化学-化学平衡移动原理与应用

合集下载

化学平衡平衡移动原理及其应用

化学平衡平衡移动原理及其应用

今日课题:化学平衡的移动及其应用一.时,移动的结果是:⑴使其他反应物的转化率变大,而自身转化率变小⑵达新平衡时,该物质的浓度比原平衡大,其他反应物的浓度比原平衡小⑵改变反应物浓度和改变反应物的量不能等同,当反应物是固体或纯液体时,改变它的量时,浓度没有变化,平衡不移动⑶压强变化只对有气体参加的反应有影响,并且要引起浓度变化才可能引起平衡移动⑷温度升高时,无论是放热反应还是吸热反应,速率都会加快。

吸热反应方向的速率加快比放热反应方㈠浓度的影响 例1:(2007年全国卷I )如图是恒 温下某化学反应的反应速率 随反应时间变化的示意图, 下列叙述与示意图不相符合的是A. 反应达平衡时,正反应速率和逆反应速率相等B. 该反应达到平衡态I后,增大反应物浓度,平衡发生移动,达到平衡态IIC. 该反应达到平衡态I后,减小反应物浓度,平衡发生移动,达到平衡态IID. 同一种反应物在平衡态I和平衡态II时浓度不相等㈡压强的影响例2.对可逆反应4NH 3(g)+5O2(g)4NO(g)+6H2O(g),下列叙述正确的是A.反应达到平衡时,若两种反应物的转化率相等,则起始投入的n(NH3)∶n(O2)=4∶5B.反应达平衡后,对体系一直进行加压,平衡总是向逆向移动C.反应达到平衡时,若向压强固定的密闭容器中充入稀有气体,平衡不移动D.当v正(NH3)∶v正(NO)=1∶1时,说明该反应已经达到平衡例3.在密闭容器中发生如下反应:mA(气)+nB(气)pC(气)达到平衡后,温度一定时,将气体体积压缩到原来的1/2 ,当达到平衡时,C的浓度的为原来的1.9倍,若压缩时温度不变,则下列说法中不正确的是A.m + n > p B.A的转化率降低C.平衡向逆反应方向移动 D.C的体积百分含量增加㈢温度的影响例4.反应A(g)+3B(g)2C(g);ΔH<0,达到平衡后,将气体混合物的温度降低,下列叙述中正确的是A.正反应速率加大,逆反应速率减小,平衡向正反应方向移动B.正反应速率变小,逆反应速率增大,平衡向逆反应方向移动C.正反应速率和逆反应速率减小,平衡向正反应方向移动D.正反应速率和逆反应速率减小,平衡向逆反应方向移动例5.可逆反应A+B(s)C达到平衡后,无论加压或降温,B的转化A. A为固体,C为气体,正反应为放热反应B. A为气体,C为固体,正反应为放热反应C. A为气体,C为固体,正反应为吸热反应D. A、C均为气体,正反应为吸热反应例 6.将H2(g)和Br2(g)充入恒容密闭容器,恒温下发生反应H2(g)+Br2(g) 2HBr(g) △H<0,平衡时Br2(g)的转化率为a;若初始条件相同,绝热下进行上述反应,平衡时Br2(g)的转化率为b。

化学平衡和平衡移动原理

化学平衡和平衡移动原理
平衡常数的单位与化学反应方程式中各物质的计量系数和反应物、生成物的浓度单 位有关。
平衡状态
1
化学平衡状态是指在一定条件下,可逆反应的正 反应速率等于逆反应速率,反应物和生成物的浓 度不再发生变化的状态。
2
在平衡状态下,正反应和逆反应的速率相等,但 不为零。此时,反应并未停止,而是以一定的速 度在动态平衡中持续进行。
通过检测环境中各种物质的化学平衡状态,可以评估环境质量,为环境保护提供科学依据。
化学平衡与生命过程
生物代谢
酶促反应
药物作用机制
生物体内的代谢过程涉及许多 化学平衡,这些平衡的维持对 于生物体的正常生理功能至关 重要。例如,酸碱平衡、离子 平衡等对于维持生物体内环境 的稳定具有重要作用。
酶促反应是生物体内化学反应 的重要部分,这些反应通常在 化学平衡状态下进行。通过研 究酶促反应的化学平衡,有助 于了解生物体的代谢过程和生 理功能。
02
平衡移动原理
勒夏特列原理
当改变影响平衡的条件时,平衡将向 着减弱这种改变的方向移动。
具体来说,如果改变温度、压力或浓 度等条件,平衡将向着使这些条件恢 复原状的方向移动。
平衡移动的方向
如果增加反应物的浓度,平衡将向着减少反应物浓度的方向 移动,即正向移动。
如果增加生成物的浓度,平衡将向着减少生成物浓度的方向 移动,即逆向移动。
化学平衡和平衡 移动原理
目录
• 化学平衡的基本概念 • 平衡移动原理 • 影响化学平衡的因素 • 化学平衡的应用 • 化学平衡的实验研究
01
化学平衡的基本概念
平衡常数
平衡常数是化学反应达到平衡状态时,生成物浓度幂之积与反应物浓度幂之积的比 值。它反映了化学反应在一定条件下的限度。

化学平衡移动的原理及应用

化学平衡移动的原理及应用

化学平衡移动的原理及应用1. 原理化学平衡是指在化学反应中,反应物和生成物的浓度达到一种稳定状态的情况。

当这种稳定状态出现移动时,即反应物和生成物重新达到新的平衡浓度,这个现象被称为化学平衡移动。

化学平衡移动的原理是基于平衡常数和Le Chatelier定律。

1.1 平衡常数平衡常数(K)是用来描述化学反应平衡程度的指标。

对于一个化学反应的平衡表达式:A +B ⇌C + D平衡常数定义为:K = \(\frac{[C][D]}{[A][B]}\),其中方括号表示该物质的浓度。

平衡常数决定了化学反应正向和逆向反应的相对速度和平衡位置。

1.2 Le Chatelier定律Le Chatelier定律是一条描述化学平衡移动的规律。

它说到,当化学系统处于平衡状态时,如果受到外界影响,系统将调整自身以抵消这种影响,以达到新的平衡。

根据Le Chatelier定律,当一个化学系统受到扰动时,系统会对扰动做出反应。

具体来说,当增加了反应物浓度,反应会向生成物方向移动,以减少反应物浓度;相反,当增加了生成物浓度,反应会向反应物方向移动,以减少生成物浓度。

2. 应用化学平衡移动的原理可以应用于许多实际情况中,下面列举了几个常见的应用案例。

2.1 工业生产在工业生产中,化学反应平衡移动的原理可以用于控制反应的进程,以提高产品产率和纯度。

例如,在氨的制备过程中,通过改变反应物氮气和氢气的浓度,可以调节反应平衡位置,从而增加氨的产量。

2.2 环境保护化学平衡移动的原理也可以用于环境保护。

例如,在水体中存在大量的二氧化碳,导致水体呈酸性。

通过向水体中注入石灰,可以增加水中的碳酸钙浓度,从而减少水体的酸性,达到pH值的调节。

2.3 医药领域在医药领域,化学平衡移动的原理常常用于药物的设计和优化。

通过调节药物反应的平衡位置,可以控制药效和药物的副作用。

例如,某些药物的平衡常数可以在一定范围内调整,以增加药物的溶解度和稳定性。

高中化学备课教案化学平衡的平衡移动规律与平衡常数计算方法总结与应用

高中化学备课教案化学平衡的平衡移动规律与平衡常数计算方法总结与应用

高中化学备课教案化学平衡的平衡移动规律与平衡常数计算方法总结与应用高中化学备课教案化学平衡的平衡移动规律与平衡常数计算方法总结与应用一、引言化学平衡是化学反应过程中产生的物质在一定条件下达到动态平衡的状态。

而化学平衡的平衡移动规律以及平衡常数的计算方法是理解和掌握化学平衡的重要基础。

本文将总结和应用化学平衡中的平衡移动规律以及平衡常数的计算方法,旨在帮助高中化学教师备课并有效教授此内容。

二、平衡移动规律1. 左右移动规律当系统处于平衡时,如果外界对系统产生影响,系统会偏离平衡态,然后通过化学反应重新恢复平衡。

根据Le Chatelier原理,当应力施加在平衡系统上时,系统会向能够减小这种应力的方向移动。

具体而言,当向系统中加入物质或增加反应温度时,平衡会向消耗此物质或吸热的方向移动;反之,当物质被移除或温度被降低时,平衡会向生成此物质或放热的方向移动。

2. 浓度、压力和温度的影响浓度、压力和温度是影响平衡移动的重要因素。

在浓度变化方面,当某一反应物的浓度增加,平衡移动到生成物的方向;反之,当某一生成物的浓度增加,平衡移动到反应物的方向。

在压力变化方面,当压力增加,平衡移动到分子数较小的方向;反之,当压力减小,平衡移动到分子数较大的方向。

在温度变化方面,当温度升高,平衡移动到吸热的方向;反之,当温度降低,平衡移动到放热的方向。

三、平衡常数的计算方法1. 平衡常数的定义平衡常数(K)是描述平衡体系中反应物和生成物浓度之间关系的一个参数。

对于一般化学反应表达式aA + bB ⇌ cC + dD,平衡常数公式为K = [C]^c[D]^d / [A]^a[B]^b,其中方括号表示物质的浓度。

2. 平衡常数计算的例子例如对于反应N2(g) + 3H2(g) ⇌ 2NH3(g),根据平衡常数公式,平衡常数表达式为K = ([NH3]^2) / ([N2]·[H2]^3)。

3. 平衡常数的应用平衡常数在化学平衡的研究中起到重要的作用。

化学平衡的原理与应用

化学平衡的原理与应用

化学平衡的原理与应用化学平衡是化学反应中重要的概念,它描述了反应物和生成物之间的相对浓度达到恒定状态的情况。

在化学平衡中,反应物和生成物的浓度不再发生明显变化,但是反应仍然在进行。

本文将介绍化学平衡的原理以及它在化学领域的应用。

一、化学平衡的原理1. 反应速率与反应物浓度的关系化学反应速率与反应物浓度密切相关。

反应物浓度越高,反应速率越快;当反应物浓度低时,反应速率变慢。

这是因为在反应物浓度较高时,分子之间的碰撞频率增加,有效碰撞的可能性也增加,从而加快了反应速率。

当反应物浓度逐渐减少,有效碰撞的概率也减小,导致反应速率下降。

2. 正向反应与逆向反应在一个化学反应中,正向反应是指反应物转变为生成物的反应,而逆向反应是指生成物再次转变为反应物的反应。

正向反应和逆向反应同时进行,直到达到一种动态平衡状态。

在平衡状态下,正向反应和逆向反应的速率相等。

3. 平衡常数平衡常数用于描述在恒定温度下,反应物的浓度与生成物的浓度之间的关系。

平衡常数的大小反映了反应的偏向性。

平衡常数越大,说明反应向生成物方向偏向;平衡常数越小,说明反应向反应物方向偏向。

平衡常数只与反应物浓度有关,与反应物初始浓度无关。

二、化学平衡的应用1. 化学平衡在工业生产中的应用化学平衡的理论对工业生产过程中的化学反应起着重要作用。

通过调整反应物的浓度或者温度,可以控制反应的平衡位置,提高产品产率。

例如,醋酸乙酯的合成反应中,通过控制乙酸和乙醇的浓度,可以增加反应生成物的产量。

2. 化学平衡在环境保护中的应用化学平衡的原理也应用于环境保护领域。

例如,大气中氮氧化物的浓度会影响酸雨的形成。

通过调整氮氧化物的浓度,可以控制酸雨的生成,减少对环境的污染。

3. 化学平衡在生物体内的应用生物体内许多重要的生化反应都是处于平衡状态下进行的。

例如,在人体内的呼吸过程中,氧气与血红蛋白反应生成氧合血红蛋白,同时氧合血红蛋白也会解离释放出氧气。

这个平衡状态的维持对于人体的正常生理功能至关重要。

化学反应的平衡移动

化学反应的平衡移动

化学反应的平衡移动在化学反应中,平衡是指反应物和生成物的浓度或分压达到一定的比例,使反应达到一个动态平衡的状态。

平衡的移动是指改变反应条件,如温度、压力、浓度等,导致反应平衡位置的改变。

本文将探讨化学反应中平衡移动的原因、影响因素以及与平衡移动相关的应用。

一、化学反应的平衡移动原因化学反应的平衡移动是基于Le Chatelier原理,即“系统在受到扰动时,会产生使该扰动缓解的变化”。

根据这个原理,当化学反应受到外界条件的改变时,系统会通过移动平衡位置来缓解这种扰动。

具体而言,以下是一些导致平衡移动的原因:1. 温度变化:改变反应温度会影响反应速率和平衡位置。

一般而言,通过增加或降低温度,反应平衡位置可以相应地向生成物或反应物方向移动。

2. 压力变化:只对气态反应有效,改变反应体系的总压力会导致反应平衡位置的变化。

通过增加或减少总压力,反应平衡位置可以向分子数较多的一方移动。

3. 浓度变化:改变反应物或生成物的浓度会导致反应平衡位置发生变化。

增加反应物浓度会使反应平衡位置向生成物方向移动,而增加生成物浓度会使反应平衡位置向反应物方向移动。

4. 催化剂的使用:催化剂可以影响反应速率,但对反应平衡位置没有直接的影响。

二、影响化学反应平衡移动的因素除了上述的原因外,还有其他因素可以影响化学反应平衡移动。

以下是一些重要的因素:1. 反应物和生成物的物态:固态反应物和生成物不会因体积的变化而引起平衡移动,而气态和溶液态的反应物和生成物则会受到压力和浓度的影响。

2. 反应的平衡常数:平衡常数描述了反应体系在平衡状态下物质浓度之间的比例。

平衡常数越大,反应偏向生成物的概率越大;平衡常数越小,反应偏向反应物的概率越大。

3. 反应速率:平衡是反应速率相等时达到的,因此改变反应速率会导致平衡位置的移动。

例如,通过增加反应物的浓度或降低生成物的浓度,可以加快反应速率,导致平衡位置向生成物方向移动。

三、平衡移动的应用1. 工业应用:平衡移动的原理在工业生产中广泛应用。

化学平衡的移动

化学平衡的移动

化学平衡的移动化学平衡是指在化学反应中,反应物转化为生成物的速率与生成物转化为反应物的速率相等的状态。

在化学反应过程中,因为温度、压力、浓度等条件的变化,平衡位置会发生移动。

本文将介绍化学平衡的移动原理和影响因素,并探讨一些常见化学反应中平衡位置的移动情况。

1. 化学平衡的移动原理化学平衡的移动原理是根据勒夏特列原理提出的。

根据该原理,在一定温度下,反应物和生成物的浓度与平衡常数有关。

平衡常数表示反应物与生成物浓度的比值,它是与温度有关的固定值。

当反应物和生成物浓度发生变化时,反应系统会通过移动平衡位置,使浓度重新达到平衡常数所对应的值。

2. 影响化学平衡移动的因素2.1 温度的影响温度是影响化学反应速率的重要因素,也会影响化学平衡的移动。

一般来说,温度的升高会使反应速率加快,平衡位置向生成物方向移动;而温度的降低则会使反应速率减慢,平衡位置向反应物方向移动。

2.2 压力的影响对于气相反应,压力也会影响化学平衡的移动。

根据反应物和生成物的物质摩尔数关系,压力的升高或降低会导致平衡位置的移动。

例如,在气体反应中,当压力增加时,系统会向摩尔数较小的一方移动,以减少压力;而压力降低则会导致平衡位置向摩尔数较大的一方移动。

2.3 浓度的影响反应物和生成物的浓度变化也是引起化学平衡移动的重要因素。

一般来说,当反应物浓度增加时,平衡位置会向生成物方向移动,以消耗过量的反应物;反之,当反应物浓度减少时,平衡位置会向反应物方向移动,以补充反应物。

3. 常见化学反应中的平衡位置移动情况3.1 酸碱中和反应酸碱中和反应中,平衡位置的移动可以通过加入过量的酸或碱来实现。

例如,在硫酸和氢氧化钠的中和反应中,如果加入过量的硫酸,平衡位置会向反应物一侧移动,生成更多的盐和水。

3.2 氧化还原反应氧化还原反应中,平衡位置的移动可以通过改变氧化态来实现。

例如,在二氧化硫与氧气反应生成三氧化硫的反应中,通过增加氧气浓度或减少二氧化硫浓度,可以使平衡位置向生成三氧化硫的一侧移动。

化学平衡移动原理及应用

化学平衡移动原理及应用

六、化学平衡移动原理应用——合成氨工业
问题1:写出合成氨的化学反应方程式,并说明这个 反应有什么特点?
N2+3H2
2NH3 △H=-92.4kJ·mol-1
特点: a、可逆反应 b、正反应放热 c、正反应是气体分子数目减小的反应。
问题2:请同学们分析工业生产主要要考虑哪些问题?
主要:经济效益与社会效益
①此原理只适用于已达平衡的体系
②平衡移动方向与条件改变方向相反。"对着干"
③移动的结果只能是减弱了外界条件的变化,但不 能完全抵消外界条件的变化量。
与改变瞬间比较
条件的改变
平衡移动方向 新平衡建立时
增大反应物浓度 向正反应方向移动 反应物浓度减小
具 减小反应物浓度 向逆反应方向移动 反应物浓度增大

生产,对动力、材料、设备等来说正

合适。
将氨气及时分离出来,及时补充N2、 H2,并循利用率高 c、单位时间内产量高
问题3:分别从化学反应速率和化学平衡两个 角度分析合成氨的合适条件。
浓度
高压 高温 使用
增大C反
高压 低温 无影 响
增大C反或减小C生
问题4:工业上合成氨的合适条件到底怎样?
合成氨的工艺流 程如图2-24所示。在 工业生产中,可以通 过以下途径来提高合 成氨的产率。请利用 有关知识分析采取这 些措施的原因。
1.向反应器中注入 过量N2。
2.采用适当的催化 剂。
3.在高压下进行反 应。
4.在较高温度下进 行反应。
使用催化剂(铁触媒):这样可以大
大加快化学反应速率,提高生产效率,

也提高了经济效益;
成 氨 的
选择合适的温度:500℃左右,该温 度是为合成氨催化剂的活性温度;

化学课教案化学平衡的原理与应用

化学课教案化学平衡的原理与应用

化学课教案化学平衡的原理与应用教案:化学平衡的原理与应用一、引入化学平衡是化学反应中一种动态的状态,它描述了反应物与生成物之间的相对浓度,以及反应速率的平衡。

了解化学平衡的原理和应用,对于深入理解化学反应机制和掌握化学实验技巧具有重要意义。

本节课将带领学生探索化学平衡的原理与应用,培养学生的实验观察能力和解决问题的能力。

二、化学平衡的原理1. 反应速率与平衡常数化学平衡的原理可以从反应速率的角度出发来理解。

反应速率是指单位时间内反应物的消耗量或生成物的生成量。

在反应初期,反应速率较高,随着反应进行,反应速率逐渐降低,最终达到一个稳定状态,即化学平衡。

平衡常数表示了反应物浓度与生成物浓度之间的关系,可以用来描述反应在平衡状态下的相对浓度。

2. 影响平衡的因素化学平衡状态的建立与多种因素相关。

温度、压强、浓度以及催化剂的添加等都会影响反应的平衡位置和平衡常数。

温度的改变会改变平衡常数的大小,而压强和浓度的改变则会引起平衡位置的偏移。

催化剂可以改变反应过程的速率,但不改变平衡常数和平衡位置。

三、化学平衡的应用1. 平衡的预测与判断通过平衡常数的大小可以预测化学反应的平衡位置。

当平衡常数大于1,说明生成物浓度较高,反应偏向生成物;当平衡常数小于1,说明反应物浓度较高,反应偏向反应物。

对于已知平衡位置的反应,可以通过浓度变化或压强变化来判断反应的方向和平衡位置的变化。

2. 平衡的移动与控制在工业生产和实验室中,控制反应的平衡位置具有重要的意义。

通过调节温度、压强或浓度等因素,可以使反应向所需的方向移动,从而提高产率或选择性。

例如,工业上制取氨气时,通过控制温度和压强来控制平衡位置,进而提高氮气与氢气的转化率。

四、实验操作与示范为了使学生更好地理解化学平衡的原理与应用,本课程将进行如下实验操作与示范:1. 实验概述本实验旨在研究反应物浓度对反应平衡的影响,并进一步了解平衡常数的概念。

2. 实验步骤a. 将一定量的二氧化氮气和一定量的氧气放入反应容器中,并添加催化剂。

化学平衡的原理与应用

化学平衡的原理与应用

化学平衡的原理与应用化学平衡是化学反应过程中达到的一个状态,反应物和生成物浓度不再发生变化。

化学平衡的原理是基于反应物分子碰撞的动力学过程和生成物逆向反应的热力学过程,使反应系统达到一个稳定的状态。

化学平衡具有重要的应用价值,在化学制品的生产、环境保护与自然科学研究等领域都有着广泛的应用。

一、化学平衡的原理在化学反应中,反应物分子通过碰撞来产生反应。

反应物浓度越高,反应产生的速率也就越快。

随着反应进行和反应物浓度的降低,反应速率也会下降。

当反应速率和逆向反应产生速率相等时,反应就处于一个平衡状态。

这种状态下,反应物和生成物浓度不再发生任何变化,称为化学平衡。

化学平衡时,反应物消耗的速率等于逆向生成物的速率,这两个速率之比称为化学平衡常数K。

K通常使用浓度作为反应物和生成物的单位,因此K也是浓度的函数。

在化学平衡中,反应物和生成物的物质量守恒。

然而,反应物浓度的变化会引起平衡位置的变化,即移动平衡位置的位置。

对于一个特定的反应方程式,平衡位的位置因不同的组成物浓度而发生变化。

当反应物和生成物浓度达到一定平衡常数时,平衡常数不再随之变化。

而平衡常数本身取决于化学反应的能量状态,即反应热力学。

当反应物的浓度变化时,生产的热能也会随之变化,而热能变化可以影响化学平衡。

因此,也可以称化学平衡为“热力学平衡”。

二、化学平衡的应用1. 化学制品的生产化学平衡在工业上能够有效的制造各种化学制品。

一般在实际工业中很少达到极端的化学平衡状态,而会在反应速度与生成率之间找到平衡点。

制造过程中,反应物和生成物的浓度可以通过调节温度和压力来控制,以达到所需的产物。

由于产物通常作为商业化合物销售,因此生产过程中应严格控制平衡条件以获得最佳产出率。

2. 环境保护化学平衡可以用来确定化学反应在环境保护方面的应用。

例如,当天然气燃烧时,氧气和甲烷通过化学反应产生二氧化碳和水蒸气,放出的温室气体会对全球环境产生影响。

了解这些反应的平衡条件对于减缓气候变化、控制空气污染以及保护水资源都有很大帮助。

化学平衡移动

化学平衡移动

分离和提纯产物
利用化学平衡移动原理,通过改变条件使目 标产物从反应体系中分离出来,实现产物的 提纯和精制。
节能减排
通过合理设计工艺流程和操作条件,减少副 反应和废弃物的生成,降低能源消耗和环境 污染。
在环境保护中的应用
治理污染
利用化学平衡移动原理,通过添加试
大气污染治理
利用化学平衡移动原理,通过控制大
05
化学平衡移动的实验研究
实验目的和原理
实验目的
通过实验研究化学平衡移动的影响因素和规律,加深对化学平衡原理的理解。
实验原理
化学平衡是指在一定条件下,可逆反应的正反应速率和逆反应速率相等,反应物 和生成物的浓度保持不变的状态。当外界条件改变时,平衡状态会被打破,反应 会向着减弱这种改变的方向进行,直到建立新的平衡。
对于有气体参加的可逆反应,改变压力会使 平衡向着气体体积减小的方向移动。例如, 在合成氨的反应中,增大压力会使平衡向右 移动,提高氨的产率。
06
结论与展望
研究结论
沉淀溶解平衡的移动
通过改变沉淀溶解平衡的条件(如温度、浓度、压力或添加其他物质),可以使平衡发生移动。实验结果表 明,当改变条件时,平衡会向着减弱这种改变的方向移动。
3
氧化还原平衡
当改变氧化剂或还原剂的浓度时,氧化 还原平衡会向着能够减弱这种改变的方 向移动。例如,增大氧化剂浓度时,还 原剂会被氧化;增大还原剂浓度时,氧 化剂会被还原。
03
化学平衡移动的应用
在工业生产中的应用
优化生产条件
通过控制温度、压力、浓度等条件,使化学 平衡向有利于生成目标产物的方向移动,提 高产物的产量和质量。
实验步骤和操作
实验操作 配置不同浓度的弱酸或弱碱溶液。

化学平衡的移动与平衡常数调节:勒夏特列原理的应用

化学平衡的移动与平衡常数调节:勒夏特列原理的应用

化学平衡是化学反应中的一个重要概念,它描述了化学反应在达到一定条件后,反应物和生成物之间的浓度或压力保持不变的状态。

勒夏特列原理是化学平衡移动和平衡常数调节的重要原则之一。

勒夏特列原理是由法国化学家亨利-勒夏特列提出的,他根据化学平衡的观察和实验,总结出了勒夏特列原理的基本内容。

勒夏特列原理可以简单地概括为:“当系统处于平衡状态时,任何一种影响平衡条件的因素发生变化,平衡系统会对这种变化产生反应,以抵消变化的影响,将系统重新达到平衡状态。

”根据勒夏特列原理,我们可以利用平衡常数来调节化学平衡。

平衡常数描述了反应物和生成物的浓度之间的关系,可以简单地理解为反应物转变为生成物的程度的度量。

平衡常数越大,说明反应物转变为生成物的程度越高,反之亦然。

通过改变反应物和生成物的浓度或压力,我们可以改变平衡常数的值,从而调节化学平衡。

根据勒夏特列原理,如果我们增加某种反应物的浓度或压力,系统会倾向于减少该反应物的浓度或压力,以重新达到平衡。

同样,如果我们减少某种反应物的浓度或压力,系统会倾向于增加该反应物的浓度或压力,以重新达到平衡。

以NH₃和N₂O的反应为例:2NH₃(g) + N₂O(g) ⇌ 3N₂(g) + 3H₂O(g)在此反应中,当我们增加NH₃或N₂O的浓度或压力时,根据勒夏特列原理,系统会减少这些反应物的浓度或压力,以重新达到平衡。

因此,NH₃和N₂O的浓度或压力会下降,而N₂和H₂O的浓度或压力会增加。

与此相反,当我们减少NH₃或N₂O的浓度或压力时,系统会增加这些反应物的浓度或压力,以重新达到平衡。

因此,NH₃和N₂O的浓度或压力会增加,而N₂和H₂O的浓度或压力会下降。

这个例子说明了勒夏特列原理的应用,通过调节反应物和生成物的浓度或压力,我们可以改变化学反应的平衡,使其倾向于反应物或生成物的一方。

总之,勒夏特列原理是化学平衡移动和平衡常数调节的重要原则。

通过改变反应物和生成物的浓度或压力,我们可以调节化学平衡,使化学反应倾向于反应物或生成物的一方。

化学平衡的移动与控制

化学平衡的移动与控制

化学平衡的移动与控制化学平衡是指在化学反应中,反应物和生成物之间的浓度或压力保持恒定的状态。

在一定条件下,反应处于平衡状态时,正向反应和逆向反应的速率相等。

掌握化学平衡的移动和控制是化学研究和工业生产中的重要内容之一。

本文将介绍化学平衡的移动和控制的基本原理和一些常用的方法。

一、化学平衡的移动1. 温度的影响温度是化学反应速率和平衡位置的主要因素之一。

根据Le Chatelier 原理,当化学反应放出热量时(即反应是放热反应),增加温度会使平衡位置向生成物一侧移动,反之亦然。

这是因为通过增加温度,系统吸收热量,以吸收的热量作为平衡移动的动力。

2. 压力的影响对于气态反应来说,压力对平衡位置的移动有显著影响。

当反应物的摩尔数大于生成物时,增加压力会使平衡位置向生成物一侧移动,反之亦然。

这是因为通过增加压力,系统会使摩尔数较少的物质生成更多的物质,以减少系统所受的压力。

3. 浓度的影响对于溶液中的反应来说,溶液的浓度对平衡位置的移动也有影响。

当反应物的浓度大于生成物时,增加反应物的浓度会使平衡位置向生成物一侧移动,反之亦然。

这是因为通过增加反应物的浓度,系统会使浓度较低的物质生成更多的物质,以达到浓度均衡。

二、化学平衡的控制1. Le Chatelier原理的应用Le Chatelier原理是控制化学平衡的重要原理。

根据该原理,在系统受到外界扰动时,会产生一种趋向于减小该扰动的平衡移动。

所以,我们可以通过增加或减少反应物或生成物的浓度、改变温度或压力等方式来控制平衡位置的移动。

2. 催化剂的应用催化剂是一种可以加速化学反应速率但不参与反应的物质。

在化学平衡中,催化剂可以影响反应的正向和逆向反应速率,但对平衡位置没有直接影响。

通过使用适当的催化剂,可以实现平衡位置的控制,使反应更加高效和完全。

3. 连续流动反应器的应用连续流动反应器是一种可以实现平衡位置控制的重要装置。

通过在反应过程中连续加入反应物和移除生成物,可以使反应在更高的转化率下进行,使得平衡位置向生成物一侧移动。

化学平衡的原理与应用

化学平衡的原理与应用

化学平衡的原理与应用化学平衡是化学反应中物质浓度达到稳定状态的情况。

在化学平衡状态下,反应物和生成物之间的浓度保持不变,尽管反应仍然在进行。

通过应用化学平衡原理,我们可以了解反应物和生成物之间的相对浓度,以及影响平衡位置的因素。

本文将探讨化学平衡的原理及其在实际应用中的重要性。

一、化学平衡的原理化学平衡遵循勒夏特列原理,即在恒温恒压条件下,反应速率的前后相等。

平衡常数(Keq)可以用来描述反应物和生成物浓度的关系。

对于一个一般的反应:aA + bB ↔ cC + dD其平衡常数的表达式为:Keq = [C]^c[D]^d / [A]^a[B]^b其中,方括号表示物质的浓度。

平衡常数的值表示了反应物和生成物之间相对浓度的比例。

当平衡常数大于1时,生成物浓度较高;当平衡常数小于1时,反应物浓度较高;当平衡常数等于1时,反应物和生成物的浓度相等。

二、化学平衡的应用1. 控制反应方向通过调节反应条件,可以控制化学平衡的位置。

根据勒夏特列原理,当增加反应物的浓度或者减少生成物的浓度时,平衡会向右移动,使生成物的浓度增加。

相反,当减少反应物的浓度或者增加生成物的浓度时,平衡会向左移动,使反应物的浓度增加。

这可以在化工过程中用于优化反应条件和提高产率。

2. 预测反应方向平衡常数可以用于预测化学反应的方向。

当Keq大于1时,反应朝着生成物的方向进行;当Keq小于1时,反应朝着反应物的方向进行。

通过了解反应方向,我们可以预测出反应物和生成物的浓度,并为实验设计和工艺流程提供指导。

3. 控制溶解度和沉淀反应化学平衡原理对溶解度和沉淀反应的控制具有重要作用。

溶解度积(Ksp)描述了溶解物在溶液中的溶解度。

当溶液中某种物质的离子浓度达到溶解度积时,发生沉淀反应。

通过控制离子浓度,可以促进或抑制沉淀反应的发生,从而实现溶解度的调控。

4. 平衡反应的动力学研究化学平衡原理可以应用于研究反应速率和动力学。

通过测量反应物和生成物浓度随时间的变化,可以确定反应速率常数和反应级数,从而了解化学反应的机理和速率控制步骤。

高中化学【化学平衡移动原理及应用】

高中化学【化学平衡移动原理及应用】

化学平衡移动原理及应用目标要求 1.通过实验探究,了解浓度、温度、压强等对化学平衡的影响,能用相关理论解释其一般规律。

2.通过对图形、图表的阅读,进行初步加工、吸收、有序存储,并做出合理的解释。

1.化学平衡移动的过程2.化学平衡移动与化学反应速率的关系(1)v正>v逆:平衡向正反应方向移动。

(2)v正=v逆:反应达到平衡状态,平衡不移动。

(3)v正<v逆:平衡向逆反应方向移动。

3.影响化学平衡的因素(1)若其他条件不变,改变下列条件对化学平衡的影响如下:改变的条件(其他条件不变)化学平衡移动的方向浓度增大反应物浓度或减小生成物浓度向正反应方向移动减小反应物浓度或增大生成物浓度向逆反应方向移动压强(对有气体参加的反应) 反应前后气体体积改变增大压强向气体分子总数减小的方向移动减小压强向气体分子总数增大的方向移动反应前后气体体积不变改变压强平衡不移动温度升高温度向吸热反应方向移动降低温度向放热反应方向移动催化剂同等程度地改变v正、v逆,平衡不移动(2)勒·夏特列原理如果改变影响化学平衡的条件之一(如温度、压强以及参加反应的物质的浓度),平衡将向着能够减弱这种改变的方向移动。

(3)“惰性气体”对化学平衡的影响 ①恒温恒容条件原平衡体系―――――→充入惰性气体体系总压强增大―→体系中各组分的浓度不变―→平衡不移动。

②恒温恒压条件原平衡体系―――――→充入惰性气体容器容积增大,各反应气体的分压减小 ―→体系中各组分的浓度同倍数减小(等效于减压)应用体验根据化学平衡原理解答下列问题:在体积不变的密闭容器中发生N 2(g)+3H 2(g)2NH 3(g) ΔH =-92.4 kJ·mol -1,只改变一种外界条件,完成下表:改变条件 平衡移动方向氢气的转化率(增大、减小或不变)氨气的体积分数(增大、减小或不变)增大氮气的浓度 增大氨气的浓度升温 充入适量氩气答案 (从左到右,从上到下)正向 增大 逆向 减小 增大 逆向 减小 减小 不移动 不变 不变(1)化学平衡发生移动,化学反应速率一定改变;化学反应速率改变,化学平衡也一定发生移动(×)(2)升高温度,平衡向吸热反应方向移动,此时v放减小,v吸增大(×)(3)C(s)+CO2(g)2CO(g)ΔH>0,其他条件不变时,升高温度,反应速率v(CO2)和CO2的平衡转化率均增大(√)(4)化学平衡正向移动,反应物的转化率不一定增大(√)(5)向平衡体系FeCl3+3KSCN Fe(SCN)3+3KCl中加入适量KCl固体,平衡逆向移动,溶液的颜色变浅(×)(6)对于2NO2(g)N2O4(g)的平衡体系,压缩体积,增大压强,平衡正向移动,混合气体的颜色变浅(×)题组一选取措施使化学平衡定向移动1.COCl2(g)CO(g)+Cl2(g)ΔH>0,当反应达到平衡时,下列措施:①升温②恒容通入惰性气体③增加CO浓度④减压⑤加催化剂⑥恒压通入惰性气体,能提高COCl2转化率的是()A.①②④B.①④⑥C.②③⑤D.③⑤⑥答案 B解析该反应为气体体积增大的吸热反应,所以升温和减压均可以促使反应正向移动。

高一化学知识点化学平衡的移动规律和平衡常数的应用原理

高一化学知识点化学平衡的移动规律和平衡常数的应用原理

高一化学知识点化学平衡的移动规律和平衡常数的应用原理高一化学知识点:化学平衡的移动规律和平衡常数的应用原理化学平衡是化学反应达到动态平衡状态的时候,反应物和生成物的浓度保持在一定比例下不再变化。

在化学平衡中,物质的转化虽然停止,但是反应仍然在继续进行。

化学平衡的移动规律以及平衡常数的应用原理是我们理解和研究化学反应平衡的重要内容。

一、化学平衡的移动规律在化学平衡中,当外界条件发生改变时,平衡系统会产生一定的移动以重新建立新的平衡状态。

化学平衡的移动规律包括 Le Chatelier 原理和浓度-时间关系。

1. Le Chatelier 原理Le Chatelier 原理是指在一个达到平衡状态的反应系统中,当外界条件发生变化时,系统会调整自身以减小对外界变化的影响。

具体来说,当平衡系统的温度、压力、浓度等发生变化时,系统会向以减小变化影响为目标的方向进行移动。

- 温度的影响:在反应热是吸放热的情况下,温度升高会使平衡位置向吸热的方向移动,降低会使平衡位置向放热的方向移动。

反应热是放热的情况与上述相反。

- 压力的影响:压力的增加会使平衡系统向分子数少的方向移动,压力的降低会使平衡系统向分子数多的方向移动。

此处需注意,只有当反应物和生成物的摩尔数之和不相等的情况下,改变压力才会对平衡位置产生影响。

- 浓度的影响:增加某一反应物的浓度会使平衡系统向生成物的方向移动,增加某一生成物的浓度会使平衡系统向反应物的方向移动。

而当浓度只增加一个无关物质时,平衡位置不会发生改变。

2. 浓度-时间关系当反应物浓度逐渐增加或减少时,反应速率会相应改变。

在开始反应时,反应物浓度较高,反应速率较快,但随着反应进行,浓度逐渐减小,反应速率也会变慢。

最终,当反应物浓度减小至一定水平时,反应速率趋于稳定,达到平衡。

二、平衡常数的应用原理平衡常数是用于描述化学平衡中反应物和生成物浓度之间的相对关系的数值。

平衡常数的大小可用于预测平衡位置的偏向,以及影响平衡位置的外界因素。

化学平衡的原理与应用

化学平衡的原理与应用

化学平衡的原理与应用化学平衡是化学反应达到一种稳定状态的情况。

在这种状态下,反应物和生成物之间的化学物质浓度保持不变。

化学平衡是化学反应动力学和热力学的结果,它遵循一定的原理和规律。

本文将探讨化学平衡的原理及其在实际应用中的重要性。

一、化学平衡的原理1. 动态平衡化学平衡指的是在闭合的反应体系中,反应物与生成物之间的转化速率相等,呈动态平衡的状态。

这意味着虽然反应仍然在进行,但总体上并没有产生净变化。

2. 反应速率与浓度根据速率定律,反应速率与反应物的浓度相关。

在化学反应进行时,反应物浓度的减小会导致反应速率的减慢,而反应物浓度的增加则会导致反应速率的增加。

3. 平衡常数平衡常数是衡量化学平衡程度的指标。

对于一个反应aA + bB ↔ cC + dD,平衡常数Kc定义为[C]^c[D]^d/[A]^a[B]^b。

平衡常数与反应物浓度的比例有关,它描述了反应物在达到平衡时的浓度关系。

4. Le Chatelier原理Le Chatelier原理指出,当外界对平衡体系施加压力时,系统会对这种压力做出反应以维持平衡。

例如,增加反应物的浓度会导致反应向生成物的方向移动,减少反应物的浓度则会导致反应向反应物的方向移动。

二、化学平衡的应用1. 工业生产化学平衡在工业生产中具有重要的应用价值。

通过控制反应物的浓度、温度等条件,可以使反应偏向所需的方向,提高产量和反应效率。

例如,在氨的工业合成中,通过控制温度和压力,可以将反应物氮气和氢气转化为氨气。

2. 酸碱中和酸碱中和反应也是化学平衡的重要应用之一。

在酸碱中和反应中,当酸和碱的摩尔比例满足化学平衡时,pH值达到中性。

这种平衡可以应用于水处理、药品生产等领域。

3. 生物体维持平衡生物体内的许多化学反应都在平衡条件下进行。

例如,呼吸作用中的氧气和二氧化碳交换,维持了生物体内的酸碱平衡。

此外,酶催化的反应也是在化学平衡状态下进行的。

4. 催化反应在催化反应中,催化剂的存在可以改变化学平衡的位置和速率。

化学平衡移动原理和应用

化学平衡移动原理和应用

化学平衡移动原理和应用化学平衡移动原理是指当对一个化学系统施加一个扰动,系统会自发地发生反应,以减小扰动并恢复到原来的平衡状态。

这个原理是基于勒夏特利耶法则和质量作用定律。

在化学平衡移动原理的应用中,可以使用这个原理来控制反应条件、预测化学反应的方向和优化化学反应的收率。

首先,化学平衡移动原理可以用来控制反应条件。

当对一个化学系统施加一个扰动时,系统会调整反应速率以减小扰动。

例如,在气相反应中,通过调整反应温度或压力可以控制产物的生成量。

根据化学平衡移动原理,当温度升高时,反应会向吸热方向移动,生成需要吸热的产物。

相反,当温度降低时,反应会向放热方向移动,生成需要放热的产物。

类似地,通过增加或减少气相反应中的压力,可以改变反应的平衡位置。

其次,化学平衡移动原理可以用来预测化学反应的方向。

当一个化学系统达到平衡时,正反应和逆反应的速率相等。

如果扰动系统,例如改变反应温度或压力,使平衡位置改变,反应就会向平衡位置偏移。

根据化学平衡移动原理,平衡位置的移动方向可以通过比较起始平衡位置和新平衡位置的反应物和产物浓度来确定。

如果新平衡位置的产物浓度增加,说明反应向产物方向移动;如果新平衡位置的反应物浓度增加,说明反应向反应物方向移动。

最后,化学平衡移动原理可以用来优化化学反应的收率。

通过控制反应条件,可以使系统向有利于产物生成的方向移动,从而提高产物的收率。

例如,在工业催化反应中,通过控制温度、压力和催化剂的浓度,可以使反应向产物方向移动,增加产物的生成量。

此外,还可以通过添加吸收剂或改变反应物浓度来控制平衡位置的移动,从而提高反应的收率。

总之,化学平衡移动原理是化学反应中一个重要的基本原理,可以用来控制反应条件、预测反应方向和优化反应收率。

它的应用范围广泛,从基础实验研究到工业化生产都有重要的意义。

通过合理地利用化学平衡移动原理,可以提高反应的效率和经济性,推动化学领域的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵影响化学平衡移动的是浓度,而不是质量、物质的量 或体积; ⑶对于溶液中进行的离子反应,改变不参加反应的离子 浓度,化学平衡一般不移动; (4)浓度的改变不一定会引起化学平衡的移动
实际生产:①增大廉价物质的浓度
2020/5/18
②及时将生成物从混合物中分离出去。
例:FeCl3+3KSCN
Fe(SCN)3+3KCl,
2020/5/18
3.平衡移动方向的判断: (1)从正、逆反应速度是否相等判断:
化学平衡状态 外界条
υ正=υ逆
件改变
υ正≠υ逆
向右移动
不移动
向左移动
2020/5/18
υ正>υ逆 υ正=υ逆 υ正<υ逆
(2)从浓度商和平衡常数分析:
对于一个可逆反应:mA+nB
pC + qD,
在平衡状态时,平衡常数
(填“大于”“小于”或“等于”)。
(2)850℃时,若向一容积不变的密闭容器中同时充入1.0
mol CO,3.0 mol H2O,1.0 mol ①当x=5.0时,上述平衡向
C逆O反2和应x mo方l H向2,移则动:。
②若要使上述反应开始时向正反应方向进行,则x应
满足的条件是 0≤x<3.0 。
(3)在850℃时,若设x=5.0和x=6.0,其他物质的投料
2020/5/18
aA(g)+bB(g)
V’正 = V’逆
a+b=c
cC(g) 速
率画
ห้องสมุดไป่ตู้
-
时出
间增
关大
系和
图减
V’正
=
V’逆
小 压



压强对化学平衡的影响的注意事项
①对于反应前后气体总体积相等的反应,改变 压强对平衡无影响; ②平衡混合物都是固体或液体的,改变压强不 能使平衡移动; ③压强的变化必须引起参与反应物质的浓度改 变才能使平衡移动。
原平衡被破坏
C(A) = C 2
消除
C1 <
新平衡
C(A) = C 3 C3 < C2
A(g)+3B(g)
2C(g)+2D(s)
讨论:
当减小 C 的浓度时, 平衡将怎样移动?
A(g)+3B(g)
2C(g)+2D(s)
当增加D的量时, 平衡将会如何?
2020/5/18
平衡不发生移动
下列4个图分别是描述浓度对化学平衡移动影响的图像, 请大家分析 t 时刻时浓度的变化及平衡如何移动?
增 V(molL-1S-1)

V,正

应 V正 物 浓
V正= V逆
V’逆
平衡状态Ⅰ
度 V逆
0 2020/5/18
t1
t2
t3
V”正 = V”逆 平衡状态Ⅱ
t(s)
1)浓度
A(g)+3B(g)
增大A的浓度
2C(g)+2D(s)
消耗 A 就要减少A的浓度
平衡向右移动
原平衡
C(A) = C 1
减弱
2020/5/18
K
[C]P [ A]m
[D]q [B]n
非平衡状态时有浓度商
当Q = K时,达平衡 当Q < K时,正向移动 当Q > K时,逆向移动
欲破坏化学平衡状态,必须使Q ≠ K, 2020/5/18
【例】现有反应:CO(g)+H2O(g) CO2(g)+H2(g);
△H<0。在850℃时,K=1。
(1)若升高温度到950℃时,达到平衡时K 小于 1
(三)化学平衡移动
1.化学平衡移动的概念
当改变已经达到化学平衡的可逆反应的条 件时,平衡状态被破坏,随反应的进行重新达到 新平衡的过程.
2.移动原理
勒夏持列原理:如果改变影响平衡的一个 条件(如浓度、压强和温度等),平衡就向着 能够减弱这种改变的方向移动。
2020/5/18
注意: ①影响平衡的因素:浓度、压强、温度三种; ②原理适用范围:只适用于一项条件发生变化 的情况(即温度或压强或一种物质的浓度),当 多项条件同时发生变化时,情况比较复杂; ③平衡移动的结果:只能减弱(不可能抵消) 外界条件的变化。 ④平衡移动:是一个“平衡状态→不平衡状态 →新的平衡状态”的过程。一定条件下的平衡 体系,条件改变后,可能发生平衡移动。
不 别为变a,%当、上b%述,反则应a达小到平于衡后b(,填测“大得于H”2的“体小于积”分或数“分等 2020/5/18
4.影响化学平衡的条件
-------浓度、压强、温度、催化剂等。
(1)浓度的影响
2020/5/18
原因分析 增加反应物的浓度, V正 > V逆 平衡
向正反应方向移动;
速率-时间关系图:
2020/5/18
结论:在其他条件不变, 增大反应物浓度,平衡朝正反应方向移动; 减小反应物浓度,平衡朝逆反应方向移动。
减小生成物浓度,平衡朝正反应方向移动; 增大生成物浓度,平衡朝逆反应方向移动。 注意: ⑴增加固体或纯液体的量不能改变其浓度,也不能改变
速率,所以V(正)仍等于V(逆),平衡不移动。
图1
图2



练 图3
图4
2020/5/18
分析反应速度图像 须知:
三步分析法: 一看反应速率是增大还是减小; 二看△V正 、 △V逆的相对大小; 三看化学平衡移动的方向。
对于时间——速度图像 看清曲线是连续的,还是跳跃的。 分清“渐变”和“突变”、“大变”和“小变”。 增大反应物浓度V正 突变,V逆 渐变。 升高温度,V吸热 大增,V放热 小增。 压强 的改变,V缩小 大变,V增大 小变,体积不变的反应 ,速 率等变。
改变下列条件平衡如何移动:
(1)加入FeCl3粉末 向右移动 (2)加入NaOH固体 向左移动
(3)加入KCl固体 不移动
例:对气体分子数不变的反应,同等程度地增 大或减小各物质的浓度,化学平衡__不__移__动__。
2020/5/18
(2)压强的影响
其他条件不变,增大压强,平衡向气体体 积减小的方向移动;减小压强,平衡向气体体 积增大的方向移动。
2020/5/18
(3)温度的影响
2NO2 (g)
N2O4 (g) △H<0
升高温度,平衡向吸热方向移动; 降低温度,平衡向放热方向移动。
注:升高温度同时加快正逆反应速率,但吸热 反应的速率增加的更多,故升温使可逆反应向 吸热反应方向移动。即温度对吸热反应的速率 影响更大。
2020/5/18
⑴只有压强的变化引起反应物质的浓度变化时, 化学平衡才有可能移动; ⑵平衡移动过程中速率的变化情况(结合平衡 移动方向分析)
2020/5/18

aA(g)+bB(g)
cC(g)



学 平
a+b>c




2020/5/18
a+b<c
-
速 率画 时出 间增 关大 系和 图减
小 压 强 时 的
压 强 对 化 学 平 衡 的 影 响
相关文档
最新文档