中考数学复习核心母题一最值问题深度练习

合集下载

中考数学复习+专题跟踪突破一 最值问题(2)

中考数学复习+专题跟踪突破一 最值问题(2)

专题跟踪突破一 最值问题(2)一、填空题1.在半⊙O 中,点C 是半圆弧AB 的中点,D 是弧BC 上距离点B 较近的一个三等分点,点P 是直径AB 上的动点,若AB =10,则PC +PD 的最小值是__53__.,第1题图) ,第2题图) 2.(2015·株洲)如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径为7,则GE +FH 的最大值为__212__.3.(2015·莆田)如图,在反比例函数y =6x上有两点A(3,2),B(6,1),在直线y =-x 上有一动点P ,当P 点的坐标为__(43,-43)__时,PA +PB 有最小值. 点拨:设A 点关于直线y =-x 的对称点为A′,连接A′B ,交直线y =-x 为P 点,此时PA +PB 有最小值,∵A 点关于直线y =-x 的对称点为A′,A(3,2),∴A ′(-2,-3),设直线A′B 的直线解析式为y =kx +b ,⎩⎨⎧-3=-2k +b ,1=6k +b ,解得k =12,b =-2,∴直线A′B 的直线解析式为y =12x -2,联立⎩⎪⎨⎪⎧y =12x -2,y =-x ,解得x =43,y =-43,即P 点坐标(43,-43),故答案为(43,-43) 二、解答题4.已知点M(3,2),N(1,-1),点P 在y 轴上,求使得△PMN 的周长最小的点P 的坐标.解:作出M 关于y 轴的对称点M′,连接NM′,与y 轴相交于点P ,则P 点即为所求,设过NM′两点的直线解析式为y =kx +b(k ≠0),则⎩⎨⎧2=-3k +b ,-1=k +b ,解得k =-34,b =-14,故此一次函数的解析式为y =-34x -14,因为b =-14,所以P 点坐标为(0,-14)5.(2015·宁德)如图,AB 是⊙O 的直径,AB =8,点M 在⊙O 上,∠MAB =20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN =1,则△PMN 周长的最小值为多少.解:作N 关于AB 的对称点N′,连接MN′,NN ′, ON ′,OM ,ON ,∵N 关于AB 的对称点N′, ∴MN ′与AB 的交点P′即为△PMN 周长最小时的点,∵N 是弧MB 的中点, ∴∠A =∠NOB =∠MON =20°,∴∠MON ′=60°, ∴△MON ′为等边三角形,∴MN ′=OM =4, ∴△PMN 周长的最小值为4+1=56.(2015·永州模拟)如图,已知抛物线y =ax 2+bx +c 经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D ,对称轴与x 轴交于点H. (1)求抛物线的解析式;(2)若点P 是该抛物线的对称轴上的一个动点,求△PBC 周长的最小值.解:(1)把A(-3,0),B(1,0),C(0,3)三点坐标代入y =ax 2+bx +c 中,⎩⎨⎧a +b +c =0,9a -3b +c =0,c =3,解得⎩⎨⎧a =-1,b =-2,c =3,即抛物线的解析式是y =-x 2-2x +3(2)如图,△PBC 的周长=PB +PC +BC ,∵BC 是定值,∴当PB +PC 最小时,△PBC的周长最小.A ,B 两点关于对称轴对称,连接AC ,交对称轴于点P ,点P 即为所求,∵AP =BP ,△PBC 的最小周长=PB +PC +BC =AC +BC ,∵A(-3,0),B(1,0),C(0,3),∴AC =32,BC =10,∴△PBC 的最小周长=32+107.小明在学习轴对称的时候,老师留了一道思考题:如图1,若点A ,B 在直线m 的同侧,在直线m 上找一点P ,使得AP +BP 的值最小,小明通过独立思考,很快得出了解决这个问题的正确方法,他的做法是这样的:(a)作点B关于直线m的对称点B′,(b)连接AB′与直线m交于点P,则点P为所求.请你参考小明的做法解决下列问题:(1)如图2,在等边△ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P(尺规作图,保留作图痕迹,不写作法),使得BP+PE的值最小,并求出最小值;(2)如图3,在矩形ABCD中,AB=4,BC=6,G为边AD上的中点,若E,F为AB 边上的两个动点,点E在点F的左侧,且EF=1,当四边形CGEF的周长最小时,请你在图3中确定点E,F的位置(尺规作图,保留作图痕迹,不写作法),并求出四边形CGEF的周长的最小值.解:(1)如图2,作点E 关于AD的对称点F,交AC于点F,连接BF,交AD 于点P,连接PE, 点P即为所求. 在等边△ABC中,AB=2,点E是AB 的中点,AD是高,∴F是AC的中点,∴BF⊥AC于点F, ∴BP+PE的最小值=BF=22-12=3(2)如图3,作点G关于AB的对称点M,在CD上截取CH=1,连接MH,交AB于点E,在BE上截取EF=1,连接CF,则E,F为所求,∵AB=4,BC=6, G为边AD上的中点,∴DG=GA=AM=3,∵AE∥DH,∴△MAE∽△MDH,∴AEDH=AMDM,∴AE3=39,∴AE=1,∴在Rt△GAE,Rt△CBF,Rt△CDG中,分别由勾股定理解得,GE=AE2+AG2=12+32=10,CF=BF2+BC2=22+62=210,CG=DG2+DC2=5, ∴四边形GEFC 的周长的最小值=GE+EF+FC+CG=10+1+210+5 =6+3108.(2015·大庆)如图,抛物线y=-x2+4x+5与x轴交于A,B两点,与y轴交于点C.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.△PCM是以CM为底的等腰三角形.(1)求点P的坐标;(2)当a 为多少时,四边形PMEF 周长最小.解:(1)∵y =-x 2+4x +5与y 轴交于点C ,∴点C 的坐标为(0,5)又∵M(0,1),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3,令y =-x 2+4x +5=3,解得x =2±6,∵点P 在第一象限,∴P(2+6,3)(2)四边形PMEF 的四条边中,PM ,EF 长度固定,因此只要ME +PF 最小,则PMEF 的周长将取得最小值, 将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1),作点M 1关于x 轴的对称点M 2,则M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小,设直线PM 2的解析式为y =mx +n ,将P(2+6,3),M 2(1,-1)代入得:⎩⎨⎧(2+6)m +n =3m +n =-1,解得:⎩⎪⎨⎪⎧m =46-45n =-46-15,∴y =46-45x -46+15,当y =0时,解得x =6+54.∴F(6+54,0),∵F(a +1,0),∴a =6+14,∴a =6+14时,四边形PMEF 周长最小。

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

(潍坊专版)2019中考数学复习 第2部分 核心母题一 最值问题课件

(潍坊专版)2019中考数学复习 第2部分 核心母题一 最值问题课件
核心母题一 最值问题
1
【核心母题】 (1)如图1,点A,B在直线l的同侧,确定直线上一点P,使PA +PB的值最小. (2)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上 一动点,连接BD,由正方形对称性可知,B与D关于直线AC对 称.连接ED交AC于点P,则PB+PE的最小值是 .
∴点A关于对称轴的对称点A′的坐标为(6,4).
13
如图,连接BA′,交对称轴于点P,连接AP,此时△PAB的周 长最小.
14
设直线BA′的解析式为y=kx+b,
15
∴使△PAB的周长最小的点P的坐标为(3,8 ). 由抛物线的对称性可知,点B,点C关于对5 称轴对称,
∴对称轴上任意一点P,均有PB=PC,|PA-PC|=|PA-PB|. 当点P,A,B不共线时,可构成△PAB,此时|PA-PB|<AB,
2
(3)如图3,⊙O的半径为2,点A,B,C在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上一动点,求PA+PC的最小值是 . (4)如图4,在直角坐标系中,抛物线过点A(0,4),B(1,0), C(5,0),P在抛物线的对称轴上,若使△PAB的周长最小, 则点P的坐标为 ;若使|PA-PC|的值最大,则点P的坐标 为.
9
【母题详解】 突破关键词:轴对称,轴对称图形、线段和(差)最小(最 大)、周长最小、面积最大、勾股定理 (1)如图,作点A关于直线l的对称点A′,连接A′B交l于 点P,则PA+PB=A′B的值最小.
10
(2)
5
提示:∵四边形ABCD是正方形, ∴AC垂直平分BD, ∴PB=PD,由题意易得PB+PE=PD+PE=DE. 在△ADE中,根据勾股定理得DE=
12
8

中考数学复习 核心母题一 最值问题深度练习

中考数学复习 核心母题一 最值问题深度练习

核心母题一最值问题深度练习1.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=( )A.6 B.8 C.10 D.122.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________.3.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DO B=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P的坐标为________.4.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.当点P在BC上移动时,求PQ的最大值.5.如图,对称轴为直线x =2的抛物线经过A(-1,0),C(0,5)两点,与x 轴另一交点为B.已知M(0,1),E(a ,0),F(a +1,0),点P 是第一象限内的抛物线上的动点. (1)求此抛物线的解析式;(2)当a =1时,求四边形MEFP 的面积的最大值,并求此时点P 的坐标;(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.参考答案1.B 2.7 3.(23-3,2-3) 4.解:如图,连接OQ.在Rt△OPQ 中,PQ =OQ 2-OP 2=9-OP 2, 当OP 最小时,PQ 最大,此时OP⊥BC, 则OP =12OB =32,∴PQ 的最大值为9-(32)2=332.5.解:(1)设抛物线的解析式为y =ax 2+bx +c ,由题意得⎩⎪⎨⎪⎧-b2a=2,a -b +c =0,c =5,解得⎩⎪⎨⎪⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5.(2)当a =1时,E(1,0),F(2,0),OE =1,OF =2. 设P(x ,-x 2+4x +5).如图,过点P 作PN⊥y 轴于点N ,则PN =x ,ON =-x 2+4x +5, ∴MN=ON -OM =-x 2+4x +4. S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(OF +PN)·ON-12MN·NP-12OE·OM =12(x +2)(-x 2+4x +5)-12x·(-x 2+4x +4)-12×1×1=-(x -94)2+15316, ∴当x =94时,S 四边形MEFP 最大,最大为15316.当x =94时, y =-x 2+4x +5=14316,此时点P 坐标为(94,14316).(3)∵M(0,1),C(0,5),△PCM 是以点P 为顶点的等腰三角形, ∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2± 6. ∵点P 在第一象限, ∴点P(2+6,3).∵在四边形PMEF 中,PM ,EF 长度是固定的, ∴ME+PF 最小时,四边形PMEF 的周长最小.如图,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1),作点M 1关于x 轴的对称点M 2,则M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 设直线PM 2的解析式为y =mx +n , 将P(2+6,3),M 2(1,-1)代入得⎩⎨⎧(2+6)m +n =3,m +n =-1,解得⎩⎪⎨⎪⎧m =46-45,n =-46+15,∴y=46-45x -46+15.当y =0时,解得x =6+54,∴F(6+54,0). ∵a+1=6+54,∴a=6+14, ∴当a =6+14时,四边形PMEF 的周长最小.。

中考数学专题复习-如何解答最值问题(含答案)

中考数学专题复习-如何解答最值问题(含答案)

中考数学复习如何解答最值问题最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题。

下面绍如何利一次函数,二次函数的性质和对称性求最值。

◆一次函数的最值问题一、典型例题:1、(2010陕西)某蒜薹生产基地喜获丰收收蒜薹200吨。

经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:若经过一段时间,蒜薹按计划全部售出后获得利润为y(元)蒜薹x(吨),且零售是批发量的1/3。

(1)求y与x之间的函数关系;(2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。

解:(1)由题意,批发蒜薹3x吨,储藏后销售(200-4x)吨则y=3x(3000-700)+x·(4500-1000)+(200-4x)·(5500-1200)=-6800x+860000,(2)由题意得200-4x≤80 解之得x≥30∵-6800x+860000 -6800<0∴y的值随x的值增大而减小当x=30时,y最大值=-6800+860000=656000元2、(广东清远2009)某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A 种果汁原料和B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?解:(1)依题意得:43(50)150y x x x =+-=+(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)x x x x +-⎧⎨+-⎩≤…………≤………解不等式(1)得:30x ≤ 解不等式(2)得:28x ≥∴不等式组的解集为2830x ≤≤150y x =+,y 是随x 的增大而增大,且2830x ≤≤ ∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,28150178y =+=最小(元) ◆二次函数的最值问题 一、典型例题:1、(2010武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

2024年中考数学复习讲义:最值问题

2024年中考数学复习讲义:最值问题

最值问题第1节探寻轨迹一、直线轨迹【直线轨迹】共点相似三角形,一个点在直线上运动,则另一个点轨迹是直线.238.【☆☆】矩形ABCD, AB=4,AD=3,等腰Rt△AEF,AE=EF,,E 在BD 上,当E 从B 运动到D 时,F 的路径长是( ).【简释】等腰】Rt△ABG,黄O[SAS)tanα=3,当 E 从 B 到 D 时,F 从G 到H4旋转角. ∠GAH=∠BAD=90∘,HA=3√2,GII=5√2=F路径长239.【☆☆☆】正△ABC边长为 4,D 在边AC 上运动,等腰Rt△BDP,∠BPD=90°,则AP 的最小值是( ).【简释】【轨迹法】D 初始位置在C,等腰RtBCQ,AQ=2√3−2,绿蓝∽【SAS】∠BQP=∠BCD=60°【法1θ=75∘,AP≥AH=AQcos75∘=(2√3−2)√6+√2=√24【法2】作正△BQK,△BAK∽△BDP,∠AKQ=30°,AK=KB=BQAK=√2AP≥AH=12二、圆形轨迹【圆形轨迹】共点相似三角形,一个点在圆上运动,另一个点轨迹就是圆;与斜边中线相关的动点轨迹是圆形. 240.【☆】(8下)正方形 ABCD 边长为2,E 在CD 上(E 不与C 点或D 点重合),F 在BC上(F 不与B点或C 点重合),A E⊥DF,L 为垂足,则 LC 取值范围是( ).【简释】【L 在( ⌢OD(不含端点 O、D)上运动】斜边中线LG=1GC=√5,LC≥√5−1,∠LDC<45∘<∠CLDLC<CD=2,故√5−1≤LC<2241.【☆☆】正方形 ABCD 边长为2,正方形 DEFG,AE、BF 交于H,P 是BC 中点,求PH 的最大值.【简释】【《平几纲目》264题】灰黄△wa[SAS)α⇒θ=45°【旋转法】绿△≅[SAS]∠AHD=∠ARB=135°BH⊥HD,斜边中线OH=√2OP=1,PH≤1+√2242.【☆☆】四边形ABCD,BC=4,∠BAC=∠ADC=90°,AD=DC,求 BD 的最大值.【分析】等腰 Rt△CAD 初始位置为等腰 Rt△CBEA、B、C、E 共圆,E 在射线DA 上,斜边中线ODD 在以O为圆心,以OD 为半径的圆上【简释】作俩α,灰黄△∽【AA】相似比是√2,CE=2√2【斜边中线1OD=√2,∠BCE=45,OB=√10BD≤OD+OB=√2+√10第 2节旋转法243.【☆☆】(8 下). AB=4,AC=√2,等腰Rt△BCD,BC=CD,,则 AD 的最大值是( ).【简释】【法1】【牵手≌】等腰】Rt△CAQ,绿黄△≅[SASIAD=BQ≤QA+AB=6【法2】【牵手∽】等腰 Rt△BAQ,蓝黄∠△ω[SAS]AD=2,AD≤AQ+QD=6244.【☆☆】(8下)P 在等腰 Rt△ABC 内, ∠BPC=135°,=135°,则PAPC的最小值是( ).【简释】【法 1】蓝黄OIAA]PA=√22CD≥√22CH,PAPC≥√2CH2PC=12【法2】黄≅′SASλα+β=45∘,PA=√22PD≥√22PH=√22⋅√22PC=12PC【法3】蓝黄OIAAIPC=√2AD≥2AH,PAPC =PA2AH≥12245.【☆☆】(8下)矩形 ABCD, AB=3,BC=4,,E 在 BC 上,等腰Rt△DEF,DE=EF,则 FA 的最小值是( ).【简释】【法1】黄蓝△≌,EM=DC=3,EC=4--l=FMF A²=(3+t)²+(7−t)²=2t²−8t+58≥50【法2】【旋转法】构造蓝黄△∽,DH=3 √2,α+β=90°,∠HDN=45°等腰Rt△HDN,DN=6,AN=10,AM=5 √2,AF≥AM=5√2246.【☆☆☆】直角坐标系中,A(3,4),直线y=−13x上一动点 P,以AP 为斜边向上作等腰 Rt△APM,则OM 的最小值是( ).【简释】【旋转法】等腰 Rt△ABN,蓝灰△∽【SAS】∠MBA=∠PNA=45°等腰RtOHB,C(3,−1),OC=√10,tanα=13,BC=√102=OB OM≥OH−√52247.【☆☆☆】正方形 ABCD 边长为1,E、F 分别在BC、CD上, tan∠EAF=12,FM BC 交AE 于M,则 FM 的最小值是( ).【简释】【旋转法】黄△⊆边锐角】俩α,MF=m+n,MVBE =AVAB,MV=4mn4mn+n+m=1⇒m=1−n 4n+1,k=FM=m+n=4n2+14n+1,4n2−4kn+1−k=0≥0⇒k2+k−1≥0,k≥√5−12248.【☆☆】AB=2,M在以AB 为直径⊙O 上,AM逆时针旋转9 90°得到 AN;则ON 的取值范围是( ).【简释】【旋转法】绿△当ASλ√2−1=OP−PN≤ON≤ON≤ON≤ON≤d2+1249.【☆☆】⊙O 半径为1,等腰Rt△ABC,AB=AC,A、B 在⊙O 上,求 OC 的最小值.【简释】【旋转(直角顶点 A)】等腰Rt△AOD,黄≅【SASIOC≥OD−CD=√2−1第 3 节对称法250.【☆☆】(8下)AB=4,AB 中点 P, AM=1,BN=4,∠MPN=135°,,则 MN 的最大值是( ).【简释】【对称法】T、A 对称,V、B 对称,等腰Rt△PTVMN≤MT+TV+VN=5+2√2251.【☆☆☆】(8下) Rt△ABC,∠ACB=90°,AB=2,等腰Rt△ADE,AD⊥DE,E 在AB 延长线上,C 在 DE上,F 在AD 上, AF=√2BE,则CF 的最小值是( ).【简释】【斜边中线法与垂线对称法组合】作等腰RtABP,AF=√2BE=EQ则DF=DQ=DP,CF=C P≥GP-GC= √5-1第4节斜边中线与垂线段法252.【☆☆】(8下)等腰Rt△ABC,AB=AC=1,P 在AC 上移动, PQ⊥BP交 BC 于Q,BQ 的最小值是( ).【简释】【斜边中线1OP=OB=k,OC=√2−k,OK=1OP≥OK,k√2≥1−k≥2−√2√2253.【☆☆】等腰Rt△ABC绕点A 旋转得到对应等腰Rt△ADE,AB=BC=2,,O是 AC中点,则S ODE取值范围是( ).【简释】O. H≥AH−OA≥AD−OA=2−√2,OH≤OD≤OA+AD=2+√−2, 2−√2≤S ODE≤2+√2第5节中位线与斜边中线法254.【☆】(8下)等腰】Rt△ABC,AB=AC=4,BP=2,,K 是 PC 中点,则AK 的最大值是( ).【简释】【中位线法】AK≤KD+AD=1+2√2255.【☆☆】(8下)正方形ABCD 边长为4,P在AD 上,正方形APMN,O 是BM 中点,求 OP 的最小值.【简释】【法1】【8字≌】OP=OQ,【中位线】DK‖AM,【斜边中线OP=OA≥AH=√2【法2】MP 延长线交AC 于Q,. PQ=PA=PM,中位线OP=12BQ≥12BH=√2第6 节大角对大边法256.【☆☆】(8下)正方形 ABCD 边长为1,M在AD 延长线上,MC、AB 延长线交于N,MD≤BN,求 MN 的最小值.【简释】黄△∽【AA】BN BC =CDMD→BN=1MD≥1BN⇒BN2≥1→BN≥BC=BE∠BCE=45°,∠BCN≥45°,∠ACN≥90°【斜边中线法】AK≥AC=√2,MN=2AK≥2√2第7节将军饮马257.【☆】(8下)等腰Rt△ABC,AB=AC=3,D 在AB 上,AD=1,P 在BC 上,则 PA+PD 的最小值是( ).【简释】【两点间线段最短】俩定点(A、D)中任取一点,作其关于动点(P)所在直线的对称点,该对称点与另一个定点连线段长即为所求(共点两线段和PA+PD)最小值【左图】|PA+PD=PA+PD′≥AD′=√13【右图】PA + PD = PA'+ PD≥A'D=√13258.【☆☆】(8下)四边形ABCD,AB=BC=6,∠B=∠C=90°,CD=9,E 是AB 中点,EF⊥CD 于F,M、N 在EF 上移动,M N=2,求MA+ND 的最小值.【简释】□MBPN,MA=MB=PNMA+ND=PN+ND≥PD=√97259.【☆☆】等腰Rt△ABC,AC=BC=1,等腰Rt△BMP,,P 在 AC 上, PB=PM,求MA+MB 的最小值.【简释】【法1】【旋转法】等腰 Rt△BDA,蓝黄OISAS)MA=√2PD【将军饮马】E、D关于AP 对称MA+MB=√2(PD+PB)=√2(PE+PB)≥√2BE=√10【法2】【同旁45°】蓝黄△∽【SAS】∠BEM=90°,斜边中线OE中位线OD,MA+MB=2(OD+OE)≥2DE=√10【法3【轨迹法】△BPM初始是△BAD,蓝黄△OO[SAS)∠ADM=90°【将军饮马】E、A 关于MD 对称, MA+MB=ME+MB≥BE=√10第8节胡不归260.【☆☆】(8下)直角坐标系中,A(--1,0),B(0,2),在y轴上找一点C,使√2AC+BC最小,求出点 C 坐标并证明.【简释】D(2,0),AH⊥BD 于 H,并交y轴于C,C(0,1)√2AC+BC=√2AC+√2CH=√2AH除点 C 外任取点C₁,C₁H₁⊥BD√2AC1+BC1=√2AC1+√2C1H1>√2AFǐ第9节费马点261.【☆☆】(8下)等腰 Rt△ABC 内一点 D, AB−AC=2,求DA+DB+DC的最小值.【简释】【法1】作正△ABP,作正△ADQ,AD=QD,连接PC,灰△≅(SAS)PQ=DB DA+DB+DC=PQ+ QD+DC≥PC=√8+4√3=√6+√2【法2】作中垂线 AOP,BP=BC,正△BCP,作正△BDQ,黄△≅[SASDA+DB+DC=AD+DQ+QP≥AP=√6+√2说明:与△仨顶点线段和最小的点称为费马点;向外作俩正△,连线交点即是.262.【☆☆☆】正方形 ABCD 内一点 P,AB =4,则PA+34PB+54PC的最小值是( ).【简释】CM=3,构造CMN⋯CBP,MN=34PB,CN=34CP,PN=54PC PA+34PB+54PC=PA+MN+PN≥AM=√65第10 节定边定角263.【☆☆】(8下)四边形ABCD,AC=4,CB=3,∠ACB=90°,∠ADC=45°,求 BD 的最大值.【简释】【外接圆转化】AD、DC 中垂线交于G等腰RtAGC,GD=GA=2√2,GB=√29BD≤GD+GB=2√2+√29264.【☆☆】(8下)D 在△ABC内,AC=4,CB=3,∠ACB=90°,∠ADC=135°,求 BD 的最小值.【简释】【外接圆转化】AD、DC 中垂线交于G等腰RtAGC,GD=GA=2√2,GB=√29BD≥GB−GD=√29−2√2265.【☆☆】(8 下). △ABC,,三条高 AD、BE、CH, AB=2,DE=√2,则 CH 的最大值是( ).【简释】CDA∼○CEBIAA)CDCE =CACB,CDE∼CABISAS)CDCA=DEAB=√22,∠ACD=45∘【法1】取△ABC外心O,等腰RtAOB,OC=OA=√2,OG=1CH≤OC+OG=√2+1【法2】取CF=AG=GB=1,绿≌【SAS】,黄△≌【SAS】正方形GEFD FH≤FG=√2,CH ≤√2+1266.【☆☆】(8下)四边形ABCD,BD=2,∠ABC=75°,∠ADC=60°,AD=DC,求四边形 ABCD 面积的最小值.【简释】作正△DBE,黄△≌【SAS】β+γ=225°∠BAE=135°,AH 最大即可AB、AE 中垂线交于F,α+Ω=135°四边形ABFE,∠BFE=90°,等腰Rt△FBE矩形 FNHM,NH=FM=1AH+1=AN≤AF=√2AH和水锥侧=√2−1,S棱锥侧=√2−1SABCD或有常数=SπBDE−S加水水=√3−√2+1267.【☆☆】BC 是半圆⊙O 的直径,BC=2,A 在半圆上,AB=AC,P 在⌢AC上,AD⊥AP交BP 于D,连接CD,则CD 的最小值是( ).【简释】等腰 Rt△ADP,α+β=135°AD、DB 中垂线交于K等腰 Rt△AKB,KD=KB=1Rt△KBC中,. KC=√5CD≥KC−KD=√5−1268.【☆☆】四边形ABCD,AD∥BC,∠ACB=45°,BC=4 √2,AC=3,△ADC外接圆交BD 于E,求 AE 的最小值.【简释】仨45°,∠BEC=135°BE、EC 中垂线交于F等腰 Rt△BCF,FE=FC=4Rt△ACF 中,FA=5AE≥FA-FE=1第11 节定形对等边269.【☆☆】(8下)正△ABC边长为1,高AF,AE=CD,则BD+CE的最小值是( ).【简释】【等边造≌】【法1】黄蓝△≌【SSS】等腰ⅠRtBCG,BD+CE=BD+DG≥BG=√2【法2】灰绿△≌【SSS】等腰ⅠRtGAC,BD+CE=GE+CE≥CG=√2第 12 节外接圆法270.【☆☆】正方形ABCD 边长为2,E 在 BC 上移动,等腰Rt△DEF,DE=EF,(1)求AF 的最小值;(2)S△AEP最小值是( ).【简释】(1)【轨迹法】△DEF 最终位置是△DCG,绿O[SASIAF≥AH=3√2=m2−2m+4≥3(2)【法1】【函数法】2S球【法 2】【圆形切割线定理】【外 M型】1FH=EG,2S=EA⋅FH=EA⋅EG AD 是△AGD 外接圆直径,切底线 EL,. EA⋅EG=EL²=OE²−OL²≥OK²−1=3第 13 节勾股定理法271.【☆☆】(8下)P 在边长为2的正方形 ABCD 内,PE⊥AB,PF⊥AD,QE=QF= √2,PQ≤1,,则 QA 的最小值是( ).【简释】AM=FN=h,【勾股定理】QA²=m²+ℎ²,QP²=n²+k²,QE²=m²+k²,QF²=n²+ℎ²2A2+QP2=QE2+QF2,QP2=4−QA2≤1,QA≥√3.第 14 节最值与黄金分割比272.【八☆】(8下)等腰Rt△ABC,AB=AC,,D、E 分别是AB、AC 上的动点,若AD=CE,则DECD的最小值是( ).【简释】斜边中线 AM=k,黄△≌【SSS】α+β=90∘,DN=√5kCD≤DN+NC=(√5+1)kDE CD ≥√5+1=√5−12273.【☆☆☆】正方形 ABCD,E、F 分别在边AB、CD 上移动,且EF 始终经过中心O,当EFFB 最小时,BEEA=().【简释】【8字≌】BE=DF=m,EA=CF=BH=nHE=|n-m|,令BEEA =mn=kw=EF2FB2=2m2+2n2m2+2mn+2n2=2k2+2k2+2k+2(w−2)k²+2wk+2w−2=0△≥0⇒w²−6w+4≤0w≥3−√5,w放对侧=3−√5,k=√5−12274.【☆☆☆】正方形 ABCD 边长为2,P 在BC 延长线上移动,求PDPA的最小值.【简释】作高 BH,则AD²=AB²=AH⋅AP【美人鱼】△ADH∽△APD【SAS】PD PA =DHDA,斜边中线OH=1DH≥OD−OH=√5−1PD PA ≥√5−12第15 节圆形中mPA+nPB 最小值【核心方法】①圆心与动点连线段k,圆心与某一个定点连线段p,一定有kp =mn(或kp=nm).②以线段k、p及其夹角为基准构造放大或缩小的美人鱼相似△.③运用“两点连线中线段最短”计算出结论.275.【☆☆】正方形ABCD 边长为4,以AB为直径在正方形内作半圆⊙O,点G 在半圆⊙O 上移动,M、N 分别是CD、CB 中点,则2NG+MG 的最小值为( )【简释】圆心 O与动点G 连线段(OG=k=2)O与定点(M、N)连线中,OM=p=4OM OG =2,作 OL=1,满足OGOL=OMOG=2△OGL∼△OMGISASIMG=2LG2NG+MG=2(NG+LG)≥2LN=2OJ =2√5276.【☆☆☆】等腰Rt△ABC,AB=AC=3,,D 在CA 延长线上,AD=1,P 在△BCD外接圆⊙O上,则√10PA+2PB 的最小值是( ).【简释】猜测OPOA =√102并证明,OP=OB=√22BD=√5,OA=AH−OH=√2,OPOA=√102延长线HOAQ,连接QB, OQ=√502,OPA○OQP[SAS]PQ=√102PA△QBH 中, QB=√5√2√10PA+2PB=2(√102PA+PB)=2(PQ+PB)≥2QB=3√10。

2024年中考数学重难点押题预测《几何最值问题综合》含答案解析

2024年中考数学重难点押题预测《几何最值问题综合》含答案解析

几何最值问题综合1、2、3、4、题型一1.“两定一动”型将军饮马:①异侧型→直接连接,交点即为待求动点;后用勾股定理求最值②同侧型→对称、连接;后续同上2.“两定两动”型:①同侧型→先水平平移(往靠近对方的方向)、再对称、最后连接;也可先对称、再水平平移(往靠近对方的方向)、最后连接;后续同上。

同侧型异侧型②异侧型→先水平平移(往靠近对方的方向)、再连接;后续同上。

【1(2023•泸州)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是 27 .【分析】找出点E 关于AC 的对称点E ',FE '与AC 的交点P '即为PE +PF 取得最小值时P 的位置AP P C的值即可.【E 关于AC 的对称点E ',FE '交AC 于点P ',PE ',∴PE =PE ',∴PE +PF =PE '+PF ≥E 'F ,故当PE +PF 取得最小值时P 位于点P '处∴当PE +PF 取得最小值时AP PC的值AP P C 的值即可.∵正方形ABCD 是关于AC 所在直线轴对称∴点E 关于AC 所在直线对称的对称点E '在AD 上AE '=AE ,过点F 作FG ⊥AB 交AC 于点G ,则∠GFA =90°,∵四边形ABCD 是正方形∴∠DAB =∠B =90°,∠CAB =∠ACB =45°,∴FG ∥BC ∥AD ,∠AGF =∠ACB =45°,∴GF =AF ,∵E ,F 是正方形ABCD 的边AB 的三等分点∴AE '=AE =EF =FB ,∴GC =13AC ,AE GF =AE AF=12,∴AG =23AC ,AP P C =AE GF =12,∴AP '=13AG =13×23AC =29AC ,∴P 'C =AC -AP '=AC -29AC =79AC ,∴AP P C =29AC 79AC =27,故答案为27.2(2023•德州)如图,在四边形ABCD 中,∠A =90°,AD ∥BC ,AB =3,BC =4,点E 在AB 上,且AE =1.F ,G 为边AD 上的两个动点,且FG =1.当四边形CGFE 的周长最小时,CG 的长为 154 .【分析】先确定FG 和EC 的长为确定的值,得到四边形CGFE 的周长最小时,即为CG +EF 最小时,平移CG 到C 'F ,作点E 关于AD 对称点E ',连接E 'C '交AD 于点G ',得到CG +EF 最小时,点G 与G '重合,再利用平行线分线段成比例求出C 'G '长即可.【解答】解:∵∠A =90°,AD ∥BC ,∴∠B =90°,∵AB =3,BC =4,AE =1,∴BE =AB -AE =3-1=2,在Rt △EBC 中,由勾股定理,得EC =BE 2+BC 2=22+42=25,∵FG =1,∴四边形CGFE 的周长=CG +FG +EF +EC =CG +EF +1+25,∴四边形CGFE 的周长最小时,只要CG +EF 最小即可.过点F 作FC '∥GC 交BC 于点C ',延长BA 到E ',使AE '=AE =1,连接E 'F ,E 'C ',E 'C '交AD 于点G ',可得AD 垂直平分E 'E ,∴E 'F =EF ,∵AD ∥BC ,∴C 'F =CG ,CC '=FG =1,∴CG +EF =C 'F +E 'F ≥E 'C ',即CG +EF 最小时,CG =C 'G ',∵E 'B =AB +AE '=3+1=4,BC '=BC -CC '=4-1=3,由勾股定理,得E 'C '=E B 2+BC 2=42+32=5,∵AG '∥BC ',∴C G E C =AB E B ,即C G 5=34,解得C 'G '=154,即四边形CGFE 的周长最小时,CG 的长为154.故答案为:154.3(2023•绥化)如图,△ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60°得到CF .连接AF ,EF ,DF ,则△CDF 周长的最小值是 3+33 .【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF= 30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°-∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=12∠ABC=30°,CD=12AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG交于点I,连接CI,FH,则∠ACG=60°,CG=GH=12AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=33,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=33,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=33,∴△CDF的周长的最小值为3+33.故答案为:3+33.【中考模拟练】4(2024•衡南县模拟)已知:如图,直线y=-2x+4分别与x轴,y轴交于A、B两点,点P(1,0),若在直线AB上取一点M,在y轴上取一点N,连接MN、MP、NP,则MN+MP+NP的最小值是()A.3B.1+255+855C.2855D.10【分析】作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB 于C,过点F作FD⊥x轴于D,则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,MN+MP+ NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,则MN+MP+NP≥EF,因此MN+MP+NP的最小值为线段EF的长;先求出点A(2,0),点B(0,4),则OA=2,OB=4,再由点P (1,0)得OP=1,则OE=OP=1,PA=OA-OP=1,再求出AB=25,证△PAC∽△BAO得PC:OB=PA:AB,由此得PC=255,则PF=455,再证△PFD∽△BAO得FD:OA=PD:OB=PF:AB,由此可得FD=45,PD=85,则ED=OE+OP+PD=185,然后在Rt△EFD中由勾股定理求出EF即可得MN+MP+NP的最小值.【解答】解:作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB于C,过点F作FD⊥x轴于D,如图所示:则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,∴MN+MP+NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,∴MN+MP+NP≥EF,∴MN+MP+NP的最小值为线段EF的长,对于y=-2x+4,当x=0时,y=4,当x=0时,x=2,∴点A(2,0),点B(0,4),∴OA=2,OB=4,又∵点P(1,0),∴OP=1,∴OE=OP=1,PA=OA-OP=2-1=1,在Rt△OAB中,OA=2,OB=4,由勾股定理得:AB=OA2+OB2=25,∵FP⊥AB,FD⊥x轴,∠BOA=90°,∴∠PCA=∠BOA=∠PDF=90°,又∵∠PAC=∠BAO,∴△PAC∽△BAO,∴PC:OB=PA:AB,∠APC=∠ABO,即PC:4=1:25,∴PC=255,∴FC=PC=255,∴PF=FC+PC=455,∵∠APC=∠ABO,∠BOA=∠PDF=90°,∵△PFD∽△BAO,∴FD:OA=PD:OB=PF:AB,即FD:2=PD:4=455:25,∴FD=45,PD=8 5,∴ED=OE+OP+PD=1+1+85=185,在Rt△EFD中,ED=185,FD=45,由勾股定理得:EF=ED2+FD2=285 5.故选:C.5(2023•龙马潭区二模)如图,抛物线y=-x2-3x+4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.若点D为抛物线上一点且横坐标为-3,点E为y轴上一点,点F在以点A为圆心,2为半径的圆上,则DE+EF的最小值 65-2 .【分析】先求出点A(-4,0),点D(-3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长,然后可在Rt△ATH中由勾股定理求出TA,进而可得TN,据此可得出答案.【解答】解:对于y=-x2-3x+4,当y=0时,-x2-3x+4=0,解得:x1=-4,x2=1,∴点A的坐标为(-4,0),对于y=-x2-3x+4,当x=-3时,y=4,∴点D的坐标为(-3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长.理由如下:当点E与点M不重合,点F与点N不重合时,∴DE+EF=TE+EF,根据“两点之间线段最短”可知:TE+EF+AF>AT,即:TE+EF+AF>TN+AN,∵AF=AN=2,∴TE+EF>TN,即:DE+EF>TN,∴当点E与点M重合,点F与点N重合时,DE+EF为最小.∵点T(3,4),A(-4,0),∴OH=3,TH=4,OA=4,∴AH=OA+OH=7,在Rt△ATH中,AH=7,TH=4,由勾股定理得:TA=AH2+TH2=65,∴TN=TA-AN=65-2.即DE+EF为最小值为65-2.故答案为:65-2.6(2024•碑林区校级一模)(1)如图①,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是边AC 的中点.以点A为圆心,2为半径在△ABC内部画弧,若点P是上述弧上的动点,点Q是边BC上的动点,求PQ+QD的最小值;(2)如图②,矩形ABCD是某在建的公园示意图,其中AB=2003米,BC=400米.根据实际情况,需要在边DC的中点E处开一个东门,同时根据设计要求,要在以点A为圆心,在公园内以10米为半径的圆弧上选一处点P开一个西北门,还要在边BC上选一处点Q,在以Q为圆心,在公园内以10米为半径的半圆的三等分点的M、N处开两个南门.线段PM、NE是要修的两条道路.为了节约成本,希望PM+NE最小.试求PM+NE最小值及此时BQ的长.【分析】(1)作点D关于BC的对称点D′,连接D′Q、AP,过点D′作D′E⊥AB交AB的延长线于E,则QD =QD′,DK=D′K,当A、P、Q、D′在同一条直线上时,PQ+QD=AD′-AP取得最小值,由DK∥AB,可得△CDK∽△CAB,运用相似三角形性质可得DK=3,CK=4,再由勾股定理即可求得答案;(2)连接MQ,NQ,过点Q作QK⊥MN于K,作点A关于直线MN的对称点A′,将E向左平移10米得到点E′,过点E′作E′L∥AB,过点A′作A′L⊥E′L于L,连接A′M、A′E′、E′M,由题意得随着圆心Q在BC上运动,MN在平行于BC且到BC距离为53的直线上运动,再运用勾股定理可得PM+NE最小值=A′E-AP=(201011-10)米;设E′L与GH的交点为T,过点Q作QK⊥MN于K,由E′L∥AA′,可得△E′MT∽△A′MG,即可求得BQ的值.【解答】解:(1)如图①,作点D 关于BC 的对称点D ′,连接D ′Q 、AP ,过点D ′作D ′E ⊥AB 交AB 的延长线于E ,则QD =QD ′,DK =D ′K ,∴PQ +QD =PQ +QD ′=AQ -AP +QD ′,当A 、P 、Q 、D ′在同一条直线上时,PQ +QD =AD ′-AP 取得最小值,∵∠ABC =90°,AB =6,BC =8,∴AC =AB 2+BC 2=62+82=10,∵点D 是边AC 的中点,∴CD =12AC =5,∵DK ∥AB ,∴△CDK ∽△CAB ,∴DK AB =CK BC =CD AC,即DK 6=CK 8=510,∴DK =3,CK =4,∴D ′K =3,BK =4,∵∠E =∠EBK =∠BKD ′=90°,∴四边形BED ′K 是矩形,∴D ′E =BK =4,BE =D ′K =3,∴AE =AB +BE =6+3=9,∴AD ′=AE 2+D E 2=92+42=97,∵AP =2,∴PQ +QD 的最小值=97-2;(2)如图②,连接MQ ,NQ ,过点Q 作QK ⊥MN 于K ,作点A 关于直线MN 的对称点A ′,将E 向左平移10米得到点E ′,过点E ′作E ′L ∥AB ,过点A ′作A ′L ⊥E ′L 于L ,连接A ′M 、A ′E ′、E ′M ,∵M 、N 是半圆Q 的三等分点,且半径为10,∴△QMN 为等边三角形,且MN ∥BC ,MN =10,∵QK ⊥MN ,QM =10米,∴QK =53米,∴随着圆心Q 在BC 上运动,MN 在平行于BC 且到BC 距离为53的直线上运动,∵EE ′∥MN 且EE ′=MN =10米,∴四边形EE ′MN 是平行四边形,∴NE =ME ′,∴PM +NE =PM +ME ′≥AM -AP +ME ′=AM +ME ′-10,∵E 是CD 的中点,∴DE =12CD =1003,∴E ′L =AA ′-DE =2(AB -QK )-DE =2×(2003-53)-1003=2903(米),A ′L =BC -E ′E =400-10=390(米),在Rt △A ′E ′L 中,A ′E ′=A L 2+E L 2=3902+2903 2=201011,∴PM +NE 最小值=A ′E -AP =(201011-10)米;此时△MNQ 在如图③的△M ′N ′Q 位置,设E′L与GH的交点为T,过点Q作QK⊥MN于K,′∵∠CBG=∠BGK=∠GKQ=90°,∴四边形BGKQ是矩形,∴BQ=GK,∵E′L∥AA′,∴△E′MT∽△A′MG,∴MT MG =E TA G,∵MT=390-MG,E′T=EH=1003-53=953(米),A′G=AG= 2003-53=1953(米),GT=390米,∴390-MGMG =953 1953,∴MG=760529(米),∴GK=GM+MK=760529+5=775029(米),∴BQ=GK=775029米,∴当PM+NE取最小值时,BQ的长为775029米.7(2023•卧龙区二模)综合与实践问题提出(1)如图①,请你在直线l上找一点P,使点P到两个定点A和B的距离之和最小,即PA+PB的和最小(保留作图痕迹,不写作法);思维转换(2)如图②,已知点E是直线l外一定点,且到直线l的距离为4,MN是直线l上的动线段,MN=6,连接ME,NE,求ME+NE的最小值.小敏在解题过程中发现:“借助物理学科的相对运动思维,若将线段MN 看作静线段,则点E在平行于直线l的直线上运动”,请你参考小敏的思路求ME+NE的最小值;拓展应用(3)如图③,在矩形ABCD中,AD=2AB=25,连接BD,点E、F分别是边BC、AD上的动点,且BE= AF,分别过点E、F作EM⊥BD,FN⊥BD,垂足分别为M、N,连接AM、AN,请直接写出△AMN周长的最小值.【分析】(1)作点A的对称点,由两点之间线段最短解题即可;(2)将M、N看作定点,E看作动点,由(1)作法可解;(3)由相似得出MN为定值,再根据(2)作法求出AM+AN的最值,即可解答.【解答】解:(1)如图①,则点P为所求.连接A′B交l于点P,由对称得AP=A′P,∴AP+BP=A′P+BP,∵两点之间线段最短,∴A′P+BP最短,即PA+PB的和最小.(2)如图②,过点E作直线l1∥l,作点N关于l1的对称点N′,连接MN′,交l1于点P,则PM+PN的值即是EM+EN的最小值,∵点E到直线l的距离为4,∵NN′=8,∵MN=6,∴MN′=62+82=10,∴PM+PN=10,即ME+NE的最小值为10.(3)如图③,过A作l∥BD,AH⊥BD于点H,作点M关于l的对称点M′,连接M′N,由(2)得M′N为AM+AN的最小值,∵AB=5,AD=25,∴BD=52=5,2+25∴AH=5×25=2,5∴MM′=4,设ME=x,由△ABD∽△BME得,BM=2x,BE=5x,∴AF=5x,∴DF=25-5x,由△DNF∽△ABD得,DN=4-2x,∴MN=5-2x-(4-2x)=1,∵l∥BD,MM′⊥l,∴MM′⊥BD,∴M′N=42+12=17,∴△AMN周长的最小值为17+1.题型二:辅助圆类几何最值动点的运动轨迹为辅助圆的三种形式:1、定义法--若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)2、定边对直角--若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)3.定边对定角--若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)【中考真题练】8(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC 绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是 4+3 .【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB =2BC =4,CE =AE =12AB =2,AC =AB •cos30°=23,∴∠ECA =∠BAC =30°,过点A 作AG ⊥CE 交CE 的延长线于点G ,∴AG =12AC =3,∵点F 在以A 为圆心,AB 长为半径的圆上,∴AF =AB =4,∴点F 到CE 的距离最大值为4+3,∴S △CEF =12CE ⋅4+3 =4+3,故答案为:4+3.【中考模拟练】9(2023•永寿县二模)如图,在正方形ABCD 中,AB =4,M 是AD 的中点,点P 是CD 上一个动点,当∠APM 的度数最大时,CP 的长为 4-22 .【分析】因为同弧所对的圆外角小于圆周角,因此过点A 、M 作⊙O 与CD 相切于点P ',当点P 运动到点P '处时,∠AP 'M 的度数最大,记AM 的中点为N ,可以证出四边形OP 'DN 是矩形,在Rt △MON 中,利用勾股定理求出ON ,从而得出DP '的长,进而求出CP 的长.【解答】解:过点A 、M 作⊙O 与CD 相切于点P ',记PM 与⊙O 交于点Q ,连接AP ′,MP ′,OM ,OP ′,AQ ,则∠AP 'M =∠AQM >∠APM ,∠OP ′D =90°,∴当点P 运动到点P '时,∠AP 'M 最大,作ON ⊥AD 于点N ,则MN =AN =12AM ,∵四边形ABCD 是正方形,∴∠D =90°,∴四边形OP 'DN 是矩形,∵AB =4,M 是AD 的中点,∴AM =DM =2,MN =1,∴OM =OP '=DN =DM +MN =3,在Rt △MON 中,ON =OM 2-MN 2=32-12=22,∴DP '=ON =22,∴CP '=DC -DP '=4-22,∴当∠APM 的度数最大时,CP 的长为4-22.故答案为:4-22.10(2023•营口一模)如图,等边三角形ABC 和等边三角形ADE ,点N ,点M 分别为BC ,DE 的中点,AB =6,AD =4,△ADE 绕点A 旋转过程中,MN 的最大值为 53 .【分析】分析题意可知,点M 是在以AM 为半径,点A 为圆心的圆上运动,连接AN ,AM ,以AM 为半径,点A 为圆心作圆,反向延长AN 与圆交于点M ′,以此得到M 、A 、N 三点共线时,MN 的值最大,再根据勾股定理分别算出AM 、AN 的值,则MN 的最大值M ′N =AN +AM ′=AN +AM .【解答】解:连接AN ,AM ,以AM 为半径,点A 为圆心作圆,反向延长AN 与圆交于点M ′,如图,∵△ADE 绕点A 旋转,∴点M 是在以AM 为半径,点A 为圆心的圆上运动,∵AM +AN ≥MN ,∴当点M 旋转到M ′,即M 、A 、N 三点共线时,MN 的值最大,最大为M ′N ,∵△ABC 和△ADE 都是等边三角形,点N ,点M 分别为BC ,DE 的中点,AB =6,AD =4,∴AN ⊥BC ,AM ⊥DE ,BN =3,DM =2,在Rt △ABN 中,由勾股定理得AN =AB 2-BN 2=33,在Rt △ADM 中,由勾股定理得AM =AD 2-DM 2=23,根据旋转的性质得,AM ′=AM =23,∴M ′N =AN +AM ′=53,即MN 的最大值为53.故答案为:53.11(2023•定远县校级一模)如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为 23π3 .【分析】由∠AFC =90°,得点F 在以AC 为直径的圆上运动,当点E 与B 重合时,此时点F 与G 重合,当点E 与D 重合时,此时点F 与A 重合,则点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为AG 的长,然后根据条件求出AG 所在圆的半径和圆心角,从而解决问题.【解答】解:∵CF ⊥AE ,∴∠AFC =90°,∴点F 在以AC 为直径的圆上运动,以AC 为直径画半圆AC ,连接OA ,当点E 与B 重合时,此时点F 与G 重合,当点E 与D 重合时,此时点F 与A 重合,∴点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为AG的长,∵点G 为OD 的中点,∴OG =12OD =12OA =2,∵OG ⊥AB ,∴∠AOG =60°,AG =23,∵OA =OC ,∴∠ACG =30°,∴AC =2AG =43,∴AG 所在圆的半径为23,圆心角为60°,∴AG 的长为60π×23180=23π3,故答案为:23π3.12(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 为平面内一点(点A ,B ,D 三点不共线),AE 为△ABD 的中线.【初步尝试】(1)如图1,小林同学发现:延长AE 至点M ,使得ME =AE ,连接DM .始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM =AC ;②∠MDA +∠DAB =180°;【类比探究】(2)如图2,将AD 绕点A 顺时针旋转90°得到AF ,连接CF .小斌同学沿着小林同学的思考进一步探究后发现:AE =12CF ,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D 在以点A 为圆心,AD 为半径的圆上运动(AD >AB ),直线AE 与直线CF 相交于点G ,连接BG ,在点D 的运动过程中BG 存在最大值.若AB =4,请直接写出BG 的最大值.【分析】(1)利用SAS 证明△ABE ≌△MDE ,可得AB =DM ,再结合AB =AC ,即可证得DM =AC ;由全等三角形性质可得∠BAE =∠DME ,再运用平行线的判定和性质即可证得∠MDA +∠DAB =180°;(2)延长AE 至点M ,使得ME =AE ,连接DM .利用SAS 证得△ACF ≌△DMA ,可得CF =AM ,再由AE =12AM ,可证得AE =12CF ;(3)延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,可证得△ACF ≌△ABM (SAS ),利用三角形中位线定理可得AE ∥BM ,即AG ∥BM ,利用直角三角形性质可得GP =12AC =12AB =2,得出点G 在以P 为圆心,2为半径的⊙P 上运动,连接BP 并延长交⊙P 于G ′,可得BG ′的长为BG 的最大值,再运用勾股定理即可求得答案.【解答】(1)证明:①∵AE 为△ABD 的中线,∴BE =DE ,在△ABE 和△MDE 中,BE =DE ∠AEB =∠MED AE =ME,∴△ABE ≌△MDE (SAS ),∴AB =DM ,∵AB =AC ,∴DM =AC ;②由①知△ABE ≌△MDE ,∴∠BAE =∠DME ,∴AB ∥DM ,∴∠MDA +∠DAB =180°;(2)证明:延长AE 至点M ,使得ME =AE ,连接DM .由旋转得:AF =AD ,∠DAF =90°,∵∠BAC =90°,∠DAF +∠BAC +∠BAD +∠CAF =360°,∴∠BAD +∠CAF =180°,由(1)②得:∠MDA +∠DAB =180°,DM =AB =AC ,∴∠CAF =∠MDA ,在△ACF 和△DMA 中,AF =AD ∠CAF =∠MDA AC =DM,∴△ACF ≌△DMA (SAS ),∴CF =AM ,∵AE =12AM ,∴AE =12CF ;(3)如图3,延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,由旋转得:AF =AD ,∠DAF =90°,∴AF =AM ,∠MAF =180°-90°=90°,∵∠BAC =90°,∴∠MAF +∠CAM =∠BAC +∠CAM ,即∠CAF =∠BAM ,在△ACF 和△ABM 中,AC =AB ∠CAF =∠BAM AF =AM,∴△ACF ≌△ABM (SAS ),∴∠AFC =∠AMB ,即∠AFN =∠KMN ,∵∠ANF=∠KNM,∴∠FAN=∠MKN=90°,∴BM⊥CF,∵E、A分别是DB、DM的中点,∴AE是△BDM的中位线,∴AE∥BM,即AG∥BM,∴AG⊥CF,∴∠AGC=90°,∵点P是AC的中点,∴GP=12AC=12AB=2,∴点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P于G′,∴BG′的长为BG的最大值,在Rt△ABP中,BP=AB2+AP2=42+22=25,∴BG′=BP+PG′=25+2,∴BG的最大值为25+2.题型三:瓜豆原理类几何最值大概动点问题符合瓜豆原理的模型时,也可以和几何最值结合【中考真题练】13(2022•沈阳)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是AD=BC;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=33,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是 8+36 ;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.【分析】(1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC =∠AOD ,再证明△AOD ≌△BOC (SAS ),即可得出结论;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,先证得△ABC ∽△TBD ,得出DT =36,即点D 的运动轨迹是以T 为圆心,36为半径的圆,当D 在AT 的延长线上时,AD 的值最大,最大值为8+36;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,可证得△BAC ∽△BTD ,得出DT =32AC =32×33=92,再求出DH 、AH ,即可求得AD ;如图5,在AB 下方作∠ABE =30°,过点A 作AE ⊥BE 于点E ,连接DE ,可证得△BAC ∽△BTD ,得出DE =92,再由勾股定理即可求得AD .【解答】解:(1)AD =BC .理由如下:如图1,∵△AOB 和△COD 是等腰直角三角形,∠AOB =∠COD =90°,∴OA =OB ,OD =OC ,在△AOD 和△BOC 中,,∴△AOD ≌△BOC (SAS ),∴AD =BC ,故答案为:AD =BC ;(2)AD =BC 仍然成立.证明:如图2,∵∠AOB =∠COD =90°,∴∠AOB +∠AOC =∠AOC +∠COD =90°+α,即∠BOC =∠AOD ,在△AOD 和△BOC 中,,∴△AOD ≌△BOC (SAS ),∴AD =BC ;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,∵△ABT 和△CBD 都是等腰直角三角形,∴BT =2AB ,BD =2BC ,∠ABT =∠CBD =45°,∴BT AB=BD BC =2,∠ABC =∠TBD ,∴△ABC ∽△TBD ,∴DT AC =BT AB=2,∴DT =2AC =2×33=36,∵AT =AB =8,DT =36,∴点D 的运动轨迹是以T 为圆心,36为半径的圆,∴当D 在AT 的延长线上时,AD 的值最大,最大值为8+36,故答案为:8+36;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,∵BT AB =BD BC =cos30°=32,∠ABC =∠TBD =30°+∠TBC ,∴△BAC ∽△BTD ,∴DT AC=BD BC =32,∴DT =32AC =32×33=92,在Rt △ABT 中,AT =AB •sin ∠ABT =8sin30°=4,∵∠BAT =90°-30°=60°,∴∠TAH =∠BAT -∠DAB =60°-30°=30°,∵TH ⊥AD ,∴TH =AT •sin ∠TAH =4sin30°=2,AH =AT •cos ∠TAH =4cos30°=23,在Rt △DTH 中,DH ===652,∴AD =AH +DH =23+652;如图5,在AB 上方作∠ABE =30°,过点A 作AE ⊥BE 于点E ,连接DE ,则BE AB=BD BC =cos30°=32,∵∠EBD =∠ABC =∠ABD +30°,∴△BDE ∽△BCA ,∴DE AC =BE AB =32,∴DE =32AC =32×33=92,∵∠BAE =90°-30°=60°,AE =AB •sin30°=8×12=4,∴∠DAE =∠DAB +∠BAE =30°+60°=90°,∴AD ===172;综上所述,AD 的值为23+652或172.【中考模拟练】14(2023•金平区三模)如图,长方形ABCD 中,AB =6,BC =152,E 为BC 上一点,且BE =32,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转45°到EG 的位置,连接FG 和CG ,则CG 的最小值为 32+32 .【分析】如图,将线段BE 绕点E 顺时针旋转45°得到线段ET ,连接DE 交CG 于J .首先证明∠ETG =90°,推出点G 的在射线TG 上运动,推出当CG ⊥TG 时,CG 的值最小.【解答】解:如图,将线段BE 绕点E 顺时针旋转45°得到线段ET ,连接DE 交CG 于J .∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =45°,∴∠BEF =∠TEG ,∵EB =ET ,EF =EG ,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,∴点G 在射线TG 上运动,∴当CG ⊥TG 时,CG 的值最小,∵BC =152,BE =32,CD =6,∴CE =CD =6,∴∠CED =∠BET =45°,∴∠TEJ =90°=∠ETG =∠JGT =90°,∴四边形ETGJ 是矩形,∴DE ∥GT ,GJ =TE =BE =32,∴CJ ⊥DE ,∴JE =JD ,∴CJ =12DE =32,∴CG =CJ +GJ =32+32,∴CG 的最小值为32+32,故答案为:32+32.15(2023•苍溪县一模)如图,线段AB 为⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,点P 是⊙O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt △PCD ,且使∠DCP =60°,连接OD ,则OD 长的最大值为 23+1 .【分析】如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,由△COP ∽△CED ,推出OP ED =CP CD=2,即ED =12OP =1(定长),由点E 是定点,DE 是定长,推出点D 在半径为1的⊙E 上,由此即可解决问题.【解答】解:如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,∵∠CDP =90°,∠DCP =60°,∴CP =2CD ,∴CO CE =CP CD=2,∴△COP ∽△CED ,∴OP ED =CP CD =2,即ED =12OP =1(定长),∵点E 是定点,DE 是定长,∴点D 在半径为1的⊙E 上,∵OD ≤OE +DE =23+1,∴OD 的最大值为23+1,故答案为23+1.16(2023•海淀区校级三模)在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个点M ,N 满足PM =3PN 且∠MPN =90°,则称点P 是图形W 的关联点.已知点A (-23,0),B (0,2).(1)在点P 1(-3,-1),P 2(-3,3),P 3(-23,-2)中,P1,P 2 是线段AB 的关联点;(2)⊙T 是以点T (t ,0)为圆心,r 为半径的圆.①当t =0时,若线段AB 上任一点均为⊙O 的关联点,求r 的取值范围;②记线段AB 与线段AO 组成折线G ,若存在t ≥4,使折线G 的关联点都是⊙T 的关联点,直接写出r 的最小值.【分析】(1)根据关联点的定义,结合勾股定理进行判断即可;(2)①根据题意推得三角形PMN 为含30度角的直角三角形,根据瓜豆原理可得求得点O 到点P 的最大距离为3+12r ,最小距离为3-12r ,推得⊙O 的所有关联点在以O 为圆心,3+12r 和3-12r 为半径的两个圆构成的圆环中,结合图形求得半径r 的取值范围;②结合①中的结论,画出满足条件的关联点的范围,进行求解即可.【解答】解:(1)∵∠MPN =90°,∴△MPN 为直角三角形,∴满足MN 2=PM 2+PN 2,根据勾股定理可得:,,,;,,;P3A=2,,,∵,且,∴是线段AB的关联点;∵,且,∴是线段AB的关联点;∵P3A=7P3B,且P3A2+P3B2≠AB2,∴∠BAO=30°,P3A⊥OA,∴∠P3AB=90°+30°=120°,∴对于线段AB上的任意两点M、N,当时,∠P3NM>90°,如图,则∠MPN必是锐角,不可能是直角,∴不是线段AB的关联点;故答案为:P1,P2.(2)①由(1)可得:∵∠MPN=90°,∴△MPN为直角三角形,∴MN2=PM2+PN2=4PN2,即MN=2PN,即三角形PMN为含30度角的直角三角形,如图:则点P是以MN为斜边且含30度角的直角三角形的直角顶点.在圆O上取点M,N,则对于任意位置的M和N,符合的关联点有2个,如图:以点P 为例,当点M 在半径为r 的⊙O 上运动时,点N 为圆上一定点,且MN =2PN ,∠PNM =60°,则点M 的运动轨迹为圆,故点P 的轨迹也为圆,令点P 的轨迹为圆R ,如图:当M ,O ,N 三点共线,P ,R ,N 三点共线时,∠PNM =60°,∴OR =32r ,RN =12r ,则点O 到点P 的最大距离为3+12r ,最小距离为3-12r ,当点N 也在⊙O 上运动时,⊙R 也随之运动,则⊙R 扫过的区域为3+12r 和3-12rr 为半径围成的圆,即⊙O 的所有关联点在以O 为圆心,3+12r 和3-12r 为半径的两个圆构成的圆环中,∴当线段AB 与半径为3+12r 交于点A 时,r 最小,如图:则3+12r =23,解得r =6-23,当线段AB 与半径为3-12r 的圆相切时,r 最大,过点O 作OH ⊥AB ,如图:则,即,解得,则,解得,∴②当关联点在线段AB上时,满足条件的关联点所在范围如图阴影部分:当关联点在线段AO上时,满足条件的关联点所在范围如图阴影部分:当关联点在不同线段上时,满足条件的关联点在点O和点B上的范围如图阴影部分:综上,所有区域叠加一起为:由①可知,满足T的所有关联点所在范围为圆环,故若使得圆环能够完整“包住”关联点,圆环中外圆的必须经过点G1,∵∠GBA=30°,∠G=90°,∠OBA=60°,∠O=90°,∴四边形AOBG为矩形,∴,则,即,解得r=42(负值舍去);综上,r的最小值为42.17(2024•昆山市一模)如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A、C两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.(1)求抛物线解析式;(2)若点M为x轴下方抛物线上一动点,当点M运动到某一位置时,△ABM的面积等于△ABC面积的35,求此时点M的坐标;(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90°(P、A、D三点为逆时针顺序),连接FD.求FD长度的取值范围.【分析】(1)将点A(1,0),C(0,5)代入y=x2+bx+c,即可求解;×4×(-m2+6m-5),(2)设M(m,m2-6m+5),先求AB=4,则S△ABC=10,再由题意可得S△AMB=6=12即可求M(2,-3)或M(4,-3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,可证明△ADB'≌△APB(SAS),则可得D在以B'为圆心,2为半径的圆上运动,又由B'(1,-4),F(7,0),则B'F=213,所以DF的最大值为61+ 2,DF的最小值为61-2,即可求213-2≤DF≤213+2.【解答】解:(1)令x=0,则y=5,∴C(0,5),令y=0,则x=1,∴A(1,0),将点A(1,0),C(0,5)代入y=x2+bx+c,得,∴,∴y=x2-6x+5;(2)设M(m,m2-6m+5),令y=0,则x2-6x+5=0,解得x=5或x=1,∴B(5,0),∴AB=4,∴S△ABC=1×4×5=10,2∵△ABM的面积等于△ABC面积的35,∴S△AMB=6=1×4×(-m2+6m-5),2解得m=2或m=4,∴M(2,-3)或M(4,-3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,∵∠B'AD+∠BAD=90°,∠PAB+∠BAD=90°,∴∠B'AD=∠PAB,∵AB=AB',PA=AD,∴△ADB'≌△APB(SAS),∴BP=B'D,∵PB=2,∴B'D=2,∴D在以B'为圆心,2为半径的圆上运动,∵B(5,0),A(1,0),∴B'(1,-4),∵BF=2,∴F(7,0),∴B'F=213,∴DF的最大值为213+2,DF的最小值为213-2,∴213-2≤DF≤213+2.题型四:其他类几何最值除了常见的模型与几何最值结合外,还有一些几何问题,应用直接的最值原理,比如:点到直线的距离垂线段最短等【中考真题练】18(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD,AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是 23 .【分析】根据题目中所给的条件,判断AF为角平分线,由问题可知,需要利用胡不归模型构建直角三角形,转化两条线段和为一条线段,利用三角函数求出线段长度.【解答】理由如下:由作图步骤可知,射线AM为∠CAB的角平分线,∵∠ABC=90°,∠B=30°,∴∠CAB=60°,∵AM平分∠CAB,∴∠CAF=∠BAF=12∠CAB=30°,过点C作CN⊥AB于N,交AF于P,在Rt△APN中,∠BAF=30°,∴PN=12AP,∴CP+12AP=CP+PN=CN,根据点到直线的距离,垂线段最短,此时CP+PN值最小在Rt△ACN中,∠CAN=60°,AC=4,∴sin60°=CNAC,∴CN=sin60°×AC=4×32=23,∴CP+12AP=CP+PN=CN=23,故答案为:23.19(2023•德阳)如图,在底面为正三角形的直三棱柱ABC-A1B1C1中,AB=23,AA1=2,点M为AC的中点,一只小虫从B1沿三棱柱ABC-A1B1C1的表面爬行到M处,则小虫爬行的最短路程等于 19 .【分析】利用平面展开图可总结为3种情况,画出图形利用勾股定理求出B1M的长即可.【解答】解:如图1,将三棱柱ABC-A1B1C1的侧面BB1C1C和侧面CC1A1A沿CC1展开在同一平面内,连接MB1,∵M是AC的中点,△ABC和△A1B1C1是等边三角形,∴CM=12AC=12×23=3,∴BM=CM+BC=33,在Rt△MBB1中,由勾股定理得:B1M=BM2+B1B2=31,如图2,把底面ABC和侧面BB1A1A沿AB展开在同一平面内,连接MB1,过点M作MF⊥A1B1于点F,交AB于点E,则四边形AEFA1是矩形,ME⊥AB,在Rt△AME中,∠MAE=60°,∴ME =AM •sin60°=3×32=32,AE =AM •cos60°=32,∴MF =ME +EF =32+2=72,B 1F =A 1B 1-A 1F =332,在Rt △MFB 1中,由勾股定理得:B 1M =MF 2+B 1F 2=19,如图3,连接B 1M ,交A 1C 1于点N ,则B 1M ⊥AC ,B 1N ⊥A 1C 1,在Rt △A 1NB 1中,∠NA 1B 1=60°,∴NB 1=A 1B 1•sin60°=3,∴B 1M =NB 1+MN =5,∵19<5<31,∴小虫爬行的最短路程为19.故答案为:19.20(2023•常州)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =4,D 是AC 延长线上的一点,CD =2.M 是边BC 上的一点(点M 与点B 、C 不重合),以CD 、CM 为邻边作▱CMND .连接AN 并取AN 的中点P ,连接PM ,则PM 的取值范围是 22≤MP <5 .【分析】先根据题意确定点P 的运动轨迹,即可确定MP 的最大值和最小值,从而解答.【解答】解:∵AB =AC =4,∴AD =6,∵△ABC 是等腰直角三角形,四边形CNMD 是平行四边形,∴DN ∥BC ,DN =BC ,CD ∥MN ,CD =MN ,∴∠ADN =∠ACB =45°=∠ABC =∠CMN ,当M 与B 重合时,如图M1,N 1,P 1,∠ABN 1=90°,∴AN 1=42+22=25,∵P 1是中点,∴MP 1=12AN 1=5,当MP ⊥BC 时,如图P 2,M 2,N 2,∵P 1,P ,P 2是中点,∴P 的运动轨迹为平行于BC 的线段,交AC 于H ,∴CH =3-2=1,∵∠ACB =45°,∴PH 与BC 间的距离为P2M 2=22CH =22,∵M不与B、C重合,∴22≤MP<5.【中考模拟练】21(2024•济南一模)如图,在矩形ABCD中,AB=4,BC=3,E为AB上一点,连接DE,将△ADE 沿DE折叠,点A落在A1处,连接A1C,若F、G分别为A1C、BC的中点,则FG的最小值为1.【分析】连接A1B,由F、G分别为A1C、BC的中点可得FG=12A1B,在△A1BD中有A1B+A1D≥BD,由勾股定理可得BD,由折叠性质和矩形性质可得A1D=AD=BC,即可求解.【解答】解:如图,连接A1B,BD,∵F、G分别为A1C、BC的中点,∴FG=12A1B,当FG的最小时,即A1B最小,∵四边形ABCD为矩形,AB=4,BC=3,∴AD=BC=3,∠A=90°,∴BD=AB2+AD2=5,∵△ADE沿DE折叠,∴A1D=AD=3,在△A1BD中有A1B+A1D≥BD,∴A1B≥BD-A1D,即A1B≥2,∴FG=12A1B≥1,∴FG的最小值为1,故答案为:1.22(2024•郾城区一模)如图,在矩形ABCD中,AD=63,AB=6,对角线AC,BD相交于点O,点E在线段AC上,且AE=4,点F为线段BD上的一个动点,则EF+12BF的最小值为4.【分析】过点E作EG⊥BC于点G,过点F作FH⊥BC于点H,首先根据题意将12BF用FH表示,再将EF+FH的最小值用EG表示,进而求出EG的长即可解决问题.【解答】解:过点E作EG⊥BC于点G,过点F作FH⊥BC于点H,如图,∵四边形ABCD是矩形,AD=63,AB=6,。

+2024年九年级数学中考2轮专题复习专题1+线段最值问题

+2024年九年级数学中考2轮专题复习专题1+线段最值问题

专题一:线段最值问题(1)班级:姓名:使用日期:评价:【模型一】利用“点到直线的所有线段中,垂线段最短”求最值.类型一一动一定求最值模型解读:如图,直线l外一定点A和直线l上一动点B,求点A,B之间距离的最小值.通常过点A作直线l的垂线AB,利用垂线段最短解决问题,即连接直线外一点和直线上各点的所有线段中,垂线段最短.典例1 如图,P是Rt△ABC斜边AB上的一点,PE△AC于点E,PF△BC于点F,BC=15,AC=20,则线段EF长的最小值为.类型二两定一动求最值模型解读:如图,A,P为直线l上的两点,A为定点,P为动点,B为直线l外的一定点,求kPA+BP(0<k<1)的最小值.方法:如图,构造∠PAN,使得sin∠PAN=k,过点P作PE⊥AN于点E,从而利用kPA =sin∠PAN·PA=PE,使得kPA+BP=PE+BP,过点B作BF⊥AN于点F,交直线l于点P',利用“垂线段最短”转化为求BF的长.典例2 如图,在菱形ABCD中,AB=AC=10,对角线AC,BD相交于点O,点M在线段AC上,且AM=4,P为线段BD上的一个动点,求MP+1/2PB的最小值.类型三两动一定求最值模型解读:如图△,P是△AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得PN+MN的值最小.要使PN+MN的值最小,设法将PN,MN转化在同一条直线上,如图△,作点P关于OB的对称点P',作P'M△OA于点M,交OB于点N,利用“垂线段最短”求解即可.典例3 如图,在Rt△ABC中,△ACB=90°,△B=30°,BC=8,AD是△BAC的平分线.若P,Q分别是AD,AC上的动点,求PC+PQ的最小值.典例4 如图,在△ABC中,△ACB=90°,AB+BC=8,tanA=3/4,O,D分别是边AB,AC上的动点,求OC+OD的最小值.学以致用1. 如图,P是∠AOC的平分线上一点,PD⊥OA于点D,且PD=5,M是射线OC上一动点,则PM长的最小值为()A. 3B. 5C. 7D. 102.如图,菱形ABCD的周长为24,△ABD=30°,P是对角线BD上一动点,Q是BC的中点,则PC+PQ的最小值是()A. 6B. 3√3C. 3√5D. 6√33.如图,在边长为4的正方形ABCD中,M为对角线BD上一动点,ME△BC于点E,MF△CD 于点F,连接EF,则EF长的最小值为3.如图,在锐角三角形ABC中,BC=6√2,∠ABC=45°,BD平分∠ABC,M,N分别是BD,BC上的动点,连.接MN,CM,则CM+MN的最小值是专题一:线段最值问题(2)班级:姓名:使用日期:评价:【模型二】利用“两点之间线段最短求最值”求最值.1.“一线两点”型(一动+两定)类型一异侧线段和最小值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使PA+PB值最小.模型解读:根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.类型二同侧线段和最小值问题(将军饮马模型)问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小.模型解读:将两定点同侧转化为异侧问题,同类型一即可解决.作点B关于l的对称点B′,连接AB′,与直线l的交点即为点P.类型三同侧差最大值问题问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.模型解读:根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B,P三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延长,与直线l的交点即为点P.类型四异侧差最大值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.模型解读:将异侧点转化为同侧,同类型三即可解决.例题△△△【问题提出】(1)如图△,某牧马人要从A地前往B地,途中要到旁边一条笔直的河边l喂马喝一次水,经测量A点到河边的距离AC为300米,B点到河边的距离BD为900米,且点C、D间距离为900米,请计算该牧马人的最短路径长;【问题探究】(2)如图△,在△ABC中,AB=AC,BC=6,AC的中垂线分别交AB,AC的边于E,F,△ABC的面积为24,若点D是BC边的中点,点M是线段EF上的一动点,请求出△CDM周长的最小值;【问题解决】(3)如图△所示,某工厂生产车间的平面示意图为四边形ABCD,△C=△D=90°,AD =70m,CD=60m,BC=110m,在AB的中点处有一个出货口M,在BC上有一个质检口N,点D为货物包装口.为了使得该生产车间出货——质检——包装过程达到最高效率,现要求从出货口M到质检口N的距离MN与质检口到包装口D的距离ND之和最短(即MN+ND最短).请根据要求计算出MN+ND的最小值为多少?2.“一点两线”型(两动+一定)问题:点P是△AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN 周长最小.模型解读:要使△PMN周长最小,即PM+PN+MN值最小.根据两点之间线段最短,将三条线段转化到同一直线上即可.例题△△△(1)如图△,在等边△ABC中,BC=4,点P是BC上一动点,点P关于直线AB,AC的对称点分别为点M,N,连接MN.△当点P与点B重合时,线段MN的长是,当AP的长最小时,线段MN的长是;△如图△,PM,PN分别交AB,AC于点D,E.当PB=1时,求线段MN的长;(2)如图△,在等腰△ABC中,△BAC=30°,AB=AC,点P,Q,R分别为边BC,AB,AC上(均不与端点重合)的动点,当△PQR的周长最小时,求△PQR+△PRQ的度数.3.“两点两线”型(两动+两定)问题:点P,Q是△AOB的内部两定点,在OA上找点M,在OB上找点N,使得四边形PQNM周长最小.模型解读:要使四边形PQNM周长最小,PQ为定值,即求得PM+MN+NQ的最小值即可,需将线段PM,MN,NQ三条线段尽可能转化在一条直线上,因此想到作点P关于OA的对称点,点Q关于OB的对称点.例题△△△如图,在矩形ABCD中,AB=4,AD=6,点E在AB上,且AE=1,点F,G 分别为BC,DC上的动点,连接EC,FE,FG,点M为△EBC的外心.(1)求点M到AB的距离;(2)若EF△FG,且FC=2BF,求DG的长;(3)连接AG,求四边形AEFG周长的最小值.学以致用1.如图,已知菱形ABCD的边长为4,△ABC=60°,点N为BC的中点,点M是对角线AC上一点,则MB+MN的最小值为.2.如图,抛物线y=ax2﹣bx﹣4与x轴交于,A(﹣1,0),B(4,0)两点,与y轴交于点C,直线l为该抛物线的对称轴,点M为直线l上的一点,则MA+MC的最小值为.3.如图,在边长为2的等边△ABC中,点P,M,N分别是BC,AB,AC上的动点,则△PMN 周长的最小值为.4.如图,正方形ABCD内接于△O,线段MN在对角线BD上运动,若△O的面积为2π,MN=1,则AM+CN的最小值为.。

专题01 中考数学专题复习最值问题(阿氏圆)练习

专题01 中考数学专题复习最值问题(阿氏圆)练习

中考数学专题复习最值问题(阿氏圆)练习1.如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.【答案】B【解析】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=PA,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案解析:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∴PC2=CM•CA,∴PC CM CA CP=,∵∠PCM=∠ACP,∴△PCM∽△ACP,∴13 PM PCPA AC==,∴PM13=PA,∴13AP+BP=PM+PB,∵PM+PB≥BM,在Rt△BCM中,∵∠BCM=90°,CM=1,BC=7,∴BM==∴13AP +BP ,∴13AP +BP 的最小值为.故选:B .2.如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O +PB 的最小值为________.【答案】【分析】+PB (PA PB )PB 即可解答.【解析】解:设⊙O 半径为r ,OP =r =12BC =2,OB r =,取OB PI ,∴OI =IB∵OP OI =,OB OP ==,∴OP OBOI OP= ,∠O 是公共角,∴△BOP ,∴PI PB =,∴PI ,∴AP =AP +PI ,∴当A 、P 、I 在一条直线上时,AP 最小,作IE ⊥AB 于E ,∵∠ABO =∴IE =BE =1,∴AE =AB −BE =3,∴AI =∴AP 最小值=AI+PB (PA PB ),+=.故答案是【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.3.如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC -的最大值为_______.【答案】152【分析】如图,连接BP ,在BC 上取一点M ,使得BM =32,进而证明BPM BCP △∽△,则在点P 运动的任意时刻,均有PM =12PC ,从而将问题转化为求PD -PM 的最大值.连接PD ,在△PDM 中,PD -PM <DM ,故当D 、M 、P 共线时,PD -PM =DM 为最大值,勾股定理即可求得DM .【解析】如图,连接BP ,在BC 上取一点M ,使得BM =32,31232BM BP ==Q ,3162BP BC ==BM BPBP BC\=PBM CBP Ð=ÐQ \BPM BCP△∽△12MP BM PC BP \==12MP PC \=12PD PC PD MD\-=-在△PDM 中,PD -PM <DM ,当D 、M 、P 共线时,PD -PM =DM 为最大值,Q 四边形ABCD 是正方形90C \Ð=°在Rt CDM V 中,152DM ===故答案为:152.【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造12PC 是解题的关键.4.如图,在V 90,2B AB CB Ð=°==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA +的最小值是___________.【分析】作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH等腰直角三角形的性质得到BH 12=AC =接着证明△BPD ∽△BCP 得到PD =,所以PAPC =PA +PD ,而PA +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到PA 的最小值.【解析】解:作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,∵AC 为切线,∴BH 为⊙B 的半径,∵∠90°=CB =2,∴AC ==∴BH 12=AC∴BP =∵PB BC BD BP ==,而∠PBD =∠CBP ,∴△BPD∴PD PC ∴PD =,∴PA =PA +PD ,而PA +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD =∴PA+即PA【点睛】:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD=.也考查了等腰直角三角形的性质.5.如图,在Rt ABCD中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的 E F上任意一点,连接BP,CP,则12BP+CP的最小值是_____..【分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明PAT BAPD D∽,推出PTPB=APAB=12,推出PT=12PB,推出12PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【解析】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=4=AT•AB,∴PAAT=ABPA,∵∠PAT=∠PAB,∴PAT BAPD D∽,∴PTPB=APAB=12,∴PT=12PB,∴12PB+CP=CP+PT,∵PC+PT≥TC,在Rt ACTD中,∵∠CAT=90°,AT=1,AC=4,∴CT,∴12PB+PC,∴12PB+PC..【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.6.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12 PC的最大值为_____.【答案】5【解析】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.解析: 在BC上取一点G,使得BG=1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴12 PG BGPC PB==,∴PG=12PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.7.如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上的动点,已知r=k·OB.连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?【解析】1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP 、OB ;2:计算连接线段OP 、OB 长度;3:计算两线段长度的比值k OPOB=;4:在OB 上截取一点C ,使得OC OPOP OB=构建母子型相似:5:连接AC ,与圆0交点为P ,即AC 线段长为PA +K *PB 的最小值.本题的关键在于如何确定“k ·PB ”的大小,(如图 2)在线段 OB 上截取 OC 使 OC =k ·r ,则可说明△BPO 与△PCO 相似,即 k ·PB =PC .∴本题求“PA +k ·PB ”的最小值转化为求“PA +PC ”的最小值,即 A 、P 、C 三点共线时最小(如图 3),时AC 线段长即所求最小值.8.如图,点A 、B 在O e 上,且OA =OB =6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且OD =4,动点P 在O e 上.求2PC +PD 的最小值.【答案】【分析】连接OP ,在射线OA 上截取AE =6,连接PE .由题意易证OPC OEP V :V ,即得出2PE PC =,从而得出2PC PD PE PD +=+,由此可知当P 、D 、E 三点共线时,PE PD +最小,最小值为DE 的长,最后在Rt OED △中利用勾股定理求出DE 的长即可.【解析】如图,连接OP ,在射线OA 上截取AE =6,连接PE .∵C 是OA 的中点,∴1122OC OA OP ==.∴在△OPC 和△OEP 中,12COP POE OC OP OP OE Ð=Ðìïí==ïî,∴OPC OEP V :V ,∴1=2PC PE ,即2PE PC =,∴2PC PD PE PD +=+,.∴当P 、D 、E 三点共线时,PE PD +最小,最小值即为DE 的长,如图,在Rt OED △中,DE ===,∴2PC PD +的最小值为.【点睛】本题考查同圆半径相等、三角形相似的判定和性质和勾股定理等知识.正确作出辅助线并理解当P 、D 、E 三点共线时,PE PD +最小,最小值为DE 的长是解答本题的关键.9.如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD ,连接AF ,BD(1)求证:△BDC ≌△AFC(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD AD 的值;(3)直接写出正方形CDEF 旋转过程中,BD 的最小值.【答案】(1)见解析;(21 ;(3【分析】(1)利用SAS ,即可证明△FCA ≌△DCB ;(2)分两种情况当点D ,E 在AB 边上时和当点E ,F 在边AB(3)取AC 的中点M .连接DM ,BM .则CM =1,可证得△DCM ∽△ACD ,可得DM ,从而得到当B ,D ,M 共线时,BD 的值最小,即可求解.【解析】(1)证明: ∵四边形CDEF 是正方形,∴CF =CD ,∠DCF =∠ACB =90°,∴∠ACF =∠DCB ,∵AC =CB ,∴△FCA ≌△DCB (SAS );(2)解:①如图2中,当点D ,E 在AB 边上时,∵AC =BC =2,∠ACB =90°,∴sin 45ACAB ==°∵CD ⊥AB ,∴AD AC =´=∴BD =1==;②如图3中,当点E ,F 在边AB 上时.BD =CF =sin 452BC ´°==AD∴BD =综上所述,BD 1+(3)如图4中.取AC 的中点M .连接DM ,BM .则CM =1,∵CD CM =1,CA =2,∴CD 2=CM •CA ,∴CD CA =CMCD,∵∠DCM =∠ACD ,∴△DCM ∽△∴DM AD =CD AC ,∴DM ,∴BD =BD +DM ,∴当B ,D ,M 共线时,BD 的值最小,最小值BM ==【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,锐角三角函数,熟练掌握相关知识点是解题的关键.10.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连接BC ,且tan∠CBD 4=3,如图所示.(1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连接FB 、FC ,求△BCF 的面积的最大值;②连接PB ,求35PC +PB 的最小值.【答案】(1)241620999x x -++;(2)①32;②245【解析】思路引领:(1)设抛物线的解析式为:y =a (x +1)(x ﹣5),可得对称轴为直线x =2,由锐角三角函数可求点C 坐标,代入解析式可求解析式;(2)①先求出直线BC 解析式,设P (2,t ),可得点E (534-t ,t ),点2315244F t t t æö--ç÷èø,,可求EF 的长,由三角形面积公式和二次函数性质可求解;②根据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,过点P 作PG ⊥AC 于G ,可得PG 35=PC ,可得35PC PB PG PB +=+,过点B 作BH ⊥AC 于点H ,则PG +PB ≥BH ,即BH 是35PC +PB 的最小值,由三角形面积公式可求解.答案解析:(1)根据题意,可设抛物线的解析式为:y =a (x +1)(x ﹣5),∵抛物线的对称轴为直线x =2,∴D (2,0),又∵43CDtan CBD DBÐ==,∴CD =BD •tan∠CBD =4,即C (2,4),代入抛物线的解析式,得4=a (2+1)(2﹣5),解得 49a =-,∴二次函数的解析式为 ()()441599y x x =-+-=-x 2162099x ++;(2)①设P (2,t ),其中0<t <4,设直线BC 的解析式为 y =kx +b ,∴0542.k b k b =+ìí=+î,,解得 4320.3k b ì=-ïïíï=ïî即直线BC 的解析式为 42033y x =-+,令y =t ,得:354x t =-,∴点E (534-t ,t ),把354x t =- 代入()()4159y x x =-+-,得 24t y t æö=-ç÷èø,即2315244F t t t æö--ç÷èø,,∴221244t EF t t t t æö=--=-ç÷èø,∴△BCF 的面积12=´EF ×BD 32=(t 24t -)()223334(2)882t t t =--=--+,∴当t =2时,△BCF 的面积最大,且最大值为32;②如图,据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,∴35AD sin ACD AC Ð==,过点P 作PG ⊥AC 于G ,则在Rt△PCG 中,35PG PC sin ACD PC =×Ð=,∴35PC PB PG PB +=+,过点B 作BH ⊥AC 于点H ,则PG +PB ≥BH ,∴线段BH 的长就是35PC PB +的最小值,∵11641222ABC S AB CD =´´=´´=V ,又∵1522ABC S AC BH BH =´´=V ,∴5122BH =,即245BH =,∴35PC PB +的最小值为245.11.问题提出:如图①,在Rt ABC △中,90C =o ∠,4CB =,6CA =,⊙C 的半径为2,P 为圆上一动点,连接AP 、BP ,求12AP BP +的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP ,在CB 上取一点D ,使1CD =,则12CD CP CP CB ==.又PCD BCP Ð=Ð,所以PCD D ∽BCP D .所以12PD CD BP CP ==.所以12PD PB =,所以12AP BP AP PD +=+.请你完成余下的思考,并直接写出答案:12AP BP +的最小值为________;(2)自主探索:在“问题提出”的条件不变的前提下,求13AP BP +的最小值;(3)拓展延伸:如图②,已知在扇形COD 中,90COD Ð=o ,6OC =,3OA =,5OB =,P 是 CD上一点,求2PA PB +的最小值.【答案】(1;(2(3)13.【分析】(1)根据题意可知最小值为AD 长度,利用勾股定理即可求出AD 长度.(2)连接CP ,在CA 上取一点D ,使23CD =,即可证明PCD V ∽ACP △,得到13PD AP =,即13AP BP PD BP +=+,所以13AP BP +的最小值为BD 长度,利用勾股定理即可求出BD 长度.(3)延长OC 到E ,使6CE =,连接PE ,OP ,即可证明OAP △∽OPE V ,得到2EP PA =,即2PA PB EP PB +=+,所以2PA PB +的最小值为BE 长度,利用勾股定理即可求出BE 长度.【解析】(1)根据题意可知,当A 、P 、D 三点共线时,12AP BP +最小,最小值AD ====.(2)连接CP ,在CA 上取一点D ,使23CD =,则有13CD CP CP CA ==,∵PCD ACP Ð=Ð,∴PCD D ∽ACP △,得13PD CD AP CP ==,∴13PD AP =,故13AP BP PD BP +=+,仅当B 、P 、D 三点共线时,13AP BP +的最小值BD ====.(3)延长OC 到E ,使6CE =,连接PE ,OP ,则12OA OP OP OE ==,∵AOP POE Ð=Ð,∴OAP △∽OPE D ,∴12OA OP AP OP OE EP ===,∴2EP PA =,∴2PA PB EP PB +=+,仅当E 、P 、B 三点共线时,13EP PB BE +====,即2PA PB +的最小值为13.【点睛】本题考查圆的综合,勾股定理,相似三角形的判定和性质.根据阅读材料的思路构造出PCD V ∽ACP △和OAP △∽OPE V 是解题的关键.本题较难.12.如图,抛物线2y ax bx c =++与x 轴交于A 0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且3OB OA =,OAC Ð的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ^轴,垂足为F ,交直线AD 于点H .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ EQ +的最小值.【答案】(1)y 13=x 2﹣3;(2);(3【分析】对于(1),结合已知先求出点B 和点C 的坐标,再利用待定系数法求解即可;对于(2),在Rt△OAC 中,利用三角函数的知识求出∠OAC 的度数,再利用角平分线的定义求出∠OAD 的度数,进而得到点D 的坐标;接下来求出直线AD 的解析式,表示出点P ,H ,F 的3),首先求出⊙H 的半径,在HA 上取一点K ,使得HK=14,此时K (15-8);然后由HQ 2=HK·HA ,得到△QHK∽△AHQ,再利用相似三角形的性质求出KQ=14AQ ,进而可得当E 、Q 、K 共线时,14AQ+EQ 的值最小,据此解答.【解析】(1)由题意A 0),B 0),C (0,﹣3),设抛物线的解析式为y =a (x(x ,把C (0,﹣3)代入得到a 13=,∴抛物线的解析式为y 13=x 2﹣3.(2)在Rt△AOC 中,tan∠OAC OCOA==,∴∠OAC =60°.∵AD OAC ,∴∠OAD =30°=D (0,﹣1),∴直线AD 的解析式为y =﹣1,由题意P (m ,13m 2,H (m ﹣1),F (m ,0).∵FH =PH ,∴1=﹣1﹣(13﹣3)解得m =,∴当时,m .(3)如图,∵PF 是对称轴,∴F 0),H (.∵AH ⊥AE ,∴∠EAO =60°,∴EO ==3,∴E (0,3).∵C (0,﹣3),∴HC ==2,AH =2FH =4,∴QH 12=CH =1,在HA 上取一点K ,使得HK14=,此时K (158-).∵HQ 2=1,HK •HA =1,∴HQ 2=HK •HA ,∴HQ KHAH HQ=.∵∠QHK =∠AHQ ,∴△QHK ∽△AHQ ,∴14KQ HQ AQ AH ==,∴KQ 14=AQ ,∴14AQ +QE =KQ +EQ ,∴当E 、Q 、K 共线时,14AQ +QE 的值最小,最小值==.【点睛】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最值问题
深度练习
1.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=( )
A.6 B.8 C.10 D.12
2.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________.
3.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P的坐标为________.
4.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.当点P在BC上移动时,求PQ的最大值.
5.如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,
1),E(a ,0),F(a +1,0),点P 是第一象限内的抛物线上的动点.
(1)求此抛物线的解析式;
(2)当a =1时,求四边形MEFP 的面积的最大值,并求此时点P 的坐标;
(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.
参考答案
1.B
2.7
3.(23-3,2-3)
4.解:如图,连接OQ.
在Rt△OPQ 中,PQ =OQ 2-OP 2=9-OP 2,
当OP 最小时,PQ 最大,此时OP⊥BC,
则OP =12OB =3
2,
∴PQ 的最大值为9-(3
2)2=33
2.
5.解:(1)设抛物线的解析式为y =ax 2+bx +c ,
由题意得
⎩⎪⎨⎪⎧-b 2a
=2,
a -
b +
c =0,c =5,
解得⎩⎪⎨⎪⎧a =-1
,b =4,c =5,
∴抛物线的解析式为y =-x 2+4x +5.
(2)当a =1时,E(1,0),F(2,0),OE =1,OF =2.
设P(x ,-x 2+4x +5).
如图,过点P 作PN⊥y 轴于点N ,
则PN =x ,ON =-x 2+4x +5,
∴MN=ON -OM =-x 2+4x +4.
S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(OF +PN)·ON -12MN·NP-1
2OE·O M
=1
2(x +2)(-x 2+4x +5)-12x·(-x 2+4x +4)-12×1×1=-(x -94)2+153
16,
∴当x =9
4时,S 四边形MEFP 最大,最大为153
16.
当x =9
4时, y =-x 2+4x +5=143
16,
此时点P 坐标为(9
4,143
16).
(3)∵M(0,1),C(0,5),△PCM 是以点P 为顶点的等腰三角形, ∴点P 的纵坐标为3.
令y =-x 2+4x +5=3,解得x =2± 6.
∵点P 在第一象限,
∴点P(2+6,3).
∵在四边形PMEF 中,PM ,EF 长度是固定的,
∴ME+PF 最小时,四边形PMEF 的周长最小.
如图,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1),作点M 1关于x 轴的对称点M 2,则M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 设直线PM 2的解析式为y =m x +n ,
将P(2+6,3),M 2(1,-1)代入得
⎩⎨⎧(2+6)m +n =3,m +n =-1,
解得⎩⎪⎨⎪⎧m =46-45,n =-46+15
, ∴y=46-45x -46+15
. 当y =0时,解得x =6+54,∴F(6+54
,0). ∵a+1=6+54,∴a=6+14
, ∴当a =
6+14时,四边形PMEF 的周长最小.。

相关文档
最新文档