高一数学下学期期末测试卷 人教版

合集下载

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(10分)在△ABC中,角A,B,C对边分别为a,b,c,若
(1)求c的值;
(2)求sinC的值.
18.(12分)已知 .
(1)求tanβ:
(2)求sin2α.
19.(12分)已知函数 (其中a∈R).
(1)当a=-1时,解关于x的不等式 ;
【解析】
【分析】
先将直线方程 化为: ,再利用两平行线间的距离公式求解.
【详解】直线方程 化为: ,
所以两条平行直线 与 的距离是:
.故选:D
【点睛】本题主要考查两平行线间 距离的求法,还考查了运算求解的能力,属于基础题.
7.A
【解析】
【分析】
分别取 、 、 的中点 、 、 ,连接 、 、 、 、 ,由题意结合平面几何的知识可得 、 、 或其补角即为异面直线SB与AC所成角,再由余弦定理即可得解.
所以点 到直线 的距离为 ,
所以圆M: ,
对于A、B,圆M的圆心 到直线 的距离 ,所以圆上的点到直线 的最小距离为 ,最大距离为 ,故A正确,B错误;
对于C,令 即 ,当直线 与圆M相切时,圆心 到直线的距离为 ,解得 或 ,则 的最小值是 ,故C正确;
对于D,圆 圆心为 ,半径为 ,若该圆与圆M有公共点,则 即 ,解得 ,故D正确.故选:ACD.
5.过圆 上一点M(-1.2)作圆的切线l,则l的方程是()
A. B. C. D.
6.两条平行直线 与 的距离是()
A. B. C. D.
7.如图,在三棱锥S-ABC中,SB=SC=AB=AC=BC=4,SA=2 ,则异面直线SB与AC所成角的余弦值是()

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)
详解】对于A中,若 , ,则 或 ,所以A项不正确;
对于B中,若 , , ,则 或 与 相交,所以B项不正确;
对于C中,设 ,在平面 内任取一点 ,作 ,垂足分别为 ,由面面垂直的性质定理,可得 ,
又因为 ,可得 ,所以C项正确;
对于D中,若 , , , ,只有 相交时,才有 ,所以D项不正确.故选:C.
2.抛掷两枚质地均匀的硬币,设事件 “第一枚硬币正面向上”,设事件 “第二枚硬币正面向上”,则()
A.事件 与 互为对立事件B.件 与 为互斥事件
C.事件 与事件 相等D.事件 与 相互独立
3.为了解疫情防控延迟开学期间全区中小学线上教学的主要开展形式,某课题组面向各学校开展了一次随机调查,并绘制得到如下统计图,则采用“直播+录播”方式进行线上教学的学校占比约为()
【详解】由平均数的计算公式,可得数据的平均数为 ,所以A项正确;
由方差的公式,可得 ,
所以标准差为 ,所以B项不正确;
根据众数的概念,可得数据的众数为 和 ,所以C项正确;
根据百分位数的概念,可得第85百分位数:从大到小排序的第8和第9个数据的平均数值,即为 ,所以D项不正确.
故选:AC.
【点睛】本题主要考查了平均数,标准差的计算,以及众数与百分位数的概念及应用,其中解答中熟记平均数和方差的计算公式,以及众数与百分位数的概念是解答的关键,属于基础题.
【解析】
【分析】
由已知利用三角形的面积公式、余弦定理、同角三角函数基本关系式可得 ,结合范围 ,可得 的值.
【详解】由题意可得 ,
可得 ,可得 ,
由于 ,
可得 .故选: .
【点睛】本题主要考查了三角形的面积公式、余弦定理、同角三角函数基本关系式在解三角形中的综合应用,熟练掌握相关公式定理是解题的关键,属于基础题.

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1.现有这么一列数:1,32,54,78,(),1132,1364,…,按照规律,( )中的数应为( ). A.916B.1116C.12D.11182. 设,,a b c ∈R ,且a b >,则( ) A.ac bc >B.11a b< C.20c a b≥- D.11a b a>-3. 在△ABC 中,点D 在边BC 上,若2BD DC =,则AD = A. 14AB +34AC B.34AB +14AC C.13AB +23AC D.23AB +13AC 4. 设单位向量1cos 3e α⎛⎫= ⎪⎝⎭,,则cos 2α的值为( )A.79B.12-C.79-D.35. 已知ABC 中,23,22,4a b B π===,那么满足条件的ABC( ) A. 有一个解 B. 有两个解C. 不能确定D. 无解6.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212-a a b的值是 ( ) A.12B.12-C.12或12-D.147. 《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十四日所织尺数为( )A. 13B. 14C. 15D. 168. 在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中22tan tan a B b A =,那么ABC 一定是()A. 锐角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形9. 已知α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,则sin β=( ) A.5665-B.1665-C. 3365D.636510. 如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD密线学校 班级 姓名 学号密 封 线 内 不 得 答 题=45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A.85 B.415C.215511. 设G 是ABC 的重心,且()()()sin sin sin 0A GA B GB C GC ++=,若ABC 外接圆的半径为1,则ABC 的面积为( )A. 33B.33C. 34D.91612.当x θ=时,函数()2cos f x sinx x =+取得最小值,则sin 3πθ⎛⎫+ ⎪⎝⎭的值为( ) A. -215510B.2515+ C. 10 D.310第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 当1x >时,41x x +-的最小值为______. 14. 在ABC 中,tan ,tan A B 是方程22370x x +-=的两根,则tan C =_______.15. 如图,在半径为3的圆上,C 为圆心,A 为圆上的一个定点,B 为圆上的一个动点,若||||+=-AC CB AC CB ,则AB AC ⋅=_____.16.已知数列{}n a 满足1212a a ++…2*1()n a n n n N n +=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*4()1nnT n N n λ≤∈+恒成立,则λ的最小值是_______.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. (10分)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). (1)求顶点D 的坐标;(2)求AC 与BD 所成夹角的余弦值.18. (11分)已知数列{}n a 是公比为2的等比数列,且234,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记2,,n n na nb log a n ⎧=⎨⎩为奇数为偶数,数列{}n b 的前n 项和为n T ,求2n T . 19. (11分)已知向量()cos 3m x x=,(cos ,cos )n x x =且函数()f x m n =⋅.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)求函数()f x 在,02x ⎡⎤∈-⎢⎥⎣⎦π时的值域; (2)设α是第一象限角,且112610f απ⎛⎫+= ⎪⎝⎭求sin()4cos(22)παπα++的值. 20. (12分)首届世界低碳经济大会的主题为“节能减排,绿色生态”.某企业在国家科研部门的支持下,投资810万元生产并经营共享单车,第一年维护费为10万元,以后每年增加20万元,每年收入租金300万元.(1)若扣除投资和各种维护费,则从第几年开始获取纯利润? (2)若干年后企业为了投资其他项目,有两种处理方案: ①纯利润总和最大时,以100万元转让经营权;②年平均利润最大时以460万元转让经营权,问哪种方案更优?21. (12分)已知ABC 的角A ,B ,C 的对边分别为a ,b ,c ,满足()(sin sin )()sin b a B A b c C -+=-. (1)求A ;(2)从下列条件中:①3a =②3ABCS=中任选一个作为已知条件,求ABC 周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22. (14分)函数()f x 满足:对任意,R αβ∈,都有()g()()αβαββα=+f f ,且(2)2f =,数列{}n a 满足()()2+=∈nn a f n N .(1)证明数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式;(2)记数列}{nb 前n 项和为n S ,且(1)nn n n ba +=,问是否存在正整数m ,使得(1)(4)190m m m S b +-+<成立,若存在,求m 的最小值;若不存在,请说明理由.参考答案与试题解析 第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1. A 【解析】 【分析】根据题意得出每个数的分母为2n ,分子为连续的奇数,即可求解.【详解】由题意知,一列数:1,32,54,78,(),1132,1364,…, 可得每个数的分母为2,n n N ∈,分子为连续的奇数,所以( )中的数应为916故选:A.【点睛】本题主要考查了数列的项的归纳推理,其中解答中根据数的排列,找出数字的规律是解答的关键,着重考查了归纳推理的应用. 2. C密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【解析】【分析】根据不等式的性质,直接判断即可. 【详解】对A ,当0c时,不成立,故A 错对B ,若a 为正数,b 为负数,不成立,故B 错对C ,由a b >,所以0a b ->,所以20c a b ≥-成立,故C 正确对D ,当2,1a b ==-时,11a b a>-不成立,故D 错 故选:C【点睛】本题考查不等式的性质,选择题可以使用特殊值法,便于计算,属基础题. 3. C 【解析】 分析】根据向量减法和2BD DC =用,AB AC 表示BD ,再根据向量加法用,AB BD 表示AD .【详解】如图:因22,()33BC AC AB BD BC AC AB =-==-,所以212()333AD AB BD AB AC AB AB AC =+=+-=+,故选C. 【点睛】本题考查向量几何运算的加减法,结合图形求解. 4. A【解析】 由题设可得2218cos 1cos 99αα+=⇒=,则27cos 22cos 19αα=-=,应选答案A . 5. B 【解析】 【分析】通过比较sin a B 与b 的大小关系,简单判断可得结果. 【详解】由题可知:23,22,4a b B π===2sin 2362==a B 622<=<b a 所以可知ABC 有两个解故选:B【点睛】本题考查两边及其一边所对应的角判定三角形个数,掌握比较方法以及正弦定理的使用,属基础题. 6. A【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d ,则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q ,则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a a b --==.本题选择A 选项.7. B 【解析】【分析】由已知条件利用等差数列的前n 项和公式和通项公式列出方程组,求出首项和公差,由此能求出第十四日所织尺数. 【详解】设第一天织1a 尺,从第二天起每天比第一天多织d 尺,由已知得1111721284715a d a d a d a d +⎧⎨+++++⎩==解得:111a d ==, ,∴第十四日所织尺数为14113113114=+=+⨯=a a d .故选:B . 【点睛】本题考查等差数列的性质,考查了等差数列的前n 项和,是基础的计算题. 8. D 【解析】 【分析】根据正弦定理sin sin a bA B =,将等式中的边,a b 消去,化为关于角,A B的等式,整理化简可得角,A B 的关系,进而确定三角形ABC 的形状.【详解】由正弦定理可得:22sin tan sin tan =A B B A ,整理得sin cos sin cos A A B B =,因此有11sin 2sin 222A B =,可得22A B =或22A B π=-, 当22A B =时,ABC 为等腰三角形;当22A B π=-时,有2A B π+=,ABC 为直角三角形,故选:D .【点睛】本题考查通过正弦定理化简判定三角形形状,熟悉正弦定理、余弦定理以及三角形面积公式,属基础题. 9. D 【解析】 【分析】 计算得到4cos 5α=,()12sin 13αβ+=,再根据()sin sin βαβα=+-展开得到答案. 【详解】α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,故4cos 5α=,()12sin 13αβ+=. ()()()63sin sin sin cos cos sin 65βαβααβααβα=+-=+-+=.故选:D . 【点睛】本题考查了同角三角函数关系,和差公式,意在考查学生的计算能力. 10. B 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值.【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin12043sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin4546sin sin603CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:415AB =所以A 与B 的距离415AB =故选B点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题. 11. B 【解析】 【分析】根据G 是三角形ABC 的重心得到0GA GB GC ++=,结合已知条件进行化简,求得sin sin sin A B C ==,由此判断出三角形ABC 是等边三角形,再结合三角形ABC 外接圆半径以及正弦定理,求得三角形ABC 的边长,由此求得三角形ABC 的面积. 【详解】∵G 是ABC 的重心,∴0GA GB GC ++=,则GA GB GC =--,代入()()()sin sin sin 0A GA B GB C GC ++=得,()()sin sin sin sin 0A B GB A C GC -+-=,∵GB GC ⋅不共线,∴sin sin 0A B -=且sin sin 0A C -=, 即sin sin sin A B C ==,∴ABC 是等边三角形,又ABC 外接圆的半径为1,∴由正弦定理得,22sin 60aR ==︒,则3a =∴2333ABC S ==△.故选:B. 【点睛】本小题主要考查三角形重心的向量表示,考查正弦定理的运用,考查化归与转化的数学思想方法,属于中档题.12. A 【解析】 【分析】利用辅助角公式可知函数min ()f x ,然后把x θ=代入结合平方关系可得sin ,cos θθ,最后利用两角和的正弦公式计算可得结果. 详解】由题可知:()()2cos 5,tan 2ϕϕ=+=+=f x sinx x x所以min ()5=-f x 2cos 5θθ+=-sin密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以225sin sin 2cos 5sin cos 125cos 5θθθθθ⎧=⎪⎧+=-⎪⎪⎨⎨+=⎪⎩⎪=-⎪⎩所以2155sin sin cos cos sin 33310πππθθθ⎛⎫+=+=- ⎪⎝⎭故选:A【点睛】本题考查辅助角公式以及平方关系,还考查了两角和的正弦公式,着重考查计算,属基础题.第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 5 【解析】 【分析】将所求代数式变形为()4111x x -++-,然后利用基本不等式可求得所求代数式的最小值. 【详解】1x >,10x ∴->,由基本不等式得()()444112115111x x x x x x +=-++≥-⋅=---. 当且仅当3x =时,等号成立.因此,41x x +-的最小值为5.故答案为:5.【点睛】本题考查利用基本不等式求代数式的最值,考查计算能力,属于基础题. 14.13【解析】 【分析】根据韦达定理以及两角和的正切公式计算即可.【详解】由题可知:tan ,tan A B 是方程22370x x +-=的两根所以37tan tan ,tan tan 22+=-=-A B A B 所以()tan tan tan tan 1tan tan 13+=-+=-=-A B C A B A B故答案为:13【点睛】本题主要考查两角和的正切公式,牢记公式,细心计算,属基础题. 15. 9 【解析】 【分析】化简||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=,然后将AB 用,CA CB 表示,然后进行计算即可.【详解】由题可知:||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=AB CB CA =-所以()()229⋅=-⋅-=-⋅==AB AC CB CA CA CA CA CB CA故答案为:9【点睛】本题考查向量的运算以及向量的数量积,属基础题. 16. 32 【解析】 【分析】依据题意可得2=2n a n ,然后可得n b ,利用裂项相消法可得nT ,最密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题后化简以及函数的单调性可得结果.【详解】由题可知:1212a a ++…21+=+n a n n n ① 当2n ≥时,1212a a ++…()211111-+=-+--n a n n n ② ①-②是可得:12n a n n =,所以()2=22≥n a n n当1n =时,1=2a 符合上式,所以()2=2*∈n a n n N则()()2222121211114411+⎛⎫++===- ⎪ ⎪++⎝⎭n n n n n b a a n n n n 所以()122222*********...1...422331⎛⎫ ⎪=+++=-+-+++- ⎪+⎝⎭n n T b b b n n 所以()()()2221114141⎛⎫+ ⎪=-=⎪++⎝⎭n n n T n n又41λ≤+n n T n ,所以()()22111124411λλ+⇒≥+⨯=≤+++++n n n n n n n n又函数()111f x x =++在()0,∞+单调递减 所以max 13112⎛⎫+= ⎪+⎝⎭n 所以*4()1n n T n N n λ≤∈+恒成立,则32λ≥故答案为:32【点睛】本题主要考查裂项相消法求和以及数列中恒成立问题,审清题意,细心计算,属中档题.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤.17. (1)(2,2);(2)685.【解析】【分析】(1)根据向量的坐标表示,计算AB DC =,可得结果. (2)用坐标表示AC ,BD ,然后根据平面向量的夹角公式计算即可.【详解】(1)设顶点D 的坐标为(,)x y .(2,1)A -,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB ∴=----=,(3,4)DC x y =--,又AB DC =,所以(1,2)(3,4)x y =--.即13,24,x y =-⎧⎨=-⎩解得2,2.x y =⎧⎨=⎩所以顶点D 的坐标为(2,2). (2)由22(5,3),||5334AC OC OA AC =-==+=22(3,1),||3(1)10BD OD OB BD =-=-=+-=353(1)12AC BD ⋅=⨯+⨯-=685cos ,||||3410AC BD AC BD AC BD ⋅∴<>===⋅⨯【点睛】本题考查向量的坐标运算以及向量夹角公式,重在明白向量坐标的表示方法以及夹角公式的记忆,属基础题. 18. (1)12n n a -=;(2)224133=+-n n T n .【解析】 【分析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)依题意利用等差数列的性质可得22a=,然后利用等比数列通项公式计算即可.(2)由(1)的结论可得12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数,然后利用分组求和,可得结果.【详解】(1)由题意可得()32421a a a +=+,即()2222214a a a +=+,解得:22a =,∴2112a a ==, ∴数列{}n a 的通项公式为12n n a -=.(2)12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数21232=+++⋯+n n T b b b b3242152162()()-+++⋯++++⋯=++n n n T b b b b b b b b()024*******(13521)-=+++⋯+++++⋯+-n n T n2214(121)4114233-+-=+=+--n nn n n T n 【点睛】本题主要考查数列分组求和,掌握常用的求和方法:公式法、裂项相消法、分组求和法、错位相减法等,属基础题.19. (1)1[,1]2-;(2)522-.【解析】【分析】(1)用坐标表示向量的数量积以及辅助角公式可得 (1)1()sin(2)62f x x π=++,然后使用整体法以及正弦函数的性质可得结果.(2)根据(1)的条件可得3cos 5α=,然后使用两角和的正弦公式以及二倍角的余弦公式化简求值即可. 【详解】(1)由2()cos 3sin cos f x m n x x x =⋅=()1311cos 22sin(2)2262π=+=++f x x x x50,22666x x ππππ-≤≤∴-≤+≤ 1sin(2)[1,]62x π∴+∈-,则()f x 的值域为1[,1]2-(2)π11(),2610f α+=ππ111 sin 2()266210α⎡⎤∴+++=⎢⎥⎣⎦ 则π3sin()25α+=即3cos 5α= ,又α为第一象限的角,则4sin 5α22π2sin()cos )42cos(2π2)c 2cos )2co o s s 2sin ααααααααα++==++-则πsin()4cos(2π2)2522cos sin 2αααα==--++【点睛】本题考查向量数量积的坐标表示以及正弦型函数的性质,考查三角恒等变形,本题重在考查公式的应用以及计算能力的培养,属中档题.20. (1)从第4年开始获取纯利润;(2)方案②. 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】(1)依据题意可知每年的维护费用满足的是等差数列,然后可得利润2300(81010)y n n =-+,令0y >,简单计算以及判断可得结果.(2)根据(1)的结论可计算方案①所获利润,计算2300(81010)--=n n W n结合基本不等式可得所获利润,然后进行比较可得结果.【详解】(1)设第n 年获取利润为y 万元,n 年共收入租金300n 万元,付出维护费构成一个以10为首项,20为公差的等差数列,共2(1)1020102n n n n -+⨯=因此利润2300(81010)y n n =-+ 令0y >,解得:327n <<所以从第4年开始获取纯利润.(2)方案①:纯利润22300(81010)10(15)1440y n n n =-+=--+ 所以15年后共获利润:1440+100=1540(万元) 方案②:年平均利润2300(81010)810300(10)n n W n n n--==-+810300210120n n≤-⨯= 当且仅当81010n n =,即n =9时取等号所以9年后共获利润:120×9+460=1540(万元)综上:两种方案获利一样多,而方案②时间比较短,所以选择方案②.【点睛】本题考查数列模型的应用问题,审清题意,理清思路,细心就算,属中档题. 21.(1)3A π=;(2)选择①,(23,33;选择②,[6,) +∞. 【解析】【分析】(1)根据正弦定理将角化边计算可得1cos 2A =,最后可得结果.(2)选①根据正弦定理以及辅助角公式化简可得周长23)36π=+l B ,然后根据角度范围可得结果;选②可得bc ,然后结合余弦定理以及不等式可得结果. 【详解】(1)因为()(sin sin )()sin b a B A b c C -+=- 由正弦定理得()()()b a b a b c c -+=-,即222b c a bc +-=由余弦定理得2221cos ,(0,)22b c a A A bc π+-==∈所以3A π=(2)选择①3a =由正弦定理2sin sin sin b c aB C A===, 即ABC 周长22sin 2sin 32sin 2sin()33l B C B B π=+=+- 3sin 33B B =23)36B π=+251 (0,) ,sin()1366626B B B πππππ∈∴<+<<+≤密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题即ABC 周长的取值范围(23,33选择②3ABCS.,得13sin 324ABC S bc A bc ===△,得4bc =.由余弦定理得22222()3()12,a b c bc b c bc b c =+-=+-=+-即ABC 周长2()12,l a b c b c b c =++=+-+24b c bc +≥=,当且仅当2b c ==时等号成立 2 41246l a b c ∴=++-= 即ABC 周长的取值范围[6,) +∞【点睛】本题考查正弦定理、余弦定理以及面积公式解三角形,注意边角如何转化,以及求范围问题常会转化为三角函数或者不等式的应用,属中档题.22. (1)证明见解析;2n n a n =⋅;(2)存在,4. 【解析】【分析】(1)依据题意计算()()()1122222,++==⋅+⋅n n nn a f f f 然后可得1122n n n a a ++=+,根据递推关系以及等差数列的定义可得结果. (2)根据(1)的结论可得12n nn b +=,然后利用错位相减法可得n S ,最后构造函数,利用函数的单调性可得结果.【详解】(1)()()112,22,=∴==n n a f a f()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅1122n n n a a ++∴=+, 11122n nn na a ++∴-= 2n na ⎧⎫∴⎨⎬⎩⎭为等差数列,首项为112a =,公差为1,,22nn n na n a n ∴∴==⋅.(2)由(1)12n n n n n n b a ++==23111111234(1)22222n n nS n n -=⨯+⨯+⨯++⨯++⨯ 2311111123(1)22222n n n S n n +=⨯+⨯++⨯++⨯,两式相减得121111111133(1)22222222n n n n n S n +++=+++-+⨯+=-332n nn S +∴=-,假设存在正整数m , 使得(1)(4)190m m m S b +-+<成立,即2160m m +-> 由指数函数与一次函数单调性知:()216m F m m =+- m N +∈为增函数.又因为34(3)231650,(4)241640F F =+-=-<=+-=> 所以当4m ≥时恒有()2160m F m m =+->成立. 故存在正整数m ,使得(1)(4)190m m m S b +-+<成立, 所以m 的最小值为4.【点睛】本题考查根据递推关系证明等差数列以及错位相减法求和,还考查了数列恒等式问题,本题关键在于得到1122n n n a a ++=+,考查分析能力以及计算能力,属中档题.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
A. B.
C. D.
7.函数y=tan 的定义域是()
A. B.
C. D.
8.若 , 是第二象限的角,则 等于()
A. B. C. D.
9.已知sinx+cosx= ,则sin 2x=
A. B. C.- D.-
10.已知tanx= ,则tan2x等于()
A. B. C. D.
11.已知向量 , ,且 ,则 的值为()
1. D
【解析】
【分析】
根据复数模的计算公式,计算出 的模.
【详解】依题意, ,故选D.
【点睛】本小题主要考查复数模的概念及运算,属于基础题.
2. C
【解析】
【分析】
根据 在不同象限的符号进行推测即可
【详解】由题,因为 ,则 的终边落在第二象限或第三象限;
因为 ,则 的终边落在第三象限或第四象限;
综上, 的终边落在第三象限
24.(1)最小正周期为 ,函数 的单调递增区间为 ,单调递减区间为 ;(2)当 时, .
【解析】
【分析】
(1)根据 可得函数的最小正周期,然后使用整体法以及正弦函数的单调性,简单计算可得结果.
(2)使用整体法,先计算 的范围,然后根据正弦函数的性质,简单计算可得结果.
【详解】(1)由题可知:
则函数的最小正周期为 ,
故选:C.
【点睛】本题考查三角函数值在各个象限内的符号,属于基础题.
3. C
【解析】
【分析】
根据同角三角函数的基本关系及角所在的象限,即可求解.
【详解】因为 且 为第三象限角,
所以 ,
则 数间的基本关系,属于中档题.
4. A
【解析】
【分析】
利用两角和正弦公式计算即可.

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
A.关于点 对称B.关于点 对称
C.关于直线 对称D.关于直线 对称
二、填空题(每小题5分,共20分)
13. 的值为__________.
14.过点(1,3)且与直线x+2y-1=0垂直的直线的方程是________.
15.化简: =_____
16. 2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.
1.直线 的倾斜角为()
A. ;B. ;C. ;D.
2.如图所示,正方形 的边长为 ,它是水平放置的一个平面图形的直观图,则原图形的周长是()
A. B. C. D.
3.在空间直角坐标系中,点P(3,4,5)关于 平面的对称点的坐标为( )
A.(−3,4,5)B.(−3,−4,5)
C.(3,−4,−5)D.(−3,4,−5)
, ,
故函数的单调增区间为 ,
【点睛】本题考查利用 的部分图象求函数解析式,关键是掌握运用五点作图的某一
点求 ,考查三角函数单调区间的求法,是中档题.
人教版2020--2021学年下学期期末考试卷
高一数学
(满分:150分时间:120分钟)
题号



总分
得分
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
【详解】 角 在第三象限,且 , 且 ,
因此, .
【点睛】本题考查同角三角函数的基本关系,考查知一求二,解决这类问题首先要确定角所在的象限,其次就是要确定所求三角函数值的符号,最后再利用相关公式进行计算,考查计算能力,属于基础题.

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)
18.(1) ;(2) .
【解析】
【分析】(1)由 化简再结合 , 可求出向量 与 的夹角;
(2)要 与 垂直,只需 ,化简可求出x的值.
【详解】(1)由

得 .
(2)当 与 垂直时,

所以 .
【点睛】此题考查平面向量的数量积运算,考查向量的夹角的求法,向量垂直等知识,属于基础题.
15.
【解析】
【分析】
由绝对值的三角不等式,求得最小值,得到 ,即可求解.
【详解】由绝对值不等式可得 ,
当且仅当 时,等号成立,
所以 ,解得 或 ,
即实数a的取值范围是 .
【点睛】本题主要考查了绝对值三角不等式的应用,其中解答熟记绝对值的三角不等式是解答的关键,着重考查推理与运算能力.
16.
【解析】
A. B. C. D.
9.在平面直角坐标系xOy中,若圆 上存在点M,且点M关于直线 的对称点N在圆 上,则r的取值范围是()
A. B.
C. D.
10.已知 , , ,若当 时, 恒成立,则 的最大值是()
A. -6B. -2C. 2D. 6
第Ⅱ卷(非选择题部分,共110分)
二、填空题(本题共有7小题,其中多空题每空3分,单空题每空4分,共36分)
故依题得 ,
所以 是以1位首项,3为公比的等比数列,
所以 .
(2)由(1)知, ,
所以 ,
所以由

即n的最小值为8.
【点睛】本题考查了数列 与 的关系,等比数列的通项公式,等比数列前n项和公式和解不等式等基本知识,考查了数学运算能力和逻辑推理能力,属于中档题目.

人教版高一数学下学期期末考试卷含答案

人教版高一数学下学期期末考试卷含答案

人教版高一数学下学期期末考试卷含答案214人教版高一数学下学期期末考试卷第一卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.1920°转化为弧度数为A。

32π/3B。

16π/3C。

16/3D。

3提示:1°=π/180.2.根据一组数据判断是否线性相关时,应选用A。

散点图B。

茎叶图C。

频率分布直方图D。

频率分布折线图提示:散点图是用来观察变量间的相关性的。

3.函数y=sin(x+π/4)的一个单调增区间是A。

[-π,0]B。

[0,π/4]C。

[π/4,7π/4]D。

[7π/4,2π]提示:函数y=sin(x)的单调增区间是(2kπ-π/2,2kπ+π/2) (k∈Z)。

4.矩形ABCD中,对角线AC与BD交于点O,BC=5e1,DC=3e2,则OC等于A。

(5e1+3e2)/2B。

(5e1-3e2)/2C。

(-5e1+3e2)/2D。

-(5e1+3e2)/2提示:OC=AC=AD+DC=BC+DC=(5e1+3e2)/2.5.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A。

6,12,18B。

7,11,19C。

6,13,17D。

7,12,176.函数y=x/2sin(x)+3cos(x/2)的图像的一条对称轴方程是A。

x=π/2B。

x=-πC。

x=-π/2D。

x=π提示:函数y=sin(x)的对称轴方程是x=kπ+π/2 (k∈Z)。

7.甲乙两人下棋,甲获胜的概率为30%,甲不输的概率为70%,则甲乙两人下一盘棋,最可能出现的情况是A。

甲获胜B。

乙获胜C。

二人和棋D。

无法判断提示:由甲不输的概率为70%可得乙获胜的概率也为30%。

8.如图是计算1/11+1/12+。

+1/30的一个程序框图,其中在判断框内应填入的条件是A。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
A.0B.1C.2 D.3
9.若某空间几何体的三视图如图所示,则该几何体的体积是()
A. B. C.1 D.2
10.三棱锥 中, ,则三棱锥 的外接球的表面积()
A. B. C. D.
11.已知正项等比数列 满足 ,若存在两项 , 使得 ,则 的最小值为()
A.2 B. C. D.
12.如下图,四边形 是边长为1的正方形,点D在 的延长线上,且 ,点P为 内(含边界)的动点,设 ,则 的最大值等于()
(1)证明 为等比数列,并求数列 的通项;
(2)设 ,且 ,证明 .
(3)在(2)小问的条件下,若对任意的 ,不等式 恒成立,试求实数 的取值范围.
数学试题答案及评分意见
一、选择题
1.C 2.B 3.A 4.A 5.D 6.A 7.A 8.B 9.C 10.A 11.C 12.D
二、填空题
13.1 14. 15. 16.3
D.函数 是偶函数,且在R上是减函数
10.在△ABC中,点D在线段BC的延长线上,且 =3 ,点O在线段CD上(与点C,D不重合),若 =x +(1-x) ,则x的取值范围是( )
A. B. C. D.
11.已知函数f(x)(x∈R)满足f(2-x)=-f(x),若函数y= 与f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),则x1+x2+x3+…+xm的值为( )
(2)∵ ,则

∴ ................................9分
(3)当 恒成立时,即 ( )恒成立.
设 ( ),
当 时, 恒成立,则 满足条件;
当 时,由二次函数性质知不恒成立;

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
(1)求 在区间 的最小值;
(2)将 的图象向左平移 个单位后得到函数 的图象,求 的单调递减区间.
21.(12分)已知圆 ,经过点 的直线 与圆 交于不同的两点 , .
(1)若直线 的斜率为2,求 ;
(2)求 的取值范围.
22.(12分)土豆学名马铃薯,与稻、麦、玉米、高粱一起被称为全球五大农作物.云南人爱吃土豆,在云南土豆也称洋芋,昆明人常说“吃洋芋,长子弟”. 年 月,在全国两会的代表通道里,云南农业大学名誉校长朱有勇院士,举着一个两公斤的土豆,向全国的媒体展示,为来自家乡的“山货”代言,他自豪地说:“北京人吃的醋溜土豆丝, 盘里有 盘是我们澜沧种的!”
综上所述: .
故选:B.
【点睛】本题考查了正弦函数的周期,考查了正弦函数的最值,考查了正弦函数的零点,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分.
13.
【解析】
【分析】
利用任意角的三角函数的定义,求得 ,进而利用诱导公式求出 的值.
【详解】∵ 是角 终边上一点,则
.
故答案为: .
【点睛】本题主要考查任意角的三角函数的定义,涉及到诱导公式,属于基础题.
(1)在菜市上,听到小王叫卖:“洋芋便宜卖了,两元一斤,三元两斤,四元三斤,五元四斤,六元五斤,快来买啊!”结果一群人都在买六元五斤的.由此得到如下结论:一次购买的斤数越多,单价越低,请建立一个函数模型,来说明以上结论;
(2)小王卖洋芋赚到了钱,想进行某个项目的投资,约定如下:①投资金额固定;②投资年数可自由选择,但最短 年,最长不超过 年;③投资年数 与总回报 的关系,可选择下述三种方案中的一种:方案一:当 时, ,以后 每增加 时, 增加 ;方案二: ;方案三: .请你根据以上材料,结合你的分析,为小王提供一个最佳投资方案.

最新人教版高一下册数学期末考试含答案

最新人教版高一下册数学期末考试含答案

2022年人教版高一下册期末考试数学试卷一、选择题1. 已知复数z =1−2i ,则z (z +2i )=( ) A.1−2i B.9+2i C.7−4i D.1+2i2. 将圆锥的高缩短到原来的12,底面半径扩大到原来的2倍,则圆锥的体积( ) A.缩小到原来的一半 B.缩小到原来的16 C.不变 D.扩大到原来的2倍3. 若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[−2,−1]即为“同族函数”.下面函数解析式中也能够被用来构造“同族函数”的是( ) A.y =sinx B.y =x 3 C.y =e x −e −xD.y =lnx4. 甲、乙、丙三人独立地去译一个密码,分别译出的概率为12,14,18,则密码能被译出的概率是( ) A.120 B.2132C.2164D.43645. 数据x 1,x 2,…,x 9的平均数为4,标准差为2,则数据3x 1+2,3x 2+2,…,3x 9+2的方差和平均数分别为( ) A.36,14 B.14,36 C.12,19 D.4,126. 设λ为实数,已知向量m →=(2,1−λ),n →=(2,1).若m →⊥n →,则向量m →−n →与n →的夹角的余弦值为( ) A.−√55B.−√1010C.−12D.√557. 若P (AB )=16,P(A)=13,P (B )=14,则事件A 与B 的关系是( ) A.互斥 B.相互独立C.互为对立D.无法判断8. 下图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象,则()A.函数y=f(x)的最小正周期为π2B.直线x=5π12是函数y=f(x)图象的一条对称轴C.点(−π6,0)是函数y=f(x)图象的一个对称中心D.函数y=f(x−π3)为奇函数9. 若定义在R上的奇函数f(x)在(0,+∞)上单调递减,且f(−π2)=0,则下列取值范围中的每个x都能使不等式f(x+π2)⋅cosx≥0成立的是()A.[−2π,−π]B.[−π,0]C.[0,π]D.{x|x=kπ2,k∈Z}10. 如图,在直三棱柱ABC−A1B1C1中,AC=BC,AB=AA1,D是A1B1的中点,点F 在BB1上,记B1F=λBF,若AB1⊥平面C1DF,则实数λ的值为()A.13B.12C.23D.111. 如图所示,在正方体ABCD −A 1B 1C 1D 1 中,点E ,F ,M ,N 分别为棱AB ,BC ,DD 1,D 1C 1上的中点,下列判断正确的是( )A.直线AD//平面MNEB.直线FC 1//平面MNEC.平面A 1BC//平面MNED.平面AB 1D 1//平面MNE12. 矩形ABCD 中,AB =√2,AD =1,M 是矩形ABCD 内(不含边框)的动点,|MA →|=1,则MC →⋅MD →的最小值为( ) A.−√6 B.−√6+1 C.−√6+2 D.3+√62二、填空题1.已知函数f (x )={sin (π4x),x ≤1,lnx,x >1,则f(f (e ))=________.2. 已知在△ABC 中,点D 满足BD →=34BC →,点E 在线段AD (不含端点A ,D )上移动,若AE →=λAB →+μAC →,则μλ=________.3.一组数据共有7个整数,m ,2,2,2,10,5,4,且2<m <10,若这组数据的平均数、中位数、众数中最大与最小数之和是该三数中间数字的两倍,则第三四分位数是________.4. 如图,在正三棱锥A −BCD 中,底面边长为√6,侧面均为等腰直角三角形,现该三棱锥的表面上有一动点O ,且OB =2,则动点O 在三棱锥表面所形成的轨迹曲线的长度为________.三、解答题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知√3bcosC =csinB . (1)求角C ;(2)若b =2,△ABC 的面积为2√3,求c .2.某药厂测试一种新药的疗效,随机选择1200名志愿者服用此药,结果如下:(1)若另一个人服用此药,请估计该病人病情恶化的概率;(2)现拟采用分层抽样的方法从服用此药的1200名志愿者中抽取6人组成样本,并从这抽出的6人中任意选取3人参加药品发布会,求抽取的3人病情都未恶化的概率.3. 已知向量a →=(sinx,1),b →=(1,sin (π3−x)),f (x )=a →⋅b →.(1)求函数f (x )的单调递增区间和最小正周期;(2)若当x ∈[0,π4]时,关于x 的不等式2f (x )−1≤m 有解,求实数m 的取值范围.4.如图,在四棱锥P −ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60∘,PA =AB =BC ,E 是PC 的中点.(1)求二面角P −CD −A 的大小;(2)求证:AE ⊥PD .5.雪豹处于高原生态食物链的顶端,亦被人们称为“高海拔生态系统健康与否的气压计”.而由于非法捕猎等多种人为因素,雪豹的数量正急剧减少,现已成为濒危物种.在中国,雪豹的数量甚至少于大熊猫.某动物研究机构使用红外线触发相机拍摄雪豹的照片,已知红外线触发相机在它控制的区域内拍摄到雪豹的概率为0.2. (1)假定有5个红外线触发相机控制某个区域,求雪豹进入这个区域后未被拍摄到的概率;(2)要使雪豹一旦进入这个区域后有0.9以上的概率被拍摄到,需至少布置几个红外线触发相机(lg2≈0.301).6.如图,已知四棱锥P−ABCD,△ABD为等边三角形,直线PC,DC,BC两两垂直,且PC=CD=BC=2,M为线段PA上的一点.(1)若平面BDM⊥平面ABCD,求AM2;(2)若三棱锥P−MBD的体积为四棱锥P−ABCD体积的1,求点M到平面ABCD的距离.2参考答案与试题解析一、选择题1.【答案】B【解析】无2.【答案】D【解析】无3.【答案】A【解析】无4.【答案】D【解析】无5.【答案】A【解析】无6.【答案】A【解析】无7.【答案】B【解析】无8.【答案】C【解析】无9.【答案】B【解析】无10.【答案】D【解析】无11.【答案】D【解析】无12.【答案】C【解析】无二、填空题【答案】√22【解析】无【答案】3【解析】无【答案】5【解析】此题暂无解析【答案】3π2【解析】无三、解答题【答案】解:(1)由正弦定理可得√3sinBcosC=sinCsinB. 因为sinB≠0,所以√3cosC=sinC,所以tanC =√3.因为C ∈(0,π),所以C =π3.(2)由(1)得C =π3. 因为S △ABC =12absinC =√34ab =2√3,所以ab =8.因为b =2,所以a =4.由余弦定理得,c 2=a 2+b 2−2abcosC =16+4−8=12, 所以c =2√3. 【解析】 此题暂无解析 【答案】解:(1)由统计表可知在1200名志愿者中,服用药出现病情恶化的频率为2001200=16,所以估计另一个人服用此药病情恶化的概率为16.(2)采用分层抽样的方法,从病情好转的志愿者中抽4人,从疗效不明显及病情恶化的志愿者中各抽取1人组成6个人的样本.将6人中病情恶化的1人用符号A 代替,其余5人分别用1,2,3,4,5代替, 则从6人中任意抽取3人的基本事件表示如下: (A,1,2),(A,1,3),(A,1,4),(A,1,5),(A,2,3), (A,2,4),(A,2,5),(A,3,4),(A,3,5),(A,4,5), (2,3,4),(2,3,5),(2,4,5),(3,4,5),(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),共20个基本事件. 其中没有抽到病情恶化的志愿者的基本事件为: (2,3,4),(2,3,5),(2,4,5),(3,4,5),(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),共10个基本事件, 因此,抽取的3人中没有病情恶化的志愿者的概率为1020=12.【解析】 无 无 【答案】解:(1)因为f (x )=a →⋅b →=sinx +sin (π3−x)=12sinx +√32cosx =sin (x +π3),所以函数f (x )的最小正周期T =2π.因为函数y =sinx 的单调增区间为[−π2+2kπ,π2+2kπ],k ∈Z , 所以−π2+2kπ≤x +π3≤π2+2kπ,k ∈Z ,解得−5π6+2kπ≤x ≤π6+2kπ,k ∈Z ,所以函数f (x )的单调增区间为[−5π6+2kπ,π6+2kπ],k ∈Z .(2)不等式2f (x )−1≤m 有解,即m+12≥f (x )min .因为x ∈[0,π4],所以π3≤x +π3≤7π12.又sin 7π12=sin 5π12>sin π3,故当x +π3=π3,即x =0时,f (x )取得最小值,且最小值为f (0)=√32, 所以m ≥√3−1. 【解析】 此题暂无解析 【答案】(1)解:因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以CD ⊥PA .因为CD ⊥AC,PA ∩AC =A , 所以CD ⊥平面PAC , 所以CD ⊥PC . 又AC ⊥CD ,故∠PCA 为二面角P −CD −A 的平面角. 又PA =AB =BC =AC ,故二面角P −CD −A 的大小为45∘. (2)证明:由于AE ⊂平面PAC , 所以AE ⊥CD .因为E 是PC 的中点,所以AE ⊥PC . 又PC ∩CD =C ,所以AE ⊥平面PCD . 又PD ⊂平面PCD ,所以AE ⊥PD . 【解析】 此题暂无解析 【答案】解:(1)雪豹被拍摄到的概率,即至少有1个红外线触发相机拍摄到雪豹的概率. 设雪豹被第k 个红外线触发相机拍摄到的事件为A k (k =1,2,3,4,5), 那么5个红外线触发相机都未拍摄到雪豹的事件为A 1⋅A 2⋅A 3⋅A 4⋅A 5. ∵ 事件A 1,A 2,A 3,A 4,A 5相互独立, ∴ 雪豹未被拍摄到的概率为 P(A 1⋅A 2⋅A 3⋅A 4⋅A 5)=P(A 1)⋅P(A 2)⋅P(A 3)⋅P(A 4)⋅P(A 5) =(1−0.2)5=(45)5,∴ 雪豹未被拍摄到的概率为(45)2.(2)设至少需要布置n 个红外线触发相机才能有0.9以上的概率拍摄到雪豹, 由(1)可知,雪豹被拍摄到的概率为1−(45)n.令1−(45)n≥0.9, ∴ (45)n≤110,两边取常用对数,得n ≥11−3lg2≈10.3.∵ n ∈N ∗, ∴ n =11,∴ 至少需要布置11个红外线触发相机才能有0.9以上的概率拍摄到雪豹. 【解析】 无 无 【答案】解:(1)连接AC 交BD 于点O .易知AC 为线段BD 的垂直平分线,且AC 为AP 在平面ABCD 上的投影, 所以MD =MB .连接MO ,则MO ⊥BD .又因为平面BDM ⊥平面ABCD ,平面BDM ∩平面ABCD =BD ,MO ⊂平面MBD , 所以MO ⊥平面ABCD .又因为AO ⊂平面ABCD ,所以MO ⊥AO .因为CO =√2,AO =√6,AP 2=AC 2+PC 2=12+4√3. 又因为AOAC =AM AP,即AM 2=18−6√3.(2)过点M 作平面ABCD 的垂线,垂足为O ′, V M−ABD =13×12×√6×2√2×MO ′=2√33⋅MO ′,V P−BCD =43,V P−ABCD =13×12×2√2×(√2+√6)×2=4(√3+1)3, 故V P−BCD +V M−ABDV P−ABCD=1−12,解得MO ′=1−√33, 故点M 到平面ABCD 的距离为1−√33. 【解析】 此题暂无解析。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
6.已知等差数列 的前 项和为 , , ,则使 取得最大值时 的值为()
A. 5B. 6C. 7D. 8
7.已知 , , ,则 的最小值为()
A. 6B. 12C. 18D. 24
8.设在 中,角 所对的边分别为 ,若 ,则 的形状为()
A.锐角三角形B.直角三角形C.钝角三角形D.不确定
9.若不等式 ,对 恒成立,则关于 的不等式 的解为()
即( h)2=h2+102﹣2h×10×cos120°,
∴h2﹣5h﹣50=0,解得h=10或h=﹣5(舍去);
故选B.
【点睛】本题主要考查了解三角形的实际应用问题,也考查了将实际问题转化为解三角形的应用问题,是中档题.
12. C
【解析】
正实数x,y满足 ,
则 ,
当且仅当 取得最小值2.
由 有解,可得 ,
13.已知等差数列 中, , ,则其通项公式 __________.
14.已知 的三个内角之比为 , ,那么最大边长等于__________.
15.一元二次不等式 的解集是 ,则 的值等于__________.
16.如图,从气球 上测得正前方的 , 两点的俯角分别为 , ,此时气球的高是 ,则 的距离等于__________ .
11. B
【解析】
【分析】
设出塔高为h,画出几何图形,根据直角三角形的边角关系和余弦定理,即可求出h的值.
【详解】如图所示:
设塔高为AB=h,
在Rt△ABC中,∠ACB=45°,
则BC=AB=h;
在Rt△ABD中,∠ADB=30°,则BD h;
在△BCD中,∠BCD=120°,CD=10,
由余弦定理得:BD2=BC2+CD2﹣2BC•CDcos∠BCD,

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
A. B. C. D.
11.若 , ,且 ,则下列不等式恒成立的是()
A. B. C. D.
12.设 , 为两条直线, , 为两个平面,下列说法正确的是()
A.若 , ,则
B.若 , ,则
C.若 , ,则
D.若 , , , ,则
三、填空题:本大题共4题,每小题5分,共20分.
13.已知变量 , 满足约束条件 ,则 的最大值为______.
A. B.
C. D.
7.函数y=tan 的定义域是()
A. B.
C. D.
8.若 , 是第二象限的角,则 等于()
A. B. C. D.
9.已知sinx+cosx= ,则sin 2x=
A. B. C.- D.-
10.已知tanx= ,则tan2x等于()
A. B. C. D.
11.已知向量 , ,且 ,则 的值为()
三、解答题:本大题共4个小题,共40分.解答应写出文字说明、证明过程或演算步骤
21.(1)已知平面向量 、 的夹角为 ,且 , ,求 与 的夹角;
(2)已知平面向量 , , ,若 ,求 的值.
22.已知 ,其中 锐角,
(1)求 值;
(2)求 的值.
23.设 的内角 、 、 所对的边分别为 、 、 , , .
17.已知向量 与 的夹角为 ,且 , .

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
(2)若 ,求 面积 的最大值.
19.(12分)在平面直角坐标系中, 的顶点坐标分别为 、 、 .
(1)求 外接圆 的标准方程;
(2)过 作直线 交圆 于 , ,若 ,求直线 的方程.
20.(12分)已知等比数列 的各项都为正数, 为其前 项和, , .
(1)求数列 的通项公式;
(2)记 ,求使得 成立的正整数 的最小值.
(2)弦长 的取值范围为_______.
三、解答题:本大题6个小题,共70分.(必须写出必要的文字说明、演算步骤或推理过程).
17.(10分)已知向量 与向量 的夹角为 ,且 , .
(1)求 ;
(2)若 ,求 .
18.(12分)在 中,角 , , 所对的边分别为 , , ,满足 .
(1)求 的大小;
人教版2020--2021学年下学期期末考试卷高一数学(满分:15来自分时间:120分钟)题号



总分
得分
第Ⅰ卷(选择题共60分)
一、选择题:本大题12个小题,每小题5分,共60分,每小题只有一个选项符合答案.
1.直线 的倾斜角为()
A. B. C. D.
2.数列 是各项都为正数的等比数列, ,则 ()
A. B. C.0D.1
8.已知双曲线 的离心率为 , 为 上的点, 为 的右焦点,且 垂直于 轴.若 ,则 的方程为()
A. B. C. D.
9.正数 , 满足 ,则 的最小值为()
A. B. C. D.2
10.过抛物线 的焦点 的直线 与抛物线交于 , 两点,线段 的中点 在直线 上, 为坐标原点,则 的面积为()
13.等比数列 中, ,其中公比 ,则 ________.
14.2020年初,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常返校开学,不得不在家“停课不停学”.为了解高三学生每天居家学习时长,从某校的调查问卷中,随机抽取 个学生的调查问卷进行分析,得到学生学习时长的频率分布直方图(如图所示).已知学习时长在 的学生人数为25,则 的值为______.

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)
(2)若 ,向量 = , ,求 的最小值及对应的x值.
开封市五县高一期末联考卷参考答案
一.选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
B
D
C
C
D
C
B
C
B
D
二.填空题
13.12;14.-1;15. ;16.②.
三.解答题
17.解:(1)
(2)
由(1)知
18.(1)
,
(2)设
又 ,且 不共线.
所以由平面向量基本定理知:
②直线 是函数 的一条对称轴;
③点 是函数 的一个对称中心;
④函数 的单调递减区间为
其中正确的结论是(填序号).
三、解答题:本大题共6小题,共70分。解答题写出文字说明、证明过程或演算步骤。
17.(本小题10分)已知角 .求下列各式的值.
(1)求 的值;
(2)先化简 ,再求值.
18.(本小题12分)如图,已知在 中, 是 的中点, 是线段 的靠近点 的三等分点, 和 交于点 ,设 .
14.已知向量 满足 ,则向量 在 方向上的投影为;
15.新冠肺炎疫情爆发后,某市指定医院组织市民进行核糖核酸检测。某个检测点派出了两名医生,四名护士。把这六名医护人员分为两组,每组一名医生,两名护士,则医生甲与护士乙分在一组的概率为;
16.已知函数 ,给出下列四个结论:
①函数 是最小正周期为 的奇函数;
【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.
4. A
【解析】
【分析】

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)
【点睛】本题考查了弧度数的方向与计算,属于基础题.
2. C
【解析】
【分析】
设出三件相互互斥的事件,事件“某地在节气夏至当日下雨”为事件A,"某地在节气夏至当日阴天”为事件B,“某地在节气夏至当日晴天”为事件C,根据互斥事件概率的基本性质可得 ,进而可得答案.
【详解】解:设事件“某地在节气夏至当日下雨”为事件A,"某地在节气夏至当日阴天”为事件B,“某地在节气夏至当日晴天”为事件C,
A. B. C.- D.-
2.“二十四节气”是上古农耕文明的产物,表达了人与自然宇宙之间独特的时间观念,是中华民族悠久文化内涵和历史沉淀.根据多年气象统计资料,某地在节气夏至当日下雨的概率为0.45,阴天的概率为0.20,则该地在节气夏至当日为晴天的概率为()
A.0.65B.0.55C.0.35D.0.75
3.已知向量 , .若 与 共线,那么 ()
A. B. C. 4D.-4
4.已知圆 的标准方程为 ,则它的圆心坐标是()
A. B. C. D.
5. ()
A. B. C. D.
6.已知函数 ,下列命题正确的是()
A. 的周期为 B. 的值域为
C. 的图像关于直线 成轴对称D. 的图像关于点 成中心对称
×


住房租金
×
×

×
×
×
赡养老人


×
×
×

(i)试用所给字母列举出所有可能的抽取结果;
(ii)设 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件 发生的概率.
22.(12分)若圆 的内接矩形的周长最大值为 .
(1)求圆O的方程;
(2)若过点 的直线 与圆O交于A,B两点,如图所示,且直线 的斜率 ,求 的取值范围.

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
A. B. C. D.
二、填空题(共4题,每小题5分,共20分)
13.若下图程序输入 的值为 ,则输出 的值为______.
INPUT x
IF x>=0 THEN
y=x^2-1
ELSE
y=2* x^2-5
END IF
PRINT y
END
14.在 中,内角 , , 所对的边分别是 , , ,若 , ,则 ______.
(1)求 的值;
(2)求 的值.
18.已知圆 过 , 两点,且圆心 在直线 上.
(1)求圆 的方程;
(2)设点 是直线 上的动点, 、 是圆 的两条切线, 、 为切点,求切线长 的最小值及此时四边形 的面积.
19.在 中,内角 , , 的对边分别为 , , , 外接圆的半径为 ,且 .
(1)若 的面积为 ,求 , 的值;
A. B. 4C. 4或 D. 或5
8.已知 满足 ,则目标函数 的最小值为()
A. B. C. D. 1
9.已知 ,则 的最小值为()
A. 1B. 2C. 4D. 8
10.若一个等差数列的前3项和为24,最后3项的和为126,所有项的和为275,则这个数列共有()
A. 13项B. 12项C. 11项D. 10项
题号



总分
得分
第Ⅰ卷(选择题,共60分)
一、选择题:(本大题共12个小题,每小题5分,共60分,在每个小题的4个答案中,只有一个符合要求)
1.若 ,则下列不等式中不正确的是()
A. B. C. D.
2.圆的方程为 ,则圆心坐标为()
A. B. C. D.
3.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的范围是()

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号 一 二 三 总分 得分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合{}22A x x =-<<,{}13B x x =-<<,那么A ∪B =( )A .{}21x x -<<-B .{}12x x -<<C .{}21x x -<<D.{}23x x -<<2.已知角α的终边经过点(,4)P m ,(0m < ),且1cos 5m α= ,则sin cos αα-=( )A .15B .75C .15-D .13.已知函数221log (),0(),03x x a x f x x -⎧+<=⎨≥-⎩,若f [f (2)]=1,则a =( )A .-2B .-7C .1D .5 4.在等差数列{}na 中,35712aa a +=-,则19a a +=() A .8B .12C .16D .205.如图,在△OAB 中,P 为线段AB 上的一点, OP =x OA +y OB ,且BP =2PA ,则( )A .21,33x y ==B .12,33x y ==C .23,55x y == D .13,44x y == 6.已知1sin(3)3πα+=-,则2cos ()24απ-值为( )A .13B .326+C .326-D .237.在等比数列{a n }中,已知其前n 项和,则a 的值为( ) A .-1B .1C .-2D .28.已知⊙C 1:()()22111x y ++-=,⊙C 1与⊙C 2关于直线10x y --=对称,则⊙C 2的方程为 A .()()22221x y ++-= B .()()22221x y -++= C .()()22221x y +++=D .()()22221x y -+-=9.若定义在R 上的偶函数f (x )在(0, +∞)上单调递增,且(2)0f -=,则不等式()0xf x <的解集是( ) A .(-∞, -2)∪(0, 2) B .(2, +∞) C .(-2, 2)D .(-∞, -2)10.已知点P 为直线250x y +-=上的动点,过点P 作圆C :()()22122x y -++=的两条切线,切点分别为A 、B ,则四边形P ACB 面积的最小值为( ) A .6B .26C .6D .1212n n S a +=+密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( )A .三边均不相等的三角形B .等腰直角三角形C .等边三角形D .以上均有可能12.设{}max ,p q 表示,p q 两者中较大的一个.已知:定义在[]0,2π上的函数{}()max 2sin ,2cos f x x x =满足关于x 的方程()()2212()0f x m f x m m +-+-=有6个不同的解,则m 的取值范围为( ) A .()2,2B .()2,12+ C .()1,2-D .()12,22+二、填空题(本大题共4小题,每小题5分,共20分) 13.直线l 过点(-1, 2)且与直线2340x y -+=垂直,则l 的方程是 . 14.已知函数221,0()log (1),0x x f x x x ⎧-≤=⎨+>⎩,记()1f x <的解集为 .15.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60ABC ∠=,PA ⊥平面ABCD ,PA AB =,E 为CD 中点.则PE 与平面PAC 所成角的正切值为 . 16. 在数列{a n }中,12,a=12(1)n n a a n +-=+,则数列1{}na 的前n 项的和n S = .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 已知2()23sin cos 2sin 1f x x x x =-+(1)求()f x 的最小正周期及单调递增区间;(2),63x ππ⎡⎤∈-⎢⎥⎣⎦时,()3f x m -≥恒成立,求实数m 的取值范围. 18.(本小题满分12分) 如图,已知以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切,过点(2,0)B -的动直线与圆A相交于,M N两点.(1)求圆A的方程;(2)当||219MN =时,求直线l 的方程.19.(本小题满分12分) 已知数列{}na 中,14nn a a +=,2116a =,递增等差数列{}nb 满足11b =,2b 是1b 与6b 的等比中项.(1)求数列{},{}nna b 的通项公式;(2)求数列{}nn ab +的前n 项的和n S .20.(本小题满分12分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,CD ⊥AD ,BC //AD ,BC =CD =12AD . (1)求证:CD ⊥PD ;A BCD EP密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)求证:BD ⊥平面P AB ;(3)在棱PD 上是否存在点M ,使CM //平面P AB . 若存在,确定点M 的位置;若不存在,请说明理由.21.(本小题满分12分) 某驾校拟围着一座山修建一条环形训练道路OASBCD ,道路的平面图如图所示(单位:km),已知曲线ASB 为函数y =A sin(ωx +φ) (A >0,0<ω<1,|φ|<π2),x ∈R )的图象,且最高点为S (1,2),折线段AOD 为固定线路,其中AO =3,OD =4,折线段BCD 为可变线路,但为保证驾驶安全,限定∠BCD =1 20°. (1)求A ,ω,φ的值;(2)若∠CBD =θ,试用θ表示折线段道路BCD 的长,并求折线段道路BCD 长度的最大值.21.(本小题满分12分) 已知函数()22xxf x k -=+⋅,x R ∈.(其中e为自然对数的底数)(1)若1k =,且()3f m =,求(2)f m 的值; (2)若1k =-,求不等式22(2)(3)0f xx f x x -+-->的解集;(3)若1k =-,且2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.参考答案1~12 DBBA ADCB AACA 13.3210x y +-= 14.(,1)-∞ 15.3516.1n n + 17.(1),T π=[,]()36k k k Z ππππ-+∈; (2)4m ≤-.18.(1)22(1)(2)20x y ++-= ; (2)2x =-或3460x y -+=. 19.(1)1(),324n nn a b n ==- ; (2)21333()42n nn nS -=-⋅+.20.略. 21.(1)2,,63A ππωϕ=== ; (226 .22.(1)7; (2) (,1)-∞; (3)5m ≥-PABCD密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号 一 二 三 总分 得分一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.求17cos 3π⎛⎫-= ⎪⎝⎭( )A .12B .12-C .3D .32.已知向量()2,1a =,(),1b m =-,且()2b a b ⊥-,则m 的值为( ) A .1B .3C .1或3D .43.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( )A .8B .12C .10D .14 4.已知变量x ,y 之间具有良好的线性相关关系,若通过10组数据(,)(1,2,...,10)i i x y i =得到的回归方程为5y bx =+,且10120i i x ==∑,1018ii y==∑,则b =( )A .2.1B .2C .-2.1D .-25.在三角形ABC 中,已知sin :sin :sin 2:3:4A B C =,且10a b +=,则向量AB 在向量AC 的投影是( ) A .7B .6C .5D .46.将函数sin 2y x =的图象向左平移π6个单位长度后得到曲线1C ,再将1C 上所有点的横坐标伸长到原来的2倍得到曲线2C ,则2C 的解析式为( )A.πsin 6y x ⎛⎫=+ ⎪⎝⎭B .πsin 3y x ⎛⎫=+ ⎪⎝⎭C .πsin 3y x ⎛⎫=- ⎪⎝⎭D .πsin 43y x ⎛⎫=+ ⎪⎝⎭7.已知正项等比数列{a n },若向量()28,a a =,()82b a =,,//a b ,则212229log log log a a a +++=()A .12B .28log 5+C .5D .188.已知α为锐角,且3cos()65πα+=,则sin α=( ) A 433+B 433- C 334+D 334- 9.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A ∪B)=P(A)+P(B); ③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1; ④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( )A .1B .2C .3D .4 10. 已知函数的最大值为2,其图密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题象相邻两条对称轴之间的距离为且的图象关于点对称,则下列判断正确的是( ) A .函数在上单调递增B . 函数的图象关于直线对称C . 当时,函数的最小值为2-D .要得到函数的图象,只需将的图象向右平移个单位 11.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( )A .2a >B .02a <<C .222a <<D .223a <<12.已知函数()()231cos sin 0,R 222xf x x x ωωω=+->∈.若函数 ()f x 在区间(),2ππ内没有零点 , 则ω的取值范围是( )A .50,12⎛⎤⎥⎝⎦B .55110,,12612⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭C .50,6⎛⎤⎥⎝⎦D .55110,,12612⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦二、填空题:本大题共4小题,每小题5分,共20分. 13. 若一组样本数据21,19,x ,20,18的平均数为20,则该组样本数据的方差为 .14. 若向量(21)a x =+,,(26)b x =+,,又a b ,的夹角为锐角,则实数x 的取值范围为 . 15.函数()sin cos sin cos 1f x x x x x =-⋅++-在区间30,4π⎡⎤⎢⎥⎣⎦上的值域为________.16.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0.给出下列结论: ①0<q<1; ②a 1a 99-1<0; ③T 49的值是T n 中最大的;④使T n >1成立的最大自然数n 等于98. 其中所有正确结论的序号是_________.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知等差数列{}n a 满足1243102a a a a +=-=,.等比数列{}n b 满足2337b a b a ==,. ( I )求数列{}n a 的通项公式; (II)设n n n c a b =+,求数列{}n c 的前n 项和n S .18.(本小题满分12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .满足22cos c a b A =+.(1)求B ;(2)若5a c +=,3b =,求ABC 的面积.19.(本小题满分12分)如图,在平行四边形ABCD 中,,E F 分别是,BC DC 上的点,且满,2BE EC DF FC==,记AB a=,AD b =,试以,a b 为平面向量的一组基底.利用向量的有关知识解决下列问题; (1)用,a b 来表示向量BF ⃗⃗⃗⃗ ;密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)若3,2ab ==,且3BF =,求DE ;20.(本小题满分12分)树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图如图所示: (1)求出样本的平均数(同一组数据用 该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用 分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中抽到2人的概率. 21.(本小题满分12分)已知正项数列{}n a 的前n 项和为n S ,对任意n *∈N ,点(),n n a S 都在函数()22f x x =-的图象上. (1)求数列{}n a 的通项公式;[来源:学*科*网] (2)若数列()21n n b n a =-,求数列{}n b 的前n 项和nT ;22.(本小题满分12分)已知向量(sin 3cos ,1)m x x =-,2(2sin ,4cos )n x x =,函数()f x m n =⋅.(1)当[0,]2x π∈时,求()f x 的值域;(2)若ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,f(A)=1,a =3,求b+2c 的取值范围.参考答案1.A由诱导公式可得17171cos cos 6cos 3332ππππ⎛⎫⎛⎫-=-+== ⎪ ⎪⎝⎭⎝⎭. 故选:A. 2.C根据题意,得()24,3a b m -=-,由()2b a b ⊥-,得()430m m --=.解得1m =或 3.m =故选C.[来源:]3.B 设等差数列{}n a 的公差为d ,则3133S a d =+,所以12323d =⨯+,解得2d =,所以612a =. 4. C因为10101112,2010i i i i x x x ===⇒=⨯=∑∑10101118100.8i i i i y y y ===⇒=⨯=∑∑,所以根本点的中心为(2,0.8),把样本点的中心代入回归直线方程,得0.825 2.1b b =+⇒=-,故本题选C.5. .A 由题意,利用正弦定理可得::2:3:4a b c =,则设2a k =,3b k =,4c k =,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题由105a b k +==,所以2k =,故有4a =,6b =,8c =,由余弦定理可得2227cos 28b c a A bc +-==, 所以,向量AB 在向量AC 的投影是7cos 878AB A ⋅=⨯=.故选:A. 6.B 解:将函数sin 2y x =的图像向左平移π6个单位长度后得到曲线1C ,则1C 的解析式为sin 2()sin(2)63y x x ππ=+=+,再将1C 上所有点的横坐标伸长到原来的2倍得到曲线2C ,则2C 的解析式为1sin(2)sin()233y x x ππ=⨯+=+7. D由题意,向量()28,a a =,()82b a =,,//a b , 则28820a a ⨯-=,即2816a a =,根据等比中项的知识,可得228516a a a ==, ∵50a >,故54a =, ∴212229log log log a a a +++()2129log a a a =()()()()2192837465log a a a a a a a a a =⋅⎡⎤⎣⎦925log a =29log 4=18=故选:D. 8.B 解:∵cos (α6π+)35=(α为锐角),∴α6π+为锐角,∴sin (α6π+)45=, ∴sin α=sin[(α6π+)6π-]=sin (α6π+)cos 6π-cos (α6π+)sin 6π4331433552-=-⨯=, 故选:B .9.A由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A 与B 是互斥事件时,才有P(A ∪B)=P(A)+P(B),对于任意两个事件A ,B 满足P(A ∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球},显然事件A 与B 不互斥,但P(A)+P(B)=+=1. 10. D 当时,,在为减函数,故A错,故函数图像的对称中心为,故B 错;当时,,故,故C 错;因为的最大值为,故,又图象相邻两条对称轴之间的距离为,故,所以,令,则即,因,故,.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题,故向右平移个单位后可以得到,故D 正确;11.C根据正弦定理:sin sin 2a b A B ==,故sin 22A =,三角形有两解,故2sin 1222A <=<,解得222a <<故选:C. 12.D1cos 3131()cos 222x f x x x x ωωωω+=-=+sin()6x πω=+ ,2,2,2666x x x πππππωπωωπωπωωπ<<∴<<+<+<+, 函数()f x 在区间(),2ππ内没有零点 (1)(,2)(2,2),66k k k Zππωπωππππ++⊆+∈,则26{226x k k πωππωπππ+≥+≤+ ,则126{512k k ωω≥-≤+,取0k = ,0,ω> 5012k ∴<≤;[来源:学科网](2)(,2)(2,22),66k k k Z ππωπωπππππ++⊆++∈,则26{2226k k πωππππωπππ+≥++≤+ ,解得:526{1112k k ωω≥+≤+,取0k =,511612k ∴≤≤ ;综上可知:k的取值范围是5511(0,][,]12612,选D . 13.221192018205x ++++=,解得22x =,该组样本数据的方差为22222(2120)(1920)(2220)(2020)(1820)25-+-+-+-+-=.故答案为:214.5{|2}4x x x >-≠且15.1,02⎡⎤-⎢⎥⎣⎦令3sin cos 2),[0,]()[,],2]4444t x x x x x t πππππ=+=+∈∴+∈∴∈. 221sin cos 12sin cos sin cos 2t t x x t x x x x -=+⇒=+⋅⇒⋅=.所以2221111()1(1)2222t f t t t t t -=-+-=-+-=--.13(0),(2)2,(0)(2)22f f f f =-=∴<,当2]t ∈,所以有max min 1()(1)0,()(0)2f t f f t f ====-, 所以函数的值域为1,02⎡⎤-⎢⎥⎣⎦.故答案为:1,02⎡⎤-⎢⎥⎣⎦16.①②③④密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【解析】由条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0可知a 49>1,a 50<1,所以0<q <1,①对;∵a 1a 99=250a <1,②对;因为a 49>1,a 50<1,所以T 49的值是T n 中最大的,③对;∵T n =a 1a 2a 3…a n ,又∵a 1a 98=a 49a 50>1,a 1a 99=250a <1,所以使T n >1成立的最大自然数n 等于98.故填①②③④.17.(Ⅰ)22n a n =+;(Ⅱ)22324n n S n n +=++-. 解: (I)在等差数列{}n a 中,由题意可知12102a d d +=⎧⎨=⎩解得142a d =⎧⎨=⎩22n a n ∴=+.(II)在等比数列{}n b 中,由题意可知121816b q b q =⎧⎨=⎩解得142b q =⎧⎨=⎩11422n n n b -+=⨯=∴,1222n n c n +∴=++,2341426282...222n n S n -∴=+++++++++()23146...2222...2n n +=++++++++ ()2314622222n n +=++++++++22324n n n +=++-.18.(1)π3B =;(243.(1)由题知2sin sin 2sin cos C A B A =+,则()2sin sin 2sin cos A B A B A +=+, 则2sin cos sin A B A =,在ABC 中,sin 0A ≠,所以1cos 2B =,则π3B =. (2)由余弦定理得2222cos b a c ac B=+-,从而得()22293a c ac a c ac =+-=+-,又5a c +=,所以163ac =,所以ABC 的面积为143sin 23S ac B ==. 19.(1)见解析;(27(1)∵在ABCD 中,2DF FC =,∴111222DE DC CE AB CB AB AD a b =+=+=-=- 111333BF BC CF AD CD AD AB b a =+=+=-=-(2)由(1)可知:13BF AD AB =-,12DE AB AD =- ∴2222121·339BF AD AB AD AD AB AB ⎛⎫=-=-+ ⎪⎝⎭∵3,2AB AD ==且3BF =∴222213223cos 339BAD =-⨯⨯⨯∠+⨯ ∴1cos 2BAD ∠= ∴222211·24DE AB AD AB AB AD AD ⎛⎫=-=-+ ⎪⎝⎭2211332cos 2961742BAD =-⨯⨯∠+⨯=-⨯+=,∴7DE=20.(1)41.5岁;(2)35(1)由()100.0100.0150.0300.0101a ⨯++++=,得0.035a =. 平均数为;200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁; (3)第1,2,3组的人数分别为20人,30人,从第1,2组密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为12123,,,,a a b b b .设从5人中随机抽取3人,为121122123112(,,),(,,),(,,),(,,),a a b a a b a a b a b b ,113123212213223123(,,),(,,),(,,),(,,),(,,),(,,),a b b a b b a b b a b b a b b b b b 共10个基本事件,从而第2组中抽到2人的概率63=105.21.(1)将点(),n n a S 代入函数()y f x =的解析式得到22n n S a =-.当1n =时,1122S a =-,即1122a a =-,解得12a =; 当2n ≥时,由22n n S a =-得1122n n S a --=-, 上述两式相减得122n n n a a a -=-,得12n n a a -=,即12nn a a -=. 所以,数列{}n a 是以2为首项,以2为公比的等比数列,因此,1222n n n a -=⨯=;(2)()()21212n n n b n a n =-⋅=-⋅,n *∈N ,因此()123123252212n n T n =⨯+⨯+⨯++-⨯,①()()23121232232212n n n T n n +=⨯+⨯++-⨯+-⨯,②由①-②得()23112222222212n n n T n +-=⨯+⨯+⨯++⨯--⨯()()()211121222212632212n n n n n -++-=+⨯--⨯=-+-⨯-,所以()16232n n T n +=+-⨯; 22.(1)()222sin 23sin cos 4cos f x x x x x =-+222cos 23sin cos x x x =+-3cos23sin2x x =+2cos 233x π⎛⎫=++ ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,42,333x πππ⎡⎤+∈⎢⎥⎣⎦,1cos 21,32x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 的值域为[]1,4. (2)f (A )=1,则cos 213x π⎛⎫+=- ⎪⎝⎭,则A=3πsin 2aA R=,223R ∴= 22sin 4sin 2(sin 2sin )b c R B R C R B C ∴+=+=+ 22sin 2sin 3R B B π⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦2(2sin 3cos )R B B =()0221sin B θ=+.其中锐角0θ满足:03tan θ=ABC 为锐角三角形, 62B ππ∴<<,00062B ππθθθ∴+<+<+, 由064ππθ<<,知:000262πππθθ<-<+<,000sin sin sin 226πππθθθ⎛⎫⎛⎫⎛⎫∴+=-<+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()00sin sin 12B πθθ⎛⎫∴+<+≤ ⎪⎝⎭,又00sin cos 27πθθ⎛⎫+==⎪⎝⎭()0sin 17B θ<+≤,432221b c ∴<+≤ 故答案为: (43,221].密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号 一 二 三 总分 得分一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请将正确选项的代号填入答题卷内.)1.下列各角中与1°角终边相同的是( ) A .360°B ,361°C .362°D .363°2.关于x 的不等式()()110x x -+≤的解集是( ) A .()1,1-B .[)1,1-C .(]1,1-D .[]1,1-3.设,,a b c R ∈,且a b >,则下列不等式成立的是( ) A .22a b >B .ac bc >C .a c b c +>+D .11ab<4.在四边形ABCD 中,AB DC =,且AB BC=,那么四边形ABCD 为( ) A .平行四边形B .菱形C .长方形D .正方形5.已知函数()cos3f x x =的图象向右平移12π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为()A .()cos 312g x x π⎛⎫=+ ⎪⎝⎭B .()cos 34g x x π⎛⎫=+ ⎪⎝⎭C .()cos 312g x x π⎛⎫=- ⎪⎝⎭D .()cos 34g x x π⎛⎫=- ⎪⎝⎭6.下列函数中,最小正周期是π,且在区间,2n π⎛⎫⎪⎝⎭上是增函数的是( ) A .sin 2y x =B .sin y x =C .tan 2xy =D .cos 2y x =7.已知实数x ,y 满足约束条件2602000x y x y x y --≤⎧⎪-+⎪⎨⎪⎪⎩≥≥≥,则z x y =+的最大值为( ) A .0B .18C .2D .38.中国古代数学著作《算法统宗》中有这样一格问题:“一百二十六里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见每日行数里,请公仔细算相还”,其意思为:“有一个人要去126里外的地方,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第一天走了( )A .64里B .32里C .16里D .8里9.已知等差数列{}n a 的前n 项和为n S ,若452a a +=,则8S 等于( ) A .8B .9C .10D .11密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题10.已知正方形ABCD 的边长为2,点P 在线段CD 上运动,则AP AB ⋅的取值范围为()A .2,2⎡⎤-⎣⎦ B .2,4⎡⎤⎣⎦C .[]0,4D .2⎡⎣11.ABC △的内角,,A B C 的对边分别是,,a b c ,若sin cos sin A B C <,则ABC △一定为( )A .锐角三角形B .直角三角形C .钝角三角形D.等边三角形12.ABC △的内角,,A B C 的对边分别是,,c a b ,(),m a c b =+,(),2n a c b a=-,若m n ⊥,则()2sin22tanA B -的取值范围为( )A .(0,526-B .[)2,0-C .2,526⎡--⎣ D .()2,0-二、填空题:(本大题共4小题,每小题5分,共20分,请将答案填在答题卷中对应题号后的横线上.)13.已知O 为坐标原点,()1,2OA =,()1,3AC =-,则OC =______.14.若关于x 的不等式4x xm +≥对任意()0,x ∈+∞恒成立,则实数m的取值范围是 ______.15.已知函数()sin f x x =,[]0,x π∈,实数[)0,1k ∈,则关于x 的方程()f x k =所有根之和为______.16.已知数列:1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16,…其中第一项是1,接下来的两项是1,2,再接下来的三项是1,2,4,依此类推.若该数列的前n 项和是2 的整数次幂,且3100n <<,则n 的所有取值的和为 ______.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知等差数列{}n a ,等比数列{}n b 满足:113a b ==,4212a b ==.(1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n S .18.(12分)已知向量a ,b 满足:2a =,()1,1b =. (1)若//a b ,求a 的坐标;(2)若()6a a b ⋅+=,求a 与b 的夹角的余弦值.19.(12分)已知角,2παπ⎛⎫∈ ⎪⎝⎭,且角α的终边与单位圆的交点为525⎛ ⎝⎭. (1)求cos α的值;(2)若()3sin 5αβ-=-,,2πβπ⎛⎫∈ ⎪⎝⎭,求sin β的值.20.(12分)如图,某海港一天从0~12时的水位高度y (单位:密线学校 班级 姓名 学号密 封 线 内 不 得 答 题米)随时间t (单位:小时)的变化近似满足函数()()sin 0,0y A t b ωϕωϕπ=++><<.(1)求该函数的解析式;(2)若该海港在水位高度不低于6米时为轮船最佳进港时间,那么该海港在0~12时,轮船最佳进港时间总共多少小时?21.(本题10分)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,向量BA与AC 的夹角的余弦值为13。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.设集合{}2{1,2,3},|1A B x x ===,则A B =() A .{}1- B .{1}C .{1,1}-D .{1,2,3}2.sin 20cos70cos20sin 70+=() A .0B .1-C .1D .12 3.下列函数中,在(0,)+∞上存在最小值的是( ) A .2(1)y x =-B .y x =C .2x y =D .ln y x =4.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =( ) A .3-B .1-C .1D .35.在ABC ∆中,D 是BC 上一点,且13BD BC =,则AD =( )A .13AB AC +B .13AB AC -C .2133AB AC + D .1233AB AC + 6.在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) A .5B .8C .10D .147.等比数列{}n a 的各项均为正数,且675818a a a a +=,则3132312log log log a a a ++⋅⋅⋅=()A .12B .10C .8D .32log 5+8.已知等差数列5,247,437,…,的前n 项和为n S ,则使得n S 最大的序号n 的值为( ) A .7B .8C .7或8D .99.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1000km/h ,飞行员先看到山顶的俯角为30︒,经过1 min 后又看到山顶的俯角为75︒,则山顶的海拔高度为(精确到0.1 km 3 1.732≈)A .11.4 kmB .6.6 kmC .6.5 kmD .5.6 km10.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( ) A .12B 21C .14D .22111.如图,网格纸上小正方形的边长为1,粗实线画出的是某密线学校 班级 姓名 学号密 封 线 内 不 得 答 题多面体的三视图,则此几何体的表面积为( )A .(6223+B .6225+ C .10 D .1212.对任意实数x ,[]x 表示不超过x 的最大整数,如[3.6]3=,[ 3.4]4-=-,关于函数1()33x x f x ⎡+⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦,有下列命题:①()f x 是周期函数;②()f x 是偶函数;③函数()f x 的值域为{0,1};④函数()()cos g x f x x π=-在区间(0,)π内有两个不同的零点,其中正确的命题为( ) A .①③B .②④C .①②③D .①②④第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
(2)由余弦定理可得 ,
即 ,
所以 ,所以 ,
因为 ,
所以 ,
因为 ,所以 ,当且仅当 时取等号,
所以 ,
所以 面积的最大值为 .
【点睛】此题考查三角函数的二倍角公式、诱导公式,考查了正余弦定理,利用了基本不等式求三角形面积的最大值,考查了计算能力,属于中档题.
21.(1)2;(2) .
【解析】
【分析】
【详解】依题意可知 .
由于 满足 ,则 ,所以数列 为等比数列,设公比 , 对应的频率为 ,题目所求半音与 的频率之比为 ,所以所求半音对应的频率为 .即对应的半音为 .
故选:B
【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.
9.B
【解析】
【分析】由 ,化简 , ,得到 ,再用基本不等式求解.
人教版2020--2021学年下学期期末考试卷
高一数学
(满分:150分时间:120分钟)
题号



总分
得分
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).
1.设 ,集合 ,则 ( )
A. B. C. D.
2.已知一个几何体 三视图如图所示,则此几何体的组成方式为()
根据题意得
解得 , ,
所以
.
故答案为:120.
【点睛】本题考查了等差数列通项公式与前 项和公式的简单应用,属于基础题.
14.
【解析】
【分析】
作出可行域,平移目标函数 ,其截距最大时, 有最大值.
【详解】解:作出可行域如图:
由 解得 ,由 得 ,
平移直线 ,结合图像知,直线过点A时, ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学下学期期末测试卷(三)
第Ⅰ卷(选择题共60分)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上. 1.5sin()3
π
-
的值为 ( )
A.2
B.2-
C.1
2- D.12 2.已知a v = (2,3),b v =(4,y),且a v ∥b v ,则y 的值为 ( ) A.6 B.-6 C.8
3
D.-83
3.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )
4. 如右图所示,D 是ABC ∆的边AB 上
的中点,记1BC e =u u u r u r ,2BA e =u u u r u u r
,则向量CD =u u u r ( )
A .1212e e --u r u u r
B .1212e e -+u r u u r
C .1212
e e -u r u u r
D .1212
e e +u r u u r
5.已知正边形ABCD 边长为2,在正边形ABCD 内随机取一点P ,则点P 满足
||1PA ≤的概率是( )
A .
4
π B .
8
π C .116
π
-
6、︒150tan 的值为( ) A 、
3
3 B 、3
3-
C 、3
D 、3-
7、已知角α终边上一点
)0)(3,4(<-a a a P ,则αsin 的值为( ) A 、53 B 、54- C 、54 D 、5
3- 8、已知角θ的顶点与原点重合,始边
与x 轴的正半轴重合,终边在直线
x y 2=上,则θ2cos =( )
A 、5
4- B 、5
3-
C 、5
3 D 、5
4 9



3sin(2)3
y x π
=+,
则下列关于它的图象的说法不正确的是
A .关于点(,0)6
π
-对称
B .关于点(,0)3π
对称
C .关于直线712x π=对称
D .关于直线512
x π
=对称
10.下列函数中,周期为π,且在[,]42
ππ
上为减函数的是 A

cos()2
y x π
=+ B .cos(2)2
y x π
=+
C .sin()2
y x π
=+ D.
sin(2)2
y x π
=+
11. 下列命题中正确的个数是( ) ①若直线a 不在α内,则a ∥α;
②若直线l 上有无数个点不在平面α
内,则l ∥α;
③若直线l 与平面α平行,则l 与α
内的任意一条直线都平行;
④若l 与平面α平行,则l 与α内
任何一条直线都没有公共点;
⑤平行于同一平面的两直线可以相
交. A .1 B . 2
C .3
D .4 12. A 为△ABC 的内角,且A 为锐角,则A A cos sin +的取值范围是( )
A .)2,2(
B .)2,2(- C

D .]2,2[-
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷
上.
13.某林场有树苗30 000棵,其中松
树苗4 000棵. 为调查 树苗的生长情况,采用分层抽样的
方法抽取一个容量为 150的样本,则样本中松树苗的数量
为 .
14. 函数sin()(||)2
y A x πωϕϕ=+<部分图
象如右图,则
函数解析式为y = . 15.已知向量,a b r r
夹角为45︒ ,
且1,2a a b =-=r r r

则_____b =r
.
16.△ABC 的三内角分别为A 、B 、C ,
若22sin sin (sin sin )sin A C A B B -=-,则角C 等于________。

三、解答题:本大题共6小题,共70分,解答应写出文字说明或演算步骤。

17.(本小题满分10分)
已知向量a r =()1,1m +,向量
b r =()0,2,且(a r -b r )⊥a r
. (1)求实数m 的值;
(2) 求向量a r 、b r
的夹角θ的大小.
18. (本小题满分12分)
已知函数cos 2()sin()4
x
f x x π=-
(Ⅰ)化简函数()f x 的解析式,
并求定义域;
(Ⅱ)若4
()3
f α=
,求sin 2α的值. 19.(本小题满分12分)
高一、三班n 名学生在一次数学单元测
试中,成绩全部介于
80分与130分之间,将测试成绩按如
下方式分成五组,第一组[80,90);
第二组[90,100),……,第五组[120,130],并得到频率分布表如下: (Ⅰ) 求n 及分布表中x ,y ,z 的值;
(Ⅱ)设, t s 是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “10t s -≤”的概率. 20、(本小题满分12分)
已知a →
=(1,cos x ),b →
=(1
5
,sin x ),
x ∈(0,π)
(1) 若a →
//b →
,求sin x +cos x
sin x -cos x
的值;
(2)若a →⊥b →
,求cos x -sin x 的值. 21.(本小题满分12分) 已

)
sin()tan()tan()2cos()2
sin()(απαππααπαπ
α--++---=
f
(1)化简)(αf
(2)若5
1
)2
cos(=-πα,求)(αf 的值
22、(12分)已知(3sin ,cos )a x m x =+r
,(cos ,cos )b x m x =-+r , 且b a x f ρρ⋅=)(
(1) 求函数()f x 的解析式;
(2)
若,63x ππ⎡⎤∈-⎢⎥⎣⎦
, ()f x 的最小值
是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.
17.解:(Ⅰ)
由已知得,a r
-b r
=()1,1m -,
…… 2分
又(a r -b r )⊥a r ⇔()0a b a -⋅=r r r

即1(1)(1)0m m +-+=…… 4分 ∴ 20,0m m ==解得
18. 19.





分组 频数 频率
[80,90)
0.04 [90,100)
9
[100,110) 0.38
[110,120) 17 0.34
[120,130] 3 0.06
10.040.380.340.060.18y =----=.
………………………………2分
3
500.06
n =
=. …………………………………………………3分
500.042
x =⨯=, 500.3819z =⨯=. ……………………………5分
(Ⅱ)第一组[80, 90)中有2名学生,设其成绩为,m n ;第五组有3名学生,设其成绩为a b c 、、.则抽取(,)t s 的基本事件空间
{(,),(,),(,),(,),(,),(,),(,)m n m a m b m c n a n b n c Ω=(,),(,),a b a c }(,)b c 共10个
基本事
件. ………………………………………………………8分
设事件A 为“10t s -≤”则A ={}(,),(,),(,),(,)x y a b a c b c
. ………10分 所以42()105
P A =
=. 即事件10t s -≤的概率为25
. 20. 21. 22.

:
(1)
()(3sin ,cos )(cos ,cos )
f x a b x m x x m x ==+-+v v
g g

22()3sin cos cos f x x x x m =+-
(2)
23sin 21cos 2()2
x x
f x m +=
+- 由
,63x ππ⎡⎤
∈-⎢⎥⎣⎦
,
52,666x π
ππ⎡⎤∴+
∈-⎢⎥⎣⎦
,
1sin(2),162x π⎡⎤
∴+∈-⎢⎥⎣⎦
,
2114
22
m ∴-+-=-,
2m ∴=±
max 11
()1222f x ∴=+-=-
, 此时
26
2
x π
π
+
=
, 6
x π
=
.。

相关文档
最新文档