西北大学 半导体物理课件01

合集下载

《半导体物理》课件

《半导体物理》课件

半导体器件
半导体应用
探索各种半导体器件,如二极管、 晶体管和集成电路的工作原理。
了解半导体在电子通信、计算机 和能源技术等领域中的应用。
晶体物理基础
本节将介绍晶体物理学的基本原理及晶格结构。了解晶体的性质和结构对于理解半导体物理至关重要。
晶体结构
探索晶体的结晶结构和晶格参数。
布拉维格子
了解布拉维格子及其在晶体物理中的重要性。
PN结与二极管
深入了解PN结和二极管的工作原理和特性。探索PN结在电子器件中的重要性和应用。
PN结形成
了解PN结的形成过程和材料特性。
正向偏置
介绍正向偏置情况下PN结的导电性能和电流行为。
反向偏置
研究反向偏置情况下PN结的特性和电流行为。
场效应晶体管
本节将深入研究场效应晶体管的工作原理和应用。了解场效应晶体管作为重要的电子器件的优势和特性。
晶体缺陷
研究晶体中的缺陷和杂质对材料性能的影响。
晶体生长
了解晶体的生长原理和方法。
晶体缺陷与扩散
本节将深入研究晶体缺陷和扩散现象。了解这些关键概念对于半导体器件设计和制造至关重要。
1
缺陷类型
介绍晶体缺陷的种类,如点缺陷和线缺
扩散过程
2
陷。
详细了解扩散现象的原理和应用,包括
掺杂和控制扩散速率。
3
热扩散
1
原理介绍
详细了解场效应晶体管的基本物理原理和工作机制。
2
பைடு நூலகம்
MOSFET
研究金属氧化物半导体场效应晶体管的结构和特性。
3
JFET
了解结型场效应晶体管的结构和特点。
集成电路基础
在本节中,我们将介绍集成电路的基本概念和设计原则。了解集成电路的演变和应用。

半导体物理基础第一章课件

半导体物理基础第一章课件
42
1.7.5只有一种杂质的半导体
• 2、P型半导体
• 在杂质饱和电离的温度范围内有:p N a • 导带电子浓度为: n ni2 ni2
p Na
• 费米能级为
EF

EV
KT ln
NV Na
EF

Ei
KT
ln
Na ni
43
1.7.5只有一种杂质的半导体
• 结论:对于P型半导体,在杂质饱和电离 温度范围之内,费米能级位于价带顶之上, 本征费米能级之下。随着掺杂浓度提高, 费米能级接近价带顶;随着温度升高,费 米能级远离价带顶。
成共价键时,将因缺少一个价电子而形 成一个空穴,于是半导体中的空穴数目 大量增加。
22
1.6杂质能级
• Acceptor,掺入半导体的杂质原子向半导 体中提供导电的空穴,并成为带负电的 离子。
• 掺入受主杂质的半导体为P(Positive)型 半导体。施主杂质的浓度记为NA。
23
1.6杂质能级
• 受主接受电子称为受主杂 志,提供了一个局域化的 电子态,相应的能级称为 受主能级—Ea。
NV

2 2mdp KT
h3
3 2
• 称为价带有效状态密度
34
1.7.3能带中电子和空穴的浓度
• 导带电子浓度和价带空穴浓度之积
Eg
np Nc NV e KT • 式 把中它E写g为成禁经带验宽关度系。式与E温g 度有E关g0 , 可T以
• 其 时中的Eg值为。禁带宽度温度系数,Eg0为0K
Chap1 半导体物理基础
1
1.2 能带
一、能带的形成 • 能级:电子所处的能量状态。 • 当原子结合成晶体时,原子最外层的价

最新半导体物理1-2章总结PPT课件

最新半导体物理1-2章总结PPT课件
❖所处位置不同:替位式杂质、间隙式杂质
▲ 1.浅杂质能级
1、n 型半导体
➢ 施主杂质电离,施放电子到导带而 产生导电电子并形成正电中心
➢ 有△ED《Eg
2、p 型半导体
➢ 特征:受主杂质电离,接受电子成 为负电中心并产生空穴在价带;
➢ 有 △EA《Eg
半导体物理
2.浅能级杂质电离能的计算
E mp *q4
第一 : 1 k 1
2a
2a
第二 : 1 k 1 ,
第三 :
a
2a
3 k1,
2a
a
1 k1
2a
a
1k 3
a
2a
E(k)随晶体中周期性变化 势场影响形式复杂
半导体物理
3. ▲导体、绝缘体和半导体的能带
(a) 绝缘体
(b) 半导体
(c) 导体
半导体物理
1.3-1.4节
1.半导体中的电子运动
1.半导体中E(k)与k的关系
1 2
dd2kE2 k0
1 mn*
EkE0
2k2 2mn*
(能带极值附近)
2.半导体中电子的平均速度
1 dE dk
k
m
* n
(能带极值附近)
3.半导体中电子的加速度
f dk q|E| a f
dt
m
* n
(能带极值附近)

4.空穴---正电荷+q和正有效质量
m
* p
半导体物理
2. ▲有效质量的意义:
补充习题
半导体物理 ▲
补充习题
半导体物理
补充习题
3.右图为能量曲线E(k)的形状,试回答:

(1)在Ⅰ、Ⅱ、Ⅲ三个带中,哪

《半导体物理学》课件

《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。

(第一章)半导体物理ppt课件

(第一章)半导体物理ppt课件

下这些部分占满的能带中的电子将参与导电。由于绝缘
体的禁带宽度很大,电子从价带激发到导带需要很大能
量,所以通常温度下绝缘体中激发到导带去的电子很少,
导电性差;半导体禁带比较小(数量级为1eV),在通常
温度下有不少电子可以激发到导带中去,所以导电能力
比绝缘体要好。
最新课件
27
§1.3 半导体中电子(在外力下)的运动 及有效质量
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
⒉波函数
德布罗意假设:一切微观粒子都具有波粒二象性。 自由粒子的波长、频率、动量、能量有如下关系
Eh P h k
即:具有确定的动量和确定能量的自由粒子,相当 于频率为ν和波长为λ的平面波,二者之间的关系 如同光子与光波的关系一样。
书中(1-13)
最新课件
16
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
布洛赫曾经证明,满足式(1-13)的波函数一定具有 如下形式:
k(x)uk(x)eikx 书中(1-14)
式中k为波数,u k ( x是) 一个与晶格同周期的周期性函 数,即:
uk(x)uk(xna)
1.3.1半导体导带中E(k)与k 的关系
定性关系如图所示 定量关系必须找出E(k)函数带底附近E(k)与k的关 系
用泰勒级数展开可以近似求出极值附近的E(k)与k 的关系,以一维情况为例,设能带底位于k=0,将 E(k)在E ( kk =) 0E 附(0 近) 按(d 泰d勒)E k k 级0k 数 展1 2(开d d 2 ,E 2k )取k 0 至k2 k项2 ,得到
K=0时能量极小,所以(ddEk)k0k ,0因而

大学物理课件半导体基础 共94页PPT资料

大学物理课件半导体基础 共94页PPT资料
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如:
• 当受外界热和光的作用时,它的导电能 力明显变化。
势垒电容:势垒区是积累空间电荷的区域,当电压变化时, 就会引起积累在势垒区的空间电荷的变化,这样所表现出 的电容是势垒电容。
-N
扩散电容:为了形成正向电流
+
(扩散电流),注入P 区的少子
P
(电子)在P 区有浓度差,越靠
近PN结浓度越大,即在P 区有电
子的积累。同理,在N区有空穴的
积累。正向电流大,积累的电荷
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
i
iL
稳压管的技术参数:
UzW10V,Izmax20mA, ui
R
DZ
iZRL uo
Izmin5mA
负载电阻 RL 2k。要求当输入电压由正常值发
生20%波动时,负载电压基本不变。
求:电阻R和输入电压 ui 的正常值。

《半导体物理基础》课件

《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响

半导体物理 第一章正文ppt

半导体物理 第一章正文ppt
****无法做出更详细、更统一的描述
5,晶体中结点的不同排列,均是由原子核
及核外电子的相互作用特点所决定的 。
二、量子理论概述
讨论范围:
量子理论的
基本概念(观念), 基本关系式,
基本结论,
基本做法 。
量子理论的讨论对象适用对象:微观世界的随机过程
本教材、本授课中,处理问题的方法, 基本上是“半经典半量子化的(量子理 论与经典理论结合在一起使用)”,有 时又是“准经典的”,请在学习过程中 加以体会。
电子自旋角动量:
3 2
(4)轨道磁量子数
ml :
轨道角动量在z轴投影,其大小为:ml
对一个
l
ml l ,(l 1),,0,, (l 1),l
l l l
l 2 l 1
l
取值, ml 有 (2l 1) 个取值:
z
(5)自旋磁量子数
ms:
自旋角动量在z轴投影,其大小: ms 对一个s取值,
定态薛定谔方程:
2 V (r ) (r ) E (r ) 2m
2
量子理论中用波函数描述物理状态,波 函数是“几率函数”,由之可知某物理 量取某值的几率。 E为粒子能量
物理量的平均值: Q



ˆ (r )Q (r )dr
ˆ p p i, i j k (梯度算子) x y z
坐标表象:
ˆ rp L L ˆ ˆ
2 ˆ i V (r ) EH t 2m
2
H=T+V
h 2
p2/2m
物理量的量子化: 物理量的取值觃律
*

01-半导体物理基础知识.ppt

01-半导体物理基础知识.ppt
2021/3/23
半导体硅的物理性质
原子量
28.86
晶格常数
5.42A
密度(固态)
熔点 介电常数 电子迁移率
本征载流子 浓度
原子密度
2021/3/23
2.33g/cm3
禁带宽度
1416±4℃
沸点
11.7±0.2
折射率
1350±100cm2/V· 空穴迁移率 s
1.5×1010个/cm-3 熔解热
4.99×1022个/cm- 本征电阻率 3
2021/3/23
2021/3/23
2021/3/23
2021/3/23
2021/3/23
1.4半导体的导电特性
2、导电能力随光照显著改变 当光线照射到某些半导体上时,它们的导电能力就 会变得很强,没有光线时,它的导电能力又会变得 很弱。
3、杂质的显著影响 在纯净的半导体材料中,适当掺入微量杂质,导电 能力会有上百万倍的增加。这是最特殊的独特性能 。
对硅的导电性能有决定影响的主要是三族(如硼 B、铝Al、镓Ga)和五族(如磷P、砷As、锑Sb)元素 原子。还有些杂质如金,铜,镍,锰,铁,氧,碳 等,在硅中起着复合中心的作用,影响寿命,产生 缺陷,有着许多有害的作用。
2021/3/23
2021/3/23
2021/3/23
2021/3/23
2021/3/23
2021/3/23
前言
• 太阳能的利用
1、太阳能热的利用,如太阳能热水器、太阳能热 水发电。 2、太阳能直接发电即光伏技术。 光伏产业链包括硅料、硅片、电池片、电池组件、 应用系统五个环节。上游为硅料、硅片环节;中游 为电池片、电池组件环节;下游为应用系统环节。

《半导体物理第一章》课件

《半导体物理第一章》课件

3
1.3.3 pn结的I-V特性
详细解释pn结的I-V特性曲线,包括正向和反向电流的变化。
1.4 光电应及其在太 阳能电池中的应用。
2 1.4.2 光电二极管
阐述光电二极管的原理 及其在通信和显示技术 中的应用。
3 1.4.3 光电池
讨论光电池的构造、工 作原理和应用领域。
1.5 半导体器件的制作技术
晶体生长
介绍半导体晶体生长方法和技 术,如Czochralski法和液相外 延。
晶体制备
讨论半导体晶体的切割、抛光 和清洗等制备工艺。
制作半导体器件
概述半导体器件制作的关键步 骤,包括光刻、扩散和金属沉 积等工艺。
1.6 总结与展望
1.6.1 半导体物理的应用前景
评估半导体物理在电子技术、通信和能源领域 的未来发展。
1.1 半导体材料的基本性质
半导体的定义
介绍半导体的定义,以及其与导体和绝缘体的区别。
半导体的基本性质
探讨半导体的导电性、禁带宽度、载流子等基本特性。
半导体的能带结构
解释能带理论,讨论导带与禁带之间的能量差异对电子行为的影响。
1.2 掺杂半导体
1.2.1 掺杂的概念
介绍半导体掺杂的概念,包 括n型和p 型半导体的区别。
《半导体物理第一章》 PPT课件
An engaging and comprehensive introduction to the fundamental properties of semiconductor materials and their applications in electronic devices.
1.2.2 正、负离子掺 杂
说明正、负离子掺杂对半导 体电子结构的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
B
C -K V D2 K D1 0 K K
三、电子的加速度
可以推出,在外力作用下,晶体中电子的运动规律为:
a=
这正是牛顿第二定律的形式。
1 ⋅f ∗ m

引入有效质量这一概念的意义在于:它概括了晶体内部势场对电子的作
用,使得在解决晶体或半导体中电子在外力作用夏的运动规律时,可以不涉 及到内部势场对电子的作用,而直接按照牛顿第二定律由外力求出电子的加 速度。
三、半导体中电子的状态和能带
2、晶体中电子的运动状态——布洛赫波
晶体中作共有化运动的电子,要受到周期性势场V(x)的作用,其薛定谔方程 (一维)为: h 2 d 2ψ (x)
2m 0 dx 2 + V(x)ψ (x) = Eψ (x)
布洛赫已经证明,该方程的解为: ψ k (x) = e 称为布洛赫函数,或布洛赫波。
二、回旋共振的原理
等能面是球面时,有效质量各向同性,只能观察到一个吸收峰,且其 位置与
B 的方向无关。
但等能面为椭球面时,吸收峰与
B 的方向有关:
设 B 相对于椭球主轴的方向余弦分别为 α , β , γ ,即 B = (α i + β j + γ k ) B , 式中 i, j, k分别为沿主轴方向的单位矢量。最后可解得电子的回旋共振频率:
N =3 + N =2 N =1 原子间距逐渐减小
允 带 禁 带 允 带 禁 带 允 带
原子外壳层交叠的程度最大,共有化运动显著,能级分裂的很厉害,能带很宽; 原子内壳层交叠程度小,共有化运动很弱,能级分裂的很小,能带很窄。
二、晶体中能带的形成
3、能带重组(轨道杂化)
以硅为例:
空 带 (导 带 ) 4N个 态 满 带 (价 带 ) 4N个 态 4N个 电 子 8N个 态 2N个 电 子 6N个 态 3p2 3s2 外壳层
i2 π k x
U k (x)
式中Uk(X)是一具有与晶格同周期的周期性函数。
布洛赫波的强度随晶格周期性变化,说明电子在晶体的一个原胞中各点出现 的几率不同,但在晶体中每一个原胞的对应位置上(等价点上),出现的几率是 一样的。因而电子可以在整个晶体中运动,这就是电子在晶体内的共有化运动。
三、半导体中电子的状态和能带
i2π k ⋅r 上式的解是一平面波: ψ (r ) = Ae
对于自由空间中的电子波函数的强度处处相等,也就是说电子在空间各点 出现的几率相同,这正说明电子在自由空间中是自由运动的。 简化为一维情况时,有: 其解为 :
h 2 d 2ψ (x) = Eψ (x) 2 2m 0 dx
ψ (x) = Ae i2πkx
第一章 半导体中的电子状态
第一章 Part 1 1.1 半导体中的电子状态和能带 1.2 半导体中的电子运动、有效质量 1.3 半导体的导电机构、空穴 1.4 载流子的回旋共振 1.5 常见半导体的能带结构
半导体中的电子状态和能带
一、原子中电子的状态和能级
根据量子理论,电子应处于一系列特定的运动状态——量子态 要完全描述原子中一个电子的状态,需要四个量子数: n—主量子数 L—角量子数 m—磁量子数 s—自旋量子数
r ε ≠0
本征半导体的导电机构、空穴
4、半导体的导电机制—空穴
若价带中存在一个空状态 k h ,则价带电子的总电流就等价于一个具有速度
v( k h )的正电粒子的运动效果。把价带中空着的状态看成是带正电的粒子,称为空穴
空穴的性质: 1.带有正电荷(+q),其电量等于电子电量; 2.其速度等于该状态上电子的速度、方向相反; 3.价带中的空穴数恒等于价带中的空状态数; 4.空穴能量增加的方向与电子能量增加的方向相反; 5.空穴具有正的有效质量。 � 半导体中有两种导电粒子:电子和空穴。导带上的电子参与导电,价带上的空 穴也参与导电;对于本征半导体而言,导带中有多少电子,价带中就有多少空 穴,这就是本征半导体的导电机构。
E-k 关系) 3、能带( 、能带(E-k E-k关系)
由于在晶体中每一个原胞的对应位置上(等价点上),电子出现的几率 却是一样的,这些等价点上的电子状态是相同的。 考虑一维情况,波矢可以写为: k ' = k + , n = 0,±1,±2,±3,...
' 由于不同原胞中等价点上的电子状态是相同的,所以 k = k +
四、有效质量的性质
E
①有效质量mn*不是惯性的量度,不是一个真实的质量,只 是一个等效意义的参量; ②有效质量mn*不是一个常数,在带顶和带底附近,mn*才近 似为常数;
d 2E dk
2
0 V
K
K
③mn*不仅可以取正值,而且可以取负值,甚至在转折点 处,mn*=±∞; ④一般情况下,有效质量具有方向性,是一个张量; ⑤能带宽,共有化强烈,mn*较小(外层电子);能带窄, 共有化弱,mn*则较大(内层电子)。
载流子的回旋共振
k空间的等能面 一、 一、k
1、等能面为球面
导带底EC和价带顶EV都在k空间的原点k=0处, 一维情况下,在导带底附近:
h2k 2 E (k ) = E c + ∗ 2m n
三维情况:
h2 2 2 2 E (k ) − E (0) = ( k + k + k ) x y z ∗ 2m n
2 h 2 k x2 k y k z2 E( k ) = E c + ( ∗ + ∗ + ∗ ) 2 m1 m2 m3
等能面为椭球面时,有效质量是各向异性的。
Kz
3、旋转椭球等能面
坐标原点置于旋转椭球中心,并使kz轴与旋转椭球长轴重合。
∗ m1∗ , m 2 = m t ⇒ k x , k y 横向有效质量; ∗ m3 = ml ⇒ k z 纵向有效质量;
0 K 0
m∗
K
对比自由电子和晶体中的电子E-k,V-k和m-k的关系:
E
E

0 V
K
0 V
K
0
K
m
0

K
M
0 自 由 电 子
K
0 晶 体 中 的 电 子
K
半导体中的导电机构、空穴
本征半导体的导电机构、空穴
本征半导体:1.纯净,不含任何杂质; 2.具有理想的晶体结构,无缺陷。 实际使用时,若杂质或缺陷含量足够小,即称为本征半导体。
本征半导体的导电机构、空穴
2、空带
能带中没有电子,谈不上导电。
r ε =0
3、未满带
1)、无外电场作用时:电子在k空 间对称分布,不导电。 2)、有外电场作用时:电子分布不 再是对称的,具有正负速度的电 子产生的电流不能全部抵消,总 电流不再为零。 即:未满带电子对导电有贡献 ,把未满带称为导带。
ωc = ±
qB m∗
除稳恒磁场外,再施加一个交变电磁场,其电分量在垂直于磁场的平面内。 当交变电磁场的频率ωr与载流子绕磁场转动的频率ωc相同时,引起共振吸收 ,可以观察到吸收峰。测量出发生共振吸收时的电磁场的交变频率,和磁感应强度 B,就可根据式:
qB ωc = ± ∗ m
求出对应的载流子的有效质量m*。
4N个 2N个 态 电 子 2N个 电 子
2p6 2s2 1s2 原子间距逐渐减小 中间壳层 内壳层
二、晶体中能带的形成
� 由于轨道杂化,能带重新组合,重新组合成的两个能带不和S、P态对应,而是 两个各包含4N个状态的能带,较低的一个能带正好容纳4N个电子,称为满带或 价带。上面的则是空带,通常称为导带。价带和导带中间隔以禁带。 � 在金刚石中这两个带之间的间距(禁带宽度)很大,且导带上基本没有电子, 表现出绝缘性;而在Si,Ge中,禁带较窄,在较高温度(室温)下可以有少量 的电子从价带激发到导带中,因而表现出半导体性质。
N=3 + N=2
:原子中的电子处在不同的能级上, 能级 能级: 形成电子壳层。
N=1 主壳层
在单个原子中,电子状态的特点是:总是局限在原子和周围的局部化量子态,其 能级取一系列分立值。
二、晶体中能带的形成
1、两个原子的情况
相距很远的时候,相互作用忽略不计。 原子逐渐靠近,原子最外层 “轨道” 发生重叠,外层轨道上的电子可以在两 个原子中运动——电子的共有化运动——每一个能级都分裂成2个彼此相距 很近的能级。
1、满带
1、无外场作用时:因为E(+k)=E(-k),即电子在k空间 是对称分布的。而k状态和-k状态的电子速度的大小相 等,方向相反,所以晶体中总电流为零,不导电。 2、有外场作用时:能带中的所有状态均以完全相同
dk 的速率 移动,电子在k空间的对称分布并未被破 dt
r ε =0
r ε ≠0
坏,晶体中的总电流仍为零。 即:满带电子对导电没有贡献。
qB ω c = ∗ ,其中 m ∗ = n mn
∗ ∗ m1∗ m2 m3 ∗ 2 ∗ 2 m1∗α 2 + m2 β + m3 γ
当交变电磁场频率ωr与ωc相同时,就得到共振吸收。
∗ ∗ ∗ � 回旋共振有效质量不仅通过 m1 , m 2 , m3 与能带结构有关,而且吸收峰的
三、半导体中电子的状态和能带
� 单电子近似:晶体中的某一个电子是在周期性排列且固定不动的原子核势场以及其他大量 电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。
1.自由空间(势场恒定,或势能=0)电子运动状态
h2 ∇ 2ψ ( r ) = Eψ ( r ) 自由空间中,电子的运动状态(三维): 2m 0
带 顶
0
K
二、半导体中电子的平均速度
可以证明,对于晶体中的电子:v = 1 dE h dk
hk 1 h2k 2 v = ∗ 将 E( k ) = 带入上式,得到能带极值附近电子的速度的表达式为 m 2 m* n n
相关文档
最新文档