平方差、完全平方公式(拔高类试题)
(完整版)平方差完全平方公式提高练习题
平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+,ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(,bc ac ab c b a c b a 222)(2222---++=++ 练一练 A 组: 1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
平方差公式与完全平方公式练习(基础+提高)
2.2完全平方公式你一定能完成一、精心选一选⒈ )32)(32(42y x y x x +--的计算结果是 【 】A .29yB .—29yC .23yD .2232y x +⒉ .在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b ),如图1-8-1(1),把余下的部分拼成一个矩形如图1-8-1(2),根据两个图形中阴影部分的面积相等,可以验证【 】A.222()2a b a ab b +=++B.222()2a b a ab b -=-+C.22()()a b a b a b -=+-D.22(2)()2a b a b a ab b +-=+-二、耐心填一填:⒈ 利用乘法公式计算:=298 = = ;⒉ 若2542++kx x 是一个完全平方式,则k = .三、用心做一做:⒈ )3)(3()3()3(22b a b a b a b a +--++-,其中1,8-=-=b a .⒉ ⑴ 22)2()2(b a b a +- ⑵ 22)3()3(b a b a +--相信你能完成一、精心选一选⒈已知1222=+b a ,3-=ab ,则2)(b a +的值是 【 】A .6B .18C .3D .12⒉要使等式22)()(b a M b a +=+-成立,代数式M 应是 【 】A .ab 2B .ab 4C .ab 4-D .ab 2-1-8-1(1) (2)平方差公式基础题一、选择题1.下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x-y)B.(2x+3y)(2x-3z)C.(-a-b)(a-b)D.(m-n)(n-m)2.下列计算正确的是( )A.(2x+3)(2x-3)=2x2-9B.(x+4)(x-4)=x2-4C.(5+x)(x-6)=x2-30D.(-1+4b)(-1-4b)=1-16b23.下列多项式乘法,不能用平方差公式计算的是( )A.(-a-b)(-b+a)B.(xy+z)(xy-z)C.(-2a-b)(2a+b)D.(0.5x-y)(-y-0.5x)4.(4x2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x2-5yB.-4x2+5yC.(4x2-5y)2D.(4x+5y)25.a4+(1-a)(1+a)(1+a2)的计算结果是( )A.-1B.1C.2a4-1D.1-2a46.下列各式运算结果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x-5y)(-x+5y)C.(x-y)(x+25y)D.(x-5y)(5y-x)二、解答题7. a(a-5)-(a+6)(a-6) 8. ( x+y)( x-y)( x2+y2) 9. 9982-4 10. 2003×2001-20022平方差公式提高题一、选择题:1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个2.下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以二、解答题4.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1).5.计算:22222110099989721-+-++- .6.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.二、典型例题例1:计算(1)(2m-3)(2m+3) (2)(a -2b +3c )(a +2b+3c ).(3)20052-2006×2004例2:因式分解(1)16-4a 4 (2)42242y y x x +-(3)22341ab b a a -+- (4)222224)(b a b a -+例3:已知,8=+n m ,15=mn 求22n mn m +-的值三:达标测试(一、选择题)1、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---2、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+3、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 4、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±245、已知5-=+y x ,6=xy ,则22y x +的值为( )A 、12B 、13C 、37D 、16(二、填空题)6、分解因式: x 2+y 2-2xy=7、已知x +y =1,那么221122x xy y ++的值为_______.8、在多项式4x2+1中添加,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是(三、计算)9、)yxx-+ 10、4(x+1)2-(2x+5)(2x-5) )(5353(y。
平方差、完全平方公式专项练习题(精品)
平方差公式专项练习题一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 3.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-5二、填空题5.(-2x+y )(-2x -y )=______. 6.(-3x 2+2y 2)(______)=9x 4-4y 4.7.(a+b -1)(a -b+1)=(_____)2-(_____)2.三、计算题1.利用平方差公式计算:2023×2113. 2.计算:(a+2)(a 2+4)(a 4+16)(a -2).四、经典中考题1.(2007,泰安,3分)下列运算正确的是( )A .a 3+a 3=3a 6B .(-a )3·(-a )5=-a 8C .(-2a 2b )·4a=-24a 6b 3D .(-13a -4b )(13a -4b )=16b 2-19a 2. 完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差公式与完全平方公式试题(含答案)1
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(a+b)(a2-ab+b2)=a3+b3(a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,x y y x x2y2②符号变化,x y x y x2y2x2y2③指数变化,x2y2x2y2x4y4④系数变化,2a b2a b4a2b2⑤换式变化,xy z m xy z mxy2z m2x2y2z m z mx2y2z2zm zm m2x2y2z22zm m2⑥增项变化,x y z x y zx y2z2x y x y z2x2xy xy y2z2x 22xy y 2z 2⑦ 连用公式变化,xy x y x 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,x y z2x y z2x y z x y zx y zx y z2x2y 2z4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差,完全平方公式练习(有答案)
(4)(x+2)(x2-x-4)=x·x2+x(-x)+x·(-4)+2x2+2·(-x)+2×(-4)=x3-x2-4x+2x2-2x-8=x3+x2-6x-8.
7.解:(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)=4x2+2xy-2xy-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2.
=a2-9 =4a2-9b2
3. (1+2c)(1-2c) 4. (-x+2)(-x-2)
=1-4C2=x2-42
5. (2x+ )(2x- ) 6. (a+2b)(a-2b)
=4x2- 1/4 =a2-4b2
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)
=4a2-25b2=4a2-9b2
1、(a+b)(a-b)(a2+b2)
=(a2-b2)(a2+b2)
=a4-b4
2、(a+2)(a-2)(a2+4)
=(a2-4)(a2+4)
=a4-16
3、(x- )(x2+ )(x+ )
=(x2-1/4)((x2+ )=x4-1/16
第四种情况:需要先变形再用平方差公式
1、(-2x-y)(2x-y) 2、(y-x)(-x-y)
10.在(ax2+bx-3)(x2- x+8)的结果中不含x3和x项,则a=,b=
(完整版)平方差公式与完全平方公式提高训练
教学过程提高训练一、选择1.若(x+a)(x+b)=x2-kx+ab,则k的值为( )A.a+b B.-a-b C.a-b D.b-a2.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( )A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 3.(x2-px+3)(x-q)的乘积中不含x2项,则( )A.p=q B.p=±q C.p=-q D.无法确定4.若0<x<1,那么代数式(1-x)(2+x)的值是( )A.一定为正B.一定为负C.一定为非负数D.不能确定5.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2)B.2(a2-2)C.2a3D.2a66.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=407.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=21.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.3.若a2+a+1=2,则(5-a)(6+a)=__________.4.当k=__________时,多项式x-1与2-kx的乘积不含一次项.5. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.1、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .二、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);(3)(a -2b +3c -1)(a +2b -3c -1); (4)(s -2t )(-s -2t )-(s -2t )2;(4)(5)(t -3)2(t +3)2(t 2+9)2.例1、完全平方式1、若k x x ++22是完全平方式,则k =2、。
平方差公式和完全平方公式基础拔高练习(含答案)
平方差公式和完全平方公式基础拔高练习(含答案)平方差公式◆基础训练1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.-2005×2007的计算结果为()A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b)B.(-4a+b)(4a-b)C.(b+2a)(b-8a)D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98(2)21241(4)1007×993(5)12×11(6)-19×20353531×3(3)-2.7×3.344(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a -2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)-1-(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)◆综合应用8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.19.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),个中a=-.310.运用平方差公式计算:(1)11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.-2-2005;(2)99×101×10 001.2006◆拓展晋升13.若a+b=4,a2-b2=12,求a,b的值.完整平方公式◆基础训练1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计较:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.以下计较精确的是()A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算成效为1-2ab2+a2b4的是()A.(-1+ab2)2B.(1+ab2)2C.(-1+a2b2)2D.(-1-ab2)28.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-110.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2-3-111(4)(a+b)2(5)(-a-b)2(6)(-a+)2352(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-122n)2(10)1012(11)1982(12)19.9211.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.◆综合应用13.若(a+b)2+M=(a-b)2,则M=_____.14.(a-b)2=8,ab=1,则a2+b2=_____.15.x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径削减4cm后,这个圆的面积削减几何平方厘米?◆拓展提升17.已知x+111=3,试x2+2和(x-)2的值xxx-4-。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
最新平方差公式与完全平方公式试题(含答案)1[1]-2
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a -1)=______.C 卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3, (1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值B 组:5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x-=,求221x x +的值。
8、0132=++x x ,求(1)221x x +(2)441xx +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
C 组:10、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法(B 卷)一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是____,当5-(a -b )2取最大值时,a 与b 的关系是____.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 2 16.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是 A.x n 、y n 一定是互为相反数 B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3); (3)-2100×0.5100×(-1)2005÷(-1)-5(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.四、生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值. 1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式 835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值.。