第五章糖代谢介绍
生物化学第五章糖代谢
生物化学第五章糖代谢第五章糖代谢一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。
生物化学第五章糖代谢
糖酵解小结
⑴ 反应部位:胞浆 ⑵ 糖酵解是一个不需氧的产能过程 ⑶ 反应全过程中有三步不可逆的反应
G
G-6-P
ATP
ADP
己糖激酶
ATP
ADP
F-6-P
F-1,6-2P
磷酸果糖激酶-1
ADP
ATP
PEP
丙酮酸
丙酮酸激酶
(psicose,allulose)
D(-)-果糖
(fructose)
D(+)-山梨糖
(sorbose)
二羟丙酮
(dihytroasetone)
吡喃
呋喃
-D-吡喃果糖
-D-吡喃葡萄糖 吡喃型和呋喃型的D-葡萄糖和D-果糖(Haworth式)
-D-呋喃果糖
-D-呋喃葡萄糖
成环
转折
葡萄糖由Fischer式改写为Haworth式的步骤
核糖 + NADPH+H+
淀粉
消化与吸收
ATP
作为生物体的结构成分
糖类是细胞中非常重要的一类有机化合物,主要的生物学作用如下:
作为细胞识别的信息分子
作为生物体内的主要能源物质
合成的前体
作为其它生物分子如氨基酸、核苷酸、脂等
(四)糖类的生物学作用
一、双糖的酶促降解
糖复合物
糖—肽链
糖—核酸
糖—脂质
肽聚糖
(peptidoglycans)
脂多糖
(lipopolysauhards)
糖基酰基甘油
(glycosylacylglycerols)
糖鞘脂
(pglycosphingolipids)
糖蛋白
生物化学 糖代谢
生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。
糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。
糖代谢主要包括两大路径:糖酵解和糖异生。
本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。
糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。
糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。
其中主要以糖原泛素和琥珀酸途径为代表。
糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。
它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。
糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。
糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。
接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。
随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。
草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。
草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。
琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。
琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。
琥珀酸途径的关键酶有异构酶、羧酸还原酶等。
糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。
糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。
糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。
丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。
人民卫生出版社《生物化学》第五章 糖代谢第5-8节
ATP ADP
F-1,6-2P
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
糖异生的概念:
(一) 糖原磷酸化酶分解α-1,4-糖苷键释出葡糖-1-磷酸
糖原磷酸化酶
(glycogen phosphorylase)
糖原n+1
糖原n + 葡糖-1-磷酸
磷酸化酶
脱支酶
* 离分支点 4 个 G基(位阻) * 葡聚糖转移酶 ----转移 3 个G基→邻近糖链末端 (α-1,4)
脱支酶 (两种酶活性) * α-1,6葡萄糖苷酶 ----水解(α-1,6) →游离G
(85% G-1-P; 15% G)
(三)肝利用葡糖-6-磷酸生成葡萄糖而肌不能
葡糖-1-磷酸 磷酸葡萄糖变位酶 葡糖-6-磷酸
葡萄糖(肝) 丙酮酸 乳酸(肌)
➢ 肝糖原分解为葡萄糖,补充血糖 ➢ 肌糖原分解为乳酸,为肌收缩供能
糖原的合成与分解全过程
UDP 糖原n
糖原n+1
糖原合酶
UDPG
Pi
磷酸化酶
肝、肾
正常
Ⅱ 溶酶体α-1,4-和α-1,6-葡糖苷酶 所有组织 正常
Ⅲ 脱支酶
肝、肌
分支多,外周糖链短
Ⅳ 分支酶
肝、脾
分支少,外周糖链特别长
Ⅴ 肌磷酸化酶
肌
正常
Ⅵ 肝磷酸化酶
肝
正常
Ⅶ 肌磷酸果糖激酶
肌
正常
Ⅷ 肝磷酸化酶激酶
生物化学讲义第五章糖代谢
第五章糖代谢【目的和要求】1、掌握糖分解代谢,糖酵解和有氧氧化的途径及催化所需的酶,特别是关键酶和主要的调节因素以及各通路的生理意义。
2、掌握肝糖原合成、分解及糖异生的途径及关键酶。
掌握磷酸戊糖途径的关键酶和生理意义。
掌握乳酸循环的过程及生理意义。
3.熟悉糖的主要生理功能,糖是生物体主要的供能物质, 血糖的概念,正常值以及血糖的来源、去路。
4.了解糖的吸收方式是通过主动转运过程,糖代谢异常。
【本章重难点】⒈糖酵解及有氧氧化的基本途径及关键酶⒉TAC、糖异生的生理意义⒊糖原合成分解的调节⒋血糖的调节⒌TAC循环、生理意义、调控⒍糖异生学习内容第一节概述第二节糖的无氧分解第三节糖的有氧氧化第四节磷酸戊糖途径第五节糖原的合成与分解第六节糖异生第七节血糖及其调节第一节概述糖的主要生理功能⑴是提供生命活动所需要的能量,据估计人体所需能量50%~70%左右是由糖氧化分解提供的。
⑵糖也是组成人体的重要成分,如核糖构成核苷酸及核酸成分;蛋白多糖构成软骨、结缔组织等的基质;糖脂是生物膜的构成成分等。
⑶体内还具有一些特殊生理功能的糖蛋白。
糖的消化和吸收食物中糖类主要为淀粉,口腔唾液腺及胰腺分泌有淀粉酶,仅能水解淀粉中的α-1,4糖苷键,产生分子大小不等的线形糖。
淀粉主要在小肠内受淀粉酶作用而消化。
在小肠黏膜细胞刷状缘上,含有α-葡萄糖苷酶,继续水解线形寡糖的α-1,4糖苷键,生成葡萄糖。
消化道吸收入体内的单糖主要是葡萄糖,葡萄糖经门静脉进入肝,部分再经肝静脉入体循环,运输到各组织,血液中的葡萄糖称为血糖,是糖在体内的运输形式。
糖的储存形式是糖原。
第二节糖的无氧分解糖的分解代谢是糖在体内氧化供能的重要过程。
糖氧化分解的途径主要有三条:①无氧酵解;②有氧氧化;③磷酸戊糖途径。
在供氧不足的情况下,葡萄糖或糖原的葡萄糖单位通过糖酵解途径分解为丙酮酸,进而还原为乳酸的过程称为糖的无氧分解,由于此过程与酵母菌使糖生醇发酵的过程基本相似,故又称为糖酵解(glycolysis)。
第五章糖代谢共79页文档
己糖激酶及葡萄糖激酶的变构剂
G-6-P
长链脂酰CoA
-
-
己糖激酶 Hexokinase
葡萄糖激酶 Glucokinase
2. 6-磷酸果糖激酶-1:
●6-磷酸果糖激酶-1是调节糖酵解代谢途径 流量的主要因素。
ATP 柠檬酸
-
ADP、AMP 1,6-双磷酸果糖 2,6-双磷酸果糖
第彻底 氧化分解生成CO2和H2O,并 释放出大量能量的过程称 为糖的有氧氧化(aerobic oxidation)。
●绝大多数组织细胞通过糖的有 氧氧化途径获得能量。此代谢 过程在细胞胞液和线粒体 (cytoplasm and mitochondrion)内进行。
+
6-磷酸果糖激酶-1 6-Phosphofructokinase-1
3. 丙酮酸激酶:
ATP 丙氨酸(肝)
1,6-双磷酸果糖
-
+
丙酮酸激酶 pyruvate kinase
三、糖酵解的生理意义
1.在无氧和缺氧条件下,作 为糖分解供能的补充途径。
2. 3.2. 在有氧条件下,作为某
些组织细胞主要的供能途 径。
②是糖、脂、蛋白质三大物 质互变的共同途径。
二、有氧氧化生成的ATP
第一阶段
第二阶段 第三阶段
净生成
反应
两次耗能反应
两次生成ATP的反 应
一次脱氢 (NADH+H+)
一次脱氢 (NADH+H+)
三次脱氢 (NADH+H+) 一次脱氢(FADH2) 一次生成ATP的反
应
ATP -2
2×2
第五章 糖代谢
糖原结构
……O
非还原端
CH2OH O OH O OH
CH2OH O OH O OH
CH2OH O OH OH O CH2 OH OH O O
α -1,6-糖苷键
……O
CH2OH O OH O OH
CH2OH O OH O OH
CH2OH O OH O OH
CH2OH O OH
OH OH
还原端
α -1,4-糖苷键
胞液
乙酰CoA
线粒体 TAC循环 CO2
[O]
ATP ADP
NADH+H+ FADH2
1.胞质内反应阶段
⑴ 葡萄糖磷酸化
CH2OH H OH HO H OH H H O H
ATP
Mg2+
ADP
H OH HO H
CH2OPO3H2 O H H H OH OH
OH
已糖激酶
葡萄糖
葡萄糖-6-磷酸 糖酵解过程的第一个关键酶
CH2OH H OH HO H OH H H O O H O P OH OH H OH H H O H OH HO CH2OH O H O O P O P O 尿 苷 OH HO
UTP
UDPG焦磷酸化酶
1-磷酸葡萄糖
H2O
2Pi
PPi
尿苷二磷酸葡萄糖(UDPG)
* UDPG是葡萄糖活化形式,合成糖原的葡萄糖供体
H 2C
H2C C HO H H C C C H2C O
HO O P HO
HO O P HO O OH
O
O
C CH2
H OH OH O HO P OH O
磷酸二羟丙酮
醛缩酶
H C HC H2C
第五章 糖代谢
1摩尔的葡萄糖完全氧化为CO2和H2O可释放2840kJ(679kcal)的能量,其中约40%转移至ATP,供机体生理活动能量之需。糖类代谢的中间产物可为氨基酸、核苷酸、脂肪酸、类固醇的合成提供碳原子或碳骨架。如糖的磷酸衍生物可以形成许多重要的生物活性物质,如NAD+、FAD、ATP等。
9.烯醇化酶催化2-磷酸甘油酸生成磷酸烯醇式丙酮酸(PFP)。PFP具有很高的磷酰基转移潜能,其磷酰基是以一种不稳定的烯醇式互变异构形式存在的。
10.丙酮酸激酶催化PFP生成丙酮酸和ATP。这是第三个关键酶催化的限速反应。也是第二次底物水平磷酸化反应。
丙酮酸是酵解中第一个不再被磷酸化的化合物。其去路:在大多数情况下,可通过氧化脱羧形成乙酰辅酶A进入柠檬酸循环;在某些环境条件(如肌肉剧烈收缩),乳酸脱氢酶可逆地将丙酮酸还原为乳酸;在酵母,厌氧条件下经丙酮酸脱羧酶和乙醇脱氢酶催化,丙酮酸转化成乙醇(酒精发酵)。
第五章 糖代谢
教学目标:
1.掌握糖类的结构、生理功能和酶促降解有关酶类。
2.掌握糖酵解、有氧氧化的基本过程、限速酶、ATP的生成、生理意义与调节。
3.了解磷酸戊糖途径的基本过程、生理意义。
4.熟悉糖的合成反应基本过程,掌握糖异生的概念与反应过程、关键酶、生理意义及调节。
1mol糖原→2mol乳酸, ΔGO'= -183kJ/mol
在机体内,生成 2molATP相当捕获2×30.514=61.028 kJ/mol
葡萄糖酵解获能效率=2×30.514/196×100% = 31%
糖原酵解获能效率=3×30.514/196×100% = 49.7%
第三阶段是柠檬酸循环(又称三羧酸循环或 Krebs循环,1937年提出,1953年获诺贝尔奖)。此循环有8步酶促反应:
6第五章 糖代谢
※ 肌组织也可通过对肌糖原的调节来控
制血糖的浓度
(二)激素调节
1.胰岛素:促进葡萄糖的消耗,抑制葡萄糖的生
成,降低血糖浓度。高血糖可直接刺激胰岛β细 胞分泌胰岛素;静息状态时,迷走神经兴奋,使 胰岛素分泌增加。 ⑴促进葡萄糖进入细胞 ⑵促进葡萄糖氧化供能 ⑶促进糖原合成,抑制糖原分解 ⑷促进糖转变为脂肪,抑制脂肪分解 ⑸抑制糖异生作用
④生糖氨基酸转化成糖
糖和脂肪酸转变成氨基酸时只提供α-酮酸, 氨基必须由其它氨基酸提供,因此不能增 加体内氨基酸含量,只能调整氨基酸的种 类和比例。
磷酸戊糖途径
糖在代谢过程中有磷酸 戊糖产生的途径
一
代谢途径
+H2O NADPH+H+
(一)磷酸戊糖的生成
6-磷酸葡萄糖
6-磷酸葡萄糖脱氢酶
6-磷酸葡萄糖酸
4.主要代谢途径:
①氧化分解 ②糖原的合成与分解 ③糖异生作用
消
化
1.消化的主要部位:小肠 2.消化的过程:
淀粉 麦芽糖 麦芽寡糖 极限糊精
葡 萄 糖
吸
收
1.吸收的主要部位:小肠上段 2.吸收的过程:主动运输 ①形成葡萄糖-Na+-载体蛋白复合体。 ②伴随Na+的吸收逆浓度梯度转运到小肠 粘膜细胞内。 ③Na+-K+泵利用ATP提供的能量不断将 Na+泵出细胞,维持Na+的浓度梯度,使 葡萄糖不断转运到细胞内。
反应过程
第一阶段: ( 胞浆)
1分子葡萄糖 … ……→ 2分子丙酮酸
第二阶段: (线粒体基质) 2分子丙酮酸 ………→ 2分子乙酰CoA 第三阶段:(线粒体内膜) 乙酰CoA进入三羧酸循环………→ 水+二氧化碳
第五章 糖代谢-1
第一节 多糖的酶促降解 第二节 葡萄糖的酵解(EMP途径) 第三节 葡萄糖的有氧分解代谢 第四节 单磷酸己糖支路(HMP途径) 第五节 磷酸解酮酶(PK途径) 第六节 脱氧酮糖酸途径(ED途径) 第七节 葡萄糖分解代谢途径的相互联系
第一节 多糖的酶促降解
多糖分子不能进入细胞,动物或微生 物在利用多糖作为碳源和能源时,需要分 泌降解酶类,将多糖分子在胞外降解(即所 谓消化)成单糖或双糖,才能被细胞吸收, 进入中间代谢。
从以上讨论不难理解,无论体内还是 体外,要使淀粉很快水解(消化),需要有几 种淀粉酶协同作用。因此,凡是能利用天 然淀粉作营养源的生物,都能分泌种类配 套的淀粉酶系。
糖化过程中淀粉酶对淀粉的分解作用: (1)α-淀粉酶将长链淀粉分解为低分子量的 糊精,其最佳作用温度为72-75℃,失活温 度为80℃,最佳pH值为5.6-5.8。 (2) β-淀粉酶从淀粉链的末端分解,形成麦 芽糖、麦芽三糖和葡萄糖,其最佳作用温 度为60-65℃,失活温度70℃,最佳pH值为 5.4-5.5。
(3)有氧条件下,酵解是单糖完全氧化分解 成CO2和水的必要准备阶段 单糖分子经酵解途径初步降解之后可转 入TCA循环完全燃烧。
四、无氧条件下丙酮酸的去路
(下节课重点介绍)
1.酵母菌的酒精发酵 2.乳酸菌的同型乳酸发酵 3.甘油发酵 4.梭状芽孢杆菌的丁酸型发酵
Thank you!
α-淀粉酶是一种内切酶,从淀粉分子内部 随机切割α-1,4-糖苷键 ;α-淀粉酶不能水 解淀粉中的α-1,6-葡萄糖苷键及其非还原 性一侧相邻的α-1,4-键。所以,其水解产 物中有含α-1,6-糖苷键的各种分支糊精
第五章糖代谢
己糖激酶 (hexokinase)
P O CH2
H H
OH
OH H
HO
OH
H OH
G-6-P
➢反应不可,消耗1分子ATP
➢己糖激酶(HK)四种isoenzyme
➢ 肝脏中为glucokinase(GK)
➢ 磷酸化使Glu不能自由逸出细胞
Glu ATP
ADP G-6-P
F-6-P F-1,6-2P
ATP ADP
O CH3
L-Rha
O
D-Glu
O
L-Ara
O
HO
D-Xyl
第一节 概述
Haworth式:单糖的端基差向异构体(α,β-构型, anomer)
六碳吡喃糖和五碳呋喃糖:C5-R或C4-R与端基碳上OH同侧者为 β型,异侧者为α型
五碳吡喃糖:端基碳上OH与C4-OH在同侧为α型,异侧者为β型
O CH3
第二节 糖的分解代谢 补充知识 酸-醇的成酯反应
ROH + R1COOH
ROH + H3PO4
O R1 C OR
O HO P OR
OH
第二节 糖的分解代谢
2.1 糖的无氧分解
第一阶段:糖酵解途径
葡萄糖磷酸化为6-磷酸葡萄糖
HO CH2
H H
OH
OH H
HO
OH
H OH
Glu
ATP
ADP
Mg2+
第一节 概述
1.3 糖代谢 分解代谢:主要指葡萄糖(Glu)的分解过程
“磷酸戊糖途径”
需氧
CO2 + H2O
三羧酸循环 有氧情况
CO2 + H2O
糖代谢-无氧分解和有氧氧化
CO2
目录
第二阶段:丙酮酸的氧化脱羧 丙酮酸进入线粒体,氧化脱羧为乙酰 CoA (acetyl CoA)
TPP 缺乏症: 血中丙酮酸堆积, 神经细胞由于供能不足,其膜髓鞘磷脂合成受损,导 致末梢神经炎及其他神经病变。
TPP------硫胺素焦磷酸脂
第三阶段 三羧酸循环 三羧酸循环(Tricarboxylic acid Cycle, TAC)-------也称为柠檬酸循环
b. 共价修饰调节
丙酮酸脱氢酶丝氨酸残基上的羟基可在蛋白激酶的作用下磷酸化,磷酸化后的复合
体变构,失去活性。
2. 当线粒体内 Ca2+升高,可直接与异柠檬酸脱氢酶和α -酮戊二酸脱氢酶结合,降低其对
底物的 Km 而使酶激活,同时,Ca2+还能激活丙酮酸脱氢酶复合体。 3. 代谢产物脱下的氢分别被 NAD+和 FAD 接受,然后质子和电子通过电子传递进行氧化
G(Gn)
第一阶段:酵解途径 (glycolysis)
胞液
第二阶段:丙酮酸的氧化脱羧 (oxidative decarboxylation)
丙酮酸
第三阶段:三羧酸循环
乙酰CoA
(tricarboxylic acid cycle)
线粒体
第四阶段:氧化磷酸化
H2O
TAC循环
[O]
NADH+H+
ATP ADP FADH2
此表按传统方式计算ATP。目前有新的理论,在此不作详述
NAD+ NAD+
2×3 2×3
2×1
FAD NAD+
2×2 2×3
净生成 38(或36)ATP
目录
有氧氧化的生理意义: 糖的有氧氧化是机体产能最主要的途径。它不仅产能效率高,而且由于产生的能量逐 步分次释放,相当一部分形成 ATP,所以能量的利用率也高。
生化第五章_生物化学糖与糖代谢知识总结
糖与糖代谢糖类单糖二羟丙酮没有手性缩醛和缩酮反应酮糖和醛糖的互变所有的单糖都是还原性的呈色反应Molish反应糖类与非糖类Seliwanoff反应酮糖和醛糖间苯三酚反应戊糖和其他单糖寡糖多糖贮能多糖淀粉、糖原和右旋糖酐结构多糖纤维素、几丁质和肽聚糖糖酵解概述全部反应葡萄糖的磷酸化不可逆磷酸葡糖的异构化6-磷酸葡糖-转变成6-磷酸果糖磷酸果糖的磷酸化糖酵解的限速步骤、不可逆1,6-二磷酸果糖的裂解由醛缩酶催化磷酸丙糖的异构化反应机制涉及烯二醇中间体产生4 ATP3-磷酸甘油醛的脱氢整个糖酵解途径唯一的一步氧化还原第一步底物水平的磷酸化从高能磷酸化合物合成ATP磷酸甘油酸的变位磷酸基团从 C-3转移到C-2PEP的形成甘油酸-2-磷酸转变成 PEP、由烯醇化酶催化第二步底物水平的磷酸化PEP转化成丙酮酸,同时产生 ATP、不可逆、产生两个ATPNADH和丙酮酸的去向有氧状态NADH的命运:NADH在呼吸链被彻底氧化成H2O并 产生更多的ATP。
丙酮酸的命运:丙酮酸经过线粒体内膜上丙酮酸运输 体与质子一起进入线粒体基质,被基质内的丙酮酸脱 氢酶系氧化成乙酰-Co A缺氧状态或无氧状态乳酸发酵酒精发酵生理意义糖酵解的调节磷酸戊糖途径概述全部反应氧化相非氧化相功能调节糖异生概述糖异生的底物(动物)丙酮酸, 乳酸, 甘油, 生糖氨基酸,所有TCA循 环的中间物偶数脂肪酸不行因为偶数脂肪酸氧化只能产生乙酰CoA,而乙 酰CoA不能提供葡萄糖的净合成(奇数脂肪酸 可以)糖异生涉及的反应丙酮酸的羧化丙酮酸羧化酶催化,需要生物素(VB7)PEP的形成消耗GTP1,6 -二磷酸酶果糖的水解将 F-1,6-P水解成F-6-P6-磷酸葡糖的水解催化6-磷酸葡糖水解成葡萄糖生理功能植物和某些微生物使用乙酸作为糖异生的前体,使得 它们能以乙酸作为唯一碳源调节糖异生调节与糖酵解调节是高度协调的糖原代谢糖原的分解糖原磷酸化酶、糖原脱支酶、磷酸葡糖异构酶脱支酶具有1,4→1,4-葡萄糖糖基转移酶活性糖原合成糖原代谢的调节三羧酸循环概述全部反应柠檬酸的合成不可逆反应,由柠檬酸合酶催化柠檬酸的异构化柠檬酸异构化成异柠檬酸异柠檬酸的脱氢异柠檬酸氧化脱羧产生α-酮戊二酸、不可逆α-酮戊二酸的氧化脱羧第二次氧化脱羧反应(不可逆)底物水平的磷酸化TCA循环唯一的一步底物水平磷酸化反应琥珀酸的脱氢产生FADH2富马酸的形成双键的水合草酰乙酸的再生依赖于NAD+-的氧化还原反应、第四次氧化还原反应、苹果酸脱氢酶TCA 循环总结TCA循环的功能乙醛酸循环三羧酸循环的调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二) 维持血糖
糖原储存能量,维持血糖恒定。
可提供合成某些氨基酸、脂肪、
(三) 提供合成原料 (四) 构成组织细胞
胆固醇、核苷等物质的原料。
糖蛋白、蛋白聚糖、糖脂等是 组织细胞的重要成分。
(五)其他功能
构成免疫球蛋白、血型物质、凝血因子等。
三、糖代谢的概况
糖原
糖原合成
磷酸戊 磷酸戊糖 糖途径 NADPH
可分为二个阶段:
第一阶段:由葡萄糖分解成丙酮酸 第二阶段:由丙酮酸转变成乳酸。
糖酵解反应特点
1. 糖酵解反应的全过程在胞质中进行。乳酸是糖酵解的必然产 物 2. 由于是在无氧条件下进行的,所以氧化分解不彻底,释放的 能量少。 3. 反应全过程中有三步不可逆的反应。催化这三步反应的己糖 激酶、磷酸果糖激酶-1 、丙酮酸激酶是糖酵解途径的关键 酶,其中磷酸果糖激酶-1 为限速酶
糖原是葡萄糖的一种储存形式。当糖供应丰富及能量充足时,一部分 糖可合成糖原储存。当糖的供应不足或能量需求增加时,储存的糖原可 分解葡萄糖,为机体氧化供能。
* 因肝、肾有葡萄糖-6-磷酸酶,故肝糖原可分解为葡萄糖, 释放入血,维持血糖浓度。
*肌肉组织无葡萄糖-6-磷酸酶,所生成的6-磷酸葡萄糖不能 转变成葡萄糖释放入血,只能氧化供能。
2.糖酵解是红细胞功能的主要方式,成熟的红细胞没有线粒体, 不能进行有氧氧化而是以糖酵解作为能量的基本来源。
3.某些组织细胞即使在有氧的条件下仍以糖酵解为其重要供能 方式。
糖酵解的调节
主要是通过对己糖激酶、6-磷酸果糖激酶-1、
丙酮酸激酶三个关键酶的活性的调节,
案例分析
1
2
3
Question: 1.图片1和图片2中人依赖什么方式获取能量?为什么? 2.图片3中的红细胞依赖什么方式获得能量?为什么? 3.正常情况下,人体内的组织细胞依靠什么方式获得能量? Answer: 1.图片1中的人由于剧烈运动使肌肉组织处于相对缺氧状态,主要通过糖酵解获取能
磷酸戊糖途径的意义
1.生成的5-磷酸核糖是核酸合成的重要原料。 2. NADPH 作为供氢体,参与体内许多重要的还原性代谢反 应
磷酸戊糖途径的调节
关键酶:6-磷酸葡萄糖脱氢酶
第四节 糖 异 生 (Gluconeogenesis)
一、什么是糖异生
(一)糖异生 是指从非糖化合物转变为葡萄糖或糖原的过程。
糖原分解
氧化分解
有氧氧化
葡萄糖
丙 酮 酸
乙酰CoA 乳酸
H2O及CO2 (大量ATP)
(少量ATP)
消化吸收
糖异生
无氧氧化(糖酵解)
食物
乳酸、氨基酸、甘油
第二节 糖原的合成与分解
(Glycogenesis and Glycogenolysis)
糖原 (glycogen)是体内糖的储存形式之一,是机体 能迅速动用的能量储备。
(1)生理性高血糖—由于糖的来源增加可引起生理性高血糖
例: 一次性食入或输入大量葡萄糖; 情绪激动,肾上腺分泌增加。
(2)病理性高血糖—由于胰岛素分泌障碍所引起的高血糖和 糖尿,称为糖尿病 原因:血糖来源增加去路减少 肾性糖尿 除了高血糖引起糖尿外,由于肾功能先天性不全或肾疾 病引起的肾糖阈值减低,也可引起糖尿,称为肾性糖尿。
1. 肌肉中乳酸经血循环进入肝异生为葡萄糖,再经血循环到达肌肉中 氧化的过程,成为乳酸循环。 2. 乳酸的再利用可防止代谢性酸中毒。
葡萄糖 糖 异 生 途 径 丙酮酸
葡萄糖
葡萄糖 酵 解 途 径 丙酮酸
NADH
乳酸 NAD+ 乳酸
NADH
NAD+ 乳酸
肝
血液
肌肉
第五节 血糖
临床称血中葡萄糖为血糖。 正常成人血糖浓度 为3.89-6.11mmol/L 。
Answer:
甲并非糖尿病患者,属于生理性高血糖,其血糖升高时因为一次 性大量食用糖果所致,超过肾糖阈所致,但其空腹血糖正常。
乙是糖尿病患者,因其空腹和餐后持续性高血糖。
区分生理性高血糖和病理性高血糖的依据是空腹血糖是否正常。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
(四)糖皮质激素
1.促进糖异生
2.促进肝外组织蛋白
分解生成氨基酸
三、糖代谢异常
(一)高血糖及糖尿症
1. 高血糖 临床上将空腹血糖浓度高于6.9mmol/L称为 高血糖。 2. 肾糖阈 当血糖浓度高于8.89mmol/L时,超过了肾小管 的重吸收能力,则可出现糖尿病。这一血糖水平称 为肾糖阈。
3. 高血糖发生的原因
四、糖原合成与分解的调节
糖原合成:糖原合酶 糖原分解:糖原磷酸化酶
对关键酶调节
第三节 糖的分解代谢
糖分解代谢主要三条途径:
1.糖酵解
2.有氧氧化
生成乳酸和少量ATP
生成CO2和H20及大量ATP 生成5-磷酸核糖和NADPH
3.磷酸戊糖途径
一、糖的无氧氧化 (Glycolysis)
在不需氧情况下,葡萄糖生成乳酸的过程 称之为糖的无氧氧化,又称为糖酵解。其反应 部位在胞浆。
பைடு நூலகம்
(二)有氧氧化的调节
主要是通过对七个关键酶活性的调节
关 键 酶
① 糖酵解途径:己糖激酶、6-磷酸果糖激酶-1 丙酮酸激酶 ② 丙酮酸的氧化脱羧:丙酮酸氧化脱氢酶复合体 ③ 三羧酸循环:柠檬酸合酶、异柠檬酸脱氢酶、 α -酮戊二酸脱氢酶复合体
三、磷酸戊糖途径
磷酸戊糖途径是糖氧化分解的另外一条重要途径, 该途径主要作用的产生5-磷酸核糖和NADPH ,而不 是产生ATP。
空腹血糖值;血糖的调节;低血糖的原因;肾糖阈的概念
第一节 概 述
一、什么是糖
糖是一大类有机化合物,其化学本质为多羟 醛或多羟酮类及其衍生物或多聚物。人体从自然界 摄取的物质中,处了水之外,糖是摄取量最多的物 质。其主要作用是提供能量和碳源。
二、糖的功能
(一)氧化供能
糖提供人体所需50%~70%的能量
二、糖的有氧氧化
糖的有氧氧化指在机体氧供充足时,葡萄糖彻底 氧化成H2O和CO2,并释放出能量的过程。是机体主 要供能方式。在胞浆及线粒体分四个阶段进行。
G(Gn) 第一阶段:丙酮酸生成(同糖酵解) 第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化 [O] ATP ADP 丙酮酸 乙酰CoA 线 粒 体
2.TCA是机体主要的产能途径。
3.TCA是不可逆的反应体系,限速酶有:柠檬酸合酶、异柠檬酸脱氢酶、 α -酮戊二酸脱氢酶复合体。
*氧、糖供应充足时,绝大部分的组织细胞表现出有氧氧 化抑制无氧氧化的现象,称为巴斯德效应(Pastuer effect) 。
(一)有氧氧化的意义
1.有氧氧化是机体产能最主要的方式。 2.有氧氧化中的TCA是体内三大营养物质彻底氧化分解的最 终代谢通路 3.有氧氧化中的TCA是体内物质代谢相互联系的枢纽。
案例分析 甲某,空腹血糖4.5mmol/L,吃了大量的糖果,1h后血清检测,血糖14.9mmol/L,尿 糖(++++);乙某,空腹血糖12.9mmol/L,吃了1个馒头, 1h后血清检测,血糖 23.8mmol/L,尿糖(++++)。随后的2次血清检测,甲的空腹血糖正常,乙的空腹血 糖均在10.0mmol/L以上。问:甲乙两个是否都是糖尿病?为什么?
胰高血糖素 糖皮质激素 肾上腺素
(一)胰岛素
1.促进葡萄糖转运进入肌肉、脂肪等肝外细胞。
2.加快葡萄糖在肝、肌肉组织合成糖原,促进糖的有氧氧化。
3.抑制肝内糖异生。 4.抑制肝糖原的分解 5.促进糖转变为脂肪
(二)胰高血糖素
1.抑制糖原合成 2.促进糖异生
(三)肾上腺素
1.促进肝糖原分解 2.促进肌糖原酵解 3.促进糖异生
血糖水平恒定可保证依赖葡萄糖供能的脑组织、红细胞、 骨髓及神经组织等重要组织器官的能量供应。
一、血糖来源和去路
食物糖
消化 吸收 分解 氧化 分解
CO2 + H2O
肝糖原
糖异生
血 糖
尿糖
糖原合成
肝(肌)糖原
非糖物质
转变为其他物质
二、血糖水平的调节
降低血糖:胰岛素(insulin)
主要调节激素
升高血糖
(二) 低血糖
1. 低血糖 空腹血糖浓度低于3.0mmol/L时称为低血糖。
2. 低血糖的影响 血糖过低,可影响脑细胞功能,出 现头晕、倦怠无力、心悸等症状,严重时出现昏迷, 称为低血糖休克。 3. 低血糖的原因 (1) (2) (3) (4) (5) 胰岛肿瘤、胰岛素分泌增加。 严重肝病时,肝糖原分解、糖异生障碍。 内分泌功能异常。 饥饿或不能进食。 空腹饮酒。
量;图片2中的人因心、肺功能不全造成机体相对缺氧,也主要通过糖酵解获得能量。 2.图3中的成熟红细胞因为没有线粒体结构,即使在氧气供应充足的情况下,也不能 进行有氧氧化,只能靠糖酵解获得能量。
3.正常情况下,由于有氧氧化过程产生的能量是糖酵解的18或19倍,所以人体内大 多数组织细胞主要依靠糖的有氧氧化获得能量。
糖原储存
肌糖原,氧化供能 肝糖原 维持血糖
一、糖原合成
(一)合成部位
1. 组织定位 主要在肝、肌肉 2. 细胞定位 胞浆
(二)糖原合成过程的特点
1.糖原合酶是糖原合成过程的关键酶。 2糖原合成是消耗能量的过程