我们对铁磁材料的认识。
磁滞回线实验报告
![磁滞回线实验报告](https://img.taocdn.com/s3/m/4b35c4378f9951e79b89680203d8ce2f006665d6.png)
磁滞回线实验报告引言:磁滞回线是描述磁材料磁化特性的重要工具,通过这一实验我们可以研究和分析磁场对物质磁性的影响。
本实验旨在通过测量铁磁材料的磁滞回线,探究其磁滞特性,并进一步了解铁磁材料的性质和应用。
实验原理:磁滞回线是磁化曲线的一种特殊形式,它描述了磁场强度和磁化强度之间的关系。
实验中,我们使用了一块铁磁材料样品,通过改变外部磁场的强度和方向,记录不同磁场强度下的磁化强度,从而得到磁滞回线。
实验装置:本次实验所用装置包括一个电源、一个电流表、一块铁磁材料样品和一个磁场强度计。
我们将电流表通过电源与样品连接起来,使电流流经样品,通过磁场强度计测量磁场强度。
实验步骤:1. 将电源与电流表连接好,并设定合适的电流值。
2. 将磁场强度计放置在铁磁材料附近,调整位置使其与样品接触。
3. 通过调节电流表上的电流大小,改变外部磁场的强度和方向,并记录磁场强度计的读数。
4. 循环进行步骤3,直至完成一整个循环,得到完整的磁滞回线。
5. 分析和整理实验数据,绘制磁滞回线图。
实验结果与讨论:通过实验记录的数据,我们得到了一条完整的磁滞回线。
根据磁滞回线图,我们可以观察到以下几个现象:1. 饱和磁化强度(即磁场强度大到一定程度后,磁化强度不再增加):在磁滞回线图中,磁化强度与磁场强度呈线性关系,但在一定的磁场强度下,磁化强度不再增加,达到一个饱和值。
这是因为在饱和状态下,所有的磁矩都已经对齐,并不能再被外部磁场所影响。
2. 矫顽力(即去除外部磁场后,磁化强度不归零):在磁滞回线图中,我们发现当磁场强度减小到零时,磁化强度并不完全恢复到零值,这是因为材料中的磁矩并不能随着磁场的变化而完全还原。
这一现象称为矫顽力,其大小反映了材料的抗磁化能力。
3. 温度对磁滞回线的影响:通过实验我们可以发现,当样品的温度升高时,磁滞回线会发生变化。
温度升高会导致材料的热运动增大,磁矩的定向较难实现,因此磁滞回线会变宽,矫顽力会减小。
磁滞回线实验报告
![磁滞回线实验报告](https://img.taocdn.com/s3/m/bdbb3e582379168884868762caaedd3383c4b5f5.png)
磁滞回线实验报告磁滞回线实验报告实验目的:研究磁材料的磁滞回线特性。
实验仪器:霍尔效应测量仪、磁感应强度计。
实验原理:磁滞回线是用来描述磁材料磁化与去磁化过程中磁感应强度的关系曲线。
磁滞回线曲线实际上是由两条曲线组成,即磁化过程中的上升曲线和去磁化过程中的下降曲线。
磁滞回线可以显示出材料的磁滞现象,即材料在外加磁场作用下,磁化和去磁化过程中会有一定的延迟和残留磁化。
实验步骤:1. 将磁材料样品放在实验台上,与霍尔效应测量仪和磁感应强度计连接好。
2. 通过调节霍尔效应测量仪的控制面板上的控制钮,可以控制外加磁场的强度和方向。
3. 先将外加磁场值设为零,记录此时的磁感应强度为零磁场磁感应强度。
4. 调节霍尔效应测量仪的控制面板,增加外加磁场的强度,然后记录此时的磁感应强度。
5. 不断增加外加磁场的强度,记录相应的磁感应强度值。
6. 将外加磁场的方向改变,使其减小逐渐降低,直到减小到零,记录下相应的磁感应强度。
7. 所得到的数据可以用来绘制磁滞回线。
实验结果:根据实验得到的数据,绘制出磁滞回线图。
磁滞回线图是一条闭合曲线,上半部分表示样品在外加磁场作用下的磁化过程,下半部分表示去磁化过程。
磁滞回线的形状和特征可以反映出材料的磁性质。
实验分析:根据磁滞回线图可以看出,磁材料在外加磁场作用下,会出现一定的延迟和残留磁化。
这是由于磁材料内部存在磁畴,外加磁场作用下,磁畴的磁化过程会有一定的惯性,即需要一定的时间才能完成磁化或去磁化过程。
在外加磁场取消后,由于磁材料内部的磁畴之间的相互作用,会导致一部分磁化无法完全去除,从而产生残留磁化。
结论:磁滞回线实验可以研究磁材料的磁滞现象,了解材料的磁性质。
通过磁滞回线分析,可以了解磁材料的磁化和去磁化过程中的特点,为磁材料的应用提供参考。
合工大磁滞回线实验报告
![合工大磁滞回线实验报告](https://img.taocdn.com/s3/m/a201bb0dff4733687e21af45b307e87101f6f831.png)
合工大磁滞回线实验报告合工大磁滞回线实验报告引言:磁滞回线是描述磁性材料在外加磁场作用下磁化行为的重要参数。
本次实验旨在通过测量磁场强度与材料磁化强度之间的关系,绘制出磁滞回线图,并分析材料的磁化特性。
实验装置与方法:本次实验使用了一台磁滞回线测量仪,该仪器能够测量磁场强度和材料的磁化强度。
首先,将待测材料放置在测量仪器中心的磁场线圈中,然后通过调节电流大小,改变磁场强度。
在每个磁场强度下,测量相应的磁化强度,并记录数据。
最后,根据测得的数据,绘制出磁滞回线图。
实验结果与分析:根据实验数据,我们绘制了磁滞回线图。
在图中,横轴表示磁场强度,纵轴表示材料的磁化强度。
通过观察磁滞回线图,我们可以得到以下结论:1. 饱和磁化强度:磁滞回线图中的最大磁化强度即为材料的饱和磁化强度。
通过测量,我们可以得到该材料的饱和磁化强度为XXX。
2. 矫顽力:磁滞回线图中的矫顽力代表了磁场从饱和状态回到无磁化状态时所需的磁场强度。
通过测量,我们可以得到该材料的矫顽力为XXX。
3. 磁滞损耗:磁滞回线图中的磁滞损耗反映了材料在磁化和去磁化过程中的能量损耗。
通过测量,我们可以得到该材料的磁滞损耗为XXX。
4. 磁滞回线形状:磁滞回线图的形状与材料的磁化特性密切相关。
在我们的实验中,观察到磁滞回线图呈现出典型的S形,表明该材料具有良好的磁化特性。
结论:通过本次实验,我们成功绘制了合工大磁滞回线图,并分析了材料的磁化特性。
磁滞回线图提供了材料磁化行为的重要参数,对于材料的磁性研究具有重要意义。
在今后的研究中,我们可以通过改变材料的成分和结构来调控磁滞回线的形状和特性,以满足不同领域的应用需求。
参考文献:[1] XXX. 磁滞回线实验报告[M]. XX出版社, 20XX.[2] XXX. 磁滞回线测量原理与方法[J]. 物理实验, 20XX(1): 1-10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁滞回线研究
班级 姓名 学号
一、 实验目的:a. 研究磁性材料的动态磁滞回线;
a) b.了解采用示波器测动态磁滞回线的原理;
b) c. 利用作图法测定磁性材料的饱和磁感应强度B,磁场强度H
二、 实验仪器:普通型磁滞回线实验仪DH 4516。
实验原理:当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。
曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。
当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。
材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。
当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r 称为剩余磁感应强度。
要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。
为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。
1 .示波器测量磁滞回线的原理
图2.3.2-2所示为示波器测动态磁滞回线的原理电路。
将样品制
成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所
谓的罗兰环。
交流电压u 加在磁化线圈上,R 1为取样电阻,其两端的电压u 1加到示波器的x 轴输入端上。
副线圈N 2与电阻R 2和电容串联成一回路。
电容C 两端的电压u 加到示波器的y 输入端上。
(1)u x (x 轴输入)与磁场强度H 成正比,若样品的品均周长为l ,
磁化线圈的匝数为N 1,磁化电流为i 1(瞬时值),根据安培环路定理,有H l =N 1 i 1,而111i R u =,所以
H N l R u 1
11= (1) 由于式中R 1、l 和N 1皆为常数,因此,该式清楚地表明示波器荧光屏上电子束水平偏转的大小(u 1)与样品中的磁场强度(H )成正比。
(2)u C (y 轴输入)在一定条件下与磁感应强度B 成正比 设样品的截面积为S ,根据电磁感应定律,在匝数为N 2的副线圈中,感应电动势应为
dt
dB S N E 22-= (2) 此外,在副线圈回路中的电流为i 2且电容C 上的电量为q 时,又有
C
q i R E +=222 (3) 考虑到副线圈匝数N 2较小,因而自感电动势未加以考虑,同时,R 2与C 都做成足够大,使电容C 上的电压降(u c =q/C )比起电阻上的电压降R 2i 2小到可以忽略不计。
于是式(3)可
以近似的改写为
222i R E = (4) 将关系式dt
du C dt dq i c ==2代入式(4),得 dt du C
R E c 22= (5) 将上式与式(2)比较,不考虑其负号(在交流电中负号相当于相位差±π)时,应有
dt
du C R dt dB S N c 22= 将两式两边对时间积分,由于B 和u c 都是交变的,故积分常数为0。
整理后得
B C
R S N u c 22= (6) 由于N 2、S 、R 2和C 皆为常数,因此该式表明了示波器的荧光屏上竖直方向偏转的大小(u c )与此干起那股(B )成正比。
由此可见,在磁化电流变化的一周期内,示波器的光点将描绘出一条完整的磁滞回线,并在以后每个周期都重复此过程,这样在示波器的荧光屏上将看到一稳定的磁滞回线图线。
(3)测量标定
本实验不仅要求能用示波器显示出待测材料的动态磁滞回线,而且要能使用示波器定量
观察和分析磁滞回线。
因此,在实验中还需确定示波器荧光屏上x 轴(即H 轴)的每一小格实际代表多少磁场强度,y 轴(即B 轴)的每一小格实际代表多少磁感应强度,这就是测量标定问题。
1)x 轴(H 轴)标定 x 轴标定操作的目的是标定H 。
具体而言就是确定示波器荧光屏x 轴(即H 轴)的每一小格实际代表多少磁场强度。
由式(1)可见,若设法测出光点沿x 轴偏转的大小与电压u 1的关系,就可确定H 。
具体标定H 的线路图如图2.3.2-4所示。
其中交流电表A 用于测量ν0(请注意A 的指示是i 0的有效值I 0)。
调解I 0使荧光屏上水平线长度为M x 格,它对应于u 1且为峰峰值,即0122I R ,因此,每一小格所代表的u 1的值为x M I R /2201。
这样由式(1)就可知荧光屏每一小格所代表的磁场强度H 是
x
lM I N H 01022 (7)
值得注意的是,标定线路中应将被测样品去掉,而代之以一纯电阻R 0。
这主要是因为被测样品室铁磁材料,它的B 和H 的关系是非线性的,从而使电路中的电流产生非正弦形畸变。
R 0起限流作用,标定操作中应使I 0不超过R 0允许的电流。
2)y 轴(B 轴)标定
y 轴标定操作的目的是标定B ,具体而言就是确定y 轴(B 轴)的每一小格实际代表多少磁感应强度。
具体标定B 的线路如图2.3.2-5所示。
图中M 是一个标准互感器。
流经互感器原边的瞬时电流为i 0,则互感器副边中的感应电动势E 0为
dt
di M E 00-= 类似于式(5),又有
dt
du C R dt di M c 20= 对上式两边积分,可得
C
R Mi u c 20= (8) 由于A 测出的是i 0的有效值I 0,所以对应于u c 的有效值U C ,有
C R MI U C 20/= 而相应的峰峰值为C R MI 20/22。
若此时对应u c 峰峰值的垂直线总长主度为M y ,则根据(6)可得,y 轴每一小格所代表的磁感应强度为
y
SM N MI B 20022= (9) 应注意实验中,不要使I 0超过互感器所允许的额定电流值。
四、实验步骤:1.仪器的调节
按图2.3.2-3所示线路接线,调节示波器,使光点调至荧光屏正中心。
调节调压变压器,从零开始逐步增大磁化电流,使磁滞回线上的B 值能达到饱和。
示波器的x 、y 轴衰减置“1”挡,可适当调整x 、y 的增幅,使荧光屏上得到大小适中的磁滞回线。
记住此时磁化电流I 的大小。
2.量动态磁滞回线
(1).样品退磁,把调压器的输出电压从最大值缓慢调至零,样品
即被退磁。
(2).将电流调至I ,以每小格为单位测若干组B 、H 的坐标值。
记
住回线顶点(A )、剩磁(B r )、矫顽力(H c )三个点的读数(注意此后,示波器的x 轴增幅,y 轴增幅绝对不要改变,以便进行H 、B 标定)。
(3).标定H 和B ,分别按图2.3.2-4、图2.3.2-5接线。
(4).测磁化曲线,即测量大小不同的各个磁滞回线的顶点的连接。
(5).改变磁化电流的频率,观察磁滞回线的变化规律。
五、注意事项:
1.不要使I 0超过互感器所允许的额定电流值。
2. 在测量前必须进行退磁,以消除样品中的剩余磁性。
六、总结分析:
1. x 轴标定操作的目的是标定H 。
每一小格所代表的磁场强度是
x
lM I N H 01022= 2. y 轴标定操作的目的是标定B ,y 轴每一小格所代表的磁感应强度为
y SM N MI B 20022=。