重点高中自主招生数学试题4含答案

合集下载

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

2024年省示范高中自主招生素质检测数学试题及参考答案

2024年省示范高中自主招生素质检测数学试题及参考答案

学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。

省级重点高中自主招生数学真题8套(含答案)

省级重点高中自主招生数学真题8套(含答案)

省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。

以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。

)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。

2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。

3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。

高中自主招生数学模拟试题(附答案4)

高中自主招生数学模拟试题(附答案4)

第 1 页 共 4 页2018 年自主招生考试数学模拟试题(满分:120 分时间:120 分钟)一、选择题。

(每小题 4 分,共 24 分)1. 如图,已知一块圆心角为 270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是 60cm ,则这块扇形铁皮的半径是() A.40cmB.50cmC.60cmD.80cm第 1 题图第 2 题图2. 如图,在平面直角坐标系中,已知点 A (﹣3,6),B (﹣9,﹣3),以原点 O 为位似中心, 相似比为 ,把△ABO 缩小,则点 A 的对应点 A′的坐标是() A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18) D.(﹣1,2)或(1,﹣2)3. 在△ABC 中,AB=10,AC=2,BC 边上的高 AD=6,则另一边 BC 等于( ) A.10 B.8 C.6 或 10 D.8 或 104. 如图,在矩形 ABCD 中,E 是 AD 边的中点,BE ⊥AC ,垂足为点 F ,连接 DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD= .其中正确的结论有( ) A.4 个B.3 个C.2 个D.1 个第 4 题图第 5 题图第 6 题图5. 如图,在矩形 ABCD 中(AD >AB ),点 E 是 BC 上一点,且 DE=DA ,AF ⊥DE ,垂足为点 F ,在下列结论中,不一定正确的是()2··A.△AFD≌△DCEB.AF= ADC.AB=AFD.BE=AD﹣DF6.如图所示,向一个半径为R、容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是()A.B.C.D.二、填空题。

(每小题4 分,共24 分)7.如图,在Rt△ABC 中,∠B=90°,AB=4,BC>AB,点D 在BC 上,以AC 为对角线的平行四边形ADCE 中,DE的最小值是.第7 题图第8 题图第9 题图8.如图,折叠矩形ABCD 的一边AD,使点D 落在BC 边的点F 处,已知折痕AE=5cm,且tan∠EFC= ,那么矩形ABCD 的周长为cm.9.如图,一个半径为的圆过一个半径为2 的圆的圆心,则图中阴影部分的面积为.10.如图,在△ABC 中,AB=5,AC=3,D 为BC 的中点,AD=2,则tan∠BAD = .第10 题图第12 题图11.已知a<3,b>3,且a +b =k -1,ab=3,则k 的最小整数值是.k12.如图,已知点A(1,2)是反比例函数y= 图象上的一点,连接AO 并延长交双曲线的另x一分支于点B,点P 是x 轴上一动点;若△PAB 是等腰三角形,则点P 的坐标是.三、解答题。

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

专题分式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)如图,已知在△ABC 中,点D 、E 、F 分别为边AB 、BC 、AC 上的点,且AE 、BF 、CD 相交于点G ,如果AG GE +BG GF +CG GD =2014,那么AG GE ⋅BG GF ⋅CGGD的值为.【答案】2016【分析】本题主要考查了三角形面积的计算,分式化简求值,解题的关键是设S △ABG =a ,S △ACG =b ,S △BCG =c ,得出AG GE =a +b c ,BG GF =a +c b ,CG DG =b +c a ,根据AG GE +BG GF +CG GD=2014,得出a +b c +a +cb +b +c a =2014,将a +b c ⋅a +c b ⋅b +c a 化简为a +b c +a +c b +a +b c +2即可得出答案.【详解】解:设S △ABG =a ,S △ACG =b ,S △BCG =c ,则AG GE=S △ABG S △BEG =S △ACG S △CEG =S △ABG +S △ACG S △BEG +S △CEG =S △ABG +S △ACG S △BCG =a +bc ,同理可得:BG GF =a +c b ,CG DG=b +ca ,∵AG GE +BG GF +CG GD =2014,∴a +b c +a +c b +b +c a =2014,∴AG GE ⋅BG GF ⋅CG GD =a +b c ⋅a +c b⋅b +c a =a +b a +c b +c abc=a 2b +a 2c +abc +ac 2+ab 2+abc +b 2c +bc 2abc=a +b c +a +c b +a +b c +2=2014+2=2016.故答案为:2016.2(2024·全国·八年级竞赛)设a 、b 、c 是互不相等的实数,且a +4b=b +4c =c +4a ,则abc =.【答案】±8【分析】本题考查分式的化简求值,由a +4b =b +4c 可得bc =4b -c a -b ,同理可得ac =4c -a b -c,ab =4a -bc -a,由此三式相乘即可解答.【详解】解:∵a +4b=b +4c =c +4a ,∴a -b =4c -4b =4b -c bc ,b -c =4a -4c =4c -a ac ,c -a =4b -4a =4a -b ab ,∴bc =4b -c a -b ,ac =4c -a b -c,ab =4a -bc -a ,∴a 2b 2c 2=4(b -c )a -b ⋅4(c -a )b -c.4(a -b )c -a =64,∴abc =±8.故答案为:±8.3(2024·全国·八年级竞赛)已知6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +Dx 2-2其中A 、B 、C 、D 为常数,则A ⋅B ⋅C ⋅D =.【答案】-24【分析】此题主要考查了分式的加减运算,先对Ax +B x 2-1+Cx +D x 2-2进行计算,然后根据题意列出关于A 、B 、C 、D 的方程组即可解决问题,解题的关键是熟练掌握分式的运算及法则的应用.【详解】解:6x 3+2x 2-8x -1x 2-1 x 2-2 =A +C x 3+B +D x 2-2A +C x -2B +D x 2-1 x 2-2 Ax +B x 2-1+Cx +Dx 2-2=Ax +B x 2-2 x 2-1 x 2-2 +Cx +D x 2-1 x 2-1 x 2-2=A +C x 3+B +D x 2-2A +C x -2B +Dx 2-1 x 2-2,∵6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +D x 2-2,∴A +C =6,B +D =2,2A +C =8,2B +D =1,解得A =2,B =-1,C =4,D =3,∴A ⋅B ⋅C ⋅D =2×-1 ×4×3=-24,故答案为:-24.4(2024·全国·八年级竞赛)已知实数x ,y 满足条件1x -1y =2x +y ,则代数式y 2x -x2y=.【答案】1【分析】本题主要考查代数式求值,先将1x -1y =2x +y 变形为2xy =y -x y +x ,再把y 2x -x2y变形为y -x y +x2xy,然后代入计算即可.【详解】解:∵1x -1y =2x +y,∴2xy =y -x y +x ,∴y 2x -x 2y=y2-x2 2xy=y-xy+x2xy=y-xy+xy-xy+x=1,故答案为:1.5(2024·全国·七年级竞赛)已知实数a、b、c满足等式a2013=b2014=c2015,且2a+b-c=8050,则a-b+12c+1=.【答案】2014【分析】本题考查了分式的化简求值,代数式求值;解题的关键是令a2013=b2014=c2015=k求出a、b、c的值.令a2013=b2014=c2015=k,求得a=2013k,b=2014k,c=2015k,结合题意求出a、b、c的值,代入即可求解.【详解】解:设a2013=b2014=c2015=k,故a=2013k,b=2014k,c=2015k,则2a+b-c=2×2013k+2014k-2015k,即2×2013k+2014k-2015k=8050,解得:k=2;∴a=4026,b=4028,c=4030,∴a-b+12c+1=4026-4028+12×4030+1=2014.故答案为:2014.6(2024·全国·八年级竞赛)已知实数x、y、z满足下列等式:xyx+y =1b-1,yzy+z=1b,xzx+z=1b+1,那么代数式xyzxy+xz+yz的值为.【答案】1 6【分析】本题考查了分式的混合运算,熟练掌握分数的混合运算法则是解题的关键.根据分式的性质将分式适当变形后进行计算即可.【详解】由题意知xy、yz、xz都不为零,∴x+yxy=b-1 y+zyz=bx+zxz=b+1,即1x+1y=3 1y+1z=4 1x+1z=5,∴1x +1y +1z =6,即xy +yz +xz xyz =6,∴xyz xy +xz +yz =16.故答案为:16.7(2024·全国·八年级竞赛)已知三个数x ,y ,z 满足xy x +y =2015,yz y +z =43,zx z +x =-43,则xyzxy +yz +zx 的值为.【答案】4030【分析】本题考查分式的化简求值,灵活运用分式的运算法则是解答的关键.将所有分式的分子和分母颠倒位置,然后利用分式的混合运算法则化简求解即可.【详解】解:将所有分式的分子和分母颠倒位置,则由xy x +y =2015得x +y xy =1x +1y =120151 ,由yz y +z =43得y +z yz =1y +1z =342 ,由zx z +x =-43得x +z xz =1x +1z =-343 ,三式相加得21x +1y +1z=12015,则1x +1y +1z =xy +yz +zx xyz =12⋅12015=14030,∴xyzxy +yz +zx=4030.8(2024·全国·八年级竞赛)如图,将一张矩形卡片按图1所示的方式分成四块后,恰好能拼成图2所示的矩形,若S ①:S ③=1:5,则a :b =.【答案】2∶3【分析】本题主要考查了整式混合运算的应用,求比值,解题的关键是理解题意,根据S ①:S ③=1:5,得出S 矩形ABFE :S 矩形EFCD =1:5,求出AE ED=15,设AE =x ,则ED =5x ,得出a +b x +5x =b ⋅5x +5x ,求出3a =2b ,即可求出结果.【详解】解:如图所示,∵S ①:S ③=1:5,∴S 矩形ABFE :S 矩形EFCD =1:5,∴a +b ⋅AE a +b ⋅ED=15,∴AE ED=15,设AE =x ,则ED =5x ,∴a +b x +5x =b ⋅5x +5x ,整理得:3a =2b ,∴a :b =2:3.故答案为:2:3.9(2024·全国·八年级竞赛)对于正数x ,规定f x =x x +1,例如f 1 =11+1=12,f 2 =22+1=23,f 12 =1212+1=13,则f 12017 +f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =.【答案】40332【分析】本题考查代数式求值,分式的加法以及数字类规律探究,理解新定义函数的意义,掌握数字所呈现的规律是解决问题的关键.利用加法结合律以及探究所得规律得出答案.【详解】解:∵f x =xx +1,∴f x +f 1x =x x +1+1x1x+1=x x +1+1x +1=1,∴f 12017+f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =f 12017 +f 2017 +f 12016 +f 2016 +⋯+f 12 +f 2+f 1 =2016+11+1=40332.故答案为:40332.10(2024·全国·八年级竞赛)若x 为正数,且x -1x =3,则x x 2-x +1=.【答案】13+112【分析】先求出x 2+1x 2=11,再求出x +1x =13,最后整体代入x x 2-x +1=1x -1+1x进求解即可,此题考查了分式的运算和二次根式的运算,熟练掌握运算法则和灵活变形是解题的关键.【详解】解:∵x 为正数,且x -1x=3,∴x -1x 2=9,x +1x >0,即x 2+1x 2=11,∴x +1x 2=x 2+1x 2+2=13,∴x +1x =13,∴x x 2-x +1=1x -1+1x =113-1=13+112,故答案为:13+11211(2024·全国·八年级竞赛)已知x =2y +33y -2,则3x -2 3y -2 的值为.【答案】13【分析】本题考查了分式的混合运算,多项式乘以多项式,根据x 的值和题中式子即可求解,根据解题的关键是明确它们各自的计算方法.【详解】解:∵x =2y +33y -2,∴3x -2=6y +93y -2-2=6y +9-6y +43y -2=133y -2,∴3x -2 3y -2 =133y -2×3y -2 =13,故答案为:13.12(2024·全国·八年级竞赛)比较大小:22000+122001+1-22001+122002+10(填“>”、“=”或“<”).【答案】>【分析】本题考查了实数的比较大小,异分母分式的运算.熟练掌握以上知识点并灵活运用是解题的关键.设a =22000,根据22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0作答即可.【详解】解:设a =22000,∴22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0,故答案为:>.13(2024·全国·八年级竞赛)已知11的小数部分为a .则a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=.【答案】-31111/-31111【分析】本题考查了分式的混合运算,无理数的估算,分母有理化,先根据分式的运算法则把所给代数式化简,再求出a 的值,然后代入化简后的结果计算即可.【详解】解:a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=a -3 2a +3 a +4 ×a +4a -3-a a +3=a -3a +3-a a +3=-3a +3,∵3<11<4,∴11的整数部分3,∴a =11-3.∴-3a +3=-31111.故答案为:-31111.14(2024·全国·八年级竞赛)函数y =x -4-2-x -3x -5的自变量x 的取值范围是.【答案】x ≥3且x ≠4且x ≠5【分析】本题考查确定函数自变量取值范围.熟练掌握负整指数幂有意义的条件,二次根式有意义的条件,分式有意义的条件是解题的关键.根据题意得不等式组x -3≥0x -4≠0,x -5≠0求解即可.【详解】解:根据题意,得x -3≥0x -4≠0,x -5≠0∴x ≥3且x ≠4且x ≠5.故答案为:x ≥3且x ≠4且x ≠5.15(2024·全国·八年级竞赛)如果对于分式3x 2+4x +m,存在两个数使分式没有意义,则m 的取值范围是.【答案】m <4【分析】本题主要考查了分式有意义的条件、一元二次方程根的判别式等知识点,理解分式有意义的条件是解题的关键.由存在两个数使分式没有意义,则对于x 2+4x +m =0的判别式Δ>0,据此列不等式求解即可.【详解】解:∵分式3x 2+4x +m,存在两个数使分式没有意义,∴x 2+4x +m =0有两个解,∴Δ=42-4m >0,解得:m <4,∴当m <4时,存在两个实数使原式没有意义.故答案为m <4.二、单选题16(2024·全国·九年级竞赛)要使式子x +6x有意义,则x 的取值范围是()A.x ≥-6B.x ≠0C.x >6D.x ≥-6且x ≠0【答案】D【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件.熟练掌握概念是解题的关键.分子上的二次根式要有意义,根号里面的式子为非负数,且分母不为零,分别求解满足条件的x 值.【详解】∵式子x +6x有意义,∴x +6≥0,x ≠0,∴x ≥-6且x ≠0.故选:D .17(2024·全国·八年级竞赛)已知1x +1y =2,则2x +3xy +2y 3x -2xy +3y的值为()A.74B.72C.5D.12【答案】A【分析】本题考查分式的化简求值,根据1x +1y =2得x +y =2xy ,再将2x +3xy +2y 3x -2xy +3y的分子分母变形为含xy 的式子,即可解题.【详解】解:由1x +1y=2得x +y =2xy ,则2x +3xy +2y 3x -2xy +3y =2x +y +3xy 3x +y -2xy =7xy 4xy =74.故选:A .18(2024·全国·八年级竞赛)已知实数x ,y 满足x +y =2,xy =-5,则xy +y x 的值为( ).A.65B.-145C.-65D.-45【答案】B【分析】本题考查了分式的化简求值,配方法,熟练掌握完全平方公式是解答本题的关键.先将xy +y x通分,然后将分子配方,并将分式化简成只含x +y ,xy 的代数式,最后将x +y ,xy 的值代入并计算即得答案.【详解】xy +y x =x 2+y 2xy=x 2+2xy +y 2-2xy xy=(x +y )2xy -2,当x +y =2,xy =-5时,原式=22-5-2=-145.故选B.19(2024·全国·八年级竞赛)若分式x-1x -2的值为正数,则x的取值范围是()A.1<x<2或x<-2B.x<-2或x>2C.-2<x<1或x>2D.-2<x<2【答案】C【分析】根据题意列出不等式组,解不等式组则可.此题考查分式的值,解不等式组,解题关键在于根据题意列出不等式组.【详解】解:∵分式x-1x -2的值为正数,∴x -2>0x-1>0或x -2<0x-1<0,解得:-2<x<1或x>2.故选:C.20(2024·全国·七年级竞赛)灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的3倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是()A.160米/分B.140米/分C.60米/分D.120米/分【答案】D【分析】本题考查了分式乘除的应用,整式加减的应用,正确理解题中的数量关系是解答本题的关键,设上坡的路程为S,则上、下坡的总路程为2S,可逐步求得上下坡的总时间,最后利用平均速度等于上、下坡的总路程除以总时间,计算即得答案.【详解】设上坡的路程为S,则上、下坡的总路程为2S,上坡时间为S80,下坡时间为S80×3=S240,总时间为S80+S240=S60,所以平均速度为2S÷S60=120(米/分).故选D.21(2024·全国·八年级竞赛)若xx2+x+1=15,则x2x4+x2+1=()A.5B.115C.4 D.14【答案】B【分析】本题考查分式的化简求值和完全平方公式,根据xx2+x+1=15得出x+1x=4,再将x2x4+x2+1变形为1x+1x2-1,将x+1x=4整体代入求值即可.【详解】解:∵xx2+x+1=1x+1x+1=15,∴x+1x=4,∴x2x4+x2+1=1x2+1x2+1=1x+1x2-1=142-1=115,故选B.22(2024·全国·八年级竞赛)若x2-3x+1=0,则x2x4+x2+1的值是( ).A.8B.110C.18D.14【答案】C【分析】本题考查了分式的混合运算,完全平方公式变形求值,换元法,由x2-3x+1=0得到x2+1x2=7,设x2x4+x2+1=A,得到1A=x2+1x2+1,代入即可求解,掌握完全平方公式是解题的关键.【详解】解:由x2-3x+1=0知x≠0,∴x+1x=3,∴x2+1x2=7,设x2x4+x2+1=A,则1A=x2+1x2+1=8,∴A=18,即x2x4+x2+1=18,故选:C.三、解答题23(2024·全国·九年级竞赛)若x-3x-2=13+2+1,求1-1x-2÷x-4+1x-2的值.【答案】3+2【分析】本题考查了分式的化简求值,涉及整体代入法;先化简分式,再由x-3x-2=13+2+1,得到x-2 x-3=3+2+1,变形为1+1x-3=3+2+1,即可求得1x-3的值.关键是由已知变形求得1x-3.【详解】解:1-1 x-2÷x-4+1x-2=x-3 x-2÷x2-6x+9x-2=x-3 x-2·x-2 x-3 2=1x-3;∵x-3 x-2=13+2+1,∴x-2x-3=3+2+1,∴1+1x-3=3+2+1,∴1x-3=3+2,即原式=3+2.24(2024·全国·九年级竞赛)已知实数a 满足a 2+2a -2016=0,求a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1的值.【答案】-22017.【分析】此题考查了分式的化简求值,先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -2016=0进行配方,得到a +1 2=2017的值,再把它整体代入即可求出答案,解题的关键是熟练掌握分式化简的步骤.【详解】解:由a 2+2a -2016=0可得(a +1)2=2017,a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1=(a -1)2a +1 a +4 ×a +4a -1 a +1-1a +1,=a -1(a +1)2-1a +1,=-2(a +1)2,=-22017.25(2024·全国·八年级竞赛)先化简,再求值:x 2-1x 2+x÷x +1x -2 ,其中x =2.【答案】1x -1,2+1【分析】本题考查了分式的混合运算以及分母有理化,解答时,先进行分式运算,再代入求值即可.【详解】解:x 2-1x 2+x÷x +1x -2 =x -1 x +1 x x +1 ÷x 2+1-2x x =x +1 x -1x x +1÷x -12x =x +1 x -1 x x +1 ⋅x x -1 2=1x -1,当x =2时,原式=12-1=2+1.26(2024·全国·八年级竞赛)如图1,有一个高为hcm 的瓶子,瓶中水面的高度为acm ,盖好瓶盖后倒置,这时瓶中水面的高度为bcm ,如图2,用代数式表示瓶中水的体积与瓶子容积之比;当a =9,b =15,h =21时,求出这个比值.【答案】a a +h -b ,35【分析】此题考查圆柱体体积的应用,解题的关键是理解掌握“转化”的思想方法在推导过程中的应用.根据“瓶子容积等于正放时水的体积加倒放时空白的体积”,即可列式;瓶子容积等于正放时水的体积加倒放时空白的体积,即底面积×9+底面积×21-15 ,也就是底面积×15;水的体积为底面积×9,即可得到答案.【详解】解:瓶子容积等于正放时水的体积加倒放时空白的体积,设瓶子的底面积为S ,即Sa +S h -b ;水的体积为Sa ,∴瓶中水的体积与瓶子容积之比为Sa Sa +S h -b=aa +h -b ,∵瓶子的容积=底面积×9+底面积×21-15 =底面积×15,水的体积=底面积×9,∴瓶中水的体积:瓶子容积=(底面积×9):(底面积×15)=35,答:这个比值是35.27(2024·全国·八年级竞赛)(1)求证:1+1n 2+1(n +1)2=1+1n 2+n2;(2)计算:1+112+122+1+122+132+⋯+1+120162+120172.【答案】(1)证明见解析(2)201620162017【分析】本题主要考查了分式的化简求值,数字规律的运算;对于(1),先将等式左边通分,再根据完全平方公式整理可得答案;对于(2),先根据(1)整理得1+1n 2+1n +1 2=1+1n n +1 =1+1n -1n +1,再计算加减即可得出答案.【详解】(1)解:1+1n 2+1n +12=n 2n +1 2+n +1 2+n 2n 2n +1 2=n 2n +1 2+2n n +1 +1n 2n +1 2=n n +1 +1n n +12=1+1n 2+n2;(2)由(1)可知1+1n 2+1n +1 2=1+1n n +1=1+1n -1n +1,则原式=1+11-12+1+12-13+1+13-14+⋯+1+12016-12017=1×2016+1-12017=201620162017.28(2024·全国·八年级竞赛)(1)计算24×13-4×18×(2015-2016)0;(2)先化简,再求值:x 2-y 2x 2-2xy +y 2+xy -x÷y 2x 2-xy,其中x 、y 满足x +1+(y -3)2=0.【答案】(1)2(2)化简得:x y ;原式=33【分析】本题考查有理数的运算和分式的化简求值,熟练掌握二次根式的运算和正确化简分式是解题的关键,(1)根据二次根式的运算法则和零指数幂即可得到结果;(2)直接利用括号里面因式分解进行化简,再利用分式乘除运算法则化简,再根据二次根式、绝对值的性质得出x 、y 的值,进行代入求出答案.【详解】解:(1)原式=26×33-4×24×1=22-2=2;(2)原式=x -y x +y x -y2+x y -x ×x x -y y 2=x +y x -y -xx -y×x x -y y 2=yx -y ×x x -y y 2=x y.∵x +1+(y -3)2=0,∴x -1=0,y -3=0,∴x =1,y =3,故原式=x y =13=33.29(2024·全国·七年级竞赛)已知a 、b 、c 均为大于1的正整数,且1a <1b <1c ,1a +1b +1c -1abc为正整数.求a +b +c 的值.【答案】10【分析】本题考查异分母分式的加减,先得出1<1a +1b+1c <3c ,求出c =2,进而得出a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b +1c -1abc=1,进而可得出答案.【详解】解:因为1a +1b +1c -1abc 为正整数,且a 、b 、c 为大于1的正整数,1a <1b <1c ,所以1<1a +1b+1c <3c ,得1<c <3,所以c =2,∴1a +1b >1-1c =12,得12<1a +1b <2b ,所以c <b <4,∴b =3.∴1a >1-1b -1c =16,得b <a <6,所以a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b+1c -1abc=1,所以a +b +c =5+3+2=10.30(2024·全国·八年级竞赛)如果a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,求1a +1b+1c 的值.【答案】-15【分析】本题考查分式的求值,根据a 3+3a +15=b 3+3b +15=c 3+3c +15=0,得到a 、b 、c 都是方程x 3+3x +15=0的根,进而得到x 3+3x +15=x -a x -b x -c ,推出abc =-15,ab +bc +ac =3,即可得出1a +1b+1c 的值.解题的关键是得到x 3+3x +15=x -a x -b x -c .【详解】解:1a +1b +1c =ac +bc +acabc,∵a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,∴a 、b 、c 都是方程x 3+3x +15=0的根.∴x 3+3x +15=x -a x -b x -c ,∴abc =-15,ab +bc +ac =3.∴1a +1b+1c =3-15=-15.31(2024·全国·八年级竞赛)求值:12+13+14+15+1⋯+12007+11+11+13+14+15+1⋯+【答案】1【分析】本题考查了繁分式的计算,设1+13+14+1⋯+12007=x ,变形计算即可.【详解】解:设1+13+14+1⋯+12007=x ,则原式=11+x +11+1x=11+x +x x +1=1+x1+x =1.32(2024·全国·八年级竞赛)设a ,b ,c 都是实数,若(a -2b +c )2+(a -2c +b )2+(b -2a +c )2=(a -b)2+(b-c)2+(c-a)2,求分式2ab2+7(2ab+6)2bc2+7(bc+3)的值.【答案】2【分析】本题主要考查了分式化简求值,解题的关键是熟练掌握分式的性质.设a-b=x,b-c=y,c-a =z,得出x2+y2+z2-2xy-2yz-2zx=0①,x+y+z2=x2+y2+z2+2xy+2yz+2zx=0②,由①+②得x2+y2+z2=0,求出x=y=z=0,则a=b=c,代入进行变形求值即可.【详解】解:设a-b=x,b-c=y,c-a=z,由已知得:(x-y)2+(y-z)2+(z-x)2=x2+y2+z2,故x2+y2+z2-2xy-2yz-2zx=0,①又x+y+z=a-b+b-c+c-a=0,故x+y+z2=x2+y2+z2+2xy+2yz+2zx=0,②①+②得x2+y2+z2=0,故x=y=z=0,则a=b=c,∴原式=22a3+7a2+32a3+7a2+3=2.。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

【2020-2021自招】浙江桐乡市高级中学初升高自主招生数学模拟试卷【4套】【含解析】

【2020-2021自招】浙江桐乡市高级中学初升高自主招生数学模拟试卷【4套】【含解析】

第一套:满分150分2020-2021年浙江桐乡市高级中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。

【2020-2021自招】中国人民大学附属中学初升高自主招生数学模拟试卷【4套】【含解析】

【2020-2021自招】中国人民大学附属中学初升高自主招生数学模拟试卷【4套】【含解析】

第一套:满分150分2020-2021年中国人民大学附属中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。

【2020-2021自招】重庆市第一中学校初升高自主招生数学模拟试卷【4套】【含解析】

【2020-2021自招】重庆市第一中学校初升高自主招生数学模拟试卷【4套】【含解析】

第一套:满分150分2020-2021年重庆市第一中学校初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。

省重点高中自主招生数学试卷及答案

省重点高中自主招生数学试卷及答案

省重点高中自主招生考试数学试卷 2018.3本次考试不能使用计算器,没有近似计算要求的保留准确值.一、选择题(本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选,多选,错选,均不给分) 1.下列计算正确的是( ▲ )A .4212-=⎪⎭⎫ ⎝⎛-- B .()532)()(a a a -=-+-C .336)()(a a a -=-÷- D .()623a a -=-2.如图是某一几何体的三视图,其表面积为( ▲ )A .π24B .π21C .π15D .π123.自然数7、8、8、a 、b ,这组数据的中位数为7,且唯一..的众数是8,那么,所有满足条件的a 、b 中,b a +的最大值是( ▲ )A .9B .10C .11D .124.在抛物线2x y =上任取一点A (非坐标原点O ),连结OA ,在OA 上取点B ,使OB=31OA , 则顶点在原点且过点B 的抛物线的解析式为( ▲ ) A .231x y =B .29x y =C .291x y = D .23x y = 5.函数12+=x y 与反比例函数x k y =的图象有一个交点为M (m ,3),则不等式12-<xkx 的解为( ▲ ) A .3<x B .23-<x 或10<<x C . 1>x 或023<<-x D .1>x 或23-<x 6.一个三角形中一边上的高大于这条边,称这条边为“优边”.那么,一个三角形中“优边”的条数最多为( ▲ )A .0B .1C .2D .3主视图 俯视图(第2题)7.水果店进1吨水果,进价每千克6元,售价每千克11元,销售过程中有2%的水果被损 坏而不能出售.售出进货总量的一半后,为尽快售完,余下的水果准备打折出售.为使 总利润不低于3300元,在余下的水果的销售中,营业员最多能打几折优惠顾客?答:( ▲ ) A .6 B .7 C .8 D .9 8.设a 、b 、c 都是实数,有如下三个命题:①若0<b<2,且a 2+ab+c>0,则c>1;②若c>1,且0<b<2,则a 2+ab+c>O ;③若a 2+ab+c>0,且c>1,则O<b<2. 其中真命题( ▲ )A .只有①B .只有②C .①和②D .②和③ 9.如图,Rt △ABC 中,∠=∠Rt C ,BC =26,⊙O 与AB 相切于D ,与AC 相交于E ,ED ∥BC ,且22tan =∠ADE ,BD =23,则⊙O 的半径是( ▲ )A .23B .32C .24D .6210.对于任意实数x ,y ,z ,定义运算“※”,满足x ※y =57)1()1(249462222-+++-++y x y xy x ,且 x ※y ※z =(x ※y )※z .在下列各结论中:①2※1=5;②x ※3=6;③这一运算满足交换律,即x ※y =y ※x ;④2014※2013※2012※……※4※3※2=19.其中正确的个 数是( ▲ )A .1B .2C .3D . 4 二、填空题(本题有6小题,每小题5分,共30分)11.等式()1112=--x x 成立的条件是 ▲ .ABCDEO. (第9题)13.国际上通常用恩格尔系数(记作n )来衡量一个国家和地区人民的生活水平的状况,它 的计算公式:xn y=(x :家庭食品支出总额;y :家庭消费支出总额).各种家庭类型的 n 如下表:和2010年完全相同的情况下多支出2000元,并且y=2x+3600(单位:元),则该家庭2013 年属于 ▲ (填家庭类型).14.已知不等式63<x 的解都能使不等式7)2(->-a x a 成立,则a 的取值范围为 ▲ . 15.如图,等腰△ABC 的底边在y 轴正半轴上,顶点C 在第一象限,延长AC 交双曲线xky = 于D ,且CD=AC ,延长CB 交x 轴于E .若△ABE 的面积为5,则k = ▲ .16.已知,点I 是△ABC 的内心, E 、F 分别在AB 、AC 上,且EF 过点I ,AE=AF ,BE=4,CF=3,则EF 的长为▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,满分80分)17.你先化简224(2)24a aa a a -+÷+-,再从-2 , 2中选择一个合适的数代入求值.18.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如5323+=,.I AC B FE (第16题)119733++=, ,1917151343+++=,(1)求37分裂的结果;(2)若3m 分裂后,其中有一个奇数为2015,求m 的值.19.如图,□ABCD 的对角线AC 和BD 相交于点O ,AE 垂直平分BC ,分别交BD 、BC 于点F 、E ,已知3sin 5BAE ∠=,AB =10. 求AO 和AF 的长.20.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A ,B 两种型号,乙品牌有C,D,E三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机. (1)利用树状图或列表法写出所有的选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C 型号打印机被选购的概率是多少? (3)各种型号的打印机的价格如下表:朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E 型号,共用去资金 5万元,问E 型号打印机共购买了多少台?21.如果一个矩形纸片用平行于边的线段分成n 个小矩形纸片(这些小矩形可以互相全等,也可以不全等),若所有分成的小矩形纸片与原矩形相似,则称这样的矩形为n 阶自相似矩形.如一组邻边长分别为1,2的矩形Q 分割成两个全等的矩形,与原矩形是相似的,因此矩形Q 是2阶自相似矩形.请找出所有较短边长为1的3阶自相似矩形,画出分割示意图,写出较长边的长(结 果保留根号).22.若三角形的一边和该边上的高相等的三角形称为“优美三角形”.(1)如图①,在3×3的网格中找一个格点C ,使得△ABC 是优美三角形.符合条件的C 点共几个? (2)已知抛物线2yax 经过A (1-,1),P 是y 轴正半轴上一动点(除原点),射线AP与抛物线交另一点B .问△AOP 和△POB 是否一定是“优美三角形”,若是,说明理由;若不是,求出当P 点在什么位置时,能使其成为“优美三角形”.23.我们把自变量为x 的函数记作)(x f ,)(m f 表示自变量m x =时,函数)(x f 的值. 已知22463)(22+++-=a a ax x x f ,其中a 为实数.(1)若在50≤≤m 的范围内,存在m ,使)3()54(2m f m f -=-,求a 的取值范围; (2)当12≤≤-x 时,)(x f 的最小值为4,求所有满足条件的a 的值.BAAOPxyB图①图②(第22题)24.如图①,在平面直角坐标系中,点M 在x 轴正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴 于C ,D 两点,且C 为 的中点,连结CE 、CB ,已知A (2 ,0),AE =8. (1)求点C 的坐标和⊙M 的半径;(2)过点D 作⊙M 的切线,交x 轴于点P ,动点F 在⊙M 上运动,设OF =y ,PF =x 求y 与x 的函数解析式;(3)如图②过E 作弦EF ,交CB 于H ,若CE =CH ,求EF 的长.AE(图①)(第24题)(图②)数学试题参考答案及评分一、选择题(本题有10小题,每小题4分,共40分。

重点高中自主招生考试数学试卷

重点高中自主招生考试数学试卷

重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

重点高中高一提前招生选拔考试数学试卷及答案(共5份)

重点高中高一提前招生选拔考试数学试卷及答案(共5份)

重点高中提前招生选拔考试数学试卷(本卷满分100分,时间120分钟)一、选择题(每题4分,共40分) 1.下列运算正确的是( )A.a 5.a 6= a 30B. (a 5)6= a 30C.a 5+a 6= a 11D.a 5÷a 6=65 2.抛物线2)8x (y 2+--=的顶点坐标是( )A .(2,8)B .(8,2)C .(—8,2)D .(—8,—2)3.在平面内有线段AB 和直线L,点A 、B 到直线L 的距离分别是4㎝、6㎝.则线段AB 的中点C到直线l 的距离是 ( )A .1或5B .3或5C .4D .54.已知:3223222⨯=+; 8338332⨯=+;154415442⨯=+;245524552⨯=+,……;809980992⨯=+,若ab10a b 102⨯=+(a,b 为正整数)则a+b 的值不可能是( ) A .109 B .218 C .326 D .4365.无论m 为何实数,直线y=2x+3m 与y=-x+5的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知a 、b 、c 为△ABC 的三条边,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则 △ABC 是( )A .等边三角形 B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.若关于x 的不等式组 x ≥3a -2 无解,则函数y=(a -3)x 2-x -41的图象与 x<a+4 x 轴的交点个数为( )A.0B.1C.2D.1或28.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片 的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合 的部分后展开,此时纸片的形状是( )A.正方形B.长方形C.菱形D.等腰梯形9.如图,点M 是正方形ABCD 的CD 边上的中点, 点P 按A →B →C →M 的顺序在正方形的边上运动, 设AB=1,点P 经过的路程为x ,△APM 的面积为y ,则y 关于x 的函数是( )CP10.为了迎接2010年亚运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:当比赛进行到12轮结束(每队均需比赛12场)时,A 队共积19分,若每 赛一场每名参赛队员均得出场费500元,设A 队其中一名参赛队员所得的奖金与 出场费的和为W (元),试求W 的最大值是( ) .16300 B. 16900 C. 15700 D. 17500二、填空题(每题5分,共30分)11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩 的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 ___________分。

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1 2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.48.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是.10.命题“如果a2=b2,那么a=b”的逆命题是命题.(填写“真”或“假”)11.命题:“两直线平行,则同旁内角互补”的逆命题为.12.命题“若a=b,则a2=b2”的逆命题是.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是命题.(填“真”或“假”)14.命题“如a=b,那么|a|=|b|”的逆命题是命题.(填“真”或“假”)15.命题:“如果a=b,那么3a=3b”的逆命题是,该逆命题是(填“真”或“假”)命题.16.“若a=b,则a2=b2”的逆命题是命题.(填“真”或“假”)17.命题“若a=b,则|a|=|b|”的逆命题是.18.命题“如果a2=b2,那么a=b”的逆命题是命题(填“真”或“假”).19.命题“若a2=b2,则a=b.”的逆命题是.20.命题:“如果a=b,那么a2=b2”的逆命题是,该命题是命题(填真或假).21.命题:“若a=b,则a4=b4”,该命题的逆命题是;该命题的逆命题是命题.(填“真”或“假”)22.命题“如果a2=b2,那么a=b”的逆命题是,该命题的逆命题是命题(填真或假)23.命题“如果,那么a=b”的逆命题是:.24.命题“如果a=b,那么a2=b2”的逆命题是.高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)参考答案与试题解析一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1【解答】解:命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可以取a=﹣1,b=1说明.故选:D.【点评】本题考查命题与定理,解题的关键是理解题意,灵活运用所学知识解决问题.2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补是真命题;②若a2=b2,则a=b的逆命题是若a=b,则a2=b2是真命题;③锐角与钝角互为补角的逆命题是互补的角是锐角与钝角,是假命题;④相等的角是对顶角的逆命题是对顶角相等,是真命题;故选:B.【点评】此题主要考查了命题与定理,正确把握相关性质是解题关键.3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个【解答】解:①正确.,,,0,cos60︒五个数中,其中,是无理数.②错误.mx2﹣2x﹣10是代数式,表示方程.③错误.平行四边形是中心对称图形,不是轴对称图形.④正确.“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤错误.在同圆或等圆中,相等的圆心角所对的弧相等.⑥错误.单项式的次数是2次.故选:B.【点评】本题考查无理数、一元二次方程、代数式、中心对称图形、轴对称图形、圆心角与弧之间的关系、单项式的次数的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④对顶角相等的逆命题是相等的角是对项角,是假命题;它们的逆命题是真命题的个数是2个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【解答】解:在,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.4【解答】解:把原命题的题设与结论交换得到它的逆命题,所以①正确;真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;假命题:若am>bm,则a>b,其逆命题:若a>b,则am>bm,它是假命题,所以③错误;真命题的逆命题不一定是真命题,所以④错误;每个定理一定有逆命题,所以⑤正确;命题“若a=b,那么a3=b3”的逆命题为“若a3=b3,则a=b”,它是真命题,所以⑥错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理;两个命题的题设与结论互换的命题互为逆命题.8.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b【解答】解:已知本题中命题的题设是a=b,结论是|a|=|b|,所以它的逆命题中的题设是|a|=|b|,结论是a=b,所以本题中的逆命题是如果|a|=|b|,那么a=b.故选:B.【点评】本题考查了互逆命题的知识.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.10.命题“如果a2=b2,那么a=b”的逆命题是真命题.(填写“真”或“假”)【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,故答案为:真.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如果a=b,那么ac=bc.”,它的逆命题是“如果ac=bc,那么a=b.”,是假命题,故答案为:假.【点评】本题考查的是命题的概念、命题的真假判断,掌握逆命题的概念是解题的关键.14.命题“如a=b,那么|a|=|b|”的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如a=b,那么|a|=|b|”的逆命题是如果|a|=|b|,那么a=b,是假命题,【点评】本题考查的是命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.命题:“如果a=b,那么3a=3b”的逆命题是如果3a=3b,那么a=b,该逆命题是真(填“真”或“假”)命题.【解答】解:根据题意得:命题“如果a=b,那么3a=3b”的条件是如果a=b,结论是3a=3b,故逆命题是如果3a=3b,那么a=b,该命题是真命题.故答案为:如果3a=3b,那么a=b,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.也考查了命题的真假判断.16.“若a=b,则a2=b2”的逆命题是假命题.(填“真”或“假”)【解答】解:若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.此逆命题为假命题.故答案为假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.17.命题“若a=b,则|a|=|b|”的逆命题是若|a|=|b|,则a=b.【解答】解:命题“若a=b,则|a|=|b|”的逆命题是:“若|a|=|b|,则a=b”.故答案为若|a|=|b|,则a=b【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.命题“如果a2=b2,那么a=b”的逆命题是真命题(填“真”或“假”).【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.命题“若a2=b2,则a=b.”的逆命题是若a=b,则a2=b2.【解答】解:命题“若a2=b2,则a=b”的条件是a2=b2,结论是a=b,故逆命题是:若a=b,则a2=b2.故答案为如果a=b,那么a2=b2.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.20.命题:“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b,该命题是假命题(填真或假).【解答】解:根据题意得:命题“如果a=b,那么a2=b2”的条件是如果a=b,结论是a2=b2”,故逆命题是如果a2=b2,那么a=b,该命题是假命题.故答案为:如果a2=b2,那么a=b;假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.21.命题:“若a=b,则a4=b4”,该命题的逆命题是若a4=b4,则a=b;该命题的逆命题是假命题.(填“真”或“假”)【解答】解:“若a=b,则a4=b4”的条件是:a=b,结论是:a4=b4,∴逆命题是:若a4=b4,则a=b,若a4=b4,则a=±b,故为假命题,故答案为若a4=b4,则a=b,假.【点评】本题考查了互逆命题的知识以及真假命题的判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,难度适中.22.命题“如果a2=b2,那么a=b”的逆命题是如果a=b,那么a2=b2,该命题的逆命题是真命题(填真或假)【解答】解:命题“如果a2=b2,那么a=b”的条件是如果a2=b2,结论是a=b,故逆命题是:如果a=b,那么a2=b2,为真命题.故答案为如果a=b,那么a2=b2,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.命题“如果,那么a=b”的逆命题是:如果a=b,那么.【解答】解:命题“如果a=b”的逆命题是:如果a=b,那么故答案为:如果a=b,那么【点评】本题考查了逆命题的概念.关键是明确交换原命题的题设和结论,得到逆命题.24.命题“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b.【解答】解:“如果a=b,那么a2=b2”的逆命题是:如果a2=b2,那么a=b.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考点卡片1.四种命题及其关系四种命题及其关系.1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题.3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.。

高中自主招生考试数学试题(含答案详解)

高中自主招生考试数学试题(含答案详解)

一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。

重点高中自主招生考试数学试卷集(大全集)

重点高中自主招生考试数学试卷集(大全集)

6.如图,点A在函数=y图象上,过点A 作AE 垂直x 轴,垂足为E ,过点A 作AF 垂直y 轴,垂足为F ,则矩形AEOF 的面积是……( A.2 B.3C.6D.不能确定7.用大小和形状完全相同的小正方体木块搭成 一个几何体,使得它的正视图和俯视图如图 所示,则搭成这样的一个几何体至少需要小 正方体木块的个数为………………( ) A.22个 B.19个 C.16个 D.13个8.用半径为cm 6、圆心角为︒120的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( )A.2cmB.3cmC.4cmD.6cm 9.若n 为整数,则能使11-+n n 也为整数的n 的个数有 ……………………( ) A.1个 B.2个 C.3个 D.4个10.已知a 为实数,则代数式221227a a +-的最小值为………………( ) A.0 B.3 C.33 D.9 14.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .15.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-.则使等式{}[]4 2=-x x 成立的整数..=x . 16.如图,E 、F ABCD 的边AB 、CD 上 的点,AF 与DE 相交于点P ,BF 与CE 相交于 点Q ,若S △APD 15=2cm ,S △BQC 25=2cm , 则阴影部分的面积为 2cm ..19.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.21.如图,四边形ABCD 是正方形,点N 是CD 的中点,M 是AD 边上不同于点A 、D 的点,(第6题图)(正视图)(俯视图)(第7题图) D CDF(第16题图)若1010sin =∠ABM ,求证:MBC NMB ∠=∠. 22.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC .试判断:PB PA +与BC AC +的大小关系,并说明理由.23.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,点P点P 与点A 、B 不重合),过点P 作PC ⊥AB ,垂足为C ;点Q B 的右边),且在移动过程中保持OQ ∥AP .(1)若PC 、QO 的延长线相交于点E ,判断是否存在点P ,使得点E 若存在,求出APC ∠的大小;若不存在,请说明理由;(2)连结AQ 交PC 于点F ,设PCPFk =,试问:k 的值是否随点P 的移动而变化?证明你的结论.1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ).A 、1B 、9/4C 、4D 、36/25 3、已知:2)3(3322=+-+x x xx ,x 2+3x 为( ) A 、1 B 、-3和1 C 、3 D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( ) A 、最小值12 B 、最大值12 C 、.最小值25 D 、最大值255、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、4个球C 、5个球D 、6个球 5、9人分24张票,每人至少1张,则( )A 、至少有3人票数相等B 、至少有4人票数无异C 、不会有5人票数一致D 、不会有6人票数同样2、半径为10的圆0内有一点P ,OP=8,过点P 所有的弦中长是整数的弦有 条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点高中自主招生数学试题4一、选择题(本大题共10个小题,每小题3分,共30分.)1.已知抛物线的解析式为y=﹣(x﹣3)2+1,则它的顶点坐标是()A.(3,1)B.(﹣3,1)C.(3,﹣1)D.(1,3)2.如图,在⊙O中A、P、B、C是⊙O上四个点,已知∠APC=60°,∠CPB=50°,则∠ACB的度数为()A.100°B.80°C.70°D.60°3.(2007•内江)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=64.若一个三角形的外心在它的一条边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形5.给出下列命题:其中,真命题的个数是()(1)平行四边形的对角线互相平分;(2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分;(4)对角线互相垂直的四边形是菱形.A.4 B.3 C.2 D.16.在新年联欢会上,九年级(6)班的班委设计了一个游戏,并给予胜利者甲、乙两种不同奖品中的一种.现将奖品名称写在完全相同的卡片上,背面朝上整齐排列,如图所示.若阴影部分放置的是写有乙种奖品的卡片,则胜利者小刚同学得到乙种奖品的概率是()A.B.C.D.7.(2005•四川)在△ABC中,已知∠C=90°,BC=4,sinA=,那么AC边的长是()A.6 B.2 C.3 D.28.某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=3009.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①c>0;②a+b+c<0;③ab<0;④b2﹣4ac>0,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5道小题,每小题3分,共15分.)11.方程3(x﹣5)2=2(5﹣x)的解是_________ .12.(2008•宁夏)从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是_________ .13.一个点到一个圆的最短距离是3cm,最长距离是5cm,则这个圆的半径是_________ cm.14.一个人沿坡度比为1:的斜坡前进10米,则他升高_________ 米.15.(2007•莆田)如图,点A为反比例函数y=的图象上一点,B点在x轴上且OA=BA,则△AOB的面积为_________ .16.已知0°<∠α<90°且cosα=,那么tanα=_________ .17.(2009•大兴安岭)梯形ABCD中,AD∥BC,AD=1,BC=4,∠C=70°,∠B=40°,则AB的长为_________ .18.(2009•内江)已知5x2﹣3x﹣5=0,则5x2﹣2x﹣= _________ .19.(2010•衡阳)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k= _________ .20.如图,在△ABC中,∠C=60°,以分别交AC,BC于点D,E,已知圆O的半径为.则DE的长为_________ .三、解答题(共21分,每小题21分)21.(1)计算:(﹣2010)0+﹣2sin60°﹣3tan30°+;(2)解方程:x2﹣6x+2=0;(3)已知关于x的一元二次方程x2﹣mx﹣2=0.①若﹣1是方程的一个根,求m的值和方程的另一根;②证明:对于任意实数m,函数y=x2﹣mx﹣2的图象与x轴总有两个交点.四、解答题(每小题8分,共16分)22.(2008•白银)小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.23.如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).五、(每小题9分,共18分).24.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣6,2)、B(4,n)两点,直线AB分别交x轴、y 轴于D、C两点.(1)求上述反比例函数和一次函数的解析式;(2)若AD=tCD,求t.25.(2003•海南)如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;(3)四边形ACEF有可能是矩形吗?为什么?26.(2009•三明)为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交万美元的特别关税.在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?27.在△ABC中,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°①求证:△BDE是等边三角形;②若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想;③在②的条件下当CE=4时,求四边形ABDC的面积.28.(2009•株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.重点高中自主招生数学试题4参考答案一、选择题(本大题共10个小题,每小题3分,共30分.)1.已知抛物线的解析式为y=﹣(x﹣3)2+1,则它的顶点坐标是()A.(3,1)B.(﹣3,1)C.(3,﹣1)D.(1,3)考点:二次函数的性质。

分析:利用二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),顶点坐标是(h,k)进行解答.解答:解:∵抛物线的解析式为y=﹣(x﹣3)2+1,∴抛物线的顶点坐标是(3,1)故选:A.点评:本题主要是对抛物线中顶点式的对称轴,关键是熟练掌握:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.如图,在⊙O中A、P、B、C是⊙O上四个点,已知∠APC=60°,∠CPB=50°,则∠ACB的度数为()A.100°B.80°C.70°D.60°考点:圆周角定理;三角形内角和定理。

分析:根据同圆中同弧所对的圆周角相等,可得∠BAC=∠BPC=50°,∠ABC=∠APC=60°,在△ABC中,利用三角形内角和等于180°,可求∠ACB.解答:解:∵∠APC=60°,∠CPB=50°,∠BAC=∠BPC,∠ABC=∠APC,∴∠BAC=50°,∠ABC=60°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣50°﹣60°=70°.故选C.点评:本题利用了同圆中同弧所对的圆周角相等、三角形内角和定理.3.(2007•内江)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6考点:解一元二次方程-配方法。

专题:配方法。

分析:在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.解答:解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4配方得(x﹣2)2=2.故选A.点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.若一个三角形的外心在它的一条边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形考点:三角形的外接圆与外心。

分析:根据直径所对的圆周角是直角得该三角形是直角三角形.解答:解:锐角三角形的外心在三角形的内部,直角三角形的外心是其斜边的中点,钝角三角形的外心在其三角形的外部;由此可知若三角形的外心在它的一条边上,那么这个三角形是直角三角形.故选:B.点评:此题主要考查了三角形的外接圆与外心,关键掌握直角三角形的外心就是其斜边的中点.5.给出下列命题:其中,真命题的个数是()(1)平行四边形的对角线互相平分;(2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分;(4)对角线互相垂直的四边形是菱形.A.4 B.3 C.2 D.1考点:矩形的判定;平行四边形的性质;菱形的判定与性质。

专题:证明题。

分析:根据平行四边形、菱形、矩形的相关知识进行解答.解答:解:(1)是平行四边形的性质,故(1)正确;(2)对角线相等且互相平分的四边形是矩形;故(2)错误;(3)是菱形的性质,故(3)正确;(4)对角线互相垂直平分的四边形是菱形;故(4)错误;因此正确的结论是(1)(3);故选C.点评:熟练掌握各种特殊四边形的判定和性质是解答此类题的关键.6.在新年联欢会上,九年级(6)班的班委设计了一个游戏,并给予胜利者甲、乙两种不同奖品中的一种.现将奖品名称写在完全相同的卡片上,背面朝上整齐排列,如图所示.若阴影部分放置的是写有乙种奖品的卡片,则胜利者小刚同学得到乙种奖品的概率是()A.B.C.D.考点:几何概率。

相关文档
最新文档