电化学原理第五章

合集下载

第五章电化学基础

第五章电化学基础

原电池是将化学能转化为电能的装置
第五章电化学基础
盐桥的作用: 沟通二溶液中的电第五章荷电化学基保础 证反应继续进行
形成原电池的条件
1.一个能够正向自发的氧化还原反应 。 2.氧化反应与还原反应分别在两极进行。 3.必须有盐桥(或多孔陶瓷、离子交换膜)
等连通装置。
第五章电化学基础
2. 电极反应和电池反应 由电流方向知两极反应: e-
金属置于其盐溶液时: M-ne-→Mn+
同时: Mn++ne-→M 当溶解和沉积二过程平
衡时,金属带电荷,
溶液带相反电荷。两种电
荷集中在固-液界面第五章附电化学基近础 。形成了双电层。
• 电极电势的产生


溶液


溶液
M
Mn+(aq) + 2e
双电层的电势差即该电极的平衡电势,
称为电极电势,表示为:
第五章电化学基础
5.2.2 电极电势的确定
1. 标准氢电极:
c(H+) =1 mol·dm-3 p(H2) = 105 Pa
H /H2
0.0000v
第五章电化学基础
2. 标准电极电势的测定:
第五章电化学基础
参比电极
装置图
第五章电化学基础
甘汞电极P表 , tH示 (gl)H 方 2C g2法 (lsC ): (lc) 电极:反 H应 2C g2(ls)2e⇌ 2Hg(2lC)l(aq )
任一自发的氧化还原反应都可以组成一个 原电池。如:
Cu+ FeCl3 CuCl+ FeCl2 (-)Cu∣CuCl(S)∣C第l五-章电化学‖基础 Fe3+,Fe2+∣Pt(+)

电化学原理及应用智慧树知到课后章节答案2023年下北方民族大学

电化学原理及应用智慧树知到课后章节答案2023年下北方民族大学

电化学原理及应用智慧树知到课后章节答案2023年下北方民族大学北方民族大学第一章测试1.电解池的正极对应于()A:阴极 B:不确定 C:阳极答案:阳极2.影响离子运动速度的主要因素不包括:()A:离子的本性 B:温度 C:溶剂黏度 D:溶液pH答案:溶液pH3.第一个化学电源是1799年由物理学家()。

A:法拉第 B:伽伐尼 C:伏打答案:伏打4.电池放电时正极对应于()。

A: 不确定 B:阳极 C:阴极答案:阳极5.目前电化学的测量方法有()。

A:示差法 B: 稳态法 C:暂态法 D:补偿法答案: 稳态法;暂态法6.()属于电化学研究范畴。

A:腐蚀 B:电解池 C:电池 D:磨损答案:腐蚀;电解池 ;电池7.石墨中能够导电的载流子是()。

A:电子B: 等离子体 C:其余选项都不对D:离子答案:电子8.对电化学学科做出重大贡献的人物有()A:塔菲尔 B:牛顿 C:法拉第 D: 能斯特答案:塔菲尔;法拉第; 能斯特9.现代电化学研究的主体对象是()。

A:电极过程动力学 B: 电化学热力学 C:电解质溶液理论 D:其余选项都不对答案:电极过程动力学10.第一类导体的载流子是()A:空穴 B:正离子 C:电子 D:负离子答案:空穴;电子第二章测试1.相间电位产生主要的原因是()A:偶极子双电层 B:吸附双电层 C:离子双电层 D:表面电位答案:离子双电层2.最精确和合理的测量电池电动势的方法是 ( )A:电容法 B:补偿法 C:示差法 D:伏安法答案:补偿法3.伽伐尼电位差又称为()A:化学位差 B:电化学位差 C:内电位差 D:外电位差答案:内电位差4.()是可测可控的。

A:绝对电位 B:外电位 C:内电位 D:相对电位答案:外电位;相对电位5.所有的电极都能建立平衡电势。

A:对 B:错答案:错6.298 K时,电池反应H2(g)+1/2 O2 = H2O(g)的标准电池电动势为E1,那么电池反应2H2(g)+O2 = 2H2O(g) 所对应的电动势为E2()A: E1=1/2E2 B: E1=E2 C:无法确定 D: E1=2E2答案: E1=E27.盐桥能()消除液接电位。

电化学原理-吴金平-2012第五章504-1-wu

电化学原理-吴金平-2012第五章504-1-wu
③ 液态中的对流总是存在, 一旦
0
半无限扩散条件
c0
边界条件: x→∞
c0
0
c( x, t )
cS
ci ( x , t ) ci
ci ( x 0, t ) cis
边界条件:
x=0
ci ( x, t ) 2 ci ( x, t ) Di t x 2
x
电极表面浓度固定的扩散方程
ci ( x, t ) 2 ci ( x, t ) Di 0 x , t 0 2 t x 初值条件:ci ( x, t 0) ci 0 边值条件1:ci ( x =, t ) ci 0 边值条件2:ci ( x =0, t ) ci
1 .0
erf
2

e
0

y2
dy
x 2 Di t
x 0 2 Di t erf 0 erf 1
erf ( )

x 2 2 Di t
1
2
扩散方程解的讨论:
x ci x, t c c c erf 2 Dt i c erf 2 Nhomakorabea
e
0

y2
dy

c0
ci ( x, t 0) ci
0
扩散层总厚度 ' 4 Dt
t2 t3
t1
c0
t4
cS
t→∞ '(t )
4 Dt
ci (x 0, t) c
s i
4 Dt1
'(t1 )
'(t2 )
4 Dt2
4 Dt3

电化学原理5PPT课件

电化学原理5PPT课件
• 几个接续进行的单元步骤达到稳态时,每个步骤的速度都相等,都等于最慢步骤
s t e p , R D S ) 的 速 度 。 这 个 控 制 着 整 个 电 极 过 程 速 度 的 单 元 步 骤 , 称 为 速 度 控 制 步 骤 。
• 若两步骤反应能力相差不大,则为混合控制 • 在一定条件下可以转化 • 并联进行的单元步骤快步骤是 • 其他步骤可认为处于热力学平衡
在电极上无外电流通过时,金属Ag与Ag+处于动
态平衡,在界面两相间Ag+的交换速度相等,即
Ag+还原速度
v
e
与Ag氧化速度
v
e
相等
ve ve
假定平衡时,Ag+的交换速度为1030/(s·m2);而当电 极上有外电流通过时,Ag+从溶液深处扩散到电极 表面附近的速度仅为1020/(s·m2)。
稳态下,电子转移步骤也应按液相传质步骤速度进 行,即
电极及各连接点的接触电阻:相对较小
R
溶液电阻:相对较大
3
第3页/共34页
5.1.1 电极的极化 (polarization)
• 可逆电极:氧化还原反应速度相等,物 质交换和电荷交换平衡。
• 不可逆电解:电荷交换或物质交换不平 衡。
• 电极极化:电流通过电化学装置时,电
极的电极电位偏离其平衡值的现象称为
•(3)过电位(overpotential):电 极电位偏移量的绝对值。
•(4)极化曲线(polarization curve):电流与电极电位的关系 作图得出的曲线。
•(5)电解池的极化曲线
•(6)原电池的极化曲线
9
第9页/共34页
10
第10页/共34页

应用电化学---第五章 无机物的电解合成

应用电化学---第五章  无机物的电解合成

(3)可以根据需要控制反应的方向。 --通过控制电势,选择适当的电极等方法, 实现电解反应的控制,避免副反应,得到所 希望的产品。 (4)环境污染少、产品纯净。 --电合成中一般用不外加化学氧化剂或还原 剂,杂质少,产品纯。且能实现自动、连续、 密闭生产,对环境造成的污染少。
二.电解合成法的缺点 (1)消耗大量电能。例如生产1吨铝耗电 14000-15000KWh。 (2)占用厂房而积大。由于生产中要同时 用许多电解槽,一些前处理还要占用厂房 等。 (3)电解槽结构通常复杂,电极间电器绝 缘,隔膜的制造、保护和调换比较困难。 (4)电极易受污染,活性不易维持,阳极 尤易受到腐蚀损耗。
全氟磺酸膜 (Nafion膜)的分子结构含强酸 根:
Plemion膜(全氟羧酸膜)的分子结构含有弱 酸根:
两种膜都是聚四氟乙烯基的离子文换树脂, 故既能耐强碱和酸,耐有机物侵蚀,但价 格昂贵。用强酸膜时,阳极室NaOH浓度限 于20%以下;用弱酸膜时,NaOH浓度可达 40%,最大电流密度6KA/m2。 --另外,还有磺化聚苯乙烯膜,其价格低 廉,但在有机介质中易老化,必要时两层 膜迭合使用可延长其使用寿命。表5-2给出 几种离子膜槽电解的操作参数。
§5.5 电解水生产氢气和氧气
成本高,通常石油化工、氯碱工业都产出 氢气,液化空气可以得到氧气,成本低, 但纯度也低。在前面的电化学理论中讲到 了氢和氧的电极行为,这里结合起来就可 以了:
由于没有副反应,电流效率接近100%,槽 电压应该高于理论分解电压(1.23V),实 际工作电压1.8-2.6V 阴阳极之间必须有隔膜,防止气体的混合。
§5.4 锰化合物的电解合成
§5.4.1 电解制取二氧化锰 应用:电池、精细化工、医药 二氧化锰的活性及其性质与晶粒大小、晶格 缺陷的密度和水合程度相关。 通过电化学方法,阳极氧化二价锰制得的MnO2 有很好的活性,大多被用于制造高质量锌 锰电池和碱性MnO2电池。

【电化学】第五章 电化学能量转换和储存

【电化学】第五章  电化学能量转换和储存

2Na+5S=Na2S5
(初期)
2Na+4Na2S5=5Na2S4 (中、后期)
2Na+Na2S4=2Na2S2 (后期,Na2S5耗尽后)
二、固体电解质电池
与溶液型电解质电池相比,其特点是贮存寿命长,使用 温度范围广,耐振动及冲击,没有泄漏电解液或产生气体 等问题,能制成薄膜,做成各种形状和微型化。但是固体 电解质的电导率低于液态电解质溶液,常温时电他的比功 率和比能量较低,容易出现极化,不易适应工作时体积变 化
第三节 蓄 电 池
一、铅酸蓄电池
1、 铅酸蓄电池分类、结构和工作原理
铅酸蓄电池分类
启动用蓄电池
固定型蓄电池
牵引用蓄电池
摩托车用蓄电池
按用途分
船舶用蓄电池
航空用蓄电池
坦克用蓄电池
铁路客车用蓄电池
航标用蓄电他
矿灯用蓄电池等
三.锌汞电池和锌银电池
1.锌汞电池
Zn(含少量Hg)|30-40%KOH(ZnO饱和)|HgO,Hg 负极反应 Zn+4OH- = Zn(OH)42-+ 2e
(6)自放电
第三节 蓄 电 池
3、密封式铅酸电池 使电池达到气密有三个途径:
(1)气相催化法 (2)辅助电极式 (3)阴极吸收式
二、镉镍蓄电池 碱性蓄电池是使用KOH或NaOH电解液的二次电池的
总称。包括镉镍、镉银、锌银、锌镍、氢镍等蓄电池 镉镍电池的优点:①对进行高率放电;②低温特性好;
③循环寿命长;④即使完全放电,性能也不怎么下降; ⑤易于维护;⑥易于密闭化。缺点主要是电压较低
三、电池的命名和型号 自学!!
第二节 用锌作负极的电池
一、锌锰干电池 锌-二氧化锰电池常称锌锰十电池,正极为二氧

电化学原理知识总结

电化学原理知识总结

如果电极与参比电极之间的电压(电位差)测定值为+0.3V,则可以说这电极相对于参比电极的电位是+0.3V。

参比电极以接地为基准,即电位设为0。

将参比电极接电位计的接地端。

三电极体系包括工作电极、对电极、参比电极。

当工作电极和参比电极之间设定在某一电位时,电流随设定电位以及电解液浓度而变化。

铂电极电位的大小由Fe(CN)63-+e-=Fe(CN)64-的氧化还原平衡说决定,这种平衡状态下的电极电位叫做氧化还原电位。

这种情况下,铂电极与水不发生反应。

WE(工作电极,working electrode),CE(辅助电极、对电极,counter electrode),RE (参比电极,reference electrode)。

自然电位rest potential 即阳极和阴极都没有电流时的电位。

恒电流电解时,流过电极的电流是一定的。

随着电解的进行,电解液的浓度减少,其结果是电流-电位曲线的电流值也不断减少,为保持电流恒定,电极电位必须移动,通过改变电极电位来维持电流恒定。

开路电压表示无负荷状态下的端电压,是正极和负极电位的代数和。

电化学中,一般把离子导体叫做电解质。

在电极-电解质溶液界面上,电子导电性变成了离子导电性。

恒电流法是设定回路中的电流,以测定其电位的变化。

恒电位仪就是使相对于参比电极的工作电极的电位恒定的保持在设定电位上的装置。

第四章电化学测定体系的组成惰性电极是指以铂和金为代表的,在测定电位区域里能稳定工作的电极。

必须具有以下特点:(1)所研究的电化学反应不会因电极自身所发生的反应而受影响,并且能够在较大的电位区域中进行测定。

(2)所使用的金属电极不会与溶剂或者支持电解质反应而使其分解。

(3)电极不易溶解或者生成氧化膜。

(4)电解合成时,金属电极表面对电化学反应具有催化作用。

以某pH值的水溶液做电解液,研究溶解于液相中的化学物质所进行的氧化还原反应时,电极材料的选择主要考虑氢过电位、氧过电位和电极的溶解电位等。

电化学原理-第五章-液相传质步骤动力学-2015修订

电化学原理-第五章-液相传质步骤动力学-2015修订

y u 1/ 6 1/ 2 1/ 2 0
n0 知
y1/2


u 1/ 0
2
而旋转圆盘电极上各点的切向速度:
u0 2n0 y
所以:
u01/ 2 y1/ 2 (2n0)1/ 2 常数
y 有:
Di1/3 1/6 常数
即:旋转圆盘电极上各点的扩散层
厚度与y值无关。
1、电极表面附近的液流现象及传质作用 2、扩散层的有效厚度 3、对流扩散的动力学规律
摩擦力
y0
边界层:存在流速梯 度的区域。
电极表面上各点,边 界层厚度不同。
动力粘滞
层流
y0
边界层
根据流体力学理论 可知:
边界层厚度:
B y / u0 (5.10)
动力粘滞系数:


粘度系数 密度
当 j 很小时,由于 j jd
则 (5.40) 简化为:
RT(1 j )
nF
jd (5.41)
对数 直线 关系 关系


0

RT nF
ln OcO0

RT nF
ln(1
j jd

作极化曲线。

0 2.由3RT
nF
log

O cO0

2.3RT nF
log(1
液相传质步骤动力学
液相传质常是电极反应的限制步骤。 1mol / L 时电极反应最大速度可达 105 A / cm2
实际电化学反应装置的最高电流密度极少 超过几 A / cm2 表明电化学反应的潜力未发挥出来。
通过减缓或增加液相传质来控制电极反应速度。 采用多孔膜和选择透过性薄膜减少干扰组分对 电极反应的影响。

电化学原理(第三版)思考题&公式

电化学原理(第三版)思考题&公式

第五章思考题1.在电极界面附近的液层中,是否总是存在着三种传质方式?为什么?每一种传质方式的传质速度如何表示?答:电极界面附近的液层通常是指扩散层,可以同时存在着三种传质方式(电迁移、对流和扩散),但当溶液中含有大量局外电解质时,反应离子的迁移数很小,电迁移传质作用可以忽略不计,而且根据流体力学,电极界面附近液层的对流速度非常小,因此电极界面附近液层主要传质方式是扩散。

三种传质方式的传质速度可用各自的电流密度J来表示。

2.在什么条件下才能实现稳态扩散过程?实际稳态扩散过程的规律与理想稳态扩散过程有什么区别?答:当电极反应所消耗的反应粒子数和扩散补充来的反应粒子数相等,就可以达到一种动态平衡状态,即扩散速度与电极反应速度相平衡。

这时反应粒子在扩散层中各点的浓度分布不再随时间变化而变化,而仅仅是距离的函数;扩散层的厚度不再变化;离子的浓度梯度是一个常数,这就是稳态扩散过程。

理想条件下,人为地把扩散区和对流区分开了,因此理想稳态扩散过程中,扩散层有确定的厚度;而实际情况下,扩散区与对流区是相互重叠、没有明显界限的,只能根据一定的理论来近似求得扩散层的厚度。

二者在扩散层内都是以扩散作用为主。

因此二者具有相似的扩散动力学规律,但推导实际情况下的稳态扩散动力学公式需要借用理想稳态扩散的动力学公式。

3.旋转圆盘电极和旋转圆环圆盘电极有什么优点?它们在电化学测量中有什么重要用途?答:旋转圆盘电极和旋转圆环圆盘电极上各点的扩散层厚度是均匀的,因此电极表面各处的电流密度分布均匀。

这克服了平面电极表面受对流作用影响不均匀的缺点。

它们可以测量并分析极化曲线,研究反应中间产物的组成及其电极过程动力学规律。

4.试比较扩散层、分散层和边界层的区别。

扩散层中有没有剩余电荷?答:根据扩散传质理论,紧靠电极表面附近,有一薄层,此层内存在反应粒子的浓度梯度,这层叫做扩散层;电极表面的荷电粒子由于热运动而倾向于均匀分布,从而使剩余电荷不可能完全紧贴着电极表面分布,而具有一定的分散性,形成所谓分散层;靠近电极表面附近的液流层叫做边界层,越接近电极表面,其液流流速越小。

电化学原理知识点

电化学原理知识点

电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数:活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I:离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G,单位为S ( 1S =1/Ω)。

第二章是电化学热力学界面:不同于基体的两相界面上的过渡层。

相间电位:两相接触时存在于界面层的电位差。

产生电位差的原因是带电粒子(包括偶极子)分布不均匀。

形成相间电位的可能情况:1。

残余电荷层:带电粒子在两相间的转移或外部电源对界面两侧的充电;2.吸附双电层:界面层中阴离子和阳离子的吸附量不同,使界面和相体带等量相反的电荷;3.偶极层:极性分子在界面溶液侧定向排列;4.金属表面电势:各种短程力在金属表面形成的表面电势差。

电化学基本原理与应用-第5章

电化学基本原理与应用-第5章

第5章液相传质过程与浓差极化主要内容5.1 液相传质方式与基本方程5.2 平面电极上的稳态扩散传质过程5.3 浓差极化动力学方程5.4 电迁移对稳态扩散的影响液相传质过程是电极过程中必不可少的过程,涉及反应物离子向电极表面的传质过程以及生成物向溶液本体的传质过程。

由于电极过程中传质过程速度的缓慢而引起的电极极化现象为“浓差极化”。

本章将介绍液相传质过程中的规律以及浓差极化控制的电极过程的动力学方程。

为了简单,在讨论浓差极化时,假设电子转移速度很快,远远大于液相传质速度。

5.1 液相传质方式与基本方程5.1 液相传质方式与基本方程5.1.1 液相传质的三种方式5.1.2 三种液相传质的比较5.1.3 液相传质的基本方程5.1.1 液相传质的三种方式(1)对流溶液中物质的粒子随着流动的液体一起运动,此时液体与离子之间没有相对运动,这种传质方式叫对流。

包括:自然对流(温度差、密度差等),强制对流(搅拌等)。

对流可以增加单位时间内到达电极表面的粒子数目。

采用对流流量πc,i 来描述溶液中i离子的对流传质速度。

πc,i :粒子i 在单位时间、垂直于运动方向的单位截面积上流过的量,单位(mol •m -2•s -1) ;v x :与电极表面垂直方向上的液体的流速,单位(m •s -1);c i :为i 离子的浓度,单位(mol •m -3)。

ix i c c v •=,π(2)电迁移当所研究的粒子带有电荷(即为离子)时,在电场力的作用下,将引起带电粒子迁移。

电迁移作用引起的所研究粒子的传质速。

度为πe,i显然:当研究对象(反应物或生成物)不带电荷时,如为中性分子,则不存在电迁移。

(3)扩散当溶液中某一组分存在浓度差,即在不同区域内某组份的浓度不同时,该组份将自发的从高浓度区域向低浓度区域移动,这种液相传质运动叫扩散。

稳态扩散时,即扩散区域内各点浓度不随时间而变化,这时可用Fick第一定律计算扩散速度。

(3)传质发生的区域电极表面附近的液层可以分为双电层区、扩散层区、对流区。

电化学原理第5章:液相传质步骤动力学介绍

电化学原理第5章:液相传质步骤动力学介绍

Ci0 Cis1 Cis4
1
100
非稳态扩
ci f(x,t)
• 稳态扩散:扩散的速度不 断提高,扩散补充的反应

dc 常数 dx
离子数与电极反应消耗的
反应粒子数相等,扩散层
扩散层厚度δ随时间变化
稳态扩散:
ci f(x) dc 常数 dx
中,各点的反应粒子浓度
分布不再随时间的变化而 变化,仅仅是距离的函数。

2 0.62nFD2 / 3 1/ 61/( ci0 cis)
jd nFDi
ci0

0.62nFD2 / 3 1/ 6 1/ 2 ci0
(5.19)
3、旋转圆环-圆盘电极

控制盘电极和环电极 之间的电位差,研 究电极过程的中间 产物。
5.2.4、电迁移对稳态扩散过程的影响 1、电解质溶液中的电迁移现象
四、电迁移对稳态扩散过程的影响
5.2.1 理想条件下的稳态扩散
1.理想条件:排除电迁移的影响,区分扩散区 和对流区,人为地创造一种单纯的扩散过程
0 s c Ag c Ag
强烈搅拌
管径极小
C0
K
大量局外 电解质
dc c c 常数 dx l
0 s
Ag

NO 3
2.理想稳态扩散的动力学规律
液相传质步骤控制的动力学规律,然后再考虑其他
单元步骤对它的影响。
液相传质动力学,实际上是讨论电极表面物质浓度 变化的速度(向电极表面传输物质的速度)。
与电极反应的速度有关,但如果我们假定电极反应
速度很快,那么这种物质浓度的变化速度主要取决
于液相传质的方式及其速度。
因此.我们要先研究液相传质的几种方式。

电化学原理-201x第五章501-1-wu

电化学原理-201x第五章501-1-wu
非稳态扩散过程: 随时间变化的扩散过程
ci ci (x,t) ci (x), ci (x) / t 0 J扩,i Didci (x) / dx 常数
整理课件
两种扩散过程举例: Ag+(S)+e→Ag(s)在如下装置中的电沉积
对流区和扩散 区截然分开
容器A中只存 在对流传质。
C0
毛细管内只存在 扩散传质。
c
s i
达到稳态后:
稳态浓 度分布
浓差极化的范围
5
ci0 cis
被限制在长度为l 的毛细管内
dc i 0 dt
l
dci 常 数整理课件 dx
dci ci0 cis
dx
l
2、理想稳态扩散的动力学规律
根据菲克第一定律,稳态下的 i 粒子的扩散流量
dci ci0 ciS dx l
J扩 ,i Did dcxi Di ci0 lciS
CS
I≠0
Cs <C0
x
非稳态:cc(x,t) 稳态:c c(x)
c(x,t)/ t 整0理课件
c / t 0
无对流情况下的非稳态过程——不会演 化到稳态
1 、0、1秒 ;2、1秒 ;3、10秒;4、100秒
整理课件
电极表面附近:i 离子的扩散流量<电极反应消耗量
非稳态扩散过程:浓度随时间 t 位置x变化的过程
当cSi = 0 即“完全浓差极化”时, 得极限扩散电流密度:
d jdnF ici0D nF i2/3u D 0 1 整/2 理课 件1/6y1/2ci0
j理想nF 和实D i际ddc稳ix态x扩0. 散动力d学dcxi规x律0 比c较i0d:ciS.
a. 理想稳态扩散 d l

巴德电化学方法原理与应用第五章答案

巴德电化学方法原理与应用第五章答案

巴德电化学方法原理与应用第五章答案1、检识黄酮类化合物首选()[单选题] *A盐酸-镁粉反应(正确答案)B四氢硼钠反应C硼酸显色反应D锆盐-枸橼酸反应2、二氢黄酮类专属性的颜色反应是()[单选题] *A盐酸-镁粉反应B四氢硼钠反应(正确答案)C硼酸显色反应D锆盐-枸橼酸反应3、二萜的异戊二烯单位有()[单选题] *A5个B6个C3个(正确答案)D4个4、当一种溶剂无法结晶时,常常使用混合溶剂,下列不是常用的混合溶剂是()[单选题] *A甲醇-水B乙酸-水C乙醚-丙酮D石油醚-水(正确答案)5、连续回流提取法与回流提取法比较,其优越性是()[单选题] *A节省时间且效率高B节省溶剂且效率高(正确答案)C受热时间短D提取量较大6、挥发油常见属于哪类萜类化学物()[单选题] *A半萜与单萜B单贴与倍半萜(正确答案)C倍半萜与二萜D二萜与三萜7、生物碱碱性的表示方法常用()[单选题] *ApKBBKBCpH(正确答案)DpKA8、在溶剂沉淀法中,主要是在溶液中加入另一种溶剂一改变混合溶剂的什么实现的()[单选题] *ApH值B溶解度C极性(正确答案)D体积9、处方中厚朴主要化学成分厚朴酚,其结构类型是()[单选题] *A黄酮B香豆素C木脂素(正确答案)D三萜皂苷10、能影响黄酮类成分的溶解性的因素有(多选)()*A黄酮的类型(正确答案)B苷元上取代基的种类、数目和位置(正确答案)C糖基的数目和位置(正确答案)D分子立体结构(正确答案)11、萜类化合物在化学结构上的明显区别是()[单选题] * A氮原子数不同B碳原子数不同(正确答案)C碳环数不同D硫原子数不同12、阿托品是莨菪碱的()[单选题] *A左旋体B右旋体C同分异构体D外消旋体(正确答案)13、以下哪种分离方法是利用分子筛的原理的()[单选题] * A吸附色谱法B萃取法C沉淀法D透析法(正确答案)14、具有光化学毒性的中药化学成分类型是()[单选题] *A多糖B无机酸C鞣质D呋喃香豆素(正确答案)15、E连续回流提取法(正确答案)能用乙醇作溶剂提取的方法有(多选)()* A浸渍法(正确答案)B渗漉法(正确答案)C煎煮法D回流提取法(正确答案)16、碱性最强的生物碱是()[单选题] *A季铵碱类(正确答案)B哌啶类C吡啶类D吡咯类17、E连续回流提取法(正确答案)用乙醇作溶剂提取时,下列说法正确的是()* A对植物细胞壁穿透力强(正确答案)B溶解范围广,提取较全面(正确答案)C提取液中蛋白质、多糖等水溶性杂质少(正确答案)D有防腐作用,提取液不易发霉变质(正确答案)18、萃取时易发生乳化现象的是()[单选题] *A简单萃取法(正确答案)B逆流连续萃取法C二者均是D二者均不是19、与明胶反应生成沉淀的成分是()[单选题] *A强心苷B皂苷C有机酸D鞣质(正确答案)20、具有暖脾胃、散风寒、通血脉作用的是()[单选题] * A穿心莲内酯B青蒿素C莪术醇D桂皮醛(正确答案)21、凡具有()的木脂素,与三氯化铁反应,呈阳性()[单选题] *A酚羟基(正确答案)B羧酸C醇羟基D氨基22、萃取法是利用混合物中各成分在两相溶剂中的分配.系数不同而到达分离的方法,所谓两相溶剂是指()[单选题] *A两种相互接触而又不相溶的溶剂(正确答案)B两种不相互接触而又互相溶的溶剂C两种不相互接触而又不相容的溶剂D两种互相接触而又互相溶的溶剂23、具有挥发性的香豆素成分是()[单选题] *A游离小分子简单香豆素(正确答案)B香豆素苷C呋喃香豆素D双香豆素24、可沉淀具有羧基或邻二酚羟基成分的沉淀法是()[单选题] *A溶剂沉淀法B醋酸铅沉淀法(正确答案)C酸碱沉淀法D水提醇沉法25、生物碱总碱的三氯甲烷溶液,用酸性不同的PH(由高到低)缓冲溶液萃取,最先萃取的生物碱是()[单选题] *A碱性弱的B中等碱性C吡啶类D碱性强的(正确答案)26、E何首乌(正确答案)下列不含蒽醌类成分的中药是()*A丹参(正确答案)B决明子C芦荟D紫草(正确答案)27、临床上应用的黄连素主要含有()[单选题] *A奎宁B小檗碱(正确答案)C粉防己碱D苦参碱28、香豆素衍生物最常见的羟基取代位置是()[单选题] * AC7位(正确答案)BC5位CC3位DC6位29、倍半萜和二萜在化学结构上的明显区别是()[单选题] * A氮原子数不同B碳原子数不同(正确答案)C碳环数不同D硫原子数不同30、乙醇不能提取出的成分类型是()[单选题] *A生物碱B苷C多糖D鞣质(正确答案)。

第五章电位法

第五章电位法
第五章 电位分析法
电分析化学导论
一、电化学分析定义、分类和特点 (一)定义
根据物质在溶液中的电化学性质及其变化来进 行分析的方法称电化学分析。 它是以溶液电导、电位、电流和电量等电化学 参数与被测物质含量之间的关系作为计量基础。
(二)电化学分析法分类
根据所测定的参量的不同,分为三类: 第一类: 根据试液的浓度在某一特定条件下与化学
(二)电解池
将电能转变成化学能的装置。若外加电源加到丹聂尔 电池上,且电动势大于其电池电动势,且方向相反时,则:
电极反应: 锌极:Zn2++2e→Zn
还原反应 阴极 负极 铜极:Cu→Cu2++2e
氧化反应 阳极 正极 电池反应:
Zn2++ Cu→Cu2+ +Zn
显然电解池是不能自发工作的,只有外加电 压达到锌离子还原电位才能进行锌离子的还原反 应,同时铜在阳极上失去电子变为铜离子进入溶 液。
(一)电极电位
一个电化学体系包含有各种相的接触,如金 属-溶液、溶液-溶液、金属-金属、溶液-气 体等。在两相接触的界面上,它们的性质与相内 是不同的,无论是哪种接触,在它们的界面上都 存在电位差。两种不同物相间的电位差称电极电 位。
(1)电极电位如何产生? 当金属导体插入电解质溶液,在金属与溶液交界面发
生飞跃。
5、展望
(1)袖珍微型化: 仪器袖珍化、电极微型化。 (2)生命过程的模拟研究,生命过程的氧化还原反应类似
电极上的氧化还原,用电极膜上反应模拟生命过程,可 深化认识生命过程。 (3)活体现场检测(无损伤分析 )。
二、化学电池
将化学能变成电能的电池称 为原电池;将电能变为化学能的 电池称为电解池,原电池和电解 池统称为化学电池。一般由电极, 盐桥,溶液和容器组成。电池电 动势为正,是原电池,能自发进 行;为负时,是电解池,不能自 发进行。

第五章:局部腐蚀

第五章:局部腐蚀

第五章:局部腐蚀在绪论中我们已说过,根据腐蚀形式可将腐蚀分为两大类:全面腐蚀和局部腐蚀。

全面腐蚀的机理是假定金属表面上为一个自然腐蚀电位,但实际上是微阴极和微阳极位置变换不定的、数量众多的腐蚀原电池,从而使整个金属表面在介质中都处于活化状态,使金属表面都遭受了腐蚀。

全面腐蚀往往造成金属的大量损失,但从技术观点来看,这类腐蚀并不可怕,不会造成突然事故,它可以预测和防止。

(如纯金属和均匀合金自溶解过程)。

局部腐蚀的特点是腐蚀仅局限或集中于金属某一特定部位。

局部腐蚀的阴极和阳极一般可以截然分开,局部腐蚀的预测和防止都存在困难,腐蚀破坏往往在没有预兆情况下突然发生,会造成突然事故,危害性大,本章主要讲局部腐蚀(通常局部腐蚀阴极面积大,阳极面积小)§1 电偶腐蚀电偶腐蚀又称接触腐蚀或双金属腐蚀,当两种金属或合属接触时,两金属之间存在着电位差,由该电位差使电偶电流在它们之间流动,使电位较负的金属腐蚀加剧,而电位数正的金属受到保护。

这种现象称电偶腐蚀、异金属腐蚀或接触腐蚀。

电偶腐蚀在工程中是常见的一种局部腐蚀形态,如黄铜零件和紫铜管在热水中能造成腐蚀。

在这个电偶腐蚀时,黄铜腐蚀加速而造成脱锌现象。

一.电偶腐蚀原理【1】p100-101:为什么会产生电偶腐蚀,当然从腐蚀原电池原理中也能得到回答,但若从混合电位理论出发,可以更清楚地解释电偶腐蚀效应。

由电化学腐蚀动力学可知,两金属偶合后的腐蚀电流强度与电位差、极化率及欧姆电阻有关。

接触电位差愈大,金属腐蚀愈严重,因为电偶腐蚀的推动力愈大。

电偶腐蚀速度又与电偶电流成正比,其大小可用下式表示:式中,Ig为电偶电流强度,Ec、E A分别为阴、阳极金属偶接前的稳定电位,Pc,PA为阴、阳极金属的极化率,Sc、S A为阴、阳极金属的面积,R为欧姆电阻(包括溶液电阻和接触电阻)。

由式可知,电偶电流随电位差增大和极化率、欧姆电阻的减小而增大;从而使阳极金属腐蚀速度加大,使阴极金属腐蚀速度二金属偶接之前,金属1和2的自腐蚀电位分别为E l 和E 2,它们的自腐蚀电流分别为1i 和2i (如图6—2) (图7-28)。

电化学原理-吴金平-2012第五章503-1-wu

电化学原理-吴金平-2012第五章503-1-wu

曲线2——0.1mol/L ZnCl2, 不搅拌。 曲线3——0.1mol/L ZnCl2, 搅拌。
Zn2+ + 2e→Zn
试判断该阴极过程的控制步骤是什么?为什么?
(1)出现极限电流
(2)比较曲线1和2可看出: 极限电流密度随Zn2+浓度增 大而增大
(3)比较曲线2和3可看出: 极限电流密度的大小与搅拌 速度有关
§5.3浓差极化的规律和浓差极化的判别方法
浓差极化:当电极过程由液相传质步骤控制时, 电极所产生的极化称为浓差极化
浓差极化的规律: 浓差极化方程式及其极化曲线的特征
浓差极化的判断:根据浓差极化方程式及其 极化曲线的特征来判断一电极过程是否为液 相传质(扩散)步骤控制。
一、浓差极化规律
以阴极反应为例:O + ne = R
x
若 j << jd 则 j / jd << 1
ln 1
j jd
j jd
RT nFjd
j
即:

RT nFjd
j
j或 j呈直线关系
产物不溶时的浓差极化曲线
2、当反应产物可溶时
以阴极反应:O + ne = R(R可溶,如从电极表面 扩散进入溶液深处或进入金属汞电极内形成汞齐)
解:
阴极反应:
(1) 稳态浓差极化时, 极限扩散电流密度:
答:稳态浓差极化时,极限扩散电流密度为 0.016Acm-2。
【例2】在0.1 mol/L ZnCl2溶液中电解还原锌离子时,阴极过程为 浓差极化。已知锌离子的扩散系数为1×10-5cm2/s,扩散层有效厚 度为1.2×10-2cm。试求:(1)20℃时的极限扩散电流密度。(2) 20℃时测得阴极过电位为0.029V,相应的阴极电流密度是多少?

电化学原理智慧树知到课后章节答案2023年下中国地质大学(武汉)

电化学原理智慧树知到课后章节答案2023年下中国地质大学(武汉)

电化学原理智慧树知到课后章节答案2023年下中国地质大学(武汉)中国地质大学(武汉)第一章测试1.在一定温度下,等浓度的NaOH 溶液(1)与NaCl 溶液(2)中Na+的离子迁移数的关系为()答案:t1< t22.某溶液含有0.01 mol·kg-1 NaCl、0.003 mol·kg-1 Na2SO4、0.007 mol·kg-1MgCl2,此溶液的离子强度为()答案:0.04 mol·kg−13.对于同一电解质的水溶液,当其浓度逐渐增加时,何种性质将随之增加()答案:在稀溶液范围内的电导率4.电流通过一含有金属离子的电解质溶液,在阴极上析出的金属量正比于()答案:通过的电量5.导体分为几类()答案:电子导体;离子导体6.对于给定离子B,应当满足下列条件中的哪几个,才能使离子的摩尔电导率m,B和离子电迁移率u B为常数()答案:一定溶剂下;无限稀释溶液;一定温度下7.对于德拜-休克尔理论,下述哪些说法是错误的()答案:只适用于水溶液;只适用于过渡元素的离子;只适用于饱和溶液8.描述电极上通过的电量与已发生电极反应的物质的量之间的关系的是“法拉第电解定律”。

()答案:对9.电解时,在电极上首先发生反应的离子总是承担了大部分电量的迁移任务。

()答案:错10.Kohlrausch公式能应用于强电解质和弱电解质。

()答案:错第二章测试1.关于电化学体系,以下说法不正确的是()答案:有迁移浓差电池电动势与溶液活度有关,与离子迁移数无关2.下列电极中,属于不可逆电极的是()答案:Cd|NaCl(1 mol/L)3.以下影响电极电位的因素中,说法正确的是()答案:络合剂的加入常使得金属的电极电位负移4.关于相间电位、电极电位、绝对电位和相对电位,以下说法正确的是()答案:相对电位实质上是由参比电极和被测电极组成的特定原电池的电动势;绝对电位是电子导电相和离子导电相之间内电位差的数值;相间电位是两相接触时,在两相界面层中存在的电位差,电极电位是相间电位的特例5.关于不可逆电极的描述,说法正确的是()答案:判断不同金属接触时的腐蚀倾向,如氯化钠溶液中,铝和锌接触,用不可逆电位比标准电极电位更接近实际情况;不可逆电位可以是稳定的,也可以是不稳定的;铝件在海水中形成的电极为不可逆电极6.据Fe-H2O系统的电位pH图,对处于腐蚀区的金属,可采用以下哪些方法防止其腐蚀()答案:调整溶液的pH值至9到13,使金属进入钝化区,采用自钝化技术;人为降低金属的电位,使其处于非腐蚀区;升高金属的电位,使其处于钝化区;采用牺牲阳极阴极保护技术或外加电流阴极保护技术7.导电相的内电位是将一个单位正电荷从无穷远处移入相内所作的电功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17:59:38
当电极上有电流通过时,三种传质方式可能同时存在, 但在一定区域,一定条件下,只有一至二种传质方式起主要 作用。 电极反应消耗大量粒子,要靠传质过程补充,若电解液 含较多电解质,则可忽略电迁移传质作用,向电极表面传输 反应粒子主要由扩散和对流串联而成。通常对流传质的速度 原大于扩散传质的速度,故液相传质过程速度主要由扩散传 质过程控制,它可代表整个液相传质过程动力学的特征,本 章讨论扩散传质动散。 反应初期,反应粒子浓度变化不太大,浓度梯度较小,扩散较 慢,扩散发生范围主要在离电极较近区域,随反应进行,扩 散过来的反应粒子的数量远小于电极反应的消耗量,梯度较 大,扩散范围也增大,反应粒子的浓度随时间和电极表面距 离变化而不断变化。
17:59:38
扩散层中各点的反应粒子浓度是时间和距离的函数,即 Ci=f(x,t) 反应浓度随x和t不断变化的扩散过程,是一种不稳定的扩散 传质过程。这个阶段内的扩散称非稳态扩散或暂态扩散,反 应粒子是x与t的函数。
17:59:38
二、液相传质三种方式的相对比较 (1)传质推动力不同 电迁移:电场力,存在电位梯度 对流传质: 自然对流:或温度差存在,实质是不同部分溶液存在重 力差。 强制对流:是搅拌外力,机械、空气搅拌等。 扩散传质: 推动力是存在浓度差。 (2)从传输的物质粒子的情况看 电迁移只能传输带电粒子,扩散和对流既可传输离子,也可传输 分子,甚至粒子。 电迁移和扩散过程粒子间溶质与溶剂存在相对运动,对流传质过 程中,溶液一部分相对于另一部分作相对运动,在运动的溶液内 部,溶质与溶剂分子一起运动,二者间无明显相对运动。 (3)从传质作用区域考虑 把电极表面和附近的液层大划分为双电层区,扩散层区和对流区 。
J Ag DAg dCAg dx DAg
O s C Ag C Ag
l
(5.4)
若扩散为控制步骤,整个电极反应的速度就由扩散速度来决 定,故可用电流表示扩散速度。若设还原电流为正值,则电 流方向与x轴方向即流量的方向相反,于是有
jc F ( J Ag ) FDAg
17:59:38
1 .理想稳态扩散的实现 Ag+可在银电极上连续沉积还原出来。 KNO3可离解出大量K+离 子。 K+在阴极不发生还原反应,仅在液相传质过程中起作用 , Ag+ 电迁流量很小,可忽略。 大容器搅拌可产生强烈搅拌作用,电解质强烈对流,使分布 O C 均匀,即容器各处 Ag 相等,但毛细管极小,搅拌对其内部溶液 无影响,在毛细管中只有扩散传质作用,故可把扩散区和对流区 分开,见图5.4。
式中:
Ji→i离子的电迁流量 ,mol/cm2S Di→i离子的扩散系数,即浓度梯度为1时的扩散流量, dci →离子的浓度梯度mol/cm4 dx
“-” →表示扩散传质方向与大的方向相反。
17:59:38
对扩散传质过程归纳如下: (1)稳态扩散与非稳态扩散的区别,主要看反应粒子的浓度分 布是否为时间的函数,即 稳态扩散时 Ci=f(x) 非稳态扩散时 Ci=f(x,t) (2)非稳态扩散时,扩散范围不断扩展,不存在确定的扩散层 厚度,只有稳态扩散时,才有确定的扩散范围,即存在不随时 间改变的扩散层厚度 (3)在稳态扩散中,由于反应物不断消耗,本体中粒子不断向 电极表面进行传质扩散,故溶液本体中的反应粒子浓度也在不 断下降,故严格说,也存在非稳态因素。
17:59:38
二、真实条件下的稳态扩散过程 在此体系下,严格说是一种对流作用下的稳态扩散过程,或 可称为对流扩散过程,而非单纯扩散过程,扩散与对流区互 相重叠,没有明确界限。因扩散层内部是以扩散作用为主的 传质过程,它们有类似动力学规律。但又有区别,理想扩散 扩散层有确定厚度,真实体系只有根据一定理论求出扩散层 有效厚度,然后在此基础上,借助理想稳态扩散的动力学公 式,推导出真实条件下的扩散动力学公式。 强制对流条件下的稳态扩散
2.对流 指一部分溶液与另一部分溶液之间的相对流动,也是重要液 相传质过程。可分为自然对流和强制对流。 自然对流 由于溶液内各部存在温度差或密度差引起的对流 强制对流 由外力搅拌溶液引起,可采用多种形式,空气、 机械、超声等 上述作用可使电极表面浓度发生变化,其变化量用对电流流 量表示,i离子的对流流量为 Ji = vX ci 式中:Ji→i离子的对流流量 ,mol/cm2s ci→i离子的浓度, mol/cm3 vX→I与电极垂直方向上的液体流速,cm/s

17:59:38
Ag+在毛细管阴极端放电,在通电量不太大时,可认为大容器 O 中的Ag+离子浓度 C Ag 无变化。通电后,在阴极上有Ag+离子放 电,电极表面附近Ag+离子浓度降低,随通电时间延长,浓度 差逐渐向外扩展,当浓差发展到x=l处,即毛细管与大容器相 接处时,对流作用使该点Ag+离子浓度始终等于容器中的Ag+离 O 子浓度 C Ag ,即 Ag+ 离子可由此向毛细管内扩散,补充电极 反应消耗的银离子,故当达到稳态扩散时,Ag+离子的浓度差 被限定在毛细管内了,即扩散层厚度等于l。
17:59:38
§5.1 液相传质的三种方式
一、液相传质的三种方式 1.电迁移 电解质溶液中的带电粒子(离子)在电元气作用下沿着一定 的方向移动,这种现象叫做电迁移。 电迁移电解质具有导电性且使溶液中物质进行了传输,但其 传输的离子并非均参与电极反应,有些仅起传导电流作用。 电迁流量 电迁移作用使电极表面附近溶液中某种离子浓度发生变化的数量, 可用电迁流量表示,即在单位时间内,在单位载面上流过的物质 的量,故电迁流量 Ji=±civi=±ciuiE (5.1) Ji→i离子的电迁流量 ,mol/cm2S ci→i离子的浓度, mol/cm2 vi→i离子电迁移速度,cm/s ui→i离子的浓度, cm2/sv E→电场强度 V.cm ±→阴阳离子运动方向不同,阳离子用“+”号,阴离子用“-” 17:59:38 号
对流扩散 自然对流条件下的稳态扩散
17:59:38
1. 电极表面附近的液流现象及 传质作用 设有一薄片平面电极,处 于由搅拌作用而产生的强制对 流中,若液流方向与电极表面 平行,并且当流速不太大时, 该液流属于层流,设冲击点为 y0点,液流的切向流速为uo。 在电极表面附近液体的流动受 到电极表面的阻滞作用液流速 度减小,且离电极表面越近, 液流速度 u 就越小,在电极表面 即 x=0 处, u=0。而在较远离电 极表面的地方,电极表面阻滞 作用消失,液流速度为 uo,如 图5.5所示。
j d nFDi
l
(5.7)
jd 称极限扩散电流密度,此时的浓差极化就称完全浓差极化 。将(5.7)代入(5.6)中, 得 CS
j j d (1 C
i o i
)
(5.8)
o 或CiS=C( - i 1
j ) (5.9) jd
由(5.9)知,若j>jd, 则 CiS 0 为不可能,可进一步证 实jd就是理想稳态扩散过程的极限电流,出现jd时,扩散速度 极大,电极表面附近放电粒子浓度为零,扩散过来一个放电 粒子,马上就消耗在电极反应上了,jd是稳态扩散的特征。
三、液相传质三种方式的相互影响 在同一电解液中三种方式互相联系和影响,如反应消耗粒子,扩 散速度跟不上,本体浓度也降低,靠对流补充。当电解液中没有 大量电解质存在时,电迁移不可忽略等。
17:59:38
§5.2稳态扩散过程
一、理想条件下的稳态扩散 首先讨论单纯扩散过程的规律,人为设计一特殊装置,可 排除电迁移过程干扰,并把扩散区与对流区区分开,从而 得到一单纯扩散过程,此为理想条件,叫理想条件下的稳 态扩散过程,装置如图5.3。
17:59:38
3.扩散 扩散 由于溶液中不同区域浓度不同引起该组分自发从高浓 度的区域向低浓度区域移动,这种液相传质运动叫做扩散。 电极体系由于电化学反应消耗了反应产物使其在溶液中发生 扩散,很复杂,可分为非稳态扩散和稳态扩散。 设,阴极反应,反应粒子可溶,反应产物不溶 由于反应消耗反应物,在垂直电极方向X上,产生了浓度差, 即浓度梯度 dci ,在此扩散推动力作用下,溶液本体中的
17:59:38
随着反应进行,扩散补充的反应粒子数与电极反应所消耗的反应 粒子数相等,则可达到一种动态平衡状态,即扩散速度与电极反 应速度相平衡,此时,反应粒子在扩散层中各点的浓度分布不再 随时间变化而变化,而仅仅是距离的函数,即 Ci=f(x)、此时,有 浓度差的范围即扩散层的厚度不再变化, 离子的浓度梯度是一常 数,整个过程处于稳定状态,此阶段的扩散过程就称为稳态扩散 此时,由扩散传质输送到电极表面的反应粒子,恰好补偿了电极 反应所消耗的反应粒子,扩散流量由菲克 (kick)第一定律确定。 即 dC J i Di ( i ) (5.3) dx
17:59:38
17:59:38
上图表示电极表面带负电荷,由电极表面至 x1处,是双电层区,d 为双电层厚度,δ为扩散层厚度,CO是溶液本体浓度,CO是电极 表面附近液层的浓度,c+和c-是阳离子和阴离子的浓度,s—s’表 示电极表面位置。 从电极表面到x1处,距离为d,双电层区。因电极表面所带电荷不 同,在此区域,阴、阳离子浓度不同,到达双电层边界。即在 x1 处,C+=C-,此时离子浓度以Cs表示,此时,可认为各种离子的浓 度分布只受双电层电场的影响,而不受其它传质过程的影响,故 在讨论电极表面附近的液层时,往往把x1处看作是x=0点。 从x1到x2的距离表示扩散层厚度,它表示稳态扩散时的扩散层厚 度。此时,主要传质方式是电迁移和扩散,厚度一般为 10-3~102cm。宏观看,很接近电极表面,由流体力学知,此时液体对流速 度很小,距离电极表面越近,对流速度越小,故此区域对流传质 作用很小。 图5.2中x2点以外区域称对流区,离电极表面较远,此时,对流作 用远大于电迁移作用,可将后者忽略,只有对流起主导作用。
相关文档
最新文档