最新部编版人教数学七上《4.2 第2课时 线段长短的比较与运算 导学案及反思》精品

合集下载

数学《4.2.2 线段长短的比较与运算教学设计》

数学《4.2.2 线段长短的比较与运算教学设计》

4.2.2 线段长短的比较与运算观察图形,你能比较出每组图形中线段 a 和b 的长短吗?很多时候,眼见未必为实. 准确比较线段的长短还需要更加严谨的办法.作一条线段等于已知线段已知:线段a,作一条线段AB,使AB=a.第一步:用直尺画射线AF第二步:用圆规在射线AF 上截取AB = a.∴ 线段AB 为所求.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.(教师动画演示叠合的过程,呈现三种情况)设计意图在总结生活经验的基础上,引导学生归纳两人身高的比较方法以及需要注意的问题,再将方法迁移到“线段的长短比较”的数学问题中来,促进学生理解,锻炼学生几何语言的表达、概括能力,感受数学的严谨性,逐步培养学生用数学的眼光观察世界的能力,用数学的语言表达世界的能力.问题1 如图1(几何画板显示),当点C是线段AB 上一点时,图中有几条线段,它们的大小关系呢?生:有3条,分别是线段AC、CB、AB问题2:如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?答案:AB<ACAB+BC=ACAC-AB=BCAC-BC=AB师:如果点C在线段AB 上移动(不与A、B两点重合),以上不等量关系和等量关系还成立吗?生:不等量关系中 AC<AB,CB<AB成立,而 AC>CB 不一定成立了;而等量关系都成立.师:利用几何画板的度量功能,可以把线段的长度都度量出来,请观察动画,当点C在线段AB上移动时,这3条线段的长度如何变化?(动画演示)生:当C刚开始移动时,有AC>CB,随着点C向点A方向移动,线段AC的长度越来越小,线段CB的长度越来越大,而线段AB 的长度保持不变.师:在点C移动的过程中,线段AC 和线段CB 的长度有没有可能相等?能找出相等时刻点C的位置吗?生1:有可能相等(上台演示).生2:如果能够折叠,将 AB=8.18厘米线段折叠,使点 A 与点B 重合AC=4.09厘米CB=4.09厘米重合,折痕与线段的交点就是点C.师:我们把这时的点C叫做线段AB 的中点,你能说说什么是线段的中点吗?生:线段AB上有一点C ,将线段AB 分成相等的两条线段AC 和CB ,就说点C是线段AB 的中点.强调:点C把线段AB分成相等的两条线段AC与BC,点C叫做线段AB的中点.符号语言:∴M是AB的中点∴AM=BM=12 AB想一想:什么是三等分点?四等分点呢?设计意图:利用直观图形,由线段的大小关系过渡到线段的和差关系,自然合理.利用多媒体动画及度量工具,揭示线段中点的含义.线段中点的表示采用两种表示法,渗透线段的倍分关系,为以后学习线段的三等分点、四等分点以及线段的几倍与几分之一打下基础.在概念的学习中,让学生体会一般与特殊的关系,通过不断逼近中点的演示,渗透极限思想,培养学生用数学的思维思考世界的能力.问题3:如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.强调1:两点的所有连线中,线段最短.简单地说:两点之间,线段最短.过关练习 1.如图,下列关系式中与图不符的是( )A.AD-CD=ACB. AB+BC=ACC.BD-BC=AB+BCD. AD-BD=AC-BC答案:C2.若AB = 6 cm,点C 是线段AB 的中点,点D 是线段CB 的中点,问:线段AD 的长是多少?3.如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC,BC的中点,求线段MN的长度;根据上面的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用简练的语言表述你发现的规律.解:(1)因为MC=12AC,NC=12BC,所以MN=12AC+12BC=12×12+12×8=10Aa aM B(2)因为MC =12AC ,NC =12BC ,所以MN =12AC +12BC =12×12+12×8=10如图,A ,B ,C 三点在一条直线上,线段4. AB = 4 cm ,BC = 6 cm ,若点 D 为线段 AB 的中点,点 E 为线段 BC 的中点,求线段 DE 的长.课堂小结设计意图 通过师生共同回顾本节课的学习内容和探究历程,构建知识框架,梳理知识的发生、发展过程,总结知识获得的方法,加深学生对所学知识的理解,感受数学的逻辑性和严密性.鼓励学生大胆发表自己的见解,培养语言表达和与人交流的能力.四、达标测评 检测小卷五、布置作业A 层作业:数学书128页练习1-3题B 层作业:练习卷C 层作业:拓展训练A DB E C线段长短的比较与运算 线段长短的比较基本事实线段的和差度量法叠合法中点两点之间线段最短 思想方法方程思想 分类思想基本作图。

人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例

人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例
(四)反思与评价
在课堂教学结束后,教师应组织学生进行反思与评价。首先,教师引导学生总结自己在课堂上学到的知识,反思学习过程中的收获和不足。其次,教师组织学生进行互相评价,让每个学生都能从同伴的评价中汲取经验,提高自己。最后,教师对学生的表现给予积极的评价,强调学生在课堂上的优点,对学生的不足给予指导性建议。通过反思与评价,帮助学生巩固知识,提高能力,培养正确的价值观。
三、教学策略
(一)情景创设
为了让学生更好地理解线段长度比较在实际生活中的应用,教师在本节课中应创设丰富多样的情景。例如,可以引入校园环境中的实例,如操场跑道的长度、篮球场的对角线长度等,让学生在实际情景中感受线段长度的比较。此外,还可以通过多媒体展示一些生活中的图片,如道路、桥梁、建筑物等,让学生观察并比较其中线段的长度。通过情景创设,激发学生的兴趣,引导学生主动参与课堂学习。
(三)小组合作
小组合作是本节课的重要教学策略。教师将学生分成若干小组,每个小组成员分工合作,共同完成线段长度比较的任务。在合作过程中,学生可以相互交流、讨论,共同探讨解决问题的方法。小组合作不仅有助于提高学生的合作能力,还能培养学生的团队精神和沟通能力。教师在此过程中要关注每个小组的进展,及时给予指导,确保小组合作的有效性。
d.度量法:利用尺子等工具,直接测量线段的长度,进行比较。
2.教师通过示例,展示如何运用这些方法比较线段长度,让学生理解并掌握这些方法。
(三)学生小组讨论
1.教师将学生分成若干小组,每个小组选择一个生活中的实例,如教室的课桌、窗户的边框等,运用所学方法比较线段长度。
2.小组成员相互讨论、交流,共同完成线段长度比较的任务。在此过程中,教师巡视各小组,给予指导和建议。
人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例

人教版数学七年级上册4.2.2比较线段的大小教案

人教版数学七年级上册4.2.2比较线段的大小教案
在总结回顾环节,我尝试让学生们自己来总结今天学到的内容,这样做有助于加深他们的记忆。但从学生们的反馈来看,我觉得还需要在难点部分多下一些功夫,比如倍数关系法的应用,可能需要更多的例子和练习来巩固。
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观能力,通过观察和分析线段的大小关系,提高学生对图形的认识和判断能力。
2.培养学生的度量观念,学会使用工具进行实际测量,并准确比较线段长度,增强学生的量化思维能力。
3.培养学生运用数学知识解决实际问题的能力,将线段比较的方法应用于生活场景,提高学生的数学应用意识。
实践活动中的分组讨论非常热烈,学生们提出了很多有趣的问题,这让我感到很欣慰。但在实验操作环节,我注意到有些小组在测量线段长度时不太熟练,可能是因为平时缺乏这方面的练习。以后,我应该在课堂上增加更多这样的实际操作机会,让学生们能够更好地掌握测量技巧。
学生小组讨论时,我尽量让自己成为一个引导者和协助者,而不是一个评判者。我发现这样的角色让学生们更敢于表达自己的观点,也更愿意参与到讨论中来。不过,时间上可能有些紧张,有些小组的讨论并没有完全展开,下次我应该预留更多的时间给学生们进行交流。
-线段比较方法的掌握:包括直接比较法、度量比较法和倍数关系法,这些是本节课的核心知识,需引导学生熟练运用。
-实际问题中的应用:将线段比较的方法应用于生活情境,培养学生学以致用的能力。
举例解释:
-直接比较法:通过比较线段AB和线段CD的直观图形,让学生理解如何一眼判断线段长短。
-度量比较法:使用直尺测量线段长度,并准确读取数据,进行比较,如AB=5cm,CD=8cm,从而确定AB<CD。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《比较线段的大小》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两条线段长短的情况?”比如,比较两根铅笔、两条绳子等的长度。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索比较线段大小的奥秘。

七年数学上册4.2 第2课时 线段长短的比较与运算2教案

七年数学上册4.2 第2课时 线段长短的比较与运算2教案

4.2 直线、射线、线段第2课时线段长短的比较与运算教学目标:1.结合图形认识线段间的数量关系;学会比较线段的长短.2.利用丰富的活动情景;让学生体验到两点之间线段最短的性质;并能初步应用.3.知道两点之间的距离和线段中点的含义.教学重点:线段长短比较、线段的性质是重点.教学难点:线段上点、三等分点、四等分点的表示方法及运用是难点.教学过程:一、创设情境1.多媒体演示十字路口:为什么有些人要过马路到对面;但又没走人行横道呢?2.讨论课本P128思考题:学生分组讨论:从A地到B地有四条道路;如果要你选择;你走哪条路?为什么?在小组活动中;让他们猜一猜;动动手;再说一说.学生交流比较的方法.除它们外能否再修一条从A地到B地的最短道路?为什么?小组交流后得到结论:两点之间;线段最短.结合图形提示:此时线段AB的长度就是A、B两点之间的距离.3.做一做:在中国地图上测量北京、天津、上海、重庆四个直辖市之间的距离.(小组合作完成)解决生活中的数学问题;是为了进一步巩固两点之间的距离的意义;引导学生主动参与学习过程;从中培养学生动手和合作交流的能力.二、数学活动1.教师给出任务:比较两位同学的身高.2.学生讨论、实践、交流方法;师生总结评价.想一想教师在黑板上任意画两条线段AB;CD.怎样比较两条线段的长短?在学生独立思考和讨论的基础上;请学生把自己的方法进行演示、说明.1.用度量的方法比较.2.放到同一直线上比较.教师对方法2讨论、归纳;引出用尺规作出两线段的和与差的作法;如图4.2-10.试一试课本P128练习.折一折让学生将一条绳子对折;使绳子的端点重合;说说你的感受.在一张透明的纸上画一条线段;折叠纸片;使线段的两端点重合;折痕与线段的交点就是线段的中点.引导学生看课本;你能找到线段的中点吗?三等分点?四等分点?画一画尝试完成课本P130习题4.2第9题.三、课时小结四、课堂作业1.必做题:课本P129~P130习题4.2第5、7、8、10题.2.备选题:(1)数轴上A;B两点所表示的数分别是-5;1;那么线段AB的长是个单位长度;线段AB的中点所表示的数是;(2)已知线段AC和BC在一条直线上;如果AC =5.6 cm;BC=2.4 cm;求线段AC和BC的中点之间的距离.。

人教版-数学-七年级上册-4.2 线段长短的比较导学案

人教版-数学-七年级上册-4.2 线段长短的比较导学案

教师复备栏或学生笔记栏一、学习目标:1、借助于比身高的情境,了解比较线段长短的方法。

2、理解线段终点的概念,会用数量关系表示中点及进行相应的计算。

3、借助于实际情境,理解“两点之间的所有连线中,线段最短的事实”。

二、重点:比较线段长短的方法,线段的公理,用数量关系表示中点及相应计算。

难点: 叠合法比较线段长短,用数量关系表示中点及相应计算。

三、学习流程:1.阅读学习目标(1分钟) 2. 知识链接(2分钟)3.独学导学过程(10分钟)3.对学、群学导学过程(5分钟;本组对除展板上预设的问题外还有生成性的问题请用红色笔把问题抄写在展板上)4.班内大展示(15分钟) 5.知识梳理(2分钟)6.达标测评(10分钟;)导学过程 一、知识链接:(课前完成,课上2分钟组内小展示)1、线段有 个端点。

2、画一条线段AB=3cm ,并延长至C, 使BC=1cm.二、新知初探:(独学10分钟,完成(一)(二)(三),然后组内对学,群学,小展示5分钟,班内大展示15分钟,分4组展示)(一)、自学课本P 116-119页,完成下列问题:1、已知线段AB 、CD ,比较线段 AB 、CD 的长度。

( 小组讨论3分钟)有 种比较方法?法1: 法。

法2: 法。

具体操作:用刻度尺分别测出AB 、CD 的长度,长度大的线段 ,长度小的线段 ,长度相等时,两条线段 。

法3: 法。

具体操作:将线段AB 放到线段 CD 上,使点A 和点C 重合,点B 和点D 在重合点的同侧。

(1)、如果点B 与点D 重合,就说线段AB 与线段CD ,记作: (如图1) (2)、如果点B 在线段CD 上,就说线段AB 线段CD,记作: (如图2) (3)、如果B 在线段CD 外,就说线段AB 线段CD,记作: (如图3) 2、线段中点的定义: 。

3、两点之间的所有连线中, 最短, 叫做两点之间的距离。

B A DCD C 图2图3A B C D 图1 B A C DA B。

人教版七年级上册数学4.2 第2课时 线段长短的比较与运算教案2

人教版七年级上册数学4.2 第2课时 线段长短的比较与运算教案2

4.2 直线、射线、线段第2课时线段长短的比较与运算教学目标:1.结合图形认识线段间的数量关系,学会比较线段的长短.2.利用丰富的活动情景,让学生体验到两点之间线段最短的性质,并能初步应用.3.知道两点之间的距离和线段中点的含义.教学重点:线段长短比较、线段的性质是重点.教学难点:线段上点、三等分点、四等分点的表示方法及运用是难点.教学过程:一、创设情境1.多媒体演示十字路口:为什么有些人要过马路到对面,但又没走人行横道呢?2.讨论课本P128思考题:学生分组讨论:从A地到B地有四条道路,如果要你选择,你走哪条路?为什么?在小组活动中,让他们猜一猜,动动手,再说一说.学生交流比较的方法.除它们外能否再修一条从A地到B地的最短道路?为什么?小组交流后得到结论:两点之间,线段最短.结合图形提示:此时线段AB的长度就是A、B两点之间的距离.3.做一做:在中国地图上测量北京、天津、上海、重庆四个直辖市之间的距离.(小组合作完成)解决生活中的数学问题,是为了进一步巩固两点之间的距离的意义,引导学生主动参与学习过程,从中培养学生动手和合作交流的能力.二、数学活动1.教师给出任务:比较两位同学的身高.2.学生讨论、实践、交流方法,师生总结评价.想一想教师在黑板上任意画两条线段AB, CD.怎样比较两条线段的长短?在学生独立思考和讨论的基础上,请学生把自己的方法进行演示、说明.1.用度量的方法比较.2.放到同一直线上比较.教师对方法2讨论、归纳,引出用尺规作出两线段的和与差的作法,如图4.2-10.试一试课本P128练习.折一折让学生将一条绳子对折,使绳子的端点重合,说说你的感受.在一张透明的纸上画一条线段,折叠纸片,使线段的两端点重合,折痕与线段的交点就是线段的中点.引导学生看课本,你能找到线段的中点吗?三等分点?四等分点?画一画尝试完成课本P130习题4.2第9题.三、课时小结四、课堂作业1.必做题:课本P129~P130习题4.2第5、7、8、10题.2.备选题:(1)数轴上A,B两点所表示的数分别是-5,1,那么线段AB的长是个单位长度,线段AB 的中点所表示的数是;(2)已知线段AC和BC在一条直线上,如果AC =5.6 cm,BC=2.4 cm,求线段AC和BC的中点之间的距离.。

最新人教版初中七年级上册数学《线段长短的比较与运算》导学案

最新人教版初中七年级上册数学《线段长短的比较与运算》导学案

第四章几何图形初步4.2 直线、射线、线段第2课时线段长短的比较与运算学习目标:1.会画一条线段等于已知线段,会比较两条线段的大小.2.通过实例体会两点之间线段最短的性质,并能初步应用.3.了解两点间的距离、线段的中点以及线段的三等分点的意义.学习重点:线段比较大小以及线段的性质.学习难点:线段的中点、三等分点及其应用.使用要求:1.阅读课本P129-P132;2.尝试完成教材P131的练习题;3.限时20分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.画直线AB、画射线CD、画线段EF.2.任意画线段a.你能不能再画一条线段AB正好等于你先前所画的线段a.你是怎样画的?你想到了几种方法?二、合作探究:1.如何比较两位同学的身高?①如果已知身高,我们如何比较?②如果不知身高,我们又如何比较?2.如何比较两根木条的长短?3.如何比较两条线段的大小?①任意画两条线段AB, CD.我们如何比较AB、CD的大小?动手试试.②任意两条线段比较大小,其结果有几种可能性?【老师提示】比较线段的常用方法有两种:①度量法②圆规截取法4.试试身手:P131练习第1题.【老师提示】先估计大小关系看看我们的观察能力,再动手检验.5.①线段的中点:如图点M是线段AB上一点,并且AM=BM 我们称点M是线段AB的中点.②怎样找出一条线段AB的中点M?③线段的三等分点、线段的四等分点.(观察P131图4.2-12)6.(1)P131思考.(2)有些人要过马路到对面,为什么不愿走人行横道呢?(3)从A 地架设输电线路到B地,怎样架设可以使输电线路最短?7.(1)线段的性质:(2)两点间的距离:8.画线段的和与差:a如图,已知两条线段a、b(a>b)(1)画线段a+b画法:①画射线AM;②在射线AN上顺次截取线段AB=a,BC=b.线段AC就是所要求作的线段a+b.记作AC=a+b.(2)画线段a-b三、学习小结:四、作业:1.P132练习第2题.2.P126习题3.2第5、6、7、8、9、10题.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

人教版七年级上数学:4.2直线射线线段(2)学案

人教版七年级上数学:4.2直线射线线段(2)学案

数学:4.2《直线、射线、线段(2)》学案(人教版七年级上)【学习目标】:1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。

【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;【学习难点】:画一条线段等于已知线段是难点。

【导学指导】一、温故知新1、过A 、B 、C 三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。

二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:已知线段a,画一条线段等于已知线段。

1.作一条线段等于已知线段现在我们来解决这个问题。

作法:(1)作射线AM(2)在AM 上截取AB= a 。

则线段AB 为所求。

应用:已知线段a 、b ,求作线段AB=a+b 。

解:(1)作射线AM ;(2)在AM 上顺次截取AC=a ,CB= b 。

则AB= a+b 为所求。

做一做:作线段AB=a-b 。

2、比较两条线段的长短 a M B · · A M B · · A a bC两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答下面的问题。

怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度)。

如果把两个同学看成两条线段,那么比较两条线段就有两种方法。

(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。

( 2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。

(如图) AB <CD AB >CD AB=CD3、线段的中点及等分点如图(1),点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点;记作AM=MB 或AM=MB=1/2AB 或2AM=2MB=AB 。

如图(2),点M 、N 把线段AB 分成相等的三段AM 、MN 、NB ,点M 、N 叫做线段AB 的三等分点。

人教版七年级上册 4.2 比较线段的长短 教案

人教版七年级上册 4.2 比较线段的长短 教案

4.2比较线段的长短教案教学目标知识技能:结合图形认识线段间的数量关系,学会比较线段的大小;数学思考:如何用尺规做出一条线段等于已知线段,如何比较两条线段的大小,并能初步应用.问题解决:通过学习知道比较线段的大小的方法和线段中点的含义。

情感态度:通过教学,让学生初步体会代数方法的优越性;体会数形结合的思想;培养应用数学意识,自觉反思解题过程的良好习惯。

学习重点:画一条线段等于已知线段,比较两条线段的大小,。

学习难点:画一条线段等于已知线段的尺规作图方法,线段中点表示方法及运用。

教学方法:尝试法。

教具准备:导学案学习过程:一、复习巩固:1、如图,点A、B、C、D在直线AB上,则图中能用字母表示的共有条线段,有条射线,有条直线。

2、线段有()个端点,射线有()个端点。

直线有()个端点。

3、下列说法正确的是A 画一条3厘米长的直线B 画一条3厘米长的射线C 画一条4厘米长的线段D 在直线,射线,线段中,直线最长设计意图:通过复习让学生对线段的知识加以巩固,为后面的教学提供依据。

二、预习检测:画一条线段等于已知线段a,既可以使用,也可以使用,请分别用两种方法画出等于线段a的线段。

方法一:方法二:a设计意图:通过学习让学生初步了解尺规作图及尺规作图的方法,能让学生说出做法,能说全,说完整,体现几何语言的完整性。

教师鼓励学生说,教师可以补充。

三、合作学习探究一、比较两条线段的长短1.我们平时是怎么比较身高的?人的身高相当于的长度,你能再举出一些比较线段长度的例子吗?学生发言或演示,教师给予鼓励和肯定。

2.任意画两条线段AB, CD.怎样比较两条线段的长短?方法一:使用直尺线段AB= cm ,线段CD= cm ,所以AB CD这种方法叫做度量法。

方法二:使用圆规 将线段 移到线段 上进行比较,将点A 与点 重合,(1)若点B 在点C 、点D 之间 则AB CD ;(2)若点B 与点D 重合则AB CD ;(3)若点B 在CD 延长线上则AB CD ;如图:点B 在 ,所以AB CD 。

比较线段的长短的教学反思

比较线段的长短的教学反思

比较线段的长短的教学反思第一篇:比较线段的长短的教学反思数学是联结“生活世界”与“课本知识”的通道,作为新课改下的教师要会给学生提供丰富的教学生活实例,“活”用教材,寻找生动有价值的学习资源,使生活与数学融为一体,使教学知识成为学生看得见、摸得着的一种现实,争取使每位学生学习有价值的数学,使每位同学都在数学学习中得到收获。

本节课的亮点有以下几方面:(1)本节课充分挖掘学生身边的资源,创造性地使用教材,把身边的数学材料引入课堂,从而使原来枯燥无味的讲解转变为生动活泼的学习活动,调动了学生学习的积极性,加深学生对几何知识的理解。

(2)通过创设情景,让学生在积极主动的参与学习过程中,将生活实践和数学联系,培养学生的动手能力,分析问题、解决问题的能力。

(3)本节课用多媒体课件以及微课简单的制作了相应的动画,抓住学生的好动和喜欢动画的特点,让他们在边娱乐边看的过程中,将数学知识收获与应用,提高了学生的听课兴趣,制造了轻松娱乐的氛围,使得课堂效率大大提高。

(4)课堂问题设置注意对学生思维的发散训练,注重培养学生严谨和有条理的表达能力,为数学几何学习证明奠定基础。

同时本节课的研究方法,也为后续角的比较这一节课做了准备,注重了知识之间,章节之间的联系,为学生数学知识体系的形成铺路奠基。

(5)评价方式多样,有老师点评,学生互评,还有习题的及时测评与反馈,涉及面广。

不足之处:(1)课堂容量过大,以至于一节课无法完成,需要用两节课来讲述。

(2)对于学生课堂活动的预设准备不够充分,使得学生的活动秩序比较混乱,开始容易结束难,花费较长的时间来讲学生拉回正轨。

(3)自身课堂评价的语言缺乏幽默感和丰富感,对课堂的突发事件预设不够,处理起来不够成熟。

(4)通过比赛和大家的点评觉得自己的基本功不够扎实,对于课标的理解还比较的浅显,教学理论知识不够,需要多加的学些,提升自己的业务水平!第二篇:比较线段的长短教学设计比较线段的长短教案教学目标知识与能力1、借助具体情境了解“两点之间所有连线中,线段最短”的性质.2、能借助直尺、圆规等工具比较两条线段的长短.3、能用圆规作一条线段等于已知线段.过程与思考1、创设现实情境,鼓励学生独立思考、独立操作,然后通过合作、交流去探索问题,解决问题。

4.2.2线段长短的比较与运算(教学设计)七年级数学上册(人教版)

4.2.2线段长短的比较与运算(教学设计)七年级数学上册(人教版)

4.2.2 线段长短的比较与运算教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.2.2 线段长短的比较与运算,内容包括:运用线段的和、差、倍、分关系求线段的长度;理解“两点之间,线段最短”的线段性质,并学会运用.2.内容解析本节知识是本教材第四章的第2节内容,是学习几何知识的开端,对调动学生学习几何的积极性,以及学习以后的几何知识非常重要,必须把握好教学的进度和难度.应充分注重直观认识和操作活动,充分培养学生的几何语言表达能力.立足于学生实际,着眼于中小学的衔接,从他们的生活背景和已有经验出发,鼓励他们的积极参与、动手操作、观察归纳,让他们了解几何学习的基本的操作方法,学习结论获得的策略,对进一步去理解线段本质属性与现实生活的紧密相关都有着较为深刻的意义,也有利于学生图形意识的培养.基于以上分析,确定本节课的教学重点为:线段比较大小以及线段的性质.二、目标和目标解析1.目标(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短. 理解线段等分点的意义.(2)能够运用线段的和、差、倍、分关系求线段的长度.(3)体会文字语言、符号语言和图形语言的相互转化.(4)了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.2.目标解析学生能够熟练运用叠合法和度量法比较线段的大小;会表示线段的大小关系;会画一条线段等于已知线段.学生能够分别用图形和符号来表示线段之间的和差关系;能够由等分点确定数量关系,或由数量关系确定等分点,综合运用几何语言的能力有所提高.学生通过思考、探究、比较得到“两点之间,线段最短”的基本事实,并能举例说明其实际应用;理解两点的距离是指连接两点的线段的长度,而不是线段本身.三、教学问题诊断分析虽然学生在小学阶段已经学习了一些几何知识,但将对图形的认识与对数量的认识结合起来,是学生未曾深入体验过的.尤其用作图来表示线段的和、差等数量关系,是文字语言、图形语言与符号语言的综合运用,对于刚刚进入几何语言学习的学生而言,是比较困难的学习任务.学生在前一学段对两点之间,线段最短已有所体会,但学生容易将两点的距离与连接两点的线段混淆,教学中应加强对这两个概念的辨析.基于以上学情分析,确定本节课的教学难点为:运用线段的和、差、倍、分关系求线段的长度.四、教学过程设计(一)自学导航问题:老师手里的纸上有一条线段,你能在你的本上作出一条同样大小的线段来吗?尺规作图在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.作一条线段等于已知线段.则:线段AB就是所求的线段.思考:如何比较两个人的身高?怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?判断线段AB和CD的大小.(1)如图1,线段AB和CD的大小关系是AB___CD;(2)如图2,线段AB和CD的大小关系是AB___CD;(3)如图3,线段AB和CD的大小关系是AB___CD.(二)合作探究如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?(1) AB<AC(2) AC-AB=BC,AC-BC=AB,BC+AB=AC.如图,已知线段a和线段b,怎样通过作图得到a与b的和、a与b的差呢?如图,已知线段a、b,作一条线段,使它等于2a-b.解:则:线段AC=2a-b.如图,已知线段a,求作线段AB=2a.解:则:线段AB=2a.如上图,点M把线段AB分成相等的两条线段AM和BM;点M叫做线段AB的中点.AB,AB=2AM=2BM.因此可得:AM=BM=12类似地,还有线段的三等分点、四等分点等.AB,AM=MN=NB=13AB=3AM=3MN=3NBAB,AM=MN=NP=PB=14AB=4AM=4MN=4NP=4PB思考:如图,从A地到B地有四条道路,除它们之外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.估计下列图中线段AB与线段AC的大小关系,再用刻度尺或用圆规来检验你的估计.AB___AC AB___AC AB___AC(二)考点解析例1.如图①,有一张三角形的纸片,你能准确地比较线段AB与线段BC的长短吗?解法1(度量法):用刻度尺测量AB=2.0cm,BC=1.7cm,所以AB>BC.解法2(叠合法):(1)如图①,折叠纸片,使线段BC与线段AB在一条直线上,这时点C落在A,B之间,所以AB>BC.(2)如图①,利用圆规在射线BA上截取BC'=BC.因为AB>BC'所以AB>BC.【迁移应用】1.如图,比较线段a和b的长度,结果正确的是( )A.a>bB.a<bC.a=bD.无法确定2.如图,用圆规比较两条线段AB和A'B'的长短,其中正确的是( )A.AB>A'B'B.AB=A'B'C.AB<A'B'D.没有刻度尺,无法确定3.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四点处,则表示他最好成绩的点是( )A.MB.NC.PD.Q4.如图,比较这两组线段的长短.解:如图①,把图中的线段AB、线段CD放在同一条直线上,使端点A,C重合,点B与点D在点A的同侧,得点B在C,D之间,所以AB<CD.如图①,把图中的线段AB、线段CD放在同一条直线上,使端点A,C重合,得点D和点B重合,所以AB=CD.例2.如图,已知线段a、b、c,其中a>b>c.(1)尺规作图:在射线AP上求作线段AB,使AB=a+cb;(2)若a=4、b=3、c=2,求AB的长.解:(1)如图,在射线AP上作线段AC=a,在AC的延长线上作线段CD=c,在线段AD上作BD=b,则AB=a+cb.(2)因为a=4,b=3,c=2,所以AB=a+cb=4+23=3.【迁移应用】1.如图,已知线段a,b,求作线段AB,使得AB=a+2b.小明给出了四个步骤:①在射线AM上截取线段AP=a;①则线段AB=a+2b;①在射线PM上截取PQ=b,QB=b;①画射线AM.你认为正确的顺序是( )A.①①①①B.①①①①C.①①①①D.①①①①2.如图,下列关系式中与图形不符合的是( )A.ADCD=ACB.ACBC=ABC.AB+BD=ADD.AC+BD=AD例3.如图,AC=6cm , BC=15cm , M 是AC 的中点,在CB 上取一点N ,使得CN=13BC ,求MN 的长.解:因为M 是AC 的中点,AC=6cm , 所以MC=12AC=12×6=3(cm)因为BC=15cm所以CN=13BC=13×15=5(cm)所以MN=MC+CN=3+5=8(cm) 【迁移应用】1.下列条件中能确定C 是线段AB 的中点的是( )A.AC=BCB.AB=BCC.AC=BC=12AB D.AC+BC=AB2.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4 cm ,则AD 的长为( ) A.2cm B.3cm C.4cm D.6cm3.如图,点C 在线段AB 的延长线上,且BC=2AB ,D 是AC 的中点,若AB=2cm ,求BD 的长.解:因为AB=2cm ,所以BC=2AB=4cm.所以AC=AB+BC=6cm.因为D是AC的中点,AC=3cm.所以AD=12所以BD=ADAB=lcm.4.如图,C,D是线段AB的三等分点,E是线段DB的中点,AB=12cm,求线段CE的长.解:因为C,D为线段AB的三等分点,×12=4(cm)所以CD=DB=13因为E是线段DB的中点,DB=2cm,所以DE=12所以CE=CD+DE=4+2=6(cm).例4.如图,小明家在B处,现在小明要去位于D处的同学家.(1)最近的路线是__________;(2)B,D两点的距离是线段______的长度.【迁移应用】1.若AB=4cm,BC=3cm,则A,C两点的距离( )A.1cmB.7cmC.1cm或7cmD.不确定2.小明捡到一片沿直线折断了的银剩下的杏叶(如图),他发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是____________________.3.如图,A,B是公路l两旁的两个村庄,若要在公路上修建一个汽车站Р,使它到A,B两个村庄的距离和最小,试在l上标出汽车站P的位置.解:如图,连接AB与直线l相交,交点即为汽车站Р的位置.例5.如图①,一只蚂蚁要沿着正方体表面从点A爬到点B,画出它爬行的最短路径(下底面不可通行).解:如图①,有4条最短路径,以A→E→B为例进行说明:如图①,将正方体的正面,右面展开,连接AB,与中间的一条边交于点E,则A→E→B即为其中一条最短路径.(其他三条类似)【迁移应用】如图,A,B,C,D为四个居民小区,现要在附近建一个购物中心.应把购物中心建在何处,才能使四个居民小区到购物中心的距离之和最小?请确定购物中心的位置,并说明理由.解:如图,连接AC ,BD 相交于点P ,点Р就是购物中心的位置. 理由:两点之间,线段最短.例6.如图,已知线段AB ,延长AB 到点C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求DB 的长.解:因为D 为AC 的中点,DC=3cm , 所以AC=2DC=2×3=6(cm). 因为BC=12AB ,所以BC=13AC=13×6=2(cm) 所以DB=DCBC=32=1(cm). 【迁移应用】1.如图,已知线段AB=3cm ,延长线段AB 到点C ,使BC=2AB ,延长线段BA 到点D ,使AD①AC=4①3,M 是BD 的中点.求线段AM 的长.解:因为AB=3cm ,BC=2AB , 所以BC=6cm , 所以AC=AB+BC=9cm. 因为AD:AC=4①3, 所以AD=43AC=12cm ,因为M 是BD 的中点, 所以BM=12BD=152cm ,所以AM=BMAB=1523=92(cm).例7.如图,已知C ,D 两点将线段AB 分为三部分,且AC:CD:DB=2:3:4.若M 为AB 的中点,N 为BD 的中点,且MN=5,求AB 的长.解:因为AC:CD:DB=2①3①4, 所以设AC=2x ,CD=3x ,DB=4x. 所以AB=AC+CD+DB=2x+3x+4x=9x. 因为M 为AB 的中点,N 为BD 的中点, 所以BM=12AB=92x ,BN=12BD=2x.因为MN=BMBN=5, 所以92x2x=5,解得x=2. 所以AB=9×2=18. 【迁移应用】1.如图,B 和C 为线段AD 上两点,AB①BC:CD=3①1①6,M 是AD 的中点.若MC=2,则AD 的长为________.2.如图,点C ,D 在线段AB 上,且满足CD=14AD=16BC ,E ,F 分别为线段AC ,BD 的中点.如果EF=5cm ,求线段AB 的长度.解:设CD=xcm. 因为 CD=14AD=16BC ,因为E ,F 分别为线段AC ,BD 的中点,所以EC=12AC=12(ADCD)=1.5xcm , DF=12BD=12(BCCD)=2.5xcm.因为EF=EC+CD+DF=5cm , 所以1.5x+x+2.5x=5, 所以x=1.所以AB=AD+BCCD=4x+6xx=9x=9(cm).例8.在直线l 上有四点A ,B ,C ,D ,已知AB=24,AC=6,D 是BC 的中点,求线段AD 的长. 解:分两种情况讨论:①如图①,当点C 在线段AB 的反向延长线上时,得 BC=AB+AC=24+6=30.由D 是BC 的中点,得CD=12BC=15.以AD=CDAC=9.①如图①,当点C 在线段AB 上时,得 BC=ABAC=246=18.由D 是BC 的中点,得CD=12BC=9.所以AD=CD+AC=15.综上所述,线段AD 的长为9或15.【迁移应用】1.如图,C 为线段AD 上的一点,B 为CD 的中点,且AD=9,CD=4.若点E 在直线AD 上,且EA=1,则BE 的长为( )A.4B.6或8C.6D.82.A ,B ,C 是直线l 上的点,线段BC 的长为4,M ,N 分别为线段AB ,BC 的中点,MN 的长为3,则线段AB 的长为__________.例9.如图,点C 在线段AB 上,M ,N 分别是AC ,BC 的中点. (1)若AC=9cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任意一点,AC+CB=acm ,其他条件不变,求线段MN 的长.解:(1)因为M ,N 分别是AC ,BC 的中点, 所以MC=12AC ,CN=12BC.因为AC=9cm ,CB=6cm ,所以MN=MC+CN=12AC+12BC=12(AC+BC)=12×(9+6)=7.5(cm). (2)因为M ,N 分别是AC ,BC 的中点, 所以MC=12AC ,CN=12BC.因为AC+CB=a cm ,所以MN=MC+CN=12(AC+CB)=12a cm. 【迁移应用】如图,D 为线段BC 的中点,E 为线段AC 的中点.若ED=9,求线段AB 的长度.解:因为D 是线段BC 的中点, 所以CD=BD.因为E 为线段AC 的中点, 所以AE=CE.所以AB=AC+BC=2EC+2CD=2ED=2×9=18.五、教学反思。

人教版七年级数学上册学案4.2 第2课时 线段长短的比较与运算【精选】.doc

人教版七年级数学上册学案4.2 第2课时 线段长短的比较与运算【精选】.doc

第四章几何图形初步4.2 直线、射线、线段第2课时线段长短的比较与运算学习目标:1.会画一条线段等于已知线段,会比较两条线段的大小.2.通过实例体会两点之间线段最短的性质,并能初步应用.3.了解两点间的距离、线段的中点以及线段的三等分点的意义.学习重点:线段比较大小以及线段的性质.学习难点:线段的中点、三等分点及其应用.使用要求:1.阅读课本P129-P132;2.尝试完成教材P131的练习题;3.限时20分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.画直线AB、画射线CD、画线段EF.2.任意画线段a.你能不能再画一条线段AB正好等于你先前所画的线段a.你是怎样画的?你想到了几种方法?二、合作探究:1.如何比较两位同学的身高?①如果已知身高,我们如何比较?②如果不知身高,我们又如何比较?2.如何比较两根木条的长短?3.如何比较两条线段的大小?①任意画两条线段AB, CD.我们如何比较AB、CD的大小?动手试试.②任意两条线段比较大小,其结果有几种可能性?【老师提示】比较线段的常用方法有两种:①度量法②圆规截取法4.试试身手:P131练习第1题.【老师提示】先估计大小关系看看我们的观察能力,再动手检验.5.①线段的中点:如图点M是线段AB上一点,并且AM=BM我们称点M是线段AB的中点.②怎样找出一条线段AB的中点M?③线段的三等分点、线段的四等分点.(观察P131图4.2-12)16.(1)P131思考.(2)有些人要过马路到对面,为什么不愿走人行横道呢?(3)从A 地架设输电线路到B地,怎样架设可以使输电线路最短?7.(1)线段的性质:(2)两点间的距离:8.画线段的和与差:a如图,已知两条线段a、b(a>b)(1)画线段a+b画法:①画射线AM;②在射线AN上顺次截取线段AB=a,BC=b.线段AC就是所要求作的线段a+b.记作AC=a+b.(2)画线段a-b三、学习小结:四、作业:1.P132练习第2题.2.P126习题3.2第5、6、7、8、9、10题.2。

4.2.2线段长短的比较 教案(人教版数学七年级上册)

4.2.2线段长短的比较 教案(人教版数学七年级上册)

尺规作图的要点:1.直尺只能用来画线,不能量距;2.尺规作图要求作出图形,说明结果,并保留作图痕迹.问题2:你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?①用卷尺分别度量出两个同学的身高,将所得的数值进行比较. ——度量法.②让两个同学站在同一平地上,脚底平齐,观看两人的头顶,直接比出高矮. ——叠合法.试比较线段AB,CD的长短.叠合法结论:1.若点A 与点C 重合,点B 落在C,D之间,那么AB<CD.2.若点A 与点C 重合,点B 与点D重合,那么AB = CD.3.若点A 与点C 重合,点B 落在CD 的延长线上,那么AB>CD.线段的和、差、倍、分在直线上画出线段AB=a,再在AB 的延长线上画线段BC=b,线段AC 就是a与b的和,记作AC=a+b.C .把两条绳子重合,观察另一端情况D .没有办法挑选2.如图,AB =CD ,则AC 与BD 的大小关系是( C ) A .AC>BD B .AC<BD C .AC =BD D .不能确定3.如图:AB = 4 cm ,BC = 3 cm ,如果点O 是线段 AC 的中点.求线段 OB 的长度.解:∵ AC = AB + BC = 4+3=7 (cm), 点O 为线段 AC 的中点, ∴ OC =21AC=21×7 = 3.5 (cm), ∴ OB = OC -BC = 3.5-3 = 0.5 (cm). 4.如图,B 、C 是线段AD 上两点,且AB :BC :CD=3:2:5,E 、F 分别是AB 、CD 的中点,且EF=24,求线段AB 、BC 、CD 的长.解:设AB=3x ,BC=2x ,CD=5x , ∵E 、F 分别是AB 、CD 的中点,15,22CF CD x ==四、课堂小结4.2.2线段长短的比较。

人教版七年级数学上册4.2第2课时线段长短的比较与运算1教案设计

人教版七年级数学上册4.2第2课时线段长短的比较与运算1教案设计

第 2 课时线段长短的比较与运算1.会画一条线段等于已知线段,会比较线段的长短;2.体验两点之间线段最短的性质,并能初步应用;(要点 ) 3.知道两点之间的距离和线段中点的含义;(要点 )4.在图形的基础上发展数学语言,领会研究几何的意义.一、情境导入比较两名同学的身高,能够有几种比较方法?向大家谈谈你的想法.二、合作研究研究点一:线段长度的比较和计算【种类一】比较线段的长短为比较两条线段AB与 CD 线上,点 B 在 CD 的延伸线上,则(的大小,小明将点)A 与点 C 重合使两条线段在一条直A. AB<CD B. AB>CDC. AB= CD D.以上都有可能分析:由点 A 与点 C 重合使两条线段在一条直线上,点 B 在CD的延伸线上,得AB>CD ,应选 B.比方法总结:比较线段长短时,叠合法是一种较为常用的方法.【种类二】依据线段的中点求线段的长如图,点 C 是线段 AB 上一点,点M 是 AC 的中点,点NC 长 2cm, AC 比 BC 长 ()N 是BC的中点,如MCA. 2cm B. 4cm C.1cm D. 6cm分析:点 M 是 AC 的中点,点N 是 BC 的中点,∴AC= 2MC, BC= 2NC,∴ AC- BC=(MC - NC) ×2= 4cm,即 AC 比 BC 长 4cm,应选 B.方法总结:依据线段的中点表示出线段的长,再依据线段的和、差求未知线段的长度.【种类三】已知线段的比求线段的长如图, B、C 两点把线段AD 分红 2∶ 3∶ 4 的三部分,点 E 是线段 AD 的中点, EC =2cm,求:(1)AD 的长;(2)AB∶ BE .分析: (1)依据线段的比,可设出未知数,依据线段的和差,可得方程,依据解方程,可得 x 的值,依据 x 的值,可得 AD 的长度;(2)依据线段的和差,可得线段BE 的长,依据比的意义,可得答案.解: (1)设 AB= 2x,则 BC= 3x,CD= 4x,由线段的和差,得AD = AB+ BC+ CD= 9x.由 E 为 AD 的中点,得 ED =12AD=92x.由线段的和差得9xCE= DE - CD =2x- 4x=2= 2.解得 x= 4.∴ AD=9x= 36(cm);(2)AB= 2x= 8(cm), BC= 3x= 12(cm) .由线段的和差,得BE= BC- CE= 12- 2= 10(cm).∴AB∶ BE= 8∶ 10= 4∶ 5.方法总结:在碰到线段之间比的问题时,常常设出未知数,列方程解答.【种类四】当图形不确准时求线段的长假如线段AB =6,点 C 在直线 AB 上, BC=4, D 是 AC 的中点,那么A、D 两点间的距离是 ()A. 5 B.2.5 C.5 或 2.5D.5或1分析:此题有两种情况:(1)当点 C 在线段 AB 上时,如图:AC= AB- BC,又∵ AB= 6, BC= 4,∴ AC= 6- 4= 2, D 是 AC 的中点,∴ AD =1;(2)当点 C 在线段 AB 的延伸线上时,如图:AC= AB+ BC,又∵ AB= 6, BC= 4,∴ AC= 6+ 4= 10, D 是 AC 的中点,∴ AD =5.故选 D.方法总结:解答此题要点是正确绘图,此题浸透了分类议论的思想,表现了思想的严实性,在此后解决近似的问题时,要防备漏解.研究点二:相关线段的基本领实如图,把曲折的河流改直,能够缩短航程,这样做的依据是()A.两点之间,直线最短B.两点确立一条线段C.两点确立一条直线D.两点之间,线段最短分析:把曲折的河流改直缩短航程的依据是:两点之间,线段最短.应选 D.方法总结:此题考察了线段的性质,熟记两点之间线段最短是解题的要点.三、板书设计1.线段的比较与性质(1)比较线段:胸怀法和叠合法.(2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB 分红两条相等线段的点.(2)两点间的距离:两点间线段的长度.本节课经过比较两个人的高矮这一世活中的实例让学生进行思虑,进而引出课题,极大地激发了学生的学习兴趣;并经过着手操作,亲自体验用叠合法比较线段的长短.教师要试试让学生自主学习,优化讲堂教课中的反应与评论.经过评论,激发学生的求知欲,坚定学生学习的自信心.。

数学初一上4.2比较线段的长短导学案

数学初一上4.2比较线段的长短导学案
____.
7、线段AB,在AB的延伸线上取一点
C,使BC=2AB,再在BA的延伸线上取一点
D,
使DA=AC,那么线段DC=______AB,BC=_____CD
8、线段AB=10㎝,点C是AB的中点,点D是AC中点,那么线段
CD=___
______㎝。
AC
B
D
E
【二】选择题:
1
1
1
图9
9、如图9,CB=2
5、理解两点间距离的观点和线段中点的观点及表示方法,学会线段中点的简单应

导学要点:线段长短的两种比较方法
导学难点:对线段与数之间的认识,掌握线段比较的正确方法温故:线段的定义
链接:两只长短不一样的筷子如何比较它们的长短?比较长短的要点是什么?
新知
【一】线段的性质及两点之间的距离的教课
阅读课本139页,思虑小猫与小狗为什么走课本所示的路线,这说了然什么问题?
3、比较右图中二人的身高,我们有_______种方法.一种为直接用卷尺量出,
另一种能够让两人站在一块平川上,再量出差.这两种方法都是把身高当作一条___
方法〔1〕是直接量出线段的_______,再作比较.
方法〔2〕是把两条线段的一端_______,再察看另
一个_______.
4、如右图,点C分AB为2∶3,点D分AB为1∶4,
11、O、P、Q是平面上的三点,PQ=20㎝,OP+OQ=30㎝,那么以下正确的选项是
〔〕
O是直线PQ外B、O点是直线PQ上
C、O点不可以在直线PQ上D、O点不可以在直线PQ上
12、如图11,M是线段的EF中点,N是线段FM上一点,假如EF=2A,NF=B,那
么下边结论中错误是〔〕

最新人教版七年级数学上册精品导学案:4.2 第2课时 线段长短的比较与运算

最新人教版七年级数学上册精品导学案:4.2 第2课时 线段长短的比较与运算

第四章 几何图形初步4.2 直线、射线、线段第1课时 直线、射线、线段... .理解“两点之间,线段最短”的线段性质,...AB )等于已知线段(a )的作法: AC 上截取AB=a. 有哪些办法?你能从比身高的方法中得到启示 ,CD 的长短.(1)度量法:分别测量线段AB 、CD 的长度,再进行比较:AB=_________;BC=_______,________>_______,所以_______>_______;(2)叠合法:将点A与点C重合,再进行比较:①若点A 与点C 重合,点B 落在C,D之间,那么AB_____CD.②若点A 与点C 重合,点B 与点D________,那么AB = CD.③若点A 与点C 重合,点B 落在CD 的延长线上,那么AB_________CD.探究点2:线段的和、差、倍、分画一画:在直线上画出线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是与的和,记作AC= . 如果在AB上画线段BD=b,那么线段AD就是与的差,记作AD= .观察与思考:在一张纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点处于线段的什么位置?要点归纳:如图,点M 把线段AB 分成相等的两条线段AM 与BM,点M 叫做线段AB 的中点.几何语言:∵ M 是线段 AB 的中点∴ AM = MB =AB,或 AB =AM =MB例1 若AB = 6cm,点C是线段AB的中点,点D是线段CB的中点,求:线段AD的长是多少?例2如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.变式训练:如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长方法总结:求线段的长度时,当题目中涉及到线段长度的比例或倍分关系时,通常可以设未知数,运用方程思想求解.例3 A ,B ,C 三点在同一直线上,线段AB=5cm ,BC=4cm ,那么A ,C 两点的距离是( ) A .1cm B .9cm C .1cm 或9cm D .以上答案都不对变式训练:已知A ,B ,C 三点共线,线段AB=25cm ,BC=16cm ,点E ,F 分别是线段AB ,BC 的中点,则线段EF 的长为( )A .21cm 或4cmB .20.5cmC .4.5cmD .20.5cm 或4.5cm方法总结:无图时求线段的长,应注意分类讨论,一般分以下两种情况:①点在某一线段上;②点在该线段的延长线.针对训练 1.如图,点B ,C 在线段AD 上则AB +BC =____;AD -CD =___;BC = ___ -___= ___ - ___.第1题图 第2题图 第3题图 2.如图,点C 是线段AB 的中点,若AB =8cm ,则AC = cm.3.如图,下列说法,不能判断点C 是线段AB 的中点的是 ( ) A. AC =CB B. AB =2AC C. AC +CB =AB D. CB =21AB 4. 如图,已知线段a ,b ,画一条线段AB ,使AB =2a -b.5.如图,线段AB =4cm ,BC =6cm ,若点D 为线段AB 的中点,点E 为线段BC 的中点, 求线段DE 的长.探究点3:有关线段的基本事实 议一议:如图:从A 地到B 地有四条道路,除它们外能否再修一条从A 地到B 地的最短路?如果能,请你联系以前所学的知识,在图上画出最短路线.想一想:1. 如图,这是A ,B 两地之间的公路,在公路工程改造计划时,为使A ,B 两地行程最 短,应如何设计线路?请在图中画出,并说明理由.2. 把原来弯曲的河道改直,A ,B 两地间的河道长度有什么变化?第1题图 第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,_____最短. 2.连接两点间的线段的_______,叫做这两点的距离. 针对训练1. 如图,AB +BC AC ,AC +BC AB ,AB +AC BC (填“>”“<”或“=”). 其 中蕴含的数学道理是 .2. 在一条笔直的公路两侧,分别有A ,B 两个村庄,如图,现在要在公路l 上建一个汽 车站C ,使汽车站到A ,B 两村庄的距离之和最小,请在图中画出汽车站的位置.二、课堂小结1. 基本作图:作一条线段等于已知线段.2. 比较两条线段大小 (长短) 的方法:度量法;叠合法.3. 线段的中点.因为点M 是线段AB 的中点, 所以AM =BM =21AB . (反过来说也是成立的) 4. 两点之间的所有连线中,线段最短;两点之间线段的长度 ,叫做这两点之间的距离.1. 下列说法正确的是( ) A. 两点间距离的定义是指两点之间的线段 B. 两点之间的距离是指两点之间的直线C. 两点之间的距离是指连接两点之间线段的长度D. 两点之间的距离是两点之间的直线的长度2. 如图,AC =DB ,则图中另外两条相等的线段为_____________.第2题图 第3题图3.已知线段AB = 6 cm ,延长AB 到C ,使BC =2AB ,若D 为AB 的中点,则线段DC 的长为_____________.4.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别是-3,1,若BC=5,则AC=_________.5. 如图:AB =4cm ,BC =3cm ,如果点O 是线段AC 的中点.求线段OB 的长度.6.已知,如图,B ,C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,BM=6,求CM 和AD 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的教学设计(教案)是高效课堂的前提和保障。

(最新精品教学设计)
4.2 直线、射线、线段
第2课时线段长短的比较与运算
教学目标:
1.结合图形认识线段间的数量关系,学会比较线段的长短.
2.利用丰富的活动情景,让学生体验到两点之间线段最短的性质,并能初步应用.
3.知道两点之间的距离和线段中点的含义.
教学重点:线段长短比较、线段的性质是重点.
教学难点:线段上点、三等分点、四等分点的表示方法及运用是难点.
教学过程:
一、创设情境
1.多媒体演示十字路口:为什么有些人要过马路到对面,但又没走人行横道呢?
2.讨论课本P128思考题:
学生分组讨论:从A地到B地有四条道路,如果要你选择,你走哪条路?为什么?
在小组活动中,让他们猜一猜,动动手,再说一说.学生交流比较的方法.
除它们外能否再修一条从A地到B地的最短道路?
为什么?
小组交流后得到结论:两点之间,线段最短.
结合图形提示:此时线段AB的长度就是A、B两点之间的距离.
3.做一做:
在中国地图上测量北京、天津、上海、重庆四个直辖市之间的距离.(小组合作完成) 解决生活中的数学问题,是为了进一步巩固两点之间的距离的意义,引导学生主动参与学习过程,从中培养学生动手和合作交流的能力.
二、数学活动
1.教师给出任务:比较两位同学的身高.
2.学生讨论、实践、交流方法,师生总结评价.
1。

相关文档
最新文档