等式的基本性质练习题#(精选.)
(新课标)华东师大版七年级数学下册《等式的性质》同步练习题
2017-2018学年(新课标)华东师大版七年级下册第1课时 等式的基本性质1.由等式3a -5=2a +6得到a =11的变形是( )A .等式两边都除以3B .等式两边都加上5C .等式两边都加上(2a -5)D .等式两边都减去(2a -5)2.下列等式变形不正确的是( )A .若4x =5x +2,则x =2B .若6x =5x -2,则x =-2C. 若3x =x +4,则2x =4D .若x -3=5,则x =83.若m +2n =p +2n ,则m =____,依据是__________________,它是将等式的两边都________.4.把方程12x =1变形为x =2,其依据是( )A.等式的基本性质1 B.等式的基本性质2 C.乘法的交换律D.加法的结合律5.下列运用等式的性质对等式进行变形,正确的是( )A.由-x4=0,得x=4 B.由-12x=-14,得x=12C.由-2x=6,得x=3 D.由3x=2,得x=3 26.下列变形正确的是( )A.若ac=bc,则a=b B.若2x=3,则x=2 3C.若x=2,则x2=2x D.若2x=-2x,则2=-2 7.从等式ac=bc变形得到a=b,则c必须满足条件________.8.下列根据等式的性质变形正确的是( )A.由-13x=23y,得x=2y B.由3x-2=2x+2,得x=4C.由2x-3=3x,得x=3 D.由3x-5=7,得3x=7-5 9.下列判断错误的是( )A.若a=3,则a-3=0B.若a=b,则ac=bc C.若2x=3y,则2x+y=4yD.若3x=5y,则x3=y510.已知a=b,则下列等式不成立的是( )A.a+1=b+1 B.a5+4=b5+4C.-4a-1=-1-4b D.1-2a=2b-1 11.根据等式的性质,下列变形正确的是( ) A.若x=y,则x-5=y+5B.若a=b,则ac-1=bc-1C.若ac=bc,则2a=2bD.若x=y,则xa2=ya212.已知等式3a=2b+5,则下列等式中不一定成立的是( ) A.3a-5=2b B.3a+1=2b+6C.3ac=2bc+5 D.a=23b+5313.下列说法正确的是( )A .在等式ab =ac 的两边同时除以a ,可得b =cB .在等式a =b 的两边同时除以c 2+1,可得a c 2+1=b c 2+1 C .在等式b a =c a的两边同时除以a ,可得b =c D .在等式x -2=6的两边同时加2,可得x =614.已知x =y ≠-12,且xy ≠0.下列各式:①x -3=y -3;②5x =y 5;③x 2y +1=y 2x +1;④2x +2y =0.其中一定正确的有( ) A .1个 B .2个 C .3个 D .4个15.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明是根据等式的哪一条性质变形得到的.(1)如果-x 10=y 5,那么x =_______,根据___________________; (2)如果23x =4-13x ,那么x =____,根据______________________. 16.在横线上填上适当的数或式子:(1)如果a +3=b -1,那么a +4=_____;(2)如果14x =3,那么x =________. 17.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量.如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与____个砝码C 的质量18.观察下列变形:∵x =1, ①∴3x -2x =3-2, ②∴3x -3=2x -2, ③∴3(x -1)=2(x -1), ④∴3=2. ⑤(1)由②到③这一步是怎样变形的?(2)发生错误的变形是哪一步?其原因是什么?19.利用等式的性质求值.(1)已知x2-x-6=0,求3x2-3x的值;(2)已知x-2=3-y,求x+y的值;(3)已知2x2-3=5,求x2+3的值.20.已知2x+3y=3x+2y+1,试比较x和y的大小.21.能不能由(a+3)x=b-1得到x=b-1a+3,为什么?反之,能不能由x=b-1a+3得到(a+3)x=b-1?。
《等式的性质》练习题
《等式的性质》练习题一、选择题1、根据等式的性质,下列哪个选项是不正确的?A.若 a = b,则 a + c = b + cB.若 a = b,则 ac = bcC.若 a = b,则 a - c = b - cD.若 a = b,则 ac = bc2、根据等式的性质,下列哪个选项不能由给出的等式推导出来?A.若 2x = 4y,则 x = 2yB.若 x + 3 = y + 3,则 x = yC.若 x2 = y2,则 x = y或 x = -yD.若 x + 5 = y - 3,则 x = y - 83、根据等式的性质,下列哪个选项是正确的?A.若 a = b,则 a2 = b2B.若 a = b,则 a3 = b3C.若 a = b,则 a4 = b4D.若 a = b,则 a5 = b5二、填空题1、若 3x = 9,则 x = ______。
2、若 5y + 2 = 12,则 y = ______。
3、若 -4x = -16,则 x = ______。
4、若 0.5x - 3 = 1,则 x = ______。
三、解答题1、根据等式的性质,解答下列问题:如果 4x + 6 = 10,那么 x的值是多少?2、根据等式的性质,解答下列问题:如果 3x - 7 = 16,那么 x的值是多少?《等式的基本性质》教案【教学目标】1、通过对等式的性质的探究,使学生能够理解并掌握等式的基本性质。
2、学会运用等式的基本性质进行等式的变形。
3、培养学生观察、实验、猜想、验证等探究能力。
【教学重难点】1、重点:探究等式的基本性质。
2、难点:运用等式的基本性质进行等式的变形。
【教具准备】多媒体课件、小黑板【教学过程】一、导入新课,揭示课题1、导入新课:利用天平图示,让学生观察天平两端同时加上或减去同样的重物,天平会怎样?同时向两个相反方向移动同样的距离,天平又会怎样?出示两组数据,分别列出等式并填空。
学生思考回答后,教师及时评价,引出课题。
五年级下数学课件-等式的性质-苏教
传递性定义:如果a=b, b=c,那么a=c
应用实例:在解方程、解不 等式、解几何问题时经常用
到
注意事项:在证明过程中要 注意逻辑的严密性和推理的
准确性
证明等式的可加性
等式性质:等式两边同时加上或减去同一个数,等式仍然成立
证明方法:通过举例子、画图等方式,直观地展示等式两边同时加上或减去同一个数后 的结果
应用实例:例如,a=b,a+c=b+c,a-c=b-c
注意事项:在证明过程中,要注意等式两边的数必须相等,否则等式不成立
证明等式的可乘性
等式性质:等式两边同时乘以同一个数,等式仍然成立
证明方法:通过举例子、画图等方式,让学生理解等式的可乘性
应用实例:例如,2x=4,两边同时乘以3,得到6x=12,等式仍然成立
解不等式:解 不等式是等式 的性质练习题 中较难的题型, 需要掌握不等 式的基本性质 和求解方法。
解方程组:解 方程组是等式 的性质练习题 中较难的题型, 需要掌握方程 组的基本性质 和求解方法。
解不等式组: 解不等式组是 等式的性质练 习题中较难的 题型,需要掌 握不等式组的 基本性质和求
解方法。
等式性质4:等 式两边同时乘 (或除以)同一 个数或式子,结 果仍为等式。
等式性质的应用场景
解方程:利用等式性质解方程,如x+2=4,可以得出x=2 证明不等式:利用等式性质证明不等式,如a>b,可以得出a+c>b+c 解不等式:利用等式性质解不等式,如a>b,可以得出a+c>b+c 解应用题:利用等式性质解应用题,如x+2=4,可以得出x=2
YOUR LOGO
新人教版五年级数学上册第五单元等式的性质及练习十四
题目:解方程: 3x-4=10
题目:根据等式 的性质填空:如 果a+3=b+5, 那么a-b=()
易错题解析
判断等式是否成立,并说明理由 根据等式的性质,将等式变形 求解等式中的未知数 利用等式的性质解决实际问题
等式性质的实际应用
第四章
生活中的等式
购物时计算找零:利用等式性质进行货币计算,确保找零正确。
● 题目:一个正方形的边长是4厘米,它的周长是多少厘米? 答案:16厘米 解析:根据正方形的周长公式,周长 = 4 × 边长,我们 可以直接计算出正方形的周长。 ● 答案:16厘米 ● 解析:根据正方形的周长公式,周长 = 4 × 边长,我们可以直接计算出正方形的周长。
等式性质的总结与回顾
第五章
本单元的重点与难点
解决实际问题的方法与步骤
理解问题:明确问题的要求和条件,理解问题的本质。 建立等式:根据问题的实际情况,建立相应的等式关系。 求解等式:通过等式的性质,求解等式中的未知数或未知量。 验证答案:将求解得到的答案代入原问题中进行验证,确保答案的正确性。
实际问题的答案与解析
● 题目:一本书有100页,第一天看了10页,第二天看了20页,第三天看了30页,还剩多少页没看? 答案:100 - (10 + 20 + 30) = 40页 解析:根据题目,我们可以先计算出已经看过的页数,然后从总页数中减去已看过的页数,即可得到还剩多少页没看。 ● 答案:100 - (10 + 20 + 30) = 40页 ● 解析:根据题目,我们可以先计算出已经看过的页数,然后从总页数中减去已看过的页数,即可得到还剩多少页没看。
制作比例模型:在建筑、工程和设计中,利用等式性质制作比例模型,以实现精确的测量和 规划。
九江市第一中学七年级数学上册第三单元《一元一次方程》-解答题专项经典练习题
一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案. 试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元). 答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 3.解下列方程: (1)15(x +15)=1231-(x -7).(2)2110121364x x x -++-=-1. 解析:(1)x =-516;(2)x =16. 【分析】(1)直接根据解一元一次方程的步骤进行即可; (2)直接根据解一元一次方程的步骤进行即可. 【详解】解:(1)15(x +15)=1231-(x -7).去分母,得6(x +15)=15-10(x -7). 去括号,得6x +90=15-10x +70. 移项及合并同类项,得16x =-5.系数化为1,得x =-516.(2)2110121364x x x -++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.4.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x +1-1 所以x =1. (3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=- 解析:(1)10m =;(2)5x = 【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解; (2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解. 【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+ 6m 60-=- m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--) 6x 4x 1236x 7+-=-+11x 55= x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤. 7.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x的一元一次方程,解方程即可求解.【详解】解:由题意得:21 - 2(5 - x)=7即21-10+2x=7x= 2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键.8.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.9.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时. 【分析】(1)根据1h 后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得; (2)根据2h 后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得; (3)可分相遇前与相遇后两种情况讨论即可解答. 【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h 后甲、乙间的距离=60-25×1-15×1=20海里; (2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时 则12=60-(25+15)t ,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t 1小时 则12+60=(25+15)t 1,求得t 1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时. 【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.10.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案. 【详解】解:设有x 个客人,则65234x x x++= 解得:x =60; ∴有60个客人. 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.12.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元? 解析:问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元. 【分析】(1)假设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题. 【详解】(1)设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据题意可得方程:4x+3(10-x )=36, 4x+30-3x=36, x=6,则从大连运往海南的有:10-6=4(台). 答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台), 剩下的这些都要运往厦门,所以需要的费用是: 6×8+2×5, =48+10, =58(万元), 36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元. 【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.13.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值.解析:a=1 【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可. 【详解】解:∵3(2)x x a -=-,解得:62ax -=; ∵223x a x a+-=, 解得:5x a =,∴65522aa-=-,解得:1a=;∴a的值为1.【点睛】本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a的值.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.考点:1.一元一次方程的应用;2.方案型.15.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.5第二档大于200且小于或等于450时,超出200的部分0.7第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?解析:(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x的一元一次方程.16.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?解析:(1)购进甲种水果65千克,乙种水果75千克;(2)获得的利润为495元.【分析】-千克,根据表格中的数据和意义列(1)设购进甲种水果x千克,则购进乙种水果(140)x出方程并解答;(2)总利润=甲的利润+乙的利润.【详解】解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000解得:x=65∴140﹣x=75;答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:获得的利润为495元.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)(l)乙车的速度是千米/小时,B、C两地的距离是千米,A、C两地的距离是千米;(2)甲车的速度是千米/小时;(3)这一天,乙车出发多长时间,两车相距200千米?解析:(1)80,180,200;(2)100(3)乙车出发1小时或11327小时,两车相距200千米【分析】(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C 地,这20分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.(2)根据A、C两地的距离和甲车到达服务区C地的时间可求出甲车的速度;(3)此题分为两种情况,未相遇和相遇以后相距200千米,据此根据题意列出符合题意得方程即可解答.【详解】解:(1)15分钟=14小时,2小时15分=94小时,20分钟=13小时乙车的速度为:20÷14=80(千米/小时);B、C两地的距离是:80×94=180(千米);A、C两地的距离是:380-180=200(千米);故答案为:80,180,200;(2)甲车的速度是:200÷2=100(千米/小时);故答案为:100;(3)设乙车出发x小时,两车相距200千米.由题意得,100x+80x+200=380或100(x-13)+80x=380+200解得:x=1或x=11 3 27答:乙车出发1小时或11327小时,两车相距200千米【点睛】本题主要考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?解析:(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.19.小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:(小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x.方程两边都乘以10,可得100.7⋅⨯=10x.由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x79=,即0.779⋅=.(小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!)请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.解析:①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析. 【分析】 ①设0. 73⋅⋅=m ,程两边都乘以100,转化为73+m=100m ,求出其解即可.②设0.432⋅=n ,程两边都乘以100,转化为43+0.2⋅=100n ,求出其解即可.【详解】解:①设0.73⋅⋅=m ,方程两边都乘以100,可得100×0.73⋅⋅=100m .由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n .∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】 本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.20.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?解析:(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.21.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.解析:(1)960件(2)28天(3)方案三【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可;(2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案.【详解】解:(1)设这批校服共有x 件. 由题意,得201624x x -=.解得960x =. 答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得 (1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天,费用为12(1080)28(10120)4720⨯++⨯+=(元).综上,方案三既省时又省钱.【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.22.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由;(2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?解析:(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 23.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?解析:(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样.【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可.【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元),交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元),交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算.(3)设这位商人住x 个月时,租两家的房子租金一样,根据题意,得120020001400x x +=.解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.24.在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?解析:3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x 盏灯.根据题意,得248163264381x x x x x x x ++++++=.解得3x =.答:塔的顶层有3盏灯.【点睛】。
不等式的基本性质-习题精选(一)
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。
2.1等式性质与不等式性质基础练习题
6.若实数 满足 ,则下列不等式正确的是()
A. B. C. D.
7.下列结论正确的是()
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 ,则
8.若 ,则下列四个数中最小的数是()
A. B. C. D.
9.下列说法不正确的是()
A.若 ,则 B.若 , ,则
C.若 ,则 D.若 ,则
【详解】
因为 ,所以 ,即 ,故C正确;
取 ,满足题意,此时 ,故A错误;
,故B错误; ,故D错误,
故选:C
4.C
【分析】
本题可根据题意以及 进行计算,即可得出结果.
【详解】
因为 , , ,
所以 , , ,
故 的取值范围是 ,
故选:C.
5.C
【分析】
利用不等式的性质逐一判断即可.
【详解】
若 ,
对于A, ,所以 ,故A不成立;
19.若 , ,求证: .
20.设 .
(1)当 时,比较 的大小;
(2)当 时,比较 的大小.
21.已知 ,比较 与 的大小.
22.已知 ,求证: .
参考答案
1.D
【分析】
根据不等式的性质逐一判断四个选项的正误即可得正确选项.
【详解】
对于选项A:当 时, ,故选项A不正确;
对于选项B:当 时, ,故选项B不正确;
15.a克糖水中含有b克塘( ),若在糖水中加入x克糖,则糖水变甜了.试根据这个事实提炼出一个不等式:______________.
16.设 , , ,则a,b,c之间的大小关系为__________
三、解答题
17.比较 与 的大小,其中 .范围.
(完整版)《不等式的基本性质》练习题
2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。
其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。
北师大版八年级数学下册不等式的基本性质同步练习题 (2)
2.3 不等式的解集1.下列数值中,是不等式x-2>2的一个解的是()A.0 B.2C.4 D.62.不等式x-3>1的解集是()A.x>2 B.x>4C.x>-2 D.x>-43.下列不等式中,不含有x=-1这个解的是()A.2x+1≤-3 B.2x-1≥-3 C.-2x+1≥3 D.-2x-1≤3 4.不等式3x<6的解集是;使该不等式成立的正整数解是,当时,不等式3x>7不成立.5.根据已知条件写出相应不等式.(1)-3,-2,-1,0,1都是不等式的解;(2)不等式的负整数解只有-1,-2,-3;(3)不等式的解的最大的值是0.6.对于解不等式-2x3>32,正确的结果是()A.x<-94B.x>-94C.x>-1 D.x<-17.若不等式(a-3)x>1的解集为x<1a-3,则a的取值范围是.8.根据不等式的基本性质,求出下列不等式的解集.(1)12x >-3; (2)3x -6≤0; (3)-12x +6>0.9.在数轴上表示不等式x -1<0的解集,正确的是( )10.如图,在数轴上所表示的是哪一个不等式的解集( )A.12x >-1 B.x +32≥-3C .x +1≥-1D .-2x >411.将下列不等式的解集分别表示在数轴上: (1)x ≤2; (2)x >-2.12.用A 、B 两种型号的钢丝各两根分别作为长方形的长与宽,焊接成周长不小于2.4m 的长方形框架,已知每根A 型钢丝的长度比每根B 型钢丝长度的2倍少3cm.(1)设每根B型钢丝长为x cm,按题意列出不等式并求出它的解集;(2)如果每根B型钢丝长度有以下四种选择:30cm,40cm,41cm,45cm,那么哪些合适?13.请阅读求绝对值不等式|x|<3和|x|>3的解集的过程:因为|x|<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x|<3的解集是-3<x<3;因为|x|>3,从如图2所示的数轴上看:小于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为________;不等式|x|>a(a>0)的解集为________;(2)解不等式|x-5|<3;(3)解不等式|x-3|>5.答案:1. B2. D3. A4. x <2 1 x≤735. 解:(1)答案不唯一.如:x ≥-3 (2)答案不唯一.如:x >-4 (3)答案不唯一.如:x ≤06. A7. a <38. 解:(1)两边都乘以2,得x >-6.(2)两边都加上6,得3x ≤6.两边都除以3,得x ≤2. (3)两边都减去6,得-12x >-6.两边都除以-12,得x <12.9. C 10. C11. 解:(1)(2)12. 解:(1)2(2x -3)+2x ≥240,∴x ≥41 (2)41cm,45cm 合适 13. 解:(1)不等式|x |<a (a >0)的解集为-a <x <a ;不等式|x |>a (a >0)的解集为x >a 或x <-a ;(2)|x -5|<3,由(1)可知-3<x -5<3,∴2<x <8; (3)|x -3|>5,由(1)可知x -3>5或x -3<-5,∴x >8或x <-2.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..0.620.其中合理的是A.①②B.②③C.①③D.①②③6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23 B.12C.13D.498.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE ⊥BC垂足为E,则AE的长为A.8B.6013 C.12013D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程:(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-1218.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。
等式的性质 小学5年级数学练习
等式的性质闯关驿站1.在方程下面找到方程的解,并在□内画“√”。
x+45=100 x-20=90x=55□x=70□x=145□x=110□2.在〇里填运算符号,在()里填数。
(1)x+40=200解:x+40-()=200〇()x=()⑵x-0.7=1.7解:x-0.7+()=1.7〇()x=()3.解下列方程。
(1)x+13.2=15.8 (2)x-4.6=12.1(3)5.4+x=9 (4)x-30=64.5(5)3(x-0.8)=12 (6)36x+6x=844.看图列方程并解答。
(1)(2)(3)5.方程7.2+x=9与方程m-x=7.3(x为未知数)的解相等。
你能求出m等于多少吗?等式的性质考点题库1.(常考题)看图填空。
(1)x○50 x+( )○50+( )(2)x+20○70 x+20-( )○70-( )2.(重点题)如果a=b,根据等式性质填空。
(1)(2)(3)(4)等式的性质轻松十分一、按要求把下列式子的序号填放相应的圈里①4+6=10②3+8x=40③17-6x④x+5=8 ⑤9.2+3x=4 ⑥ x-17<34 ⑦ 0.5x=1⑧ 3.1+x>15.7 ⑨ x+15=45.2()2a b⨯=⨯()33a b÷=()13a b⨯=⨯()()()242a b+⨯=+⨯二、根据等式的性质,在○里填运算符号,在□里填数① x+32=56解:x+32○□=56○□x=□② 15+x=19.5解:15+x○□=19.5○□x=□③ x-18=22解:x-18○□=22○□x=□三、是方程的打“√”,不是的打“×”① 40+60=100()② x-17>70()③ 5+4x=15()④ x+30()⑤ 9<3x+5()⑥ 7x=0()⑦ 8+9x()⑧ 7x+3=8()⑨ 8x+5x=54()⑩ 6-x>1()等式的性质同步练习【基础训练】1.看图填空。
HK沪科版 七年级数学 上册 同步课堂练习题作业 第三章 一次方程与方程组(全章 分课时)
第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一元一次方程和等式的基本性质一、选择题:1、下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.2、下列说法错误的是( ).A .若ay a x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6. 3、知等式ax=ay,下列变形不正确的是( ). A .x=yB .ax+1= ay+1C .ay=axD .3-ax=3-ay4、列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;5、等式2-31-x =1变形,应得( ) A .6-x+1=3B .6-x-1=3C .2-x+1=3D .2-x-1=3 6、在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( ) A .2cm B .5cmC .4cmD .1cm 7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ).A .a,b 为任意有理数B .a ≠0C .b ≠0D .b ≠38、方程12-x =4x+5的解是( ).A .x=-3或x=-32 B .x=3或x=32 C .x=-32 D .x=-39、下列方程①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2C.3D.4 10.若ax +b=0为一元一次方程,则__________.11.当=m 时,关于字母x 的方程0112=--m x是一元一次方程. 12. 6.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .13.用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x _________3,123=--=那么x x ;(3)如果;__________x ,521==那么x (4)如果________.3x ,32==那么y x 14.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x第2课时 利用移项解一元一次方程一、填空题1.如果,那么 .2.若代数式3(x-1)与(x-2)是互为相反数,则x=____________.3.已知方程①3x -1=2x +1 ②x x =-123 ③23231-=+xx ④413743127+-=++x x 中,解为x=2的是方程 . 4.若342=x 与x a a x 5)(3-=+有相同的解,那么_____. 5.已知2(a-b)=7,则5b-5a=__________.二、选择题6.下列各题的“移项”正确的是( )A. 由2x=3y-1得-1=3y+2xB. 由6x+4=3-x 得6x+x=3+4C. 由8-x+4x=7得-x+4x=-7-8D. 由x+9=3x-7得x-3x=-7-9.7.要是方程ax=b 的解为x=1,必须满足( )A. a=bB. a ≠0C.b ≠0 D a=b ≠0.三、解答题8.哥哥有存款300元,弟弟有存款120元,若从下月起哥哥每月存款100元,弟弟每月存款120元,那么几个月后两人的存款数相等?9.为了改善某边防中队的生活质量,我解放军后勤机关调拨一批水果,若每名军人3个水 果,则剩余20个水果;若每名军人4个水果,则还少25个水果,问有多少名军人? 多少 个水果?10.解方程:(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11-6x;(4)3x-4+2x=4x-3; (5)10y+7=12y-5-3y;(6)12x-1.5=3.5-13x; (7)20x·20%-3=50×30%+40x.3.1 一元一次方程及其解法第3课时 去括号解一元一次方程(一)选择题1.方程4(2-x )-4(x+1)=60的解是( )(A)7. (B) 76. (C) -76. (D)-7.` 2.下列方程的解法中,去括号正确的是( )(A) ,则. (B),则. (C),则. (D),则. (二)填空题3.当a=______时,方程的解等于.(三)解方程11. (x+1)-2(x-1)=1-3x12.2(x-2)-6(x-1)=3(1-x)第4课时 去分母解一元一次方程A 组(1)2x =3x-1 1512 (2)=-+x x(3)310.40.342x x -=+ (4)112[(1)](1)223x x x --=-((5)35.012.02=+--x x (6)43(1)323322x x ⎡⎤---=⎢⎥⎣⎦B 组(1)1111248x x x x -=++ (2) 12542.13-=-x x(3) x x -=+38 (4) 2x -13 =x+22 +1(5)3142125x x -+=- (6)31257243y y +-=-(7) 124362x x x -+--= (8) 301.032.01=+-+x xx x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- x x 3221221413223=-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+3.2一元一次方程的应用第1课时 等积变形和行程问题1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?2、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
(完整word版)不等式的基本性质__习题精选(一)
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a 〉b ,那么 a+c____b+c , a -c____b -c . 不等式的基本性质2:如果a 〉b,并且c 〉0,那么ac_____bc . 不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc . 2.设a 〈b ,用“〈"或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b 2.3.根据不等式的基本性质,用“<"或“〉"填空.(1)若a -1〉b -1,则a____b ;(2)若a+3〉b+3,则a____b ;(3)若2a>2b ,则a____b ; (4)若-2a>-2b ,则a___b .4.若a 〉b ,m<0,n>0,用“〉”或“〈"填空.(1)a+m____b+m;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ; 5.下列说法不正确的是( )A .若a 〉b,则ac 2>bc 2(c 0)B .若a 〉b ,则b 〈aC .若a>b ,则-a 〉-b D .若a>b ,b 〉c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x 〉a 或x>a 的形式: (1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x 〉4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A .bc 〉abB .ac>abC .bc 〈abD .c+b 〉a+b8.已知关于x的不等式(1-a)x〉2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是( ) A.3b〈p<3a B.a+2b〈p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m〉n,且am<an,则a的取值应满足条件( )A.a〉0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是( )A.由4x-1〉2,得4x>1 B.由5x〉3,得x〉35 C.由x2>0,得x〉2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a〉6a进行争论,甲说:“7a>6a正确",乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3〈k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x〉10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x〉4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x〉4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x〉a或x<a的形式:(1)1x2〉-3;(2)-2x〈6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的? [开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m〈n<0,那么下列结论中错误的是()A.m-9〈n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a〉b B.ab>0 C.ab〉0 D.-a〉-b[奥赛赏析]24.要使不等式…〈753246a<a<a<a<a<a<a〈…成立,有理数a的取值范围是()A.0〈a〈1 B.a〈-1 C.-1<a<0 D.a〉1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)〈3.(1)>(2)>(3)〉(4)<4.(1)>(2)〉(3)<(4)〉(5)〈(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3〉1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x〈32;(3)3x<1+2x,3x-2x〈1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x〉4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2〉bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a 为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a〉6a,②当a〈0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1〈x+y〈2点拨:两方程两边相加得3(x+y)=k.3<k〈6,即3<3(x+y)<6,∴1〈x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x〈4x-6,2x-4x<4x-6-4x,-2x〈-6,-2x-6>-2-2,x〉3.解法2:2x+5〈4x-1,2x+5-2x〈4x-1-2x,5+1〈2x-1+1,6<2x,62x<22,3〈x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c〉b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x〉10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1⨯0.85)≈28(本).30>28,故小明最多哥买30本.18.解:(1)a,b是有理数,若a〉b>0,则22a>b(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a〉0时,5a>4a〉0;当a=0时,5a=4a=0;当a<0时,5a〈4a〈0.20.解:这里的变形与方程中的“将未知数的系数化为1"相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b〈0时,a+b<a-b.22.C 23.D24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246a<a<a<0…,则这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
等式与方程练习题及答案
等式与方程练习题及答案小学六年级数学《等式与方程》练习题一、填一填1、妈妈给明明a元,明明买了m个笔记本,还剩b 元,每个笔记本元?2、一块长方形花坛的面积是120平方米,长x米,宽米?3、三年级植树68棵,六年级比三年级多植x棵,那么68+x表示。
4、甲乙两人分别从两地相向而行,七小时后相遇,甲每小时行x千米,乙每小时行y千米,两地相距千米.5、当x= 时,二、判断。
对的在括里面打“√”,错的在括号里面打“×”。
1、含有未知数的式子叫方程。
2、x=9是方程。
3、方程一定是等式。
4、a是自然数则2a+1一定是奇数。
5、5与6的平方和写作2。
6、m的2倍与n的差写成式子是2m-n,这个式子是方程。
7、x+x=x。
8、72-5x=47的解是5。
9、一项工程,甲队单独做需要m小时,乙队单独做需要n小时,如果两队合作,完成任务需要的时间是7小时,那么t=1。
三、选择。
将正确答案的序号填在括号里。
1、M表示。
A、m的2倍。
B、2个m相乘。
C、m+m2、下面的式子中是方程。
A、6x-1 B、3x+8﹥20C、81-X=723、X的1/2比36的2/3少10列出的方程是。
A、1/2x-36×2/ B、36×2/3+10=1/2X C、1/2X+10=36×2/34、甲数是a,比乙数的2倍多b,表示乙数的式子是。
A、÷ B、÷2C、2/a-b四、解方程。
X/5=25%3x+2/3x=145=41/18+1/5x=1/4×2/9五、列方程解文字题。
1、有一个数,它的1.5倍与34的和得109,这个数是多少?2、一个数的5倍是8的1.5倍,求这个数。
3、一个数的7/10比15的2/3多12求这个数。
六、解决问题。
1、六年级三个班共有51人,一班的人数是二班的3/4,三班的人数是二班的4/5,这三个班里各有多少人?2、水果商店原来有水果1500千克,其中苹果占总数的25%后来又购进一些苹果,这时苹果占水果总数的40%,后来又购进多?3eud教育网 http:// 教学资源集散地。
七年级数学上册等式的性质练习题
七年级数学上册等式的性质练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知x =y ,下列变形错误的是( )A .x +a =y+aB .x -a =y -aC .2x =2yD .x y a a= 2.点B ,C ,D 是线段AE 上的点,AB ,BC ,CD ,CE 的长如图所示,若D 为线段AE 的中点,则下列结论正确的是( )A .a b =B .2a b =C .3a b =D . 1.5a b =3.已知等式342m n =+,则下列等式中不一定成立的是( )A .423n m m =+B .3244m n +=+C .324m n -=D .4233m n =+ 4.解方程()()()235131x x x +--=-,下列去括号正确的是( )A .265533x x x +-+=-B .23533x x x +-+=-C .265533x x x +--=-D .23531x x x +-+=-5.若有理数a ,b 在数轴上的位置如图所示,则下列式子中成立的是( )A .a b >B .0a b +>C .0a b ->D .a b >6.设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-二、填空题7.如图,框图表示解这个方程的流程:其中,“移项”这一步骤的依据是________,“合并同类项”这一步骤的依据是________,“系数化为1”这一步骤的依据是________.8.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e =,8 abcde f=,则222222a b c d e f +++++=________. 9.如果有理数m 、n 满足0m ≠,且20m n +=,则2n m ⎛⎫-= ⎪⎝⎭________三、解答题10.列等式表示:(1)比a 大5的数等于8;(2)b 的三分之一等于9;(3)x 的2倍与10的和等于18;(4)x 的三分之一减y 的差等于6;(5)比a 的3倍大5的数等于a 的4倍;(6)比b 的一半小7的数等于a 与b 的和.11.根据问题,设未知数,列出方程:用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元? 12.一条东西方向的道路上有A ,B 两点,现有出租车从A 点出发,在这条路道路上进行往返运动,以该道路为直线建立数轴(向东为正,1千米为1个单位长度).点A ,B 分别表示-8,10,将出租车在数轴上的位置记为点C ,每次运动的位置变化记录如下(x >0):(1)第一次运动后点C 在数轴上所表示的数为 ,第二次运动方向为 (填“向东”或“向西”).(2)若经过前三次运动,点C 恰好与点B 重合.①求x 的值.①点C这四次一共运动了多少千米的路程?参考答案:1.D【分析】根据等式的性质逐项分析判断即可【详解】解:A.x y =,∴ x +a =y+a ,故该选项正确,不符合题意;B.x y = ,∴x -a =y -a ,故该选项正确,不符合题意;C.x y =,∴ 2x =2y ,故该选项正确,不符合题意;D. x y =,当0a ≠时,x y a a=,故该选项不正确,符合题意; 故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.2.B【分析】根据D 是AE 的中点,得出AD ED =,据此列出等式计算找出a 与b 的关系即可.【详解】解:D 是AE 的中点,AD ED ∴=, =AD AB BC CD ++,DE CE CD =-,AB BC CD CE CD ∴++=-,23323a b a b a b a b ∴++-=--+,2a b ∴=.故选:B .【点睛】本题考查了线段的中点、线段的和差和整式的加减,要牢固地掌握这些知识点,会用线段和差与线段中点解决a 与b 的关系是解题关键.3.A【分析】根据等式的性质进行逐一判断即可.【详解】解:A 、当0m =时,等式423n m m=+无意义,故此选项符合题意; B 、由342m n =+可以得到3244m n +=+,故此选项不符合题意;C 、由342m n =+可以得到324m n -=,故此选项不符合题意;D 、由342m n =+可以得到4233m n =+,故此选项不符合题意. 故选A .【点睛】本题主要考查了等式的性质,熟知等式的性质是解题的关键.4.A【分析】根据去括号法则,对方程进行去括号,即可得到答案.【详解】解:去括号得:265533x x x +-+=-,故选:A .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.D 【分析】根据数轴先判断101,,a b a b <-<<从而可得,0,0,a b a b a b 从而可得答案.【详解】解:①101,a b a b <-<<,①,0,0a b a b a b <+<-<,①A ,B ,C 不符合题意,D 符合题意;故选D.【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法与减法的结果的符号确定,理解有理数的加减运算中的符号确定法则是解本题的关键.6.D【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误; B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误; C .4()a b b c -=-整理可得1455b a c =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确; 故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.7. 等式的基本性质1 合并同类项法则 等式的基本性质2【分析】利用等式的性质及合并同类项法则判断即可.【详解】解:“移项”这一步骤的依据是等式的基本性质1,“合并同类项”这一步骤的依据是合并同类项法则,“系数化为1”这一步骤的依据是等式的基本性质2.故答案为:等式的基本性质1;合并同类项法则;等式的基本性质2.【点睛】此题考查了解一元一次方程,熟练掌握等式的性质以及合并同类项法则是解本题的关键. 8.1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】解:由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得:()51abcdef abcdef =,①1abcdef =,2112bcdef a a a a ⋅==⋅, ①22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ①2222221198a b c d e f +++++=; 故答案为1198. 【点睛】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键.9.14- 【分析】先根据20m n +=得出2m n =-,然后代入2n m ⎛⎫- ⎪⎝⎭求值即可. 【详解】解:20m n +=, ①2m n =-, ①22211224m n m m ⎛⎫- ⎪⎛⎫⎛⎫-=-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭. 故答案为:14-. 【点睛】本题主要考查了代数式求值,根据m 、n 的等式,用m 表示出n ,是解题的关键.10.(1)58a +=;(2)193b =;(3)21018x +=;(4)163x y -=;(5)354a a +=;(6)172b a b -=+ 【分析】(1)比a 大5时,是加法算式,(2)b 的三分之一是13b , (3)x 的2倍是2x ,(4)x 的三分之一是13x , (5)a 的3倍是3a ,(6)b 的一半是12b .【详解】(1)依题意得a +5=8,(2)依题意得13b =9, (3)依题意得2x +10=18,(4)依题意得13x -y =6 (5)依题意得3a +5=4a ,(6)依题意得12b -7=a +b .【点睛】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.11.设大水杯的单价为x 元,()10155x x =-.【分析】可设大水杯的单价为x 元,则小水杯的单价为()5x -元,根据等量关系:买10个大水杯的钱,可以买15个小水杯,列出方程求解即可.【详解】解:设大水杯的单价为x 元,则小水杯的单价为()5x -元,依题意有 ()10155x x =-.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.12.(1)-11,向西(2)①9x =①55【分析】(1)根据有理数的加法列式计算,由于正数和负数表示一对相反意义的量,向东为正,则向西为负,即可解答;(2)①根据这几个数的和为10,建立方程求解即可;①点C 运动的路程为这几个数的绝对值之和,把①的结果代入式中计算即可.(1)解:第一次运动后点C 在数轴上所表示的数为:8(3)11-+-=-,①0x >,①0x -<,①向西运动.故答案为:-11,向西;(2)①根据题意,列得方程 ()()()833310x x -+-+-++=,解得9x =;①根据题意,可列式:3334x x x -+-+++--=3939394-+-+⨯++--=3+9+30+13=55,即这四次一共运动了55千米的路程.【点睛】本题主要考查了数轴、绝对值、有理数的加减运算以及一元一次方程的知识,理解题意,灵活运用所学知识是解题的关键.。
等式的基本性质练习题四
《等式的性质》习题(一)
1.等式的两边都加上(或减去)或,结果仍相等.
2.等式的两边都乘以,或除以的数,结果仍相等.
3.下列说法错误的是()
A.若则B.若,则
C .若则D.若则
4.下列结论正确的是()
A.若,则B.若,则
C.若,则D.若,则
5.等式的下列变形属于等式性质1的变形的是()
A.B.C.D.
6.如果,那么,根据是.
7.如果,那么=,根据是.
8.利用等式的性质解下列方程
(1);(2);
(3);(4).
9.若=2时,式子的值为6,则.
10.已知,试用等式的性质比较b与c的大小.
11.已知甲、乙两地相距30千米,小华骑自行车每小时45千米,小岗骑摩托车每小时15千米,请你根据以上条件提出一个问题,并运用等式的性质、解方程知识予以解答,你提出的问题是.
答案:
1.同一个数,同一个式子.
2.同一个数,同一个不能为0.
3.A.
4.C.
5.B.
6.3,等式的性质2.
7.4,等式的性质1.
8.(1);(2)x=2;(3);(4).
9.7.
10..
11.分别从甲乙两地同时出发几小时相遇?,.。
四年级下册数学扩展专题练习-应用题.列方程解应用题(B级).)
一、 等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。
三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式来表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.一、直接设未知数解应用题【例 1】 小军原有故事书的本数是小力的3倍,小军又买来7本书,小力买来6本书后,小军所有的书是小力的2倍,两人原来各有多少本书?【巩固】 丁丁和玲玲两人摘苹果,丁丁说:“把我摘的苹果给玲玲7个,玲玲摘的苹果的个数就是我的2倍.”玲玲说:“把我摘的苹果给丁丁7个,他的苹果个数就和我的一样多了.”问丁丁和玲玲各摘了多少个苹果?例题精讲知识框架列方程解应用题【例 2】五年级一班同学参加学校植树活动,派男、女生共12人去取树苗,男同学每人拿3棵,女同学每人拿2棵,正好全部取完;如果男、女生人数调换一下,则还差2棵不能取回.问:原来男、女生人数各是多少?【巩固】新学期开始,有一批新的教科书要分发到各位学生手中,这批教科书必须由一个小组的学生来搬,这批教科书如果由小组中的男生来搬,每人搬25本,那么还有15本没人搬,如果由小组中的女生来搬,每人搬20本,那么最后一名女生只需要搬10本.已知这个小组的学生一共有8人,求男、女生各有多少名?【例 3】六年级学生去秋游,要分成15个组,一部分由8人组成一个小组,另一部分由5个人组成一个小组,8人组成小组的总人数比5人组成小组的总人数多3人,求六年级共有多少名同学参加秋游?【巩固】一次考试,共15道题目,做对一题得8分,做错一题倒扣4分。
数学五年级上册《等式的性质》练习题(含答案)
【同步专练A 】5.2.2等式的性质(基础应用篇)一、单选题(共10题)1.如果x=y,根据等式的性质,可以得到的是( )。
A . 10x=10yB . x×2=y÷2C . 2x=x+2D . 2x=x+82.如果A =B ,根据等式的性质,将等式变换后,错误是()。
A . A ×4.5=B ×4.5 B . A -4-5=B ÷4×5C . A +8=B +12-4D . 3A+5=3B +53.如果x=y,根据等式的基本性质,经过变化后下面的()是错误的。
A . x÷B =y÷6(B ≠0) B . x+y=y+yC . x×3×5=15yD . x-y=y-4+34.x+3=y+5,那么x()y。
A . 大于B . 小于C . 等于D . 无法确定5.A +17=19+B ,比较A 与B 的大小,()A . A >B B . A <BC . A =BD .B ≠A6.若A +5=B -5,则A +10=()A .B +10 B . BC . B -57.如果甲×2.8=乙×3.9(甲数不等于0),则甲()乙.A . 大于B . 小于C . 等于8.如果x=y,根据等式的性质,经过变换后,下列等式错误的是()。
A . x-8=y-6+2B . x×2×3=6yC . x+8=y+10-2D . x÷B =y÷B (B ≠0)9.如果2m=6n,(m,n均不为0),那么m=()A . nB . 2nC . 3n10.A × =B ×(A 、B 都不为0),A ()B .A . >B . <C . =二、填空题(共10题)11.如果m=n,请根据等式的基本性质填空。
m-________=n-3.4 m×________=n×A12.等式的两边同时________或者________一个相同的数,等式仍然成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等式的基本性质随堂练习
一.试一试
在里填上运算符号,在里填上适当的数,使等式成立。
(1)3x=42 (2)5x=20
3x+9=42 5x-7=20 (3)x=80 (4)6x=90
3x=80 x=90
二、应用等式的性质填空。
(1)x+94=300 (2)x-42=59
x+94-94=300 x-42+42 =59
x=x=
(3)4x=64 (4)x÷15=3 4x÷4=64÷x÷15×=3 x=x=三. 用方程表示下面的数量关系。
(2)x加上36等于52。
(3)x的4倍是32。
每个x元,共120元
《等式的性质》习题
一、基础过关
1、填空
(1)平衡的天平两边()同时扩大或缩小相同的()数,天平保持平衡。
(2)等式两边同时加上或减去(),()。
2、天平一端放有两袋1千克的白糖,另一端放油4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
二、综合训练
如果a=b,根据等式的性质填空,说说你是怎样想的。
a+3=b+()
a-()=b-c
a b=
b ()
a ()=
b 10
三、拓展应用
利用等式的性质填空
(1)如果2x-5=9,那么2x=9+()
(2)如果5=10+x,那么x-()=10
(3)如果3x=7,那么6x=()
(4)如果5x=15,那么x=()
(5)
(6)最新文件仅供参考已改成word文本。
方便更改如有侵权请联系网站删除(7)。