专题26 与弧长、扇形面积有关的问题(原创版)

合集下载

部编数学九年级上册24.4弧长和扇形面积(13大题型)2023考点题型精讲(解析版)含答案

部编数学九年级上册24.4弧长和扇形面积(13大题型)2023考点题型精讲(解析版)含答案

24.4弧长和扇形面积弧长公式 半径为R的圆中,360°的圆心角所对的弧长(圆的周长)公式: n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)题型1:运用公式计算弧长1.已知一个扇形的圆心角是150°,半径是3,则该扇形的弧长为( )A.B.C.D.【分析】利用弧长公式直接计算即可.【解答】解:这个扇形的弧长==π,故选:A.【点评】本题考查弧长公式,解题的关键是记住弧长公式l=.【变式1-1】如图,AB是圆O的直径,CD是弦,CD∥AB,∠BCD=30°,AB=6,则弧BD的长为( )A.πB.4πC.2πD.45π【分析】求出圆心角∠BOD的度数,再根据弧长的计算公式进行计算即可.【解答】解:∠BOD=2∠BCD=2×30°=60°,由弧长公式得,弧BD的长为=π,故选:A.【点评】本题考查圆周角定理,弧长的计算,掌握弧长的计算公式是正确解答的前提,求出圆心角的度数是解决问题的关键.【变式1-2】如图,AB是⊙O的直径,AC是⊙O的弦,若∠A=20°,AB=6,则弧长为( )A.B.C.D.【分析】连结CO,根据AO=CO,得到∠A=∠C=20°,根据三角形内角和定理求出圆心角的度数,根据直径的长求出半径,根据弧长公式l=即可得出答案.【解答】解:如图,连结CO,∵AO=CO,∴∠A=∠C=20°,∴∠AOC=180°﹣∠A﹣∠C=140°,∵直径AB=6,∴半径r=3,∴长==,故选:C.【点评】本题考查了弧长的计算,掌握弧长公式l=是解题的关键.题型2:列方程求圆心角或半径2.已知一段弧长为9.42cm,该段弧所在的圆的半径为6cm,求这段弧所对的圆心角度数.【分析】根据弧长公式,即可求出弧所对的圆心角的度数.【解答】解:设圆心角的度数为n,根据题意得,=9.42=3π,∴n=3π×180°÷6π=90°.故这段弧所对的圆心角度数为:90°.【点评】本题考查了弧长的计算,牢记弧长公式是解题的关键.【变式2-1】如图,劣弧AB的长为6π,圆心角∠AOB=90°,求此弧所在圆的半径.【分析】根据弧长公式l=,代入求出r的值即可.【解答】解:由题意得,6π=,∴r=12.答:此弧所在圆的半径为12.【点评】本题考查了弧长的计算,关键是掌握弧长的计算公式.【变式2-2】已知圆上一段弧长为4πcm,它所对的圆心角为100°,求该圆的半径.【分析】设该圆的半径为R,根据弧长公式列出方程,解方程可得.【解答】解:设该圆的半径为Rcm,根据题意,得:=4π,解得:R=,答:该圆的半径为cm.【点评】本题考查了弧长公式:l=(n为弧所对的圆心角的度数,R为弧所在圆的半径).题型3:弧长计算中的最值问题(提升)3.如图,在扇形AOB中,∠AOB=120°,OB=2,点D为弦AB上一动点(不与A,B两点重合),连接OD并延长交于点C,当CD为最大值时,的长为( )A.B.C.D.π【分析】根据垂线段最短得出当OC⊥AB时,OD最短,此时CD最大,求出∠BOC的度数,再根据弧长公式求出即可.【解答】解:当OC⊥AB时,OD最短(垂线段最短),此时CD最大,∵∠AOB=120°,OD⊥AB,OD过圆心O,∴=,且弧的度数是60°,∴∠BOC=60°,∴的长为=,故选:B.【点评】本题考查了垂径定理,垂线段最短等知识点,能求出∠BOC的度数是解此题的关键【变式3-1】如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BC于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为( )A.B.C.D.【分析】利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′D最小,即:E′C+E′D=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长==,∴阴影部分周长的最小值为2+=.故选:C.【点评】本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.【变式3-2】如图,在扇形AOB中,∠AOB=90°,点C在上,且∠AOC=60°,点P是线段OB上一动点,若OA=2,则图中阴影部分周长的最小值是 .【分析】延长AO到D,使OD=AO,得到点A与点D关于OB对称,连接CD交OB于P′,当点P 与点P′重合时,图中阴影部分周长的值最小,根据等腰三角形的性质得到∠D=∠OCD=30°,过C 作CE⊥AO于E,根据直角三角形的性质即可得到结论.【解答】解:延长AO到D,使OD=AO,∵∠AOB=90°,∴点A与点D关于OB对称,连接CD交OB于P′,当点P与点P′重合时,图中阴影部分周长的值最小,∵∠AOC=60°,∴∠BOC=30°,∴∠DOC=120°,∵OD=OA=OC,∴∠D=∠OCD=30°,过C作CE⊥AO于E,∴∠CEO=90°,∴∠OCE=30°,∵OC=OA=2,∴OE=OC=1,∴DE=OE+OD=3,CE===,∴CD===2,∴AP′+CP′=2,∵的长==π,∴图中阴影部分周长的最小值是2+π,故答案为:2+π.【点评】本题考查了弧长的计算,勾股定理,含30°角的直角三角形的性质,正确地作出辅助线是解题的关键.题型4:弧长计算与实际应用问题4.有一段圆弧形公路,弯道半径为45米,请你计算,圆心角等于60°的圆弧形公路有多少米长?(精确到0.1米)【分析】根据弧长公式计算即可得.【解答】解:圆心角等于60°的圆弧形公路长为=15π≈47.1米,答:圆心角等于60°的圆弧形公路长47.1米.【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.【变式4-1】如图,已知中心线的两个半圆弧半径都为1000mm,两直管道的长度都为2000mm,求图中管道的展直长度(即图中虚线所表示的中心线的长度,精确到1mm)【分析】先计算出扇形的弧长再加上直管道的长度即可.【解答】解:图中管道的展直长度=2×+4000=2000π+4000≈10280(mm).【点评】主要考查了扇形的弧长公式,这个公式要牢记.弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为r).扇形面积公式 半径为R的圆中,360°的圆心角所对的扇形面积(圆面积)公式: n°的圆心角所对的扇形面积公式:题型5:应用公式计算扇形面积5.一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )A.30πcm2B.60πcm2C.120πcm2D.180πcm2【分析】先根据题意可算出扇形的半径,再根据扇形面积公式即可得出答案.【解答】解:根据题意可得,设扇形的半径为rcm,则l=,即10π=,解得:r=12,∴S===60π(cm2).故选:B.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解是解决本题的关键.【变式5-1】已知一个扇形的圆心角的度数为120°,半径长为3,则这个扇形的面积为多少?(结果保留π)【分析】根据扇形的面积公式S=πR2直接计算即可.扇形=πR2=×π×32=3π,【解答】解:S扇形答:这个扇形的面积为3π.【点评】本题考查了扇形的面积公式,熟记公式和准确计算是解题的关键.【变式5-2】如图、A、B、C三点在半径为1的⊙O上,四边形ABCO是菱形,求扇形OAC的面积.【分析】连接OB,证明△AOB,△BOC都是等边三角形,得∠AOC=120°,利用扇形面积公式计算即可.【解答】解:如图,连接OB,∵四边形ABCO是菱形,∴OA=OC=AB=BC=OB,∴△AOB,△BOC都是等边三角形,∴∠AOC=120°,∴S==.扇形OAC【点评】本题考查扇形面积公式,菱形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.题型6:列方程求圆心角或半径6.已知扇形的圆心角为30°,面积为3πcm2,则扇形的半径为( )A.6cm B.12cm C.18cm D.36cm【分析】设扇形的半径为r,再根据扇形的面积公式求出r的值即可.【解答】解:设扇形的半径为r,∵扇形的圆心角为30°,面积为3πcm2,∴=3π,解得r=6(cm).故选:A.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.【变式6-1】已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是( )A.180°B.120°C.90°D.60°【分析】根据扇形和圆的面积公式列方程即可得到结论.【解答】解:根据题意得,=()2π,解得:n=90,故选:C.【点评】本题考查了扇形的面积公式,熟记扇形的面积公式是解题的关键.【变式6-2】已知⊙O的半径为2cm,扇形AOB的面积为πcm2,圆心角∠AOB是多少度?【分析】根据扇形的面积公式S=,得n=,代入数据计算即可.【解答】解:设∠AOB=n,∵⊙O的半径为2cm,扇形AOB的面积为πcm2,∴S===π,解得:n=90°,∴∠AOB是90°.【点评】本题考查了扇形的面积,熟记扇形的面积公式是解题的关键.题型7:扇形计算与实际应用问题7.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.【分析】先求出AD的长度,再根据扇形的面积公式分别求出扇形DAE和扇形BAC的面积即可.【解答】解:∵AB=30cm,BD=18cm,∴AD=AB﹣BD=30﹣18=12(cm),∴纸扇上贴纸部分的面积S=S扇形BAC ﹣S扇形DAE=﹣=300π﹣48π=252π(cm2).【点评】本题考查了扇形的面积公式,能熟记扇形的面积公式是解此题的关键,注意:半径为r,圆心角为n°的扇形的面积为.【变式7-1】某灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA=24cm,OC =12cm,∠AOB=135°.(计算结果保留π)(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),至少需要多长的花边?(2)求灯罩的侧面积(接缝处忽略不计).【分析】(1)主要是求阴影部分扇形环的外环和内环的弧长之和,即求优弧AB+优弧CD;直接利用弧长公式求解即可.(2)求扇环的面积,即S侧=S阴影=(π×242﹣S扇形OAB)﹣(π×122﹣S扇形OCD).【解答】解:(1)优弧的长为(cm),优弧的长为(cm),至少需要花边的长度为30π+15π=45π(cm);(2)灯罩的侧面积=S阴影=(π×242﹣S扇形OAB)﹣(π×122﹣S扇形OCD)=.【点评】主要考查了利用弧长公式和扇形的面积公式,通过面积差求扇形的面积.【变式7-2】如图,一只小羊被主人用绳子拴在长为5米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地.(1)若绳子长为4米,求这只羊能吃到草的区域的最大面积.(结果保留π)(2)为了增加小羊吃草的范围,现决定把绳子的长度增加到6米,求这只羊现在能吃到草的区域的最大面积.(结果保留π)【分析】(1)先根据题意和扇形面积公式列出算式,再求出即可;(2)先根据题意和扇形面积公式列出算式,再求出即可.【解答】(1)解:当绳子长为4米时,这只羊能吃到草的区域的最大面积S=+=13π(平方米),答:这只羊能吃到草的区域的最大面积是13π平方米;(2)解:当绳子长为4米时,这只羊能吃到草的区域的最大面积S=++=(平方米),答:这只羊能吃到草的区域的最大面积是平方米.【点评】本题考查了矩形的性质和扇形的面积计算,能根据扇形公式列出算式是解此题的关键.题型8:求阴影部分面积-规则图形8(S阴=S扇-S△).如图,在Rt△ABC中,∠ABC=90°,AC=4,AB=2,以点B为圆心,AB为半径画弧,交AC于点D,交BC于点E,连接BD,则图中阴影部分面积为( )A.B.C.D.【分析】根据S阴=S扇形BAD﹣S△ABD计算即可.【解答】解:在Rt△ABC中,∵∠ABC=90°,AB=2,AC=4,∴cos A==,∴∠A=60°,∵BA=BD,∴△ABD是等边三角形,∴∠ABD=60°,∴S阴=S扇形BAD﹣S△ABD=﹣×22=π﹣,故选:B.【点评】本题考查扇形面积的计算,锐角三角函数,等边三角形的判定和性质,扇形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式8-1】(S阴=S大扇-S小扇)如图是2022年杭州亚运会徽标的示意图,若AO=5,BO=2,∠AOD=120°,则阴影部分面积为( )A.14πB.7πC.D.2π【分析】根据S阴影=S扇形AOD﹣S扇形BOC,求解即可.【解答】解:S阴影=S扇形AOD﹣S扇形BOC=﹣==7π,故选:B.【点评】本题考查扇形的面积,解题的关键是熟记扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长).【变式8-2】(化零为整)如图,分别以n边形的顶点为圆心,以2为半径画圆,则图中阴影部分面积之和为( )A.πB.2πC.3πD.4π【分析】由题意得到各顶点的扇形圆心角之和即为n边形外角和,利用扇形面积公式计算即可求出阴影部分面积.【解答】解:∵n边形的外角和为360°,半径为2,∴S 阴影==4πcm 2,故选:D .【点评】此题考查了扇形面积的计算,以及多边形的内角和与外角和,熟练掌握扇形面积公式是解本题的关键.【变式8-3】(S 阴=S △-S 扇)如图,正三角形ABC 的边长为8,点D ,E ,F 分别为BC ,CA ,AB 的中点,以A ,B ,C 三点为圆心,4为半径作圆,则图中阴影部分的面积为 16﹣8π .(结果保留π)【分析】连接AD ,根据等边三角形的性质得出AB =AC =BC =8,∠BAC =∠ABC =∠ACB =60°,求出圆的半径为4,再分别求出△ABC 的面积和三个扇形的面积即可.【解答】解:连接AD ,则BD =CD ,∵△ABC 是等边三角形,∴∠BAC =∠ABC =∠ACB =60°,AB =AC =BC =8,∴BD =CD =4,即三个圆的半径都是4,由勾股定理得:AD ===4,∴阴影部分的面积S =S △ABC ﹣3S 扇形BFD =﹣3×=16﹣8π,故答案为:16﹣8π.【点评】本题考查了等边三角形的性质,扇形的面积公式等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.题型9:求阴影部分面积-不规则图形9(割补法).如图,在正方形ABCD中有一点P,连接AP、BP,旋转△APB到△CEB的位置.(1)若正方形的边长是8,PB=4.求阴影部分面积;(2)若PB=4,PA=7,∠APB=135°,求PC的长.【分析】(1)根据旋转的性质得到△APB≌△CEB,则BP=BE,∠ABP=∠EBC;以B为圆心,BP 画弧叫AB于F点,如图,易得扇形BFP的面积=扇形BEQ,则图形ECQ的面积=图形AFP的面积,于是S阴影部分=S扇形BAC﹣S扇形BFQ,然后根据扇形的面积公式计算即可;(2)连PE,利用△APB≌△CEB得到BP=BE=4,∠ABP=∠EBC,PA=EC=7,∠BEC=∠APB=135°,易得△PBE为等腰直角三角形,则∠BEP=45°,PE=4,则∠PEC=135°﹣45°=90°,然后在Rt△PEC中根据勾股定理计算即可得到PC的长.【解答】解:(1)∵把△APB旋转到△CEB的位置,∴△APB≌△CEB,∴BP=BE,∠ABP=∠EBC,以B为圆心,BP画弧叫AB于F点,如图,∴扇形BFP的面积=扇形BEQ,∴图形ECQ的面积=图形AFP的面积,∴S阴影部分=S扇形BAC﹣S扇形BFQ=﹣=12π;(2)连PE,∴△APB≌△CEB,∴BP=BE=4,∠ABP=∠EBC,PA=EC=7,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴∠BEP=45°,PE=4,∴∠PEC=135°﹣45°=90°,∴PC===9.【点评】本题考查了扇形的面积公式:S=(其中n为扇形的圆心角的度数,R为半径).也考查了正方形和旋转的性质.【变式9-1】(等面积法)如图,A是半径为1的⊙O外的一点,OA=2,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC.则图中阴影部分面积等于( )A.B.C.D.【分析】△OBC与△BCA是同底等高,则它们的面积相等,因此阴影部分的面积实际是扇形OCB的面积;扇形OCB中,已知了半径的长,关键是圆心角∠COB的度数.在Rt△ABO中,根据OB、OA 的长,即可求得∠BOA的度数;由于OA∥BC,也就求得了∠OBC的度数,进而可在△COB中求出∠COB的度数,由此可根据扇形的面积公式求出阴影部分的面积.【解答】解:OB是半径,AB是切线,∵OB⊥AB,∴∠ABO=90°,∴sin A==,∴∠A=30°,∵OC=OB,BC∥OA,∴∠OBC=∠BOA=60°,∴△OBC是等边三角形,因此S阴影=S扇形CBO==.故选:A.【点评】本题利用了平行线的性质,同底等高的三角形面积相等,切线的概念,正弦的概念,扇形的面积公式求解.【变式9-2】(构造法)求阴影部分面积.【分析】构造图2,得到图1中的S1、S2、S3、S4,与图2中的S1、S2、S3、S4相等,易求得图2中S1+S2+S3+S4的值,得到图1中的阴影为﹣(S1+S2+S3+S4).【解答】解:如图:图1中的S1、S2、S3、S4,与图2中的S1、S2、S3、S4相等,由图2可知:S1+S2+S3+S4=(2a)2﹣πa2=4a2﹣πa2,图1中的阴影为﹣(S1+S2+S3+S4)=πa2﹣(4a2﹣πa2)=2πa2﹣4a2.【点评】本题考查了图形面积的计算,利用图形的等面积变换可以简化计算.圆锥的侧面积和全面积 连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线. 圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则 圆锥的侧面积2360l S rl p p =扇n =,圆锥的全面积.注意: 扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.题型10:求圆锥的侧面积(全面积)10.已知圆锥的底面半径为4,母线长为6,则它的侧面展开图的面积是( )A .24B .48C .12πD .24π【分析】由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,从而利用扇形的面积公式可计算圆锥的侧面积.【解答】解:它的侧面展开图的面积=×2π×4×6=24π.故选:D .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式10-1】一个圆锥的底面直径是8cm ,母线长为9cm ,则圆锥的全面积为( )A .36πcm 2B .52πcm 2C .72πcm 2D .136πcm 2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和.【解答】解:圆锥的全面积=π×42+×2π×4×9=52π(cm 2).故选:B .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式10-2】如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为 120°,求这个扇形的面积.【分析】首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.【解答】解:∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:r=30,∴扇形的面积为πrl=π×10×30=300π,【点评】本题考查了圆锥的计算及扇形的面积的计算,解题的关键是牢记计算公式.题型11:计算底面半径或展开图圆心角11.圆锥的轴截面是一个等边三角形,则它的侧面展开图圆心角度数是( )A.60°B.90°C.120°D.180°【分析】易得圆锥的底面直径与母线长相等,那么根据圆锥的底面周长等于侧面展开图的弧长即可得到这个圆锥的侧面展开图的圆心角度数.【解答】解:设圆锥的底面半径为r,母线长为R,∵它的轴截面是正三角形,∴R=2r,∴2πr=,解得n=180°,故选:D.【点评】用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.【变式11-1】一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为( )A.5cm B.10cm C.20cm D.30cm【分析】设圆锥底面半径为rcm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据弧长公式得到2πr=,然后解方程即可.【解答】解:设圆锥底面半径为rcm,根据题意得2πr=,解得r=10,即圆锥底面半径为10 cm.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式11-2】如图,圆锥的侧面积恰好等于其底面积的2倍,求该圆锥侧面展开图所对应扇形圆心角的度数.【分析】设出母线长与底面半径,根据题意和圆的面积,扇形的面积公式求解.【解答】解:设母线长为R,圆锥侧面展开图所对应扇形圆心角的度数为n,底面半径为r.∴底面周长=2πr,底面面积=πr2,侧面积=×2πr×R=πRr=2×πr2,∴R=2r,∴=2πr=πR,∴n=180°.【点评】本题利用了扇形的面积公式,圆的面积公式,弧长公式,圆的周长公式求解.注意圆锥的侧面积=底面周长×母线长÷2.题型12:圆锥计算与实际应用问题12.用铁皮制作圆锥形容器盖,其尺寸要求如图所示.(1)求圆锥的高;(2)求所需铁皮的面积S(结果保留π).【分析】(1)根据勾股定理即可求出高;(2)根据圆锥的底面圆周长是扇形的弧长,圆锥的母线长是扇形的半径进行计算即可.【解答】解:(1)如图,在Rt△AOB中,根据勾股定理,AO===30(cm),∴圆锥的高为30cm;(2)80π×50=2000π(cm2),答:所需铁皮的面积为2000πcm2.【点评】本题考查的是圆锥的计算,正确理解圆锥与它的侧面展开图扇形之间的关系是解决本题的关键,要正确理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.【变式12-1】一个圆锥形沙堆,底面半径是5米,高是2.5米.(π取3)(1)求这堆沙子有多少立方米?(2)用这堆沙子在10m宽的公路上铺2cm厚的路面,能铺多少米?(3)在(2)的条件下,一台压路机的前轮直径是1m,前轮宽度是2m.如果前轮每分钟转动6周,这台压路机压一遍这段路面大约需要多少分钟?(得数保留整数.)【分析】(1)根据圆锥的体积公式求出这堆沙子的立方米数;(2)根据体积相等列式计算;(3)根据压路机一分钟压的面积,进而求出需要的分钟数.【解答】解:(1)圆锥的体积=×π×52×2.5=π≈62.5(立方米),答:这堆沙子约有62.5立方米;(2)用这堆沙子在10m宽的公路上铺2cm厚的路面,能铺的米数为:62.5÷(10×0.02)=312.5(米),答:用这堆沙子在10m宽的公路上铺2cm厚的路面,能铺312.5米;(3)压路机一分钟压的面积=π×1×2×6≈36(平方米),则这台压路机压一遍这段路面大约需要的时间=312.5×10÷36≈87(分).【点评】本题考查的是圆锥的计算,掌握圆锥的体积公式、圆的面积公式是解题的关键.【变式12-2】蒙古包是蒙古族牧民居住的一种房子,其外形可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面半径为4m,总高为4.5m,外围(圆柱)高为1.5m的蒙古包(不包含底面圆),至少需要多少m2的毛毡?【分析】由底面圆的半径=4米,由勾股定理求得母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和.【解答】解:∵底面半径=4米,高为4.5m,外围(圆柱)高1.5m,∴圆锥高为:4.5﹣1.5=3(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×4×5=20π(平方米);圆锥的周长为:2π×4=8π(m),圆柱的侧面积=8π×1.5=12π(平方米).∴故需要毛毡:20×(20π+12π)=640π(平方米).【点评】此题主要考查了勾股定理,圆面积公式,扇形的面积公式,矩形的面积公式等,分别得出圆锥与圆柱侧面积是解题关键.题型13:圆锥与最短距离13.如图,AB为圆锥轴截面△ABC的一边,一只蚂蚁从B地出发,沿着圆锥侧面爬向AC边的中点D,其中AB=6,OB=3,请蚂蚁爬行的最短距离为 .【分析】先把圆锥侧面展开得到扇形CAC′,如图,设圆锥的侧面展开图的圆心角为n,利用弧长公式得到2π×3=,解得n=180,则∠CAB′=90°,利用勾股定理计算出B′D,然后根据两点之间线段最短求解.【解答】解:圆锥的侧面展开图为扇形CAC′,如图,设圆锥的侧面展开图的圆心角为n,根据题意得2π×3=,解得n=180,∴∠CAB′=90°,∵D为AC的中点,∴AD=3,在Rt△ADB′中,B′D==3,∴蚂蚁爬行的最短距离为3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式13-1】已知圆锥的底面半径是4cm,母线长为12cm,C为母线PB的中点,求从A到C在圆锥的侧面上的最短距离.【分析】最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.【解答】解:圆锥的底面周长是8π,则8π=,∴n=120°,即圆锥侧面展开图的圆心角是120度.∴∠APB=60°,∵PA=PB,∴△PAB是等边三角形,∵C是PB中点,∴AC⊥PB,∴∠ACP=90度.∵在圆锥侧面展开图中AP=12,PC=6,∴在圆锥侧面展开图中AC==6cm.最短距离是6cm.【点评】本题考查了圆锥的计算,需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.【变式13-2】圆锥的底面半径是3,母线长是9,P是底面圆周上一点:从点P拉一根绳子绕圆锥侧面一周,再回到P点,求这根绳子的最短长度.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对直径,转化为求直径的长的问题.【解答】解:将圆锥侧面沿AB剪开展平,连BB′,则BB′就是所求绳子长.由2π×3=得n=120,作AC⊥BB',则∠2=60°BB'=2BC,∴∠3=30°∴AC=,BC=,∴BB′=9.【点评】本题主要考查圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.一、单选题1.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则BC的长为( )A .4πB .43πC .83πD .163π【答案】C 【解析】【解答】解:如图示,链接OC ,OB ,∵∠A =60°∴∠COB =120° ,∵OM ⊥BC , OM =2∴∠COM =60° , OC =OM cos60∘=212=4 ,∴BC =120∘×2×π×4360∘=83π ,故答案为:C【分析】链接OC ,OB ,利用圆周角定理可得 ∠COB =120° ,根据 OM ⊥BC , OM =2 ,可求出 OC =4 ,利用弧长公式即可求出 BC 的长度.2.扇形的圆心角为60°,面积为6π,则扇形的半径是( )A .3B .6C .18D .36【答案】B 【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【解答】扇形的面积=60πr 2360=6π.解得:r=6,故选:B .3.如图, AC ⊥BC , AC =BC =8 ,以BC 为直径作半圆,圆心为点O ;以点C 为圆心, BC 为半径作 AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A .20π3−8B .20π3C .−20π3D .+20π3【答案】A【解析】【解答】解:如图,连接CE.∵AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =4,BC =CE =8.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在Rt △OEC 中,OC =4,CE =8,∴∠CEO =30°,∠ECB =60°,OE =4,∴S 阴影=S 扇形BCE −S 扇形BOD −S △OCE= 60π×82360−14×42π−12×4×= 20π3−8故答案为:A.【分析】如图,连接CE.图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC =CE =8,∠ECB =60°,OE =4,所以由扇形面积公式、三角形面积公式进行解答即可.4.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A .1534﹣ 32πB .1532 ﹣ 32πC .734﹣ π6D ﹣ π6【答案】A【解析】【解答】解:如图连接OD 、CD .∵AC 是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD ,∴△OCD 是等边三角形,∵BC 是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )= 12 ×6×2 ﹣ 12 ×3× ﹣( 60π⋅32360 ﹣ 34×32)= ﹣ 32 π.故答案为:A .【分析】如图连接OD 、CD .根据圆周角定理及三角形内角和及同圆的半径相等得出△OCD 是等边三。

弧长和扇形面积DOC

弧长和扇形面积DOC

弧长和扇形面积习题精选一、选择题1.在以O为圆心的两个同心圆中,大圆的半径OA,OD分别交小圆于B,C.若OA=3OB,则BC的长是AD的长的().A.3倍B.13倍C.6倍D.23倍2.已知弧长为l,它所对的圆心角为120°,则它所对的弦的长为().A.4πB.4πC.2πD.3.扇形的周长为28厘米,面积49平方厘米,则此扇形的半径为()厘米.A.4B.6C.D.74.如图,扇形OAB的圆心角为90°,分别以OA,OB为直径,在扇形内作半圆,P,Q 表示两阴影部分的面积,那么P和Q的大小关系是().A .P=QB .P<QC .P>QD .无法确定5.弧长等于半径的圆弧所对的圆心角是( ).A .360π︒B .180π︒C .90π︒D .60π︒6.正三角形ABC 内接于半径为2厘米的圆,则AB 所对的弧长为( ).A .23π厘米 B .43π厘米 C .83π厘米D .43π厘米或83π厘米7.如图,以边长为a的正三角形的三个顶点为圆心,以边长一半为半径画弧,则三弧围成的阴影部分的面积是().A.2) 8aπB.2) 4aπC.284 aπ+D.24a8.正方形的边长为a,以各边为直径在正方形内画半圆,如图,则阴影部分的面积为().A.221 42 a a π+B.22 2a a π+C.224a aπ-D.22 a a π-二、填空题1.如图,在△ABC中,∠ACB=90°,∠B=15°,以C为圆心、CA长为半径的圆交AB 于点D.若AC=6,则AD的长为______.2.如图,一扇形纸扇完全打开后,两竹条外侧OA和OB的夹角为120°,OC长为8厘米,贴纸部分CA长为15厘米,则贴纸部分的面积为____________.3.如图,扇形OAB的圆心角为60°,半径为6,C,D分别是AB的三等分点,则阴影部分的面积等于______.4.半径为5的一段弧长等于半径为2的圆的周长,则这段弧所对的圆心角为_________。

弧长公式扇形面积公式及其应用(含经典习题)

弧长公式扇形面积公式及其应用(含经典习题)

【本讲教育信息】一. 教学内容:弧长及扇形的面积圆锥的侧面积二. 教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。

2、了解圆锥的侧面积公式,并会应用公式解决问题。

三. 重点及难点重点:1、弧长的公式、扇形面积公式及其应用。

2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。

难点:1、弧长公式、扇形面积公式的推导。

2、圆锥的侧面积、全面积的计算。

[知识要点]知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

扇形和弧形练习题

扇形和弧形练习题

扇形和弧形练习题1. 扇形的面积- 已知一个扇形的半径为6cm,夹角为60°,求扇形的面积。

解答:扇形的面积可以通过扇形的半径和夹角来计算。

根据扇形的面积公式:面积 = (夹角/ 360°) * π * 半径²。

所以,扇形的面积等于(60° / 360°) * 3.14 * 6² = 18.84cm²。

2. 弧长和扇形的面积- 一个扇形的半径为10cm,夹角为45°,求扇形的弧长和面积。

解答:扇形的弧长可以通过扇形的半径和夹角来计算。

根据弧长公式:弧长 = (夹角 / 360°) * 2 * π * 半径。

所以,扇形的弧长等于 (45° / 360°) * 2 * 3.14 * 10 = 7.85cm。

扇形的面积同样可以使用扇形的半径和夹角来计算。

根据扇形的面积公式:面积 = (夹角/ 360°) * π * 半径²。

所以,扇形的面积等于 (45° / 360°) * 3.14 * 10² = 3.93cm²。

3. 半径和扇形的面积- 已知一个扇形的面积为12.56cm²,夹角为120°,求扇形的半径。

解答:扇形的半径可以通过扇形的面积和夹角来计算。

根据扇形的面积公式:面积 = (夹角/ 360°) * π * 半径²。

所以,扇形的半径等于√(面积 / ((夹角/ 360°) * π)) = √(12.56 / ((120° / 360°) * 3.14)) =√(12.56 / 1.05) = √12 = 3.46cm。

以上是扇形和弧形练习题的解答。

希望能对你有所帮助!。

弧长与扇形面积练习题与答案

弧长与扇形面积练习题与答案

知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。

典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。

弧长与扇形面积

弧长与扇形面积

弧长与扇形面积圆是几何学中非常基础的一个形状,而弧长和扇形面积是圆的重要属性之一。

本文将探讨弧长和扇形面积之间的关系,并介绍如何计算它们。

一、弧长弧长是圆的周长的一部分,它表示圆上两点之间的距离,可以看作是圆上某一段弧的长度。

弧长与圆的半径、圆心角之间有着密切的关系。

[图片示意]为了计算弧长,我们需要知道圆的半径和圆心角的大小。

当圆心角的度数为θ时,我们可以使用以下公式来计算弧长:弧长= (θ / 360) * 2πr其中,r为圆的半径。

这个公式的推导过程比较复杂,本文不再赘述。

二、扇形面积扇形是由圆心角和弧段包围的部分组成的图形。

扇形面积是指扇形所覆盖的圆面积的一部分。

[图片示意]要计算扇形面积,我们需要知道圆的半径和圆心角的大小。

当圆心角的度数为θ时,我们可以使用以下公式来计算扇形面积:扇形面积= (θ / 360) * πr²其中,r为圆的半径。

这个公式可以通过将扇形分割成三角形和扇形的两部分,然后分别计算它们的面积并相加得到。

三、弧长与扇形面积的关系弧长和扇形面积之间存在着紧密的联系。

事实上,当圆心角固定时,它们的比值始终保持一致。

具体而言,当圆心角度数为θ时,可以得到以下关系式:弧长 / 扇形面积= 2r / θ这个关系式对于解决各种问题和计算中非常有用。

如果我们已知弧长和圆半径,想要推算扇形面积,可以通过上述关系式进行求解。

四、应用举例下面通过一些例子来说明弧长和扇形面积的具体应用。

例子1:假设有一个圆的半径为5 cm,圆心角的度数为60°,求解弧长和扇形面积。

根据上述公式,可以得到弧长为(60/360) * 2π * 5 ≈ 5.24 cm。

扇形面积为(60/360) * π * 5² ≈ 5.24 cm²。

例子2:假设已知一个圆的半径为8 cm,弧长为12 cm,求解圆心角和扇形面积。

通过弧长和圆半径的关系式,可以得到圆心角为(12 / (2π * 8)) * 360 ≈ 86.6°。

专题26 与弧长、扇形面积有关的问题(解析版)

专题26  与弧长、扇形面积有关的问题(解析版)

专题26 与弧长、扇形面积有关的问题1.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式2.弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,3.圆柱侧面积体积公式(1)圆柱的侧面积公式S侧=2πrh(2)圆柱的表面积公式:S表=S底×2+S侧=2πr2+2πr h专题知识回顾1802360rnrnlππ=⋅=2360rnsπ⋅=lrs21=或4.圆锥侧面积体积公式(1)圆锥侧面积计算公式 从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形= = πrl(2)圆锥全面积计算公式:S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )【例题1】(2019•湖北武汉)如图,AB 是⊙O 的直径,M 、N 是(异于A.B )上两点,C 是上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C.E 两点的运动路径长的比是( )A .B .C .D .【答案】A .【解析】如图,连接E B .设OA =r .易知点E 在以D 为圆心DA 为半径的圆上,运动轨迹是,点C 的运动轨迹是,由题意∠MON =2∠GDF ,设∠GDF =α,则∠MON =2α,利用弧长公式计算即可解决问题. 如图,连接E B .设OA =r .专题典型题考法及解析∵AB 是直径,∴∠ACB =90°,∵E 是△ACB 的内心,∴∠AEB =135°,∵∠ACD =∠BCD ,∴=,∴AD =DB =r ,∴∠ADB =90°,易知点E 在以D 为圆心DA 为半径的圆上,运动轨迹是,点C 的运动轨迹是,∵∠MON =2∠GDF ,设∠GDF =α,则∠MON =2α ∴==.【例题2】(2019山西)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( ) A.2435π- B.2435π+ C.π-32 D.234π-【答案】A【解析】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =3BC AB ==, ∴∠CAB =30°,∠BOD =2∠CAB =60°.在Rt △ODE 中:OE =21OD =23,DE =3OE =23.S 阴影=S △ABC -S △AOD -S 扇形BOD =2116022360AB BC OD DE OB π︒⋅⋅-⋅⋅-⋅⋅︒=211360222236042ππ︒⨯--⨯⨯=-︒,故选A【例题3】(2019·贵州安顺)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=120°,则该圆锥母线l 的长为 .【答案】6【解析】根据题意得2π×2=,解德l =6,即该圆锥母线l 的长为6.一.选择题1.(2019•四川省广安市)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =4,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )专题典型训练题A.π﹣B.π﹣C.π﹣D.π﹣【答案】A.【解析】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,中考常考题型.根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD=BC=2,图中阴影部分的面积=S扇形COD﹣S△COD=﹣2×1=﹣。

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案(共29页)-本页仅作为预览文档封面,使用时请删除本页-弧长与扇形面积一、选择题1.(2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016兰州,12,4分)如图,用一个半径为 5cm 的定滑轮带动重物上升,滑轮上一点 P 旋转了 108º,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)πcm (B) 2πcm(C) 3πcm (D) 5πcm【答案】:C【解析】:利用弧长公式即可求解【考点】:有关圆的计算3.(2016福州,16,4分)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016·四川资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC 的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△A B C﹣S扇形C B D即可得出结论.【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△A B C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.5. (2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6. (2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2π B.πC.πD.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.7.(2016吉林长春,7,3分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C. D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.(2016·广东深圳)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A.42-πB.84-πC.82-πD.44-π 答案:A考点:扇形面积、三角形面积的计算。

弧长及扇形的面积(基础篇)(专项练习)

弧长及扇形的面积(基础篇)(专项练习)

专题2.12 弧长及扇形的面积(基础篇)(专项练习)一、单选题1.已知扇形的半径为6,圆心角为20°,则扇形的面积为( )A .6πB .3πC .πD .2π2.如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,OC ,若AB =6,∠A =30°,则BC 的长为( )A .6πB .2πC .32πD .π 3.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .4.如果一弧长是其所在圆周长的118,那么这条弧长所对的圆心角为( ) A .15度 B .16度 C .20度 D .24度 5.如图是边长为1的正方形组成的网格,△ABC 的顶点都在格点上,将△ABC 绕点C 逆时针旋转60°,则顶点B 所经过的路径长为( )A B C .2π3 D 6.如图,Rt △ABC 中,∠ACB =90°,AC=BC=2,在以AB 的中点O 为坐标原点、AB 所在直线为x 轴建立的平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A′处,则图中阴影部分面积为( )A .-2B .C .D .-27.如图,在扇形OAB 中,∠90AOB =︒,2OA =,则阴影部分的面积是( )A .2B .πC .2πD .π2-8.如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为( )A .221π4a a -B .221π2a a -C .2211π42a a -D .2211π22a a - 9.如图,在边长为6的正方形ABCD 中,以BC 为直径画半圆,则阴影部分的面积是( )A .9B .6C .3D .1210.如图,一扇形纸扇完全打开后,外侧两条竹条AB 、AC 的夹角为120°,AB 长为30cm ,AD =10cm ,贴纸部分的面积为( )A .8003πcm 2B .5003πcm 2C .800πcm 2D .500πcm 2二、填空题11.已知扇形的圆心角的度数是120˚,半径为9,则此扇形弧长是______.12.在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C =90°,∠ABC =30°,AC =2,将直角三角尺绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,以此方法做下去……则B 点通过一次旋转至B ′所经过的路径长为 _____.(结果保留π)13.如图,A 与x 轴相切,与y 轴相交于点()0,1B ,()0,3C .(1)A 的半径r =______;(2)扇形BAC 的面积为______.14.如图,将△ABC 绕点C 顺时针旋转120°得到△A 'B 'C ,已知AC =3,BC =2,则AA '=__________;线段AB 扫过的图形(阴影部分)的面积为__________.15.如图.在矩形ABCD 中,AB =6,BC =4,以点B 为圆心,BC 的长度为半径画孤,交AB 于点E ;以点A 为圆心,AE 的长度为半径画弧,交AD 于点F .则图中阴影部分的面积为______.(结果保留π)16.如图,用一个半径为6 cm的定滑轮拉动重物上升,滑轮旋转了120︒,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_________cm.(结果保留π)17.如图,线段AB与AC是⊙O的两条弦,且AB=AC,∠ABC=75°,BC=4,则图中阴影部分的面积是_____.18.如图,在矩形ABCD中,22==,将线段AB绕点A按逆时针方向旋转,使得AB BC点B落在边CD上的点B'处,线段AB扫过的面积为___________.三、解答题19.如图,点A,B,C在直径为2的⊙O上,∠BAC=45°.(1) 求弧BC的长度;(2) 求图中阴影部分的面积.(结果中保留π)l cm,弧CD的20.如图,在⊙O中,AB、CD是两条弦,⊙O的半径长为rcm,弧AB的长度为1长度为2l cm(温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别) 当1l=2l时,求证:AB=CD21.如图,△ABC中,∠C=90°.(1) 将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(不写画法,保留画图痕迹)(2) 若AB=10,BC=6,求在旋转过程中,点C运动的路径长.22.如图,一根5m长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域.23.如图Rt△ABC中,∠C=90°,AD平分∠BAC,AD交BC于点D,点E在AB上,以AE 为直径的⊙O经过点D.(1) 求证:直线BC是⊙O的切线.(2) 若AC=6,∠B=30°,求图中阴影部分的面积.24.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC 与⊙O 的位置关系,并说明理由;(2)若FCCE =1.求图中阴影部分的面积(结果保留π).参考答案1.D 【分析】根据扇形的面积公式2360n r S π=即可得. 解:扇形的半径为6,圆心角为20︒,∴扇形的面积为22062360ππ⨯=, 故选:D .【点拨】本题考查了扇形的面积,熟记公式是解题关键.2.D【分析】先根据圆周角定理求出∠BOC =2∠A =60°,求出半径OB ,再根据弧长公式求出答案即可.解:∵直径AB =6,∴半径OB =3,∵圆周角∠A =30°,∴圆心角∠BOC =2∠A =60°,∴BC 的长是603180π⨯=π, 故选:D .【点拨】本题考查了弧长公式和圆周角定理,能熟记弧长公式是解此题的关键,注意:半径为r ,圆心角为n °的弧的长度是180n r π. 3.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度.解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.4.C【分析】根据弧长公式和圆的周长公式的关系即可得出答案 解:∵一弧长是其所在圆周长的118, ∴1=2r 18018n r ππ⨯ ∴=20n∴这条弧长所对的圆心角为20故选:C 【点拨】本题考查了弧长的计算,掌握弧长公式180n r l π=是解题的关键. 5.B【分析】先根据勾股定理计算出BC B 所经过的路径为弧,根据旋转的性质得弧所对的圆心角为60°,然后根据弧长公式求解.解:BC所以顶点B 所经过的路径长=. 故选:B .【点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了弧长公式.6.C解:试题分析:阴影部分的面积等于扇形ABA′的面积+Rt △A′C′B 的面积-Rt △ABC 的面积-扇形BCC′的面积.考点:面积的计算.7.D【分析】利用阴影部分的面积等于扇形面积减去AOB 的面积即可求解.解:=AOB OAB S S S -阴影扇形213602n r AO OB π=- =29021223602π-⨯⨯ 2π=-故选D【点拨】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键. 8.B【分析】由图可知,树叶形图案的面积是两个圆心角为90°,且半径为a 的扇形的面积与正方形的面积的差,可据此求出树叶形图案的面积.解:树叶形图案的面积为:2222扇形正方形901223602ABCD a S S a a a ππ⨯-=⨯-=- . 故选:B .【点拨】本题利用了扇形的面积公式,正方形的面积公式求解,得出树叶形图案的面积等于扇形正方形2ABCD S S - 是解题的关键.9.A【分析】设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,证明BE =CE ,得到弓形BE 的面积=弓形CE 的面积,则11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影. 解:设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,∵四边形ABCD 是正方形,∴∠OCE =45°,∵OE =OC ,∴∠OEC =∠OCE =45°,∴∠EOC =90°,∴OE 垂直平分BC ,∴BE =CE ,∴弓形BE 的面积=弓形CE 的面积,∴11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影, 故选A .【点拨】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.10.A【分析】贴纸部分的面积为大扇形面积减去小扇形面积,根据扇形面积公式解答. 解:贴纸部分的面积为2212030120108003603603-=πππ⨯⨯(cm 2), 故选:A .【点拨】本题考查扇形的面积,是基础考点,掌握相关知识是解题关键.11.6π【分析】根据扇形的弧长公式计算即可.解:∵圆心角的度数是120˚,半径为9, ∴扇形的弧长为:12096180ππ⨯⨯=. 故答案为:6π. 【点拨】本题考查扇形的弧长公式,解题关键是熟练掌握弧长公式180n r l π⨯=. 12.43π 【分析】根据题意,点B 所经过的路径是圆弧,根据直角三角形30°角所对的边等于斜边的一半,易知AB =4,结合旋转的性质可知∠BAB ′=∠BAC =60°,,最后求出圆弧的长度即可.解:∵∠C =90°,∠ABC =30°,AC =2,∴AB =2AC =4,∠BAC =60°,由旋转的性质得,∠BAB ′=∠BAC =60°,∴B 点通过一次旋转至B ′所经过的路径长为60?441803ππ=, 故答案为:43π. 【点拨】本题主要考查了直角三角形30°角所对的边等于斜边的一半,旋转的性质,以及圆弧的求法,熟练地掌握相关内容是解题的关键.13. 2; 23π##23π【分析】作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,做BD⊥AE,利用垂径定理的内容得出BF=CF,进而得出AD与半径的关系,从而得出△ABC为等边三角形,然后计算半径,再利用扇形面积公式求出即可.解:作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,BD⊥AE,假设AE=x,图象与y轴相交于点B(0,1)、C(0,3),∴OB=DE=1,AD=x-1,∵AC=AB,AF⊥BC,∴BF=CF=1,∴AD=BF=1=x-1,解得:x=2,∴AB=BC=AC=2,△ABC为等边三角形,∴∠BAC=60°,∴扇形BAC的面积=26022=360ππ⨯⨯,故答案为:2;23π.【点拨】此题主要考查了等边三角形的判定方法以及扇形的面积求法等知识,利用已知得出BF=AD是解决问题的关键.14.2π53π##53π【分析】根据弧长公式可求得AA'的长;根据图形可以得出AB扫过的图形的面积=S扇形ACA′+S△ABC-S扇形BCB′-S△A′B′C,由旋转的性质就可以得出S△ABC=S△A′B′C就可以得出AB扫过的图形的面积=S扇形ACA′-S扇形BCB′求出其值即可.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∴AA'的长为:1203180π⨯=2π;∵AB 扫过的图形的面积=S 扇形ACA ′+S △ABC -S 扇形BCB ′-S △A ′B ′C ,∴AB 扫过的图形的面积=S 扇形ACA ′-S 扇形BCB ′,∴AB 扫过的图形的面积= 221203120253603603πππ⋅⋅⋅-=. 故答案为:2π;53π. 【点拨】本题考查了旋转的性质的运用,全等三角形的性质的运用,弧长公式以及扇形的面积公式的运用,解答时根据旋转的性质求解是关键.15.245π-##-5π+24【分析】利用分割法求解即可.解:在矩形ABCD 中AB =6,BC =4,∴BE =BC =4,∴AE =AB -BE =6-4=2,∴S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC =6×4-22902904360360ππ⨯⨯- =24-5π,故答案为:24-5π.【点拨】本题考查扇形的面积,矩形的面积,明确S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC 是解题的关键.16.4π【分析】利用题意得到重物上升的高度为定滑轮中120°所对应的弧长,然后根据弧长公式计算即可.解:根据题意,重物的高度为12064180ππ⨯⨯=(cm ). 故答案为:4π. 【点拨】本题考查了弧长公式:180n R l π⋅⋅=(弧长为l ,圆心角度数为n ,圆的半径为R ). 17.883π+ 【分析】如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .根据S 阴=S △ABC ﹣S △OBC +S 扇形OBC ,求解即可.解:如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .∵AB =AC ,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =4,∴OA =4,∵AB =AC ,∴AB AC =,∴AO ⊥BC ,∴BH =CH =2,∴OH =∴AH∴S △ABC 12=•BC •AH 12=⨯4×(S △OBC 142=⨯=S 扇形OBC 260483603ππ⋅== ∴S 阴=S △ABC ﹣S △OBC + S 扇形OBC =883π+. 故答案为:883π+. 【点拨】本题主要考查了垂径定理,求扇形面积,圆周角定理,等边三角形的判定和性质,根据题意得到S 阴=S △ABC ﹣S △OBC + S 扇形OBC 是解题的关键.18.π3##13π 【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.解:22,AB BC ==1,BC ∴=∵矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,∵22AB BC ==,∴'2,AB AB ==''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒'30,BAB ∴∠=︒∴线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒ 故答案为:.3π【点拨】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.19.(1)2π(2)142π- 【分析】(1)连接OB ,OC .根据∠BOC =2∠A ,∠A =45°,可得∠BOC =90°,根据⊙O 的直径为2,可得OB =OC =1,即利用弧长公式即可求解答案;(2)根据∠BOC =90°,可知△BOC 是直角三角形,根据OB =OC =1,即可求出△BOC 的面积和扇形OBC 的面积,再根据S 阴=S 扇形OBC ﹣S △OBC 即可求解.解:(1)如图,连接OB ,OC .∵∠BOC =2∠A ,∠A =45°,∴∠BOC =90°,∵⊙O 的直径为2,∴OB =OC =1, ∴9023602BC ππ=⨯⨯=; (2)∵∠BOC =90°,∴△BOC 是直角三角形,∵⊙O 的直径为2,∴OB =OC =1,∴△BOC 的面积为11111222OBC S OB OC =⨯⨯=⨯⨯=△, ∵22909013603604OBC S r πππ=⨯=⨯⨯=扇形, 即S 阴=S 扇形OBC ﹣S △OBC =142π-. 【点拨】本题考查了圆周角定理、弧长公式、扇形面积公式等知识,掌握圆周角定理证明出∠BOC =90°是解答本题的关键. 20.见分析【分析】利用弧长公式得出圆心角相等,再利用圆心角,弧,弦之间的关系即可证明. 解:令∠AOB=α,∠COD=β.∵1l =2l∴12180180r r απβπ=∵AB 和CD 在同圆中,r 1=r 2∴α=β∴AB=CD【点拨】本题主要考查弧长公式及圆心角,弧,弦之间的关系,掌握圆心角,弧,弦之间的关系是解题的关键.21.(1)见分析(2)4π【分析】(1)根据要求作出图形即可;(2)根据勾股定理知AC =8,再根据弧长公式计算可得.(1)解:点C 绕点A 顺时针旋转90°得点C 1,点B 绕点A 顺时针旋转90°得点B 1,连结AB 1,B 1C 1,AC 1如图,△AB 1C 1为所画三角形;;(2)解:在ABC 中,∵∠C =90°,AB =10,BC =6,∴AC 8.∵ABC 绕点A 顺时针旋转90︒得到11AB C △,∴11890AC AC CAC ==∠=︒,.∴点C 运动的路径长为:9084180ππ⋅⋅=. 【点拨】本题主要考查作图-旋转变换,解题的关键是熟练掌握旋转变换的定义和性质及弧长公式.22.见分析【分析】根据题意画出两个扇形即可得到羊的活动区域.解:如图,以点O 为圆心,5m 长的绳子为半径画弧交草地左边界于点A ,交OD 的延长线于点B ,再以D 为圆心,DB 长为半径画弧交草地的右边界于点C ,则扇形AOB 和扇形BDC 部分即为羊的活动区域.【点拨】本题考查了作图﹣应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键.23.(1)见分析(2)阴影部分的面积为163π 【分析】(1)连接OD ,由AD 平分∠BAC ,可知∠OAD =∠CAD ,易证∠ODA =∠OAD ,所以∠ODA =∠CAD ,所以OD ∥AD ,由于∠C =90°,所以∠ODB =90°,从而可证直线BC 是⊙O 的切线;(2)根据含30度角的直角三角形性质可求出AB 的长度,然后求出∠AOD 的度数,然后根据扇形的面积公式即可求出答案.(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠OAD =∠CAD ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∵∠C =90°,∴∠ODB =90°,∴OD ⊥BC ,∴直线BC 是⊙O 的切线;(2)解:由∠B =30°,∠C =90°,∠ODB =90°,得:AB =2AC =12,OB =2OD ,∠AOD =120°,∠DAC =30°,∵OA =OD ,∴OB =2OA ,∴OA =OD =4,由∠DAC =30°,得DC∴S 阴影=S 扇形OAD -S △OAD=21201443602π⨯-⨯⨯=163π 【点拨】本题考查圆的综合问题,涉及角平分线的性质,平行线的判定与性质,含30度角的直角三角形的性质,扇形面积公式等,需要学生灵活运用所学知识.24.(1)AC 与⊙O 的相切,理由见分析(2)3π【分析】(1)根据圆的半径相等以及CF CA =,等边对等角可得D OAD ∠=∠,CAF CFA ∠=∠,根据对顶角相等可得CFA OFD ∠=∠,结合已知OD ⊥BC ,进而根据等量代换可得90CAF OAF ∠+∠=︒,即可证明AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,设==OA OE r ,在Rt CAO 中,根据勾股定理求得r ,进而证明30C ∠=︒,求得扇形AOB 的圆心角为120︒,进而根据含30度角的直角三角形的性质求得AM ,进而求得AOB 的面积,根据扇形面积减去AOB 的面积,即可求得阴影部分面积.解:(1)AC 与⊙O 的相切,理由如下,AO DO =,D OAD ∴∠=∠,CF CA =,CAF CFA ∴∠=∠,又CFA OFD ∠=∠,CAF OFD ∴∠=∠,OD ⊥BC ,90OFD ODF ∴∠+∠=︒,90CAF OAF ∴∠+∠=︒,OA AC ∴⊥,OA 是半径,AC ∴是O 的切线,∴ AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,如图,设==OA OE r ,3,1FC CE ==,在Rt CAO 中,1AO r AC FC OC OE EC r ====+=+,222AO AC OC +=,()2221r r ∴+=+, 解得1r =,2OC OE EC ∴=+=,12AO OC ∴=, 30C ∴∠=︒,60AOC ∴∠=︒,180120AOB AOC ∴∠=-∠=︒,在Rt CAM 中,1122AM AC FC ===11122AOB S OB AM ∴=⋅⋅=⨯=△, S ∴扇形AOB 12013603ππ=⨯=,S ∴阴影部分AOB S S =-△扇形AOB 3π= 【点拨】本题考查了圆的切线的判定,求扇形面积,掌握切线的判定和扇形面积公式是解题的关键.。

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题一、选择题1、已知扇形的圆心角为120°,半径为3cm,则扇形的面积是()A 3π cm²B 9π cm²C 6π cm²D 12π cm²2、若扇形的弧长是 16cm,面积是 56cm²,则它的半径是()A 7cmB 8cmC 7cm 或 8cmD 14cm3、一个扇形的半径为 8cm,弧长为16π/3 cm,则扇形的圆心角为()A 60°B 120°C 150°D 180°4、已知一个扇形的面积为12π,圆心角为 120°,则此扇形的半径为()A 6B 9C 12D 155、扇形的圆心角扩大到原来的 2 倍,半径缩小到原来的一半,此时扇形的面积是原来扇形面积的()A 2 倍B 4 倍C 1/2D 1/4二、填空题1、若扇形的半径为 6cm,圆心角为 60°,则扇形的弧长为______cm,面积为______cm²。

2、一个扇形的弧长是20π cm,面积是240π cm²,则扇形的圆心角是______度。

3、扇形的圆心角为 150°,弧长为20π cm,则扇形的半径为______cm,面积为______cm²。

4、已知扇形的半径为 3cm,面积为9π/2 cm²,则扇形的弧长为______cm,圆心角为______度。

5、若扇形的面积为3π,弧长为2π,则扇形的半径为______,圆心角为______度。

三、解答题1、已知扇形的圆心角为 120°,面积为300π,求扇形的半径和弧长。

2、一个扇形的弧长为10π,面积为25π,求扇形的圆心角和半径。

3、扇形的半径为 8,弧长为12π,求扇形的面积和圆心角。

4、已知扇形的面积为18π,圆心角为 60°,求扇形的弧长和半径。

5、扇形的弧长为20π,面积为240π,求扇形的半径和圆心角。

圆弧长公式和扇形面积 知识点+例题+练习(非常好 分类全面)

圆弧长公式和扇形面积 知识点+例题+练习(非常好 分类全面)

例1 如图,AB为O的一条弦,AB=52,∠C=45º,求弧AB的长.5/2 π知识点2 扇形的面积(难点)1.扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形的周长3.扇形的面积______________________________________________________;例2 已知扇形的圆心角为150º,弧长为20 cm,求扇形的面积.R=24,240π三、典例精讲题型1 弧长计算公式的应用例1 如图,PA,PB切O于A,B两点,PO=4cm,∠APB=60º,求阴影部分周长.4/3 π + 4倍根号3例2 如图,是一个滑轮起重装置的示意图,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度约为________________º.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°) 57题型2 不规则图形面积的求法例3 如图,∆ABC为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划将住宅区周围5m(虚线以内,∆ABC之外)作为绿化带,则绿化带的面积为__________________2m. 25π+4000例4 如图,AD是O的直径,点A,B,C,D,E,F顺次六等分O,已知O的半径为1,点P 为直径AD上任意一点,则图中阴影部分面积为__________.Π/3例5 如图,半圆O 的弦AB 平行于直径CD ,AB=24,AB 与半圆E 相切,求图中阴影部分的面积.72π题型3 扇形面积计算公式的应用例6 已知扇形的面积为652cm π,扇形的弧长为10cm π,则扇形所在圆的半径是______________cm.13五、易误易混警示1.如图,圆的半径为9cm ,∠ACB=45º,求弧AB 的长.9/2 π拓展提升1.如图某公司设计了一个商标图案,其中矩形ABCD 的长是宽的2倍,并且长为8cm ,以A 为圆心,AD 长为半径作14周圆,则商标图案的面积等于_____________.8+4π2.如图,两圆是同心圆,∠AOx=∠BOx=30º,则图中阴影部分面积等于___________.Π/6典例精讲:1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()AA.B.1﹣C.﹣1 D.1﹣2.圆心角为120°,弧长为12π的扇形半径为( C )A.6 B.9 C.18 D.363.在半径为2的圆中,弦AB的长为2,则的长等于(C)A.B.C. D.4.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为(B)A.60°B.120°C.150°D.180°5.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是(D)A.5π B.6π C.8π D.10π6.已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D)A.B.πC.D.7.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是(A)A.B.13πC.25πD.258.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为°.1209.若扇形的圆心角为60°,弧长为2π,则扇形的半径为.610.如图,正三角形ABC的边长为2,点A,B在半径为的圆上,点C在圆内,将正三角形ABC绕点A逆时针旋转,当点C第一次落在圆上时,点C运动的路线长是.Π/311.半径为4cm,圆心角为60°的扇形的面积为 cm2.8/3 π12.如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是.Π-213.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.2倍根3- 2/3 π14.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,OC=2,求阴影部分图形的面积(结果保留π).2/3π15.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD 的延长线于点F,设DA=2.(1)求线段EC的长;4-2倍根3(2)求图中阴影部分的面积. 8/3π-2倍根316.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;3(2)求图中阴影部分的面积.2分之9倍根3- 3/2π17.如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.4π/3- 根3。

弧长和扇形面积-ppt课件

弧长和扇形面积-ppt课件
第二十四章

24.4
弧长和扇形面积
感悟新知
知1-讲
知识点 1 弧长公式
1.弧长公式
在半径为 R 的圆中, n°的圆心角所对的
弧长 l 的计算公式为l=

.

感悟新知
知1-讲
特别提醒
●公式中,n表示1°的n 倍, 180 表示1°的180 倍,
n, 180 不带单位.
●题目若没有写明精确度,可以用含“π”的式子表
知3-讲
感悟新知
知3-讲
(2)圆锥的母线: 连接圆锥顶点和底面圆周上任意一点的
线段叫做圆锥的母线 .
(3)圆锥的高: 连接圆锥顶点与底面圆心的线段叫做圆锥
的高 .
感悟新知
知3-讲
特别提醒
1.圆锥的轴通过底面的圆心,并且垂直于底面 .
2.圆锥的母线长都相等 .
3.圆锥的母线l、高h及底面圆的半径r构成直角三角
∠ACB=90°,AC=BC=2 ,以点A为圆心,AC为半
径画弧,交AB于点E,以点B为圆心,BC为半径画弧,
交AB于点F,则图中阴影部分的面积是
(
)
A.π-2
B.2π-2
C.2π-4
D.4π-4
感悟新知
知2-练
思路导引:
感悟新知
知2-练
解:在等腰直角三角形ABC中,∠ACB=90 °,AC=BC=
求所得旋转体的全面积 .
知3-练
感悟新知
知3-练
思路导引:
感悟新知
解:(1)∵∠ C=90°, AC=6, BC=8,
∴ AB= + =10.
∴ S 底=π AC2=36π, S 侧=π× 6× 10=60π .

《弧长和扇形区域面积计算》练习题

《弧长和扇形区域面积计算》练习题

《弧长和扇形区域面积计算》练习题弧长和扇形区域面积计算练题本文将提供一些关于弧长和扇形区域面积计算的练题,帮助您巩固相关知识。

弧长计算1. 已知一个圆的半径为5cm,求其所对的弧长。

解答:弧长可以通过以下公式计算:弧长 = 半径 ×弧度其中,弧度是弧所对应的圆心角的度数除以360度并乘以2π。

假设所对的圆心角为60度,则弧度为60/360 × 2π = π/3。

因此,弧长= 5cm × π/3 ≈ 5.24cm。

2. 若一个圆的弧长为8π cm,求其所对的圆心角的度数。

解答:由弧长的公式可得:弧长 = 半径 ×弧度设所对的圆心角的度数为x度,则弧度为x/360 × 2π。

代入已知信息可得:8π = 半径× x/360 × 2π化简得到:x = 8 × 360 / 2 = 144度因此,所对的圆心角的度数为144度。

扇形区域面积计算3. 已知一个扇形区域的半径为6cm,圆心角为60度,求其面积。

解答:扇形区域的面积可以通过以下公式计算:面积 = 1/2 ×半径^2 ×弧度其中,弧度是圆心角的度数除以360度并乘以2π。

假设圆心角为60度,则弧度为60/360 × 2π = π/3。

因此,面积= 1/2 × 6^2 × π/3 = 18π ≈ 56.55cm²。

4. 若一个扇形区域的面积为12π cm²,圆心角为x度,求其半径。

解答:根据扇形区域面积的公式可得:面积 = 1/2 ×半径^2 ×弧度设圆心角的度数为x度,弧度为x/360 × 2π。

代入已知信息可得:12π = 1/2 × 半径^2 × x/360 × 2π化简得到:半径^2 = 24 / (x/360 × 2)因此,半径= √(24 / (x/360 × 2))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题26 与弧长、扇形面积有关的问题
1.扇形弧长面积公式
(1)弧长的计算公式
(2)扇形面积计算公式
2.弓形的面积
(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长
(3)弓形的面积
当弓形所含的弧是劣弧时,如图1所示,
当弓形所含的弧是优弧时,如图2所示,
当弓形所含的弧是半圆时,如图3所示,
3.圆柱侧面积体积公式
(1)圆柱的侧面积公式S侧=2πrh
(2)圆柱的表面积公式:S表=S底×2+S侧=2πr2+2πr h
专题知识回顾
180
2
360
r
n
r
n
l
π
π=

=
2
360
r
n
sπ⋅
=lr
s
2
1
=

4.圆锥侧面积体积公式
(1)圆锥侧面积计算公式 从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形= = πrl
(2)圆锥全面积计算公式:S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )
【例题1】(2019•湖北武汉)如图,AB 是⊙O 的直径,M 、N 是(异于A.B )上两点,C 是上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C.E 两点的运动路径长的比是( )
A .
B .
C .
D .
【例题2】(2019山西)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )
A.2435π-
B.2435π+
C.π-32
D.234π-
专题典型题考法及解析
【例题3】(2019·贵州安顺)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=120°,则该圆锥母线l 的长为 .
一.选择题
1.(2019•四川省广安市)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =4,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )
A .π﹣
B .π﹣
C .π﹣
D .π﹣
2.(2019•山东青岛)如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则的长度为( )
A .π
B .2π
C .2π
D .4π
3.(2019•四川省凉山州)如图,在△AOC 中,OA =3cm ,OC =1cm ,将△AOC 绕点O 顺时针旋转90
°后得到
专题典型训练题
△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.
A.B.2πC.πD.π
4.(2019•浙江绍兴)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()
A.πB.πC.2πD.2π
5.(2019•山东泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()
A.πB.πC.2πD.3π
6.(2019•浙江宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()
A.3.5cm B.4cm C.4.5cm D.5cm
7.(2019•云南)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
8.(2019山东枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()
A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π
9.(2019四川巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()
A.15πB.30πC.45πD.60π
二.填空题
10.(2019•湖北省鄂州市)一个圆锥的底面半径r=5,高h=10,则这个圆锥的侧面积是.
11.(2019•湖北省荆门市)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC 边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.
12.(2019•湖北十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为.
13.(2019•湖北天门)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm.
14.(2019•湖北省咸宁市)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).
15.(2019•广东广州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)
16.(2019•江苏泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.
17.(2019•山东省聊城市)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.
18. (2019•黑龙江省齐齐哈尔市)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成
的这个圆锥的高为cm.
三、解答题
19.(2019•湖南邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A 为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.
(1)求由弧EF及线段F C.C B.BE围成图形(图中阴影部分)的面积;
(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.
20.(2019•山东省德州市)如图,∠BPD=120°,点A.C分别在射线P B.PD上,∠PAC=30°,AC=2.(1)用尺规在图中作一段劣弧,使得它在A.C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段P A.PC围成的封闭图形的面积.
21.(2019•黑龙江省齐齐哈尔市)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.
(1)求证:直线AD是⊙O的切线;
(2)若直径BC=4,求图中阴影部分的面积.。

相关文档
最新文档