聚乳酸综述
聚乳酸简介
单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。
关爱地球,你我有责。
世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。
(2)机械性能及物理性能良好。
聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。
(3)相容性与可降解性良好。
聚乳酸增强增韧研究 文献综述
---------------------------------------------------------------范文最新推荐------------------------------------------------------ 聚乳酸增强增韧研究+文献综述摘要本论文以聚乳酸(PLA),聚乙二醇(PEG),纳米氧化镁(MgO),纳米二氧化钛(TiO2)为原料,通过熔融共混,模压成型法制备了PLA/PEG/接枝改性纳米填料复合材料,分别采用傅里叶红外光谱,万能试验机,接触角测试光学显微镜等对接枝改性纳米填料,PLA/PEG/接枝改性纳米填料复合材料的结构,力学性能,亲水性能进行表征,并对纳米复合材料在浓度为1mol/L的NaOH溶液中的降解性能进行初步研究。
对纳米复合材料进行性能研究,结果表明:g-MgO的加入能增加PLA/PEG500万的拉伸强度,且当g-MgO的载入比为3wt%时,PLA/PEG500万/g-MgO复合材料拉伸强度最大;g-TiO2的加入能明显增加PLA/PEG500万的强度,且当g-TiO2的载入比为5wt%时,PLA/PEG500万/g-TiO2复合材料拉伸强度最大。
相较于载入TiO2而言,载入MgO的PLA/PEG500万复合材料整体性能较差。
接触角测试结果表明,g-MgO和g-TiO2都明显提高PLA/PEG体1 / 21系的亲水性能。
在NaOH介质中降解结果表明,纳米复合材料在碱性介质中的降解性能良好。
关键词:聚乳酸;聚乙二醇;氧化镁;二氧化钛;降解性能6435AbstractIn this paper, using polylactic acid (PLA), polyethylene glycol (PEG), nanometer magnesium oxide (MgO), nanometer titanium dioxide (TiO2) as raw material, through melt mixing, molding prepared nanometer composites PLA/PEG/ grafting, respectively by means of Fourier transform infrared spectroscopy, universal testing machine, contact angle measurement of optical microscopy on grafting modified nanometer fillers, the mechanical properties of nanometer filler composite PLA/PEG/ grafted with hydrophilic properties, structure, characterization, and the nanometer composite material for preliminary research for the degradation of NaOH solution of 1mol/L concentration in the. Performance study of nanometer composite material, results showed that:---------------------------------------------------------------范文最新推荐------------------------------------------------------grafting modification and the addition of MgO can increase the intensity of PLA/PEG500W, and when the addition amount of modified MgO ratio was 3wt%, the maximum tensile strength of PLA/PEG500W/g-MgO composites; grafting modification and the addition of TiO2 can significantly increase the strength of PLA /PEG500W, and when the graft modification of TiO2 the added mass ratio was 5wt%, the maximum tensile strength of PLA/PEG500W/g-TiO2 composites. Compared to the load TiO2, the overall performance of PLA/PEG500W composite material is poor in MgO. The test results show that the contact angle, graft modification of MgO and TiO2 obviously improve the hydrophilicity of PLA/PEG system. In the medium of NaOH degradation results showed that, nanometer composite material degradation in alkaline medium good.2.3.2三元复合材料的制备及性能研究113 / 212.4试样制备工序112.4.1无机填料X的偶联剂制备112.4.2接枝改性过的纳米无机填料与PLA熔融共混制备112.4.3聚乳酸复合材料样条的制备112.5聚乳酸复合材料的性能测试122.5.1偶联剂KH550改性无机填料红外光谱(FTIR)测试122.5.2聚乳酸复合材料样条的拉伸性能测试122.5.3接触角测定132.5.4断面形貌观察132.5.5降解性能测试13---------------------------------------------------------------范文最新推荐------------------------------------------------------ 3结果与讨论143.1偶联剂KH550改性无机填料红外光谱(FTIR)143.1.1偶联剂KH550改性纳米MgO红外光谱143.1.2偶联剂KH550改性纳米TiO2红外光谱153.2PLA/PEG拉伸性能表征153.2.1PLA/PEG6000拉伸性能153.2.2PLA/PEG2万拉伸性能163.2.3PLA/PEG30万拉伸性能173.2.4PLA/PEG500万拉伸性能183.3PLA/PEG500万/g-MgO性能表征205 / 213.3.1PLA/PEG500万/g-MgO拉伸性能203.3.2PLA/PEG500万/g-MgO亲水性能213.3.3PLA/PEG500万/g-MgO降解性能223.4PLA/PEG500万/g-TiO2性能表征23近年来,可降解聚乳酸内骨固定材料越来越受到关注[6,7]。
聚乳酸的性能、合成方法及应用
聚乳酸的性能、合成方法及应用一、本文概述聚乳酸(Polylactic Acid,简称PLA)是一种由可再生植物资源(例如玉米)提取淀粉原料制成的生物降解材料,具有良好的生物相容性和生物降解性。
随着全球环保意识的日益增强和可持续发展理念的深入人心,聚乳酸作为一种环保型高分子材料,其研究和应用受到了广泛的关注。
本文将全面介绍聚乳酸的性能特点、合成方法以及在实际应用中的广泛用途,旨在为读者提供关于聚乳酸的深入理解,推动其在各个领域的应用和发展。
本文首先将对聚乳酸的基本性能进行概述,包括其物理性能、化学性能以及生物相容性和降解性等方面的特点。
接着,将详细介绍聚乳酸的合成方法,包括开环聚合和缩聚法等,并分析不同合成方法的优缺点。
在此基础上,文章还将深入探讨聚乳酸在各个领域的应用情况,如包装材料、医疗领域、汽车制造、农业等。
文章还将对聚乳酸的未来发展趋势进行展望,以期为读者提供全面的聚乳酸知识,并为其在实际应用中的创新和发展提供参考。
二、聚乳酸的性能聚乳酸(PLA)作为一种生物降解塑料,具有一系列独特的性能,使其在众多领域中具有广泛的应用前景。
聚乳酸具有良好的生物相容性和生物降解性。
由于其来源于可再生生物质,聚乳酸在自然界中能够被微生物分解为二氧化碳和水,不会对环境造成污染。
这使得聚乳酸在医疗、包装、农业等领域具有广阔的应用空间。
聚乳酸具有较高的机械性能。
通过调整合成方法和工艺条件,可以得到具有优异拉伸强度、模量和断裂伸长率的聚乳酸材料。
这些特性使得聚乳酸在制造包装材料、纤维、薄膜等方面具有显著优势。
聚乳酸还具有良好的加工性能。
它可以在熔融状态下进行热塑性加工,如挤出、注塑、吹塑等,从而制成各种形状和尺寸的制品。
同时,聚乳酸的表面光泽度高,易于印刷和染色,为其在装饰、包装等领域的应用提供了便利。
另外,聚乳酸还具有较好的阻隔性能。
它可以有效地阻止氧气、水分和其他气体的渗透,从而保护包装物品免受外界环境的影响。
聚乳酸简述
聚乳酸的合成、生产、及应用发展简述姓名:(郑州大学力学与工程科学学院工程力学专业)摘要:综述了在目前面临石油危机情况下,聚乳酸作为一种可生物降解的高分子聚合物,在当今社会的发展现状及其前景。
阐述了聚乳酸的生产、主要优点、发展前景等。
关键词:聚乳酸;合成;生产;降解;应用;聚乳酸(英语:Polylactic Acid或Polylactide,缩写:PLA),是一种热塑性脂肪族聚酯。
生产聚乳酸所需的乳酸和丙交酯可以通过可再生资源发酵、脱水、纯化后得到,所得的聚乳酸一般具有良好的机械和加工性能,而聚乳酸产品废弃后又可以通过各种方式快速降解,因此聚乳酸被认为是一种具备良好的使用性能的绿色塑料。
聚乳酸(H-[OCHCH3CO]n-OH)的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,光华伟业开发的聚乳酸(PLA)还具有一定的抗菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域生产乳酸的结构中同时含有羧基和羟基,故乳酸分子之间可以发生酯化反应形成长链。
虽然名叫聚乳酸,但绝大部分羧基已经在聚合反应中反应掉,实际并没有什么酸性,这一点和聚丙烯酸为代表的侧基均为羧基的聚合物不同。
聚乳酸的单体乳酸可以通过化学合成或者通过可再生资源合成。
一般使用玉米、木薯提取出的淀粉,甘蔗和甜菜提取的糖和秸秆等提取的纤维素,经过发酵、脱水等过程获得乳酸。
所获得的乳酸需要进行纯化,才能进行聚乳酸的生产,因为乳酸中含有的微量富马酸和醋酸都会造成聚合反应的终止。
目前生产聚乳酸的途径主要有三条:以乳酸为原料直接缩聚:由于乳酸缩聚反应中逐渐生成的水会引起水解和链转移,所以一般先通过闪蒸等手段除去原料乳酸中残存水分,之后在100°C,1kPa的低压下脱水生成丙交酯和小分子量聚乳酸,然后以氯化亚锡和对甲苯磺酸为催化剂,在160°C温度下进行熔融缩聚,可以得到分子量高于80000的聚乳酸[2]:42。
聚乳酸综合
在电子行业已经广泛应用
为了节省石油资源同时减少地球温室效应,进一步拓展由可再生的生物资源制造而来的聚乳酸的应用领域,日本许多公司对PLA在电子电器领域的应用进行了深入研究并取得了卓越的成效。
(五)、光盘盘片
2003年9月三洋Mavic Mcdia和三井化学公司联合开发采用PLA为底板材料制造的面向音乐CD、VCD和CD-ROM盘片“MildDisc”。其称1个玉米棒难生产10张CD盘片。该公司开发出了高速而精密地转印CD模型技术,通过严格模具温度调节和对离子剂的改进,生产了固化速度慢的聚乳酸CD盘片。通过使用生物降解树脂能够解决现有CD盘片废弃时对环境造成的污染。PLA在燃烧时所消耗的能量比PC燃烧时所消耗的能量要少,从而减少二氧化碳的排量。若采用填埋方式,PLA在2-5年就能快速地生物降解,而PC则半永久地残留在土壤中。
(二)、日本富士通公司的笔记本电脑机壳材料
2002年日本富士同公司在上市的“FMV-BIBLO NB”系列笔记本电脑的红外线接收部分采用了质量0.2的纯聚乳酸配件。在2005年富士通春季款笔记本电脑“FMV-BIBLO NB80K”的机壳中,全部采用由日本富士通公司、日本富士通研究所和日本东丽公司3家公司共同开发的PLA/PC合金,机壳重约600G,PLA含量在50%左右。与采用石油类树脂相比,仅机壳一项就能节约1L左右的使用用量。整个产品的生命周期中二氧化碳的排放量方面,对回收的树脂进行热循环处理时,可比现有树脂减少约15%。富士通最新款式笔记本电脑其外壳整体的93%几乎都采用了PLA树脂。
聚乳酸范文
聚乳酸范文
聚乳酸
聚乳酸(Polylactic Acid, PLA)是一种具有多种应用用途的植物性,可降解型高分子材料,具有更高的绿色环保性和安全性,主要用于生物材
料制品的制造,包括食品容器、包装、医疗器械、非常规包装、农业用品、服装和建筑材料等等。
聚乳酸属于再生聚合物,由再生植物原料(玉米淀粉等)制造而成。
它由特定的微生物(如大肠杆菌)所合成的乳酸母体,经特殊技术催化,
经过多次聚合反应,而成为一种可降解的新型聚合物。
这种聚合物具有良
好的物理和机械性能,可耐摩擦,耐冲击,耐温、耐候,特别地,它还具
有良好的生物相容性和可降解性,所以它被广泛应用在食品及医疗器械的
包装中。
聚乳酸的可降解性是其最大特点,它的降解过程是一个催化反应,也
就是它可以在水中降解,包括葡萄糖、蔗糖、木糖等乳糖,是细菌以葡萄糖、蔗糖等植物糖、木糖、果糖等有机物为原料,利用酶的催化作用,发
生水解分解反应,在温度和pH值条件下,最终经过微生物的分解降解,
释出水、二氧化碳和其它微量物质,回归到大自然,完全不会污染环境。
(完整)聚乳酸综述
聚乳酸(PLA)的合成及改性研究摘要介绍聚乳酸(PLA)的基本性质、合成方法及应用范围.综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。
概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。
关键词:聚乳酸合成改性前言聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。
聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。
此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等.近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道.PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。
1、聚乳酸的研究背景在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。
聚乳酸( PLA)作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。
但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用.因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。
聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。
早在20 世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展.作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。
pla聚乳酸研究报告
PLA聚乳酸研究报告1.引言PLA(聚乳酸)是一种可生物降解的聚合物材料,因其良好的可降解性、生物相容性和可加工性受到了广泛的关注和研究。
近年来,随着环境保护意识的日益增强,PLA作为一种可替代传统塑料的材料,受到了更多的关注。
本研究旨在通过对PLA的综述,并探讨其应用领域以及未来的发展方向,进一步推动PLA的应用和研究。
2. PLA聚乳酸的性质和特点PLA属于聚羟基酸类聚合物,由乳酸经聚合反应得到。
其主要性质和特点如下:•可降解性:PLA是一种可生物降解的聚合物材料,能够在自然环境中被微生物降解,减少对环境的污染。
•生物相容性:PLA具有良好的生物相容性,对人体无毒无害,可广泛应用于生物医学领域。
•可加工性:PLA可以通过注塑、挤出、吹塑等传统塑料加工工艺进行成型,加工性能优越。
•机械性能优异:PLA具有良好的刚度、强度和耐热性能,可满足各种应用需求。
3. PLA聚乳酸的应用领域3.1 包装材料由于PLA具有良好的可降解性和生物相容性,被广泛应用于包装材料领域。
PLA包装材料可以替代传统的塑料包装材料,减少对环境的污染。
此外,PLA还具有较好的物理性质和耐热性能,能满足不同包装需求。
3.2 生物医用材料由于PLA具有良好的生物相容性,被广泛应用于生物医学领域。
PLA可以制备成各种生物医用材料,如PLA纳米纤维膜、PLA显微球等。
这些材料可以用于组织工程、药物缓释等方面,为生物医学研究和应用提供了新的可能。
3.3 3D打印材料PLA由于其良好的可加工性和机械性能,成为了广泛应用于3D打印领域的材料之一。
PLA可以通过3D打印技术制备出复杂的结构和器件,应用于建筑、工业制品等领域。
4. PLA聚乳酸的制备方法4.1 乳酸聚合法乳酸聚合法是目前制备PLA的主要方法之一。
该方法主要通过乳酸的缩聚反应得到PLA。
乳酸聚合法的优点是反应条件温和,产率高,制备过程简单。
4.2 乳液聚合法乳液聚合法是另一种常用的制备PLA的方法。
聚乳酸综述范文
聚乳酸综述范文
聚乳酸是一种聚酯类聚合物,它含有乳酸单元,可以形成回转式链状
结构,通过共聚反应而制成。
从酸性抗氧剂和杀菌剂的角度来看,聚乳酸
可以抑制细菌的生长,细菌的活力,特别是酶的活力。
在外用产品中,它
没有毒性作用,并可提供良好的抗菌性能。
此外,它还可以作为延迟和控
制抗氧化剂的释放体系,使产品的稳定性得到提高。
聚乳酸的应用主要是作为阴离子和非离子表面活性剂,用于化妆品、
洗发露、乳液等产品,以及塑料和橡胶材料。
它可以降低表面张力、改善
产品的界面特性、润湿表面,从而使产品具有较好的流变性、良好的亲水
性和乳化性。
此外,聚乳酸还可以用于外用制剂中,如磨砂膏,护肤霜,
护发素,用于温和保湿,减少刺激和干燥等。
另外,它还可以用于食品中,如奶酪、甜点、冰淇淋和冷冻食品等,用于凝胶状固体制剂中,有助于调
节其稠度,使其具有良好的口感和分散性。
聚乳酸具有以下优点:
1、适合各种应用环境。
聚乳酸被广泛用于多种不同环境中,可抗氧化、抗腐蚀、抗褪色,显示出在各种环境中都可以发挥良好的功效。
2、具有优良的界面活性性能。
聚乳酸具有优良的界面。
聚乳酸产业的文献综述-王甫忠 高长春
聚乳酸产业的文献综述王甫忠高长春1913年法国人首先用缩聚的方法合成了聚乳酸,其产量、分子量都很低,实际用途不大。
1954年,美国Du-pont公司用间接法制备出高分子量的聚乳酸,1962年,美国Cyanamid公司发现聚乳酸具有良好的生物相容性并将聚乳酸应用于医学领域,作为生物降解医用缝线。
美国的Dow化学公司和Cargill公司各出资50%组建的Cargill Dow聚合物公司研制、开发出了新一代PLA树脂及其合金;日本Mitsui Toatsu公司也推出了新一代改进型聚乳酸树脂(商品名为Lacea),并于1994年建成年产100t的发酵设备[14]。
表2-2 生物降解高分子的应用和发展资料来源:杨斌,绿色塑料聚乳酸[3]。
进入21世纪,因石油资源的日趋紧张和环境保护的压力越来越大,聚乳酸因其可再生植物来源及其可生物降解性,在短期使用产品得到应用,如一次性餐具、包装材料等;同时在长期使用产品上代替部分工程塑料上,也逐步得到应用。
杨斌对以聚乳酸为代表的生物降解高分子以及生物基高分子的应用和发展划分为三个阶段,并其特征及用途进行了分类,具体如表2-2。
瞿丽曼对国内外生物可降解材料聚乳酸在包装应用领域的公开专利进行具体分析,发现呈现3个特点,即专利数量:国内外相距甚远,日本独占鳌头;专利领域:制备与应用并举,包装容器与层状产品最热;专利申请人:我国唯一企业初探,国外知名企业并进[15]。
周蕾、韩冬梅等通过分析,得出聚乳酸纤维有较好的加工与使用性能,而且具有较好的生物降解性能,在服装、产业、装饰等领域均有较好的应用前景。
随着人们环保意识、能源意识的不断加强,聚乳酸纤维这种天然生物降解织物必将有更多的产品被开发出来[16]。
刘彦斌、陆建峰等对生物质塑料产业投资价值进行了分析,指出以聚乳酸为主的生物质塑料市场空间巨大,并认为成本问题是困扰其产业发展的核心。
提出了降低成本的两个主要措施,一是降低生物质原料的成本,二是通过生物化工技术进步降低成本[17]。
聚乳酸的研究进展
聚乳酸的研究进展原创摘要本文综述了有关聚乳酸的研究进展,聚乳酸是一种具有优异性能的有机无机复合材料,在现代工业中的应用越来越广泛。
首先,讨论了聚乳酸的分子性能,结构,制备方法和物理和化学性质。
其次,着重介绍了其在多个领域的应用,包括纤维素改性,粘合剂,涂料,绝缘体,还原剂,防腐剂等。
最后,研究了聚乳酸未来的发展趋势。
综上所述,聚乳酸应用的多样性和发展前景受到了社会和科学界的广泛关注。
关键词:聚乳酸,结构,应用IntroductionMolecular Properties, Structural Characteristics, and Preparation Methods of Polylactic AcidApplications of Polylactic AcidPolylactic acid is widely used in the following fields.2. Adhesives: Polylactic acid can be used as a kind of adhesive for paper, metal and other materials. Its adhesive properties are superior to those of general synthetic adhesives, and it is also environmental-friendly.3. Paints: Polylactic acid can be used as a filler in paints, in order to reduce the cost and improve the paint's gloss and hardness.。
聚乳酸的结构、性能与展望
聚乳酸的结构、性能与展望聚乳酸是一种由乳酸分子聚合而成的生物降解性高分子材料,具有优良的生物相容性和可降解性。
近年来,随着环保意识的增强和生物医学领域的需求,聚乳酸的研究和应用越来越受到。
本文将探讨聚乳酸的结构、性能及其在各个领域的应用前景,同时分析当前研究中面临的挑战和问题,并提出相应的解决方案。
聚乳酸的分子结构由乳酸分子中的羟基与另一个乳酸分子中的羧基之间进行缩聚反应形成。
其分子链中存在大量的酯键,使得聚乳酸具有较好的生物降解性。
聚乳酸具有较好的机械性能,如高强度、高模量等,同时具有优异的热稳定性和绝缘性能。
聚乳酸还具有较好的耐油性和耐化学腐蚀性。
聚乳酸具有良好的生物相容性和可降解性,在体内可被分解为水和二氧化碳,最终排出体外。
聚乳酸还具有较低的免疫原性和较好的生物活性,使其在生物医学领域中具有广泛的应用前景。
在生物医学领域,聚乳酸被广泛应用于药物载体、组织工程、人工器官等方面。
例如,利用聚乳酸制备的药物载体能够实现药物的定向传输和可控释放,提高药物的疗效并降低副作用。
由于聚乳酸具有优异的可降解性和环保性,其在包装材料领域的应用越来越受到。
利用聚乳酸制备的包装材料能够有效地保护商品,同时减少对环境的污染。
在建筑领域,聚乳酸可用于制备建筑材料,如塑料门窗、防水材料等。
这些材料不仅具有较好的物理性能,还可实现资源的有效利用和环境保护。
聚乳酸的制备需要使用大量的乳酸原料,导致其成本较高。
为降低成本,可考虑采用廉价的原材料替代部分乳酸,如淀粉、纤维素等。
提高生产工艺的效率也是降低成本的重要途径。
聚乳酸的降解速率过快,可能导致其在某些领域的应用效果不佳。
为解决这一问题,可通过对聚乳酸进行改性处理,如添加交联剂、引入长支链结构等,以调节其降解速率。
聚乳酸的加工成型较困难,对其应用范围造成一定限制。
为此,可研发新型的加工设备和工艺,提高聚乳酸的加工成型效率和质量。
聚乳酸作为一种生物降解性高分子材料,具有优良的生物相容性和可降解性,在生物医学、包装材料、建筑等领域具有广泛的应用前景。
聚乳酸PLA简介
聚乳酸PLA简介生物工程新材料—聚乳酸项目简介随着环境问题越来越多地被社会关注,人们正在努力开发不污染环境的可降解生物材料来代替原本大量使用的石油基传统塑料。
在众多的可降解聚合物中,聚乳酸已成为21世纪最具发展前景的绿色环保材料。
聚乳酸由乳酸合成,乳酸的原料为所有碳水化合物富集的物质,例如粮食(玉米、甜菜、土豆、山芋等)以及有机废弃物(玉米芯或其他农作物的根、茎、叶、皮;城巿有机废物;工业下脚料等)。
聚乳酸是一种可生物降解的高分子聚合物,属于新型生物工程材料,可广泛应用于医疗、药学、农业、包装业、服装业等领域,以替代传统材料。
聚乳酸还是一种低能耗产品,比以石油产品为原料生产的聚合物低30%-50%能耗。
在不可再生的石油资源枯竭期到来之前,石油及其衍生物市场价格暴涨,可再生的产品必将成为全球范围的紧俏消费品。
我国聚乳酸生产原料玉米丰富,在我国发展聚乳酸产业前景广阔。
聚乳酸可以采用多种方式进行加工,加工过程的分子定向会大大增加力学强度,如日本合成的聚乳酸纤维,具有很好的耐热性,可以和通常的聚酯纤维一样制成短丝、单丝、长丝和非织造布等多种制品,广泛应用于服装及非服装领域,加工条件及设备与目前聚酯纤维相同。
目前国外已经采用聚乳酸纤维和棉纱织成混纺纱,用于制作牙刷和毛巾等多种产品,用完后可降解,对环境没有污染,属环保型产品。
聚乳酸属于脂肪族聚酯,耐碱性较弱,有较好的手感,并具有优异的悬垂性、滑爽性和光泽度等特点,制成的服装外形挺括,穿着舒服。
另外,该纤维在食品工业、包装、农林业、医药和卫生等领域具有广阔的应用前景。
世界聚乳酸主要生产国家有美国、日本、德国等国家,日本的生产企业主要有三井化学、日本岛津、大日本油墨、东纺合纤、东丽公司、可乐丽公司、尤尼奇卡公司;美国生产企业有Nutral Work、CargillDow公司、Chronopol公司;德国生产企业主要有Ems Inventa-Fischer公司等。
聚乳酸综述
聚乳酸的合成、生产、加工及应用发展综述摘要:综述了在目前面临石油危机情况下,聚乳酸作为一种可生物降解的高分子聚合物,在当今社会的发展现状及其前景。
阐述了聚乳酸的直接合成法、聚合法、改性合成及新型合成工艺。
关键词:聚乳酸,合成,改性,应用一、前言聚乳酸(PLA),也称聚丙交酯,是以玉米等富含淀粉的农作物为原料,经过现代生物技术合成乳酸,再经过特殊的聚合反应过程生成的高分子材料。
聚乳酸具有完全可降解性,埋入土壤中6-12个月即可发生降解,聚乳酸制品在使用后可降解成二氧化碳和水。
因此,聚乳酸是一种真正意义上的能完全降解的生物环保材料,被视为继金属材料、无机材料、高分子材料之后的“第四类新材料”。
由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料[1]二、聚乳酸(PLA)公开的相关专利聚乳酸使用后可完全降解,不会对环境造成污染,使之技术开发成为当前研究的热点,从近几年聚乳酸相关专利的申请就可见端倪。
1997年至2010年国内聚乳酸专利申请总数呈增长趋势,其中2008年数量达到最多,聚乳酸专利申请数跃居生物降解塑料领域榜首,约占各类生物降解塑料申请总量的38%。
[2]国内申请人公开的聚乳酸相关专利领域分布目前中国申请人公开的聚乳酸相关专利,技术领域分布于医用、制备、包装和纤维等,其中主要为医用和制备。
国外申请人公开的聚乳酸相关专利领域分布上表数据表明,国外申请人的聚乳酸相关专利申请涉及的领域较多,而且分布较为平均。
三、我国聚乳酸产业发展现状解析3.1 生产工艺聚乳酸的生产过程如下:①先将富含淀粉的农作物转化成葡萄糖溶液;②将葡萄糖溶液经过特殊的发酵过程(以生物酶为催化剂)转化成乳酸;③经过提纯和浓缩的乳酸采用直接聚合(一步法)或乳酸脱水环化制成环状二乳酸(丙交酯),环状二乳酸再开环聚合(二步法)的方法得到聚乳酸,见图1(略)和图2(略)。
聚乳酸——精选推荐
聚乳酸⼀、聚乳酸( Polylactic Acid , PLA) 是以⽟⽶等农作物为原料, 经微⽣物发酵获得乳酸单体, 再通过聚合得到的⽣物降解⾼分⼦材料。
它是⼀种热塑性聚酯,具有很好的⽣物降解性, ⽣物相容性和⽣物可吸收性, 降解后不会遗留任何环保问题, ⼜兼具胜于现有塑料聚⼄烯、聚丙烯、聚苯⼄烯等材料的优点, 被产业界定为新世纪最有发展前途的新型包装材料。
⼆、聚乳酸的合成⽅法有两种:直接缩聚法和开环聚合法。
1.直接缩聚法的主要特点是合成的聚乳酸可以不含催化剂,聚合⼯艺短,易分解且分⼦量⼩,但反应条件相对苛刻,对聚合单体的要求与普通缩聚单体的要求⼀致, 其所得聚乳酸产品性能差, 实⽤价值⼩。
2.开环聚合法因为是环状⼆聚体的开环聚合,不同于⼀般的缩聚, 没有⼩分⼦⽔⽣成, 聚合设备简单。
此法所得聚乳酸分⼦量⾼,且机械强度也⾼。
三、聚乳酸的原料来源都是农作物。
四、聚乳酸的优点:1.具有良好的⽣物降解性。
在常温下, 聚乳酸树脂可保持稳定的性能。
在堆肥条件下( 56—60℃, 湿度⼤于80—90%) 可在2—3 个⽉内经由微⽣物完全分解, 最终⽣成⽔和⼆氧化碳, 不污染环境。
⽣产过程⽆污染。
聚乳酸具有良好的⽣物相容性和⽣物可吸收性是因为聚乳酸的基本原料乳酸是⼈体固有的⽣理物质之⼀,对⼈体⽆毒⽆害⽆刺激性。
2.聚乳酸树脂是热塑性树脂, 具有良好的⼒学性质、机械性能、热塑性及成纤性,耐油、⽓味阻隔⽅⾯也较好, 具有与聚酯相似的防渗透性, 与聚苯⼄烯相似的光泽度、清晰度和加⼯性, 提供了⽐聚烯烃更低温度的可热合性。
3.可以采⽤通⽤塑料的通⽤设备进⾏挤出、注射、吹塑、拉伸、纺丝等加⼯成型, 且加⼯⽅便。
4.聚乳酸是⼀种低能耗产品, ⽐以⽯油产品为原料⽣产的聚合物低30%—50%。
5.原料来⾃可再⽣的植物资源, 所有富含淀粉的农作物都能⽣成聚乳酸, 不消耗不可再⽣的矿物资源, 也不增加⼆氧化碳的排放,符合循环经济原则, 利于社会可持续发展。
聚乳酸材料
聚乳酸材料聚乳酸(Polylactic acid,PLA)是一种可生物降解聚合物,其由乳酸分子通过聚合反应生成。
与传统的石油基塑料相比,聚乳酸具有许多优点,如可降解性、可再生性和生物相容性,因此被广泛应用于各个领域。
首先,聚乳酸具有良好的可降解性。
在自然环境中,聚乳酸可以被微生物分解为二氧化碳和水,从而实现循环利用。
由于可降解性的特点,聚乳酸在替代传统塑料领域具有巨大潜力。
例如,聚乳酸制成的一次性餐具可以有效减少对环境的污染问题。
其次,聚乳酸是可再生资源的产物。
乳酸可以通过多种途径产生,其中包括玉米、甘蔗、木薯等植物的发酵过程。
相比之下,传统塑料主要由石油提炼而来,石油资源日益枯竭,而聚乳酸可以通过可持续发展的方式获得,对环境的影响更小。
此外,聚乳酸具有良好的生物相容性。
这使得它在医疗领域广泛应用。
聚乳酸可以用于制作缝合线、外科缝线、骨内固定材料等。
由于其可降解性,不需要二次手术取出材料。
此外,聚乳酸还可以用于制备缓释药物输送系统,以实现长期、可控的药物释放。
另外,聚乳酸还具有一些特殊性质,使其在某些领域具有独特的应用价值。
聚乳酸可以通过控制聚合反应的条件和添加其他添加剂来调节其材料性能,如硬度、透明度、热稳定性等。
这使得聚乳酸在包装材料、纺织品、电子材料等领域找到了广泛的应用。
然而,聚乳酸作为一种新型材料,也存在一些挑战。
首先,其价格相对较高,与传统塑料相比,生产成本更高。
其次,聚乳酸的稳定性较差,易受到光、氧气等外界条件的影响,从而降低了其应用范围和使用寿命。
此外,聚乳酸的降解速度也需要进一步研究和改进,以实现更好的利用和循环利用。
综上所述,聚乳酸作为一种可生物降解聚合物,在替代传统塑料等领域具有广阔的应用前景。
通过不断改进其性能和降低其成本,聚乳酸将能更好地满足人们对环境友好、可持续性材料的需求。
同时,相应的政策和标准也需要制定和完善,以推动聚乳酸及其他可生物降解材料的应用与发展。
聚乳酸综述范文
聚乳酸综述范文聚乳酸(polylactic acid,PLA)是一种生物可降解塑料,具有良好的环境友好性和可塑性,广泛应用于包装材料、医疗器械、纤维制品等领域。
本文将对聚乳酸的制备方法、性质及其应用领域进行综述。
聚乳酸的制备方法主要可以分为两种:通过乳酸的直接聚合和通过乳酸的环化缩聚。
乳酸的直接聚合方法包括原位聚合法和间歇聚合法。
原位聚合法是将乳酸和催化剂直接加入反应器中,在高温下发生聚合反应,得到聚乳酸。
间歇聚合法则是在乳酸和溶剂中加入催化剂,通过升温反应,使乳酸发生聚合。
乳酸的环化缩聚方法包括环己酮溶剂法、脱水缩聚法和溶剂蒸发法。
这些方法制备的聚乳酸材料具有不同的分子量和结构,从而影响其物理性能和降解性能。
聚乳酸具有许多优异的性质,包括良好的生物相容性、可降解性和可塑性。
生物相容性是指聚乳酸与细胞和组织之间的相互作用良好,不会引起显著的炎症反应和毒性反应。
可降解性是指聚乳酸可以在自然环境中被微生物分解,最终产生二氧化碳和水。
可塑性是指聚乳酸可以通过热加工、拉伸和注塑等方法加工成不同形状的制品。
聚乳酸在包装材料领域有广泛的应用。
由于其良好的可降解性和可塑性,聚乳酸可以用于制备一次性食品容器、餐具和购物袋等产品。
与传统的塑料制品相比,聚乳酸制品可以减少对环境的污染,并降低资源消耗。
此外,聚乳酸还可以用于生物医用材料的制备。
由于其生物相容性和可降解性,聚乳酸可以用于制备缝合线、骨板和修复材料等产品,促进组织修复和再生。
尽管聚乳酸具有许多优点,但它也存在一些不足之处。
首先,聚乳酸的生产成本相对较高,限制了其在一些领域的应用。
其次,聚乳酸的机械性能相对较差,强度和耐热性较低,限制了其在一些高强度和高温环境下的应用。
此外,聚乳酸的降解速度较慢,需要数年甚至几十年才能完全降解,限制了其在一些应用中的可行性。
为了改善聚乳酸材料的性能,研究者进行了许多改性研究。
例如,通过共聚反应、添加剂和混合物的方式,可以改善聚乳酸的机械性能、热稳定性和降解性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚乳酸(PLA)的合成及改性研究摘要介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。
综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。
概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。
关键词:聚乳酸合成改性前言聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。
聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。
此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。
近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。
PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。
1、聚乳酸的研究背景在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。
聚乳酸( PLA) 作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。
但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用。
因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。
聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。
早在20 世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展。
作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。
目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法【2】。
2、PLA 市场应用概况由于PLA 是一种可降解的、无污染的新型高分子材料,因此应用前景非常广阔。
大部分塑料制品都可用PLA 代替应用,但受到PLA 产品价格因素以及生产技术影响,还不能完全推广。
因此目前PLA产品都应用在高端应用领域,如生物医学领域等,PLA 可应用在以下一些领域。
(1)生物医学领域,目前的医用高分子材料使用过程中多少有些副作用,而PLA 基于其优越的生物相容性及其良好的物理性能,降解后生成二氧化碳和水,对人体无任何危害,并且因自然降解患者不用进行二次手术。
因此PLA 可用于组织固定( 如骨螺丝钉,固定板和栓) 、药物传送( 如扩散控制) 、伤口包扎( 如人造皮肤) 以及伤口闭合( 如应用缝合线、外科用品) 等众多用途。
(2)包装领域,PLA 的无害特性使它能在包装领域具有广泛的应用前景,主要可用作包装带、包装用膜、农用薄膜、餐具、食品包装等。
PLA 材料具有光洁的表面和高透明度以及良好的阻隔性能,在某些应用领域完全可以替代聚苯乙烯和PET,从而大大降低白色污染。
(3)纺织领域,PLA 可用纺黏法或熔喷法直接制成无纺布,也可先纺制成短纤维,再经干法或湿法成网制得无纺布。
PLA 无纺布可用于农业、园艺等方面,如除草用布等,在医疗卫生方面可用作手术衣、口罩等; 在生活用品方面,可用作衣料、地毯、儿童尿布等。
另外,PLA 还可以用在家电领域、玩具市场等,如用于家电外壳、刚性包装、透明窗口膜、各种儿童玩具等。
据统计,PLA 消费市场正在以15% /年的速度增长。
我国目前产能约5 000 t /a,2011 年,我国进口PLA 切片约6 400 t /a,出口PLA 切片约600 t /a,国内消费量约10 800 t /a,进口量约占需求量的53.7%,随着我国经济的快速发展,这一数字将会进一步提高。
从目前PLA 产业发展来看,虽然PLA 材料具有独特的有优越性能,市场前景十分看好,但PLA 的大批量生产仍受到高生产成本的制约。
大规模工业生产可以使PLA 在与石油基聚合物的竞争中取得一些优势。
如果解决了成本问题,PLA 将会带来一场真正的塑料革命。
3、PLA的分类聚乳酸的单体是2 -羟基丙酸( 乳酸) ,聚乳酸的结构是脱水乳酸单元的不断重复,由于在乳酸的分子结构中含有一个不对称的碳原子,从而具有旋光性,乳酸有两种旋光异构体,左旋乳酸及右旋乳酸;聚乳酸及单体的结构式如下:图1 聚乳酸及其单体的结构式由于单体的结构不同,故聚乳酸也存在着几种旋光异构体,主要包括: PLLA、次磷双乳酸( PDLA)和PDLLA。
结构决定性质,PLLA 和PDLA 均是半结晶性的聚合物,具有较高的拉伸强度,但其冲击韧性较差,断裂伸长率较低,降解吸收速度慢; 而PDLLA 是非结晶性聚合物,其拉伸强度明显低于前者,但其降解速度较快。
4、PLA 的合成在实验室对于聚乳酸合成的目的在于了解掌握聚乳酸的合成方法及原理,对聚乳酸的结构、分子量及产率等参数进行测试分析,从而提出基本的合成工艺条件及应用数据。
当前节能环保意识备受人们关注,尤其是随着我国“限塑令”的发布,使可自降解替代性塑料的开发生产迫在眉睫。
聚乳酸作为一种生物降解材料,其原料乳酸来源丰富,且具有良好物理性能,是石油基塑料的理想替代材料。
但影响聚乳酸塑料广泛应用的最大问题是合成工艺流程复杂,成本较高。
以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA 。
PLA 的合成通常有:(1)直接缩聚法【3-4】。
以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA 。
该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA 。
具体反应式如下【5】:nHOCH(CH 3)COOH一一OH + (n-1)H 2OH 一[OCH(CH 3)CO]n 一OH 一[OCH(CH 3)CO]n 一OH + H 2O若用直接缩聚法获得高相对分子质量PLA .反应中须注意:水的有效脱除.动力学控制.抑制解聚。
陈佑宁等【6】采用溶液缩聚法直接合成得到黏均分子量为12 320的PLA 。
Achmad 等【4】在真空条件下直接缩聚制得PLA .降低了生产成本。
(2)间接聚合法。
由乳酸脱水缩合生成丙交酯再开环聚合成PLA 。
这种反应可以合成相对分子质量高达(7~10)x105的PLA 。
许多学者仔细研究了丙交酯开环聚合的条件(包括催化剂浓度,单体纯度,表面活性剂,聚合真空度、温度、时间等)【7】,其中,最主要的影响因素是丙交酯的纯化及催化剂的选择。
开环聚合所朋的催化剂不同。
聚合机理也不同。
到日前为止。
人们提出了3种丙交酯开环聚合的反应机理:阴离子型开环聚合、阳离子型开环聚合、配位开环聚合。
对于(1)、(2)两种方法的比较:直接脱水缩合生产聚乳酸的方法具有反应成本低,聚合工艺操作简单,但反应需要的时间长,而且因为反应体系中存在乳酸、水、丙交酯和聚酯的平衡,致使合成的聚乳酸材料的相对分子质量不高、强度极低、易分解;而经丙交酯开环聚合制备聚乳酸的过程虽然复杂,但该法可以得到相对分子质量相对较高的聚乳酸材料。
(3)固相聚合法。
将直接缩聚法得到的低相对分子质量树脂在减压真空、温度为玻璃化转变温度和熔点之间的条件下聚合得到,以提高其聚合度,增加相对分子质量,从而提高材料强度和加工性能。
目前国内外对聚乳酸的研究都转向直接缩聚法制聚乳酸。
此外,最近国外正尝试用生物合成法制取聚乳酸,即培养、筛选合适的生物,在体内直接合成聚乳酸,并通过一定的方法提取聚乳酸。
该法可实现清洁生产,同时可进一步降低生产成本、提高产品的各项性能指标,扩大市场应用范围。
5、PLA的改性由于PLA在性质上存在许多局限性而限制了它的应用,同时在实际应用中还有一些特殊的功能性需要,这都促使人们对PLA材料的改性展开深入研究。
国内外对聚乳酸材料的改性主要研究方法与内容如下:(1) 共混法提高力学性能聚乳酸材料的硬、脆性是其显著的缺点。
为了改善这一力学性能,报道中多见的改性方法是共混法。
在聚乳酸中加入增塑剂,如聚乙二醇(PEG),聚丙醇(PPG)等。
但由于聚乳酸与一般的石油基高分子相容性不好,研究中发现,增塑剂会与基体树脂发生相分离,随放置时间延长而严重,塑性变形率提高不大,力学强度反而急剧下降。
另一类方法是填充、增强,将聚乳酸与改性后的淀粉,纤维素及其微晶、晶须,玻璃微珠共混,以提高断裂韧性和拉伸强度。
发现由于聚乳酸与填充材料的相容性、极性、结晶性的差别,低界面结合强度成为主要问题。
相比于基体相,界面结合区更易于发生降解或水解,使得材料整体的降解速率和剩余强度不可控。
此外,纳米材料也被用于聚乳酸的改性。
纳米粒子作为结晶成核剂,增加了聚乳酸的结晶速度和结晶度,减小品粒尺寸【8】,使力学性能得到改善。
国内有人采用纳米粘土插层的方法增加材料韧性,提高冲击强度。
(2) 交联法提高耐热性聚乳酸的结晶速度缓慢,软化温度较低,使其应用领域受到限制。
人们通过加入成核剂的方法缩短材料成型中的定型时间,改善材料的耐热性。
成核剂的种类包括聚乙二醇、乳酸低聚物、低分子酯肪酸、酯肪胺和纳米填充剂。
结晶度增大有利于提高材料力学强度和耐热稳定性,但发现,由于聚乳酸分子链上有-C-O-基,使得分子的对称性下降,羧基上的氧原子很容易与相邻链上的氢原子发生氢键作用,影响分子链扩散速度,使得结晶速度非常缓慢,力学强度和热稳定性的提高也是非常有限的。
(3) 增塑改性增塑改性是在高聚物中添加一定量的高沸点、低挥发性的低相对分子质量物质,从而改善其机械性能与加工性能。
增塑剂是一种加入到材料(通常是塑料、树脂或弹性体)中以改进它们的加工性、可塑性、柔韧性的物质. 增塑剂的加入可以降低材料的熔体粘度、玻璃化转变温度(Tg)、弹性模量等.通过增塑可以使聚合物材料更易于产生可逆形变,防止制品在实际使用条件下形变时发生脆性破裂.增塑改性可以分为两种基本方法:一是分子增塑,指的是加入与聚合物达到分子水平混溶的添加物(主要是低分子物)来改变聚合物的力学性能.二是结构增塑,指的是加入少量实际上与聚合物不相混溶的低分子物,使聚合物力学性能显著改变的效应.基本原理是加入的增塑剂分布于聚合物超分子结构基元之间,促进大分子聚集体之间的相对滑移重排,增塑剂以分子尺寸厚度的薄层分布于超分子结构单元之间从而起到特殊的“润滑”作用。