结构力学二4-静定结构的位移计算

合集下载

结构力学4静定结构的位移计算

结构力学4静定结构的位移计算

4.3 平面杆件结构位移计算的一般公式
4.3.1 单位荷载法与结构位移计算的一般公式
P R1 1
F D 1 D F
c F R 2 c2 D F R c
c2 c1
d d du i1
D F R c M d FQ dh FN du
河南理工大学万方科技学院
结构力学
第四章 静定结构的位移计算
F1 1 FB B F2 2 F3 3 0
(a)
虚位移之间的关系为 1 1 1 B 2 2
1 1 4 2 2 2 C B B 2 2 3 3 3
1 1 1 1 3 E 2 B 2 2 3 3 1 2 1 将以上各关系式代入式(a),得 FB F1 F2 F3 2 3 3 河南理工大学万方科技学院
4.1.3 计算位移的方法
虚功法——依据虚功原理的单位荷载法。
河南理工大学万方科技学院
结构力学
第四章 静定结构的位移计算
4.2 变形体系的虚功原理 4.2.1 实功与虚功 1.功

W FD cos
W 2 Fr
α
力,Δ表示广义位移) Δ
功是力与位移的矢量点积
a c l
河南理工大学万方科技学院
结构力学
第四章 静定结构的位移计算
沿所求位移方向虚设单位荷载 F=1的方法称为 单位荷载法,或称为单位力法。 当支座有给定位移时,静定结构的位移可用单 位荷载法来求解,其计算步骤如下: 1. 沿欲求位移的方向虚设相应的单位荷载,并求出
在单位荷载作用下给定位移的支座处的反力
虚功原理
W =U
可写为
位移状态 位移状态

结构力学 结构的位移计算

结构力学 结构的位移计算

k

F Ndu
Md

F Q 0ds
F RC
只有荷载作用
无支座移动
k F Ndu Md FQ 0ds
由材料力学知
du

FNP d s EA
d

M Pds EI
d s

k FQP d s GA
10
1.2
9
k--为截面形状系数
A A1 [Al为腹板截面积]
FP
X
待分析平衡的力状态
(c)
直线
几点说明:
X C (1) 对静定结构,这里实际用的是刚体
虚设协调的位移状态
虚位移原理,实质上是实际受力状态 的平衡方程,即
由外力虚功总和为零,即:
X F 0
X
P
C
M 0 B
(2) 虚位移与实际力状态无关,故可设
1 x
X P b 0 (3) 求解时关键一步是找出虚位移状态的
计算结构的位移,就必须明确广义力与广义位移的对应关系。常见的对应有
以下几种情况:
基本原则
求哪个方向的位移就在要求位移的方向上施加相应的单位力。
A
B
位移方向未知
时无法直接虚
拟单位荷载!
求A点的 水平位移
P=1
m=1 求A截面 的转角
m=1
m=1
求AB两截面 的相对转角
P=1
P=1
求AB两点 的相对位移
位移与约束协调:位移函数在约束处的数值等于约束位移。
§4-2 虚功原理
一、虚功原理的三种形式
1、质点系的虚位移原理
具有理想约束的质点系,其平衡的必要和充分条件是:作用于质点系的主

《结构力学》第四章 静定结构的位移计算 (3)

《结构力学》第四章 静定结构的位移计算  (3)
A M k M P ds
B EI
2
R 1
cos
( FP R
sin
)
Rd
0
EI
d
FPR3
2EI
FPk 1
A
B Bx 2 By 2
B kP
B
A M k M P ds B EI
2
(1)
(FPR sin
)
Rd
0
EI
R
O
FP R2 (

EI
(1)梁与刚架
三、结构的外力虚功
作用在结构上的外力可能是单个的集中力、力 偶、均布力,也可能是一个复杂的力系,为了 书写方便,通常将外力系的总虚功记为:
W = Fk × km
其中,Fk为作功的力或力系,称为广义力; km为广义力作功的位移,称为广义位移。 下面讨论几种常见广义力的虚功。
1) 集中力的虚功
Pk
k
M
4EIk
GAl 2
kP
若截面为矩形,则:A bh, I bh3 /12,k 6 l 1, 2
h / l 1 , 10
h/l 1 , 15
则:
Q kP
( h)2
Q
M kP
l
kP 25% kMP
对于粗短杆来说,剪 切变形产生的位移不可忽
Q
kP 1%
1
m
ds
第i根杆件静力状态上的力在位移状态的位移上所 作的虚功:
Vi
s FNk
mds
s FQk mds
s Mk
1
m
ds
整个杆件结构各个截面上的内力在位移状态的位 移上的所作的总虚功:
N
N
N

静定结构的位移计算

静定结构的位移计算

第4章
二、单位荷载法
1、定义:应用虚力原理,通过加单位力求实际位移的方法。 2、计算结构位移的一般公式
PK=1 RK
1
RK RK3
2
( a , a , a , Ca )
位移状态
RK
4
(M K ,Q K , N K , RK )
虚力状态
对上述两种状态应用虚功原理:
1 Ka R K 1 C a1 R K 2 C a 2 M K a ds Q K a ds N K a ds
P/2
P/2
c
c
CV
4、结构的动力计算和稳定分析中,都常需计算结 构的位移。
第4章
三、计算位移的有关假定
2、小变形假设。变形前后荷载作用位臵不变。 3、结构各部分之间为理想联结,不计摩擦阻力。 4、当杆件同时承受轴力与横向力作用时, 不考虑由于杆 弯曲所引起的杆端轴力对弯矩及弯曲变形的影响。
ω1
ω2
MP图
1 Δ (ω1 y1 ω2 y2 ) EI
第4章
3、当杆件为变截面时亦应分段计算; y1
EI1
y2
EI 2
MK图
ω1
EI1
ω2
EI 2
MP图
1 1 Δ ω1 y1 ω2 y2 EI1 EI 2
第4章
4、图乘有正负之分:弯矩图在杆轴线同侧时,取正号; 异侧时,取负号。

13860 0.0924m( ) EI
第4章
例题 试求左图所示刚架C点的竖向位移AV和转角C。 EI 1.5 105 KN m 2 各杆材料相同,截面抗弯模量为:
MB A
力状态(状态1)

结构力学 静定结构的位移计算

结构力学 静定结构的位移计算

情景一 引起结构位移的原因及位移计算的目的
能力拓展 如图 2 – 61a 所示屋架,通过对比左右两图,运用结构位移的相关知识 ,可以解释制作时为何通常将各下弦杆的实际下料长度做得比设计长度
要短些,这样可以使屋架拼装后,结点 C 位于 C′的位置(图 2 – 61b)
, 工程上将这种做法称为建筑起拱。那么预先应知道哪些位移量?
情景二 虚功原理及单位荷载法
项目表述
静定结构位移计算是演算结构刚度和计算超静定结构所必需的。变形 体虚功原理是结构力学中的重要理论。通过本项目学习,同学们重点理 解变形体的虚功原理、单位荷载法及位移计算一般公式。对变形体的虚 功原理的推导过程的理解是本项目的难点内容。
情景二 虚功原理及单位荷载法 学习进程
情景一 引起结构位移的原因及位移计算的目的 知识链接
情景一 引起结构位移的原因及位移计算的目的
知识链接
2.引起位移的原因 众所周知,引起位移的原因主要是荷载作用。除此之外,温度改变使材料膨胀 或收缩、结构构件的尺寸在制造过程中产生误差、基础的沉陷或结构支座产生 移动等因素,均会引起结构的位移。如图 2 – 56a、图 2 – 57a 所示,由荷载作 用产生的位移。如图 2 – 57b 所示,因温度改变或材料胀缩产生的位移。如图 2 – 57c 所示,因制造误差或支座移动产生的位移。
情景一 引起结构位移的原因及位移计算的目的
知识链接
1.结构位移的概念 建筑结构在施工和使用过程中常会发生变形,由于结构变形,其上各点或截面 位置会发生改变,这称为结构的位移。如图 2 – 56a 所示的刚架,在荷载作用 下,结构产生变形如图中虚线所示,使截面的形心 A 点沿某一方向移到 A′点, 线段 AA′称为 A 点的线位移,一般用符号 ΔA 表示。 它也可用竖向线位移 ΔAy 和水平线位移 ΔAx 两个位移分量来表示,如图 2 – 56b 所示。

结构力学——静定结构位移计算 ppt课件

结构力学——静定结构位移计算 ppt课件
刚体位移变形力状态满足平衡条件位移状态满足约束条件第二节变形体虚功原理按外力虚功和内力虚功计算微段虚功总和微段内力虚功所以由于变形连续及相邻截面内力是作用力和反作用力的关系第二节变形体虚功原理可编辑课件ppt按刚体虚功和变形虚功计算微段虚功总和微段变形虚功所以基于平衡状态的刚体虚功原理第二节变形体虚功原理可编辑课件ppt对于直杆体系由于变形互不耦连有
要求: 领会变形体虚功原理和互等定理。 掌握实功、虚功、广义力、广义位移的概念。 熟练荷载产生的结构位移计算。 熟练掌握图乘法求位移。
第一节 位移计算概述
1、结构的位移
杆系结构在外界因素作用下会产生变形和位移。
• 变形 是指结构原有形状和尺寸的改变; • 位移 是指结构上各点位置产生的变化
线位移(位置移动) 角位移(截面转动)。
5
G0.4E
则:
ΔAV85qE4lI171501150
第三节 位移计算公式
各类结构的位移计算公式
荷载引起的位
1、梁和刚架:
ΔiP
MMPds EI
移与杆件的绝 对刚度值有关
2、桁
架: ΔiP
FNFNdPs FNFNlP
EA
EA
3、组合结构:
Δ kP
M M Pds EI
F N F Nd Ps EA
任何一个处于平衡状态的变形体,当发生任意一个虚位移 时,变形体所受外力在虚位移上所作的总虚功 We恒等于 变形体各微段外力在微段变形上作的虚功之和 Wi。
也即恒有如下虚功方程成立:
We = Wi
第二节 变形体虚功原理 变形体虚功原理的必要性证明:
力状态
位移状态
(满足平衡条件)
(满足约束条件)
刚体位移
4、拱结构:

《结构力学》静定结构的位移计算

《结构力学》静定结构的位移计算

A
x
C
x
C
∆AV
l 2 l 2
(a) 实际状态 1)列出两种状态的内力方程: )列出两种状态的内力方程:
AC段 0 ≤ x ≤ 段 l 2
B
l 2
l 2
(b) 虚设状态
N =0 M = −x Q = −1
NP = 0 MP = 0 Q =0 P
2
2
∆Q ∆Q h 1 h 1 当 = 时, = 1.83%;当 = 时, = 7.32% l 10 ∆M l 5 ∆M
计算屋架顶点的竖向位移。 例2 计算屋架顶点的竖向位移。
q(N/m )
1 1 1
4.5
3.0
1.5
P 2
P
D
C
ql P= 4 P
F G 0.25l
NP
1
1.5
P 2
B 0 1.5 0.5 0
二、利用虚功原理,用单位荷载法求结构位移一般公式: 利用虚功原理,用单位荷载法求结构位移一般公式:
K
K′
实际状态 (位移状态) 外虚功: 外虚功:W
e

t1 t2
c2 c1
1
R 1
虚拟状态 (力状态) 内虚功: 内虚功:W
i
R2
= 1 ⋅ ∆ + ∑ Rk ⋅ ck
1 ⋅ ∆ + ∑ R k ck = ∑ ∫ (Mκ + N ε + Q γ )d s
第4章 静定结构的位移计算
Calculation of Statically Displacement Structures


§4-1 结构位移和虚功的概念 §4-2 变形体系的虚功原理和单位荷载法 §4-3 静定结构由荷载所引起的位移 §4-4 图乘法 §4-5 互等定理

结构力学-静定结构位移计算

结构力学-静定结构位移计算
↓↓↓↓↓↓↓↓↓↓↓↓↓
80
32
3m
求图示刚架C铰左右两截面的 相对转动。EI=5×104kN.m
1
m=1
5/8
5m
MP
16
16
M
4m
4m
H
=
M0 C
= 1682
=16kN
f 88
1/8
1/8
H
=
M0 C
=
1m
f8
D
C
=
2 5104
580 2
2 3
5 8
+
580 2
2 3
5 8
+
1 3
-
2532 3
(1)同一结构可用不同的方式撤除多余约束但其超静定次数相同。
X1
X1
X3
X1
X2
X3
X3
X2
X1
X2
X3
(2)撤除一个支座约束用一个多余未知力代替, 撤除一个内部约束用一对作用力和反作用力代替。
(3)内外多余约束都要撤除。 (4)不要把原结构撤成几何
可变或几何瞬变体系
4
3
5 1
外部一次,内部六次 共七次超静定
1
2
不撤能除作支为杆1多后余体系约成束为的瞬变是杆1、2、 5
§9.2 力法的基本概念
1、超静定结构计算的总原则: 欲求超静定结构先取一个基本体系,然后让基本体系在受力方
面和变形方面与原结构完全一样。 力法的特点: 基本未知量——多余未知力; 基本体系——静定结构; 基本方程——位移条件——变形协调条件。
ql 2 8
5 8
l 4
2
+
l-x

福州大学-考研《结构力学考试样题库》4-静定位移

福州大学-考研《结构力学考试样题库》4-静定位移

福州大学-考研《结构力学考试样题库》4-静定位移第四章静定结构位移计算一、是非题1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、用图乘法可求得各种结构在荷载作用下的位移。

5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

Mk M p21y 1y 2**ωω7、图示桁架各杆EA 相同,结点A 和结点B 的竖向位移均为零。

8、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

aa9、图示简支梁,当P 11=,P 20=时,1点的挠度为0.01653l EI /,2点挠度为0.0773l EI /。

当P 10=,P 21=时,则1点的挠度为0.0213l EI /。

()l10、图示为刚架的虚设力系,按此力系及位移计算公式即可求出杆AC 的转角。

CP11、图示梁AB 在所示荷载作用下的M图面积为ql 3。

lAl /212、图示桁架结点C水平位移不等于零。

13、图示桁架中,结点C 与结点D 的竖向位移相等。

二、选择题1、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.M C.=1=1=12、图示结构A 截面转角(设顺时针为正)为:A.22Pa EI / ;B.-Pa EI 2/ ;C.542Pa EI /() ;D.-542Pa EI /() 。

aa3、图示刚架l a >>0 , B 点的水平位移是:A .不定,方向取决于a 的大小;B .向左;C .等于零;D .向右。

4、图示静定多跨粱,当EI 2增大时,D 点挠度:A .不定,取决于EI EI 12;B .减小;C .不变;D .增大。

结构力学——静定结构位移计算

结构力学——静定结构位移计算

结构力学——静定结构位移计算在工程和建筑领域中,结构力学作为一门重要的学科,主要研究了结构的受力、变形、破坏机理等问题。

其中,静定结构位移计算是结构力学中的一个重要内容。

静定结构所谓静定结构,是指能够通过静力学方程求解出所有节点的受力、反力和变形的结构。

这种结构是不需要知道材料的物理性质和荷载的实际情况的。

在静定结构中,结构的支座固定方式和荷载情况是已知的,因此能够通过解决一组静力学方程,求解出结构中节点的受力和变形。

静定结构位移计算静定结构位移计算是静定结构的重要计算方法之一。

在结构分析中,位移是一种常见的形变量,它反映了物体在载荷作用下发生的形变情况。

在静定结构中,位移是结构的重要参数之一。

它可以通过求解一组线性方程组得到。

具体来说,就是通过应变—位移—节点力关系,将结构各节点位移用系数矩阵和加载节点力表示出来,再通过求解一个线性方程组,就可以得到各节点的位移值。

静定结构位移计算的步骤静定结构位移计算中的步骤包括:1.列出节点位移方程节点位移与内力之间有一定的关系,可以通过位移方程和内力方程来表示。

这些方程可以根据物理实际条件进行建立。

2.确定支座反力支座反力是从位移计算中得到的结果之一。

支座反力是指结构上所有支点所承受的力,在位移计算时是必须考虑的。

3.形成节点位移方程组形成节点位移方程组时,需要考虑杆件的个数、受力条件、材料特性、支座情况等因素。

4.解出节点位移通过解一个线性方程组,我们可以根据已知的节点力和位移方程,求出每个节点的位移值。

静定结构位移计算的应用静定结构位移计算在现代工程设计中具有广泛的应用。

它能够在保证结构稳定的前提下,可以对结构进行优化设计,提高结构的安全性、稳定性、经济性等方面的性能。

除此之外,静定结构位移计算还可以应用于建筑设计、桥梁设计、机械设计、工业生产等领域中。

它可以提供结构设计的数据支持,为结构工程的实施提供参考。

静定结构位移计算是结构力学中的一个重要方向,其计算方法基于静力学方程进行,其特点是简单、可靠和实用。

结构力学 静定结构的位移

结构力学  静定结构的位移
仅发生支座移动
FR i ci
N
无支座移动
M d F
d FQ d
虚功原理求位移的关键:
虚设相应的力系
1. C点竖向线位移
2. D点水平线位移
3.铰C左右截面的相对角位移
D
C
l
A b
l 2 l 2
B
a
B
P
C
l
A D
1.求D点的水平、竖向 位移
C
0
A
0 l
D
0
A
0 l
D 1/l
0
l
-1/l
l
CD
P EA
本章重点: 图乘法求梁和 刚架的位移
D
l
A C B
l
l
已知:每根杆的抗拉刚度均为EA, 1.求D点的水平、竖向位移 0.207 P 2.求BD杆的角位移 EA
梁和刚架在荷载下的位移计算
M MP ds EI
E
Pl
l
求:1. B点的水平位移和角位移
2. D点的水平位移
ql ql
2
q
B
C
EI=常数
D
l
A
l l
求:1.
2.
ql2
C、D两点的相对水平位移
A、D两点的相对角位移
B
C
EI
q
l
A
l
D
q ql
2
已知:EI=常数.求: 1.C点的竖向位移和
l
D
C
E
铰C左右截面的相对角位移
2.D点的水平位移和角位移
已知:
C 梁式杆的EI=常数,

结构力学课件位移计算的一般公式

结构力学课件位移计算的一般公式
P 1
变形协调的 位移状态(P)
平衡的力 状态(i)
l
iP
(N Q M )dx
0
i
l
iP
( N Q M )dx
0
i
对于由线弹性直杆组成的结构,有:
NP , kQP , M P
EA GA
EI
适用于线弹性 直杆体系,
ip
NP E
N A
i
kQPQi GA
MPMi EI
拉压变形(应变): 弯曲变形(曲率): 剪切变形(剪切角):
N l
EA l
M 1 EI
k Q
GA
内力虚功:
当力状态的外力在结构位移状态的位移作虚 功时,力状态的内力也在位移状态的相对变形上 作虚功,这种虚功称为内力虚功(虚应变能), 用“V”表示。
微段外力: 微段变形:
M
M dM
N
N dN
NP Nil EI
(4)拱
ip
MPMi
EI
NP Ni EA
ds
例:求图示桁架(各杆EA相同)k点水平位移.
解:
P
P
0
NP 0
P a
2P k
a
kx
NP Nil EA
1
1 2
1
2
Ni
1
1 [(P)(1)a (P)(1)a 2P 2 2a] 2(1 2) Pa ()
EA
EA
作业 (8)
两种应用: 虚位移原理:虚设位移状态求力——理论力学学过 虚力原理:虚设力状态求位移——支座移动时结构位移计算
A. 虚位移原理
例: 求 A 端的支座反力。
直线
A
B

位移计算

位移计算
M M
1
2
M
--- 一对力偶 --- C点左右两侧截面间的

河南理工大学
相对转角
结构力学
刚体体系的虚功原理
处于受力平衡状态的刚体,当发生符合约束条件的无限小刚体体系虚位移时,则 外力在位移上所作的虚功总和恒等于零。
We Fi i 0
力的状态 虚功 位移状态
一个平衡力系
虚位移原理
虚设一个位移状态
确定真实的未知力
虚力原理
虚设一个平衡力系
确定真实的位移
河南理工大学
结构力学
刚体体系的虚功原理
虚位移原理 例
A G a

1
求 MG
P2=P B C P1=2P E F D 2a a 2a 2a a
3
P1 4a, P 2 2a
M G 1 P P1 P2 P 2 0 1
d
真实的位移状态
q
A
R
1 k
P
B
d
ds

d
ds
R
1 k
a
ds
河南理工大学
结构力学
荷载作用下的位移计算
由荷载引起的真实位移
q
A
P
B
FN P
ds
FN P
FQ P
FQ P
1 R k
d
MP

d
ds
MP
R 1 k
a
ds
d
d 0 ds
FN d FQ d Md
A
B
d ds FN P EA
d ds

MP EI
0 k
FQ P GA

结构力学 第4章 静定结构的位计算

结构力学 第4章 静定结构的位计算

例如,图1(a)所示两个梯形应用图乘法,可不必求 梯形的形心位置,而将其中一个梯形(设为MP图)分成 两个三角形,分别图乘后再叠加。
图1
对于图2所示由于均布荷载q所引起的MP图,可以 把它看作是两端弯矩竖标所连成的梯形ABDC与相应简
支梁在均布荷载作用下的弯矩图叠加而成。
四、几种常见图形的面积和形心的位置
零。
P

PP2P30
22
2
YA P/2
YB P/2
2.变形体系的虚功原理 We Wi
体系在任意平衡力系作用下,给体系以几何可能的
位移和变形,体系上所有外力所作的虚功总和恒等于体
系各截面所有内力在微段变形位移上作的虚功总和。
说明: (1)虚功原理里存在两个状态:力状态必须满足平衡条件;位移状态
PR3 PRk PR
4EI 4EA 4GA
M N Q
P θ
P=1
钢筋混凝土结构G≈0.4E 矩形截面,k=1.2,I/A=h2/12
Q M
kGEAI2R14Rh2
N M

I AR2
1 h2 12R
如 h 1 , 则Q 1 , N 1
1
EA 2(1 2)Pa()
1 2
1
EA
2
1
例3.求图示1/4圆弧曲杆顶点的竖向位移Δ。
解:1)虚拟单位荷载
2)实际荷载
虚拟荷载
ds
M P PR sin
M R sin
QP P cos
Q cos

N P P sin
N sin
d d ds d
d dd sd sN Pds

结构力学 静定结构的位移计算

结构力学   静定结构的位移计算

(a)
(b)
例7-2-1
C B
(a)
a L
b
C`
(b)
δP
C
B` δ B ( δ B =1) B
分析: 分析: 静定结构可利用刚体的虚功原理 (虚位移方程)求力
解 (1)去掉B支座链杆 (2)按拟求支座反力让机构发生单 位虚位移见图(b) (3)写出虚位移方程 FBy × 1 − FP δ P = 0 (4)求解虚位移方程
(a)
解 (1 )
x
x
qL/2
x
1
x
qL qL/2
1 1
(b)
(c)
两种状态下任意 (2) 截面的弯矩函数
qx AB杆:M ( x) = qLx − 2 杆
2
M ( x) = x
qL BC杆: M ( x) = x 杆 2
M ( x) = x
(3 )
∆ BH
L L qL MMP qx 2 = ∑∫ dx = [ ∫ (qLx − ) xdx + ∫ x 2 dx] 0 0 2 EI 2 1 2 4
(7-4-1)
(1)梁和刚架, (1)梁和刚架,主要考虑弯 梁和刚架 曲变形的影响,位移公式: 曲变形的影响,位移公式:
MM P ∆ = ∑∫ ds EI
(7-4-2)
(2)桁架,只考虑轴向变形的 桁架, 桁架 位移公式: 影 响,位移公式:
F N FNP ∆ = ∑∫ ds EA
(7-4-3)

结点的竖向位移∆ (1)求D结点的竖向位移∆DV 结点的竖向位移
1)计算 FNP
C
A D
B
(b) FNP 图(kN)
2)计算 F N

《结构力学》静定结构的位移计算

《结构力学》静定结构的位移计算

03
在实际应用中,可以根据结构特点、计算精度和计算资源等因素综合考虑选择 合适的数值方法。
THANKS FOR WATCHING
感谢您的观看
桥梁横向位移限制
对于大跨度桥梁,需要限制其在风荷载、地震等横向力作用下的横 向位移,以保证桥梁的稳定性和行车安全。
支座位移控制
桥梁支座的位移也需要进行控制,以避免支座过度磨损或脱空等现 象,确保桥梁的正常使用。
建筑工程中变形缝设置要求
伸缩缝设置
为避免建筑物因温度变化、地基沉降等因素而产生裂缝或 破坏,需要在建筑物的适当位置设置伸缩缝,使建筑物能 够自由伸缩。
计算方法
采用分段叠加法,将组合结构分成若 干段,分别计算各段的位移再求和; 或采用有限元法直接求解整体位移。
需考虑不同材料或截面的变形协调问 题。
03 图乘法计算静定结构位移
图乘法基本原理及适用条件
基本原理
图乘法是基于结构力学的虚功原理,通过图形面积与形心位置的乘积来简化计 算结构位移的一种方法。
均布荷载作用
荷载沿梁长均匀分布,引 起梁产生均匀弯曲变形。
位移计算
采用图乘法或积分法求解, 考虑荷载、跨度、截面惯 性矩等因素。
悬臂梁在集中力作用下位移
悬臂梁基本概念
一端固定,另一端自由的 梁,承受集中力、均布荷 载等。
集中力作用
在悬臂梁自由端施加集中 力,引起梁产生弯曲和剪 切变形。
位移计算
采用叠加原理,分别计算 弯曲和剪切变形引起的位 移,再求和。
制造误差对结构位移的影响不同。
影响系数
02
利用影响系数可以计算制造误差引起的结构位移,影响系数与
结构形式和荷载情况有关。
敏感性分析

第四章结构力学 位移计算2

第四章结构力学  位移计算2
( M FN FQ 0 )ds 计算公式:
图(a)所示的结构在荷 载作用下产生位移。位移计 算公式中的变形 、、 0 是由荷载产生的。
FP
1

M、FN、FQ
( b)
M P、FNP、FQP
、、 0
具体计算步骤:
1)荷载
2)内力
1 d M P R ds EI M P、FNP、FQP 。 F NP E EA M P、FNP、FQP 、、 0 。 F 0 0 k QP
AV ( M FN FQ 0 )ds F Rk ck
19
( M FN FQ 0 )ds F Rk ck
—位移计算的一般公式
M ds FN ds
B
x
A
M图
B B
1 A
27
FQ图
ql 4 ql 2 V M Q 0.6 8EI GA
15
讨论: 1、变形体虚功原理是基于如下两点:力系的平衡条 件和变形的连续条件。即虚功原理是平衡条件和连续条件
的综合。反之,虚功原理既可以代替平衡条件,也可以代
替连续条件。 2、推倒过程中并没有牵涉到材料的性质,所以虚功 原理既适合弹性材料,也适合非弹性材料。 3、变形体虚功原理的两个状态并非一定是同一体 系,只要两个体系具有相同的几何形状,则变形体虚功原 理都将成立。
ds
ds
dW12=dW刚+dW变
(2)位移状态
dW刚—微段上的力在对应微段刚体位移变上作的功; dW变—微段上的力在对应微段自身变形位移上作的功。 由刚体虚功原理 dW刚=0 dW12=dW变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4—1 概

1. 变形和位移
在荷载作用下,结构将产生变形 和位移。
P A
△Ay △Ax

△A
变形:是指结构形状的改变。 位移:是指结构各处位置的移动。
A′
2. 位移的分类
线位移: 角位移:
A
(△A) △Ay
△Ax C A △C C′ P △D D′ D B
A
绝对位移
相对位移
△CD= △C+ △D
AB段: MP=
, BC段:
M P=
3. 代入公式(6—6)得
△Ay=
2 qx2 dx qL dx (-x)() ) = + (-L) (2 EI 2 EI
()
1. 图乘法: 下面的积分
§4—4 图 乘 法 计算梁和刚架在荷载作用下的位移时,要计算
△KP=
当结构符合下述条件时:
y
d=MPdx
A MP
CD
ql / 4 ql / 4
EI ql 3 ( 24 EI

EI )

3

8

2
例 已知 EI 为常数,求A点竖向位移 A 。
q
l l
ql / 4
A
q
ql 2 / 4
MP
1
l/2
Mi
l
解:作荷载弯矩图和单位荷载弯矩图
yc
1/ 2
1 1 ql 2 2 l 1 ql 2 2 l 2 ql 2 1 l CD ( l 2l 2l ) EI EI 2 4 3 2 2 4 3 2 3 8 2 2 2 2 ql 4 ( ) 48EI EI
△KP=
( a)
为虚拟状态中微段上的内力;dP、duP、 式中: Pds为实际状态中微段上的变形。由材料力学知
dP=
duP=
Pds=
将以上诸式代入式(a)得
△KP=
这就是平面杆件结构在荷载作用下的位移计算公式。

1. 梁和刚架 △KP= 2.桁架 △KP=

在实际计算时,根据结构的具体情况,可以简化:
1 yC=h
q
A B
L

h
h
MP图
M图
解:1. 作实际状态的MP图。
2. 设臵虚拟状态并作

3. 按式(6—9)计算 2 2 yC 1 2 qL qhL ∆CD=∑ = ( 3 8 L) h = (→←) EI EI 12EI
例 求图示刚架A点的竖向位移△Ay 。
C EI B
PL 2 PL 2
L
B
c
y c
ql 2 / 2
ql 2 / 8
例 图示梁 EI 为常数,求C点竖向位移 。
ql 2 / 2
MP
q ql 2 / 8
A
l/2 C
1
q
l/2
B
l/2
Mi
c
y c
C ql / 2 ql 2 / 8
ql 2 / 8 ql 2 / 4 ql 2 / 8
q
ql / 2
EI 1 1 l ql 2 3 l 1 l ql 2 2 l ( EI 3 2 8 4 2 2 2 4 3 2 l ql 2 1 l ) 2 8 2 2 17 ql 4 () 384 EI
ql 2 / 8
练习
图示结构 EI 为常数,求AB两点(1)相对竖向位 移,(2)相对水平位移,(3)相对转角 。 Pl P y c P ABY 对称结构的对称弯矩图与 EI AB 其反对称弯矩图图乘,结果 1 1 为零. 2 MP ( l Pl l 4 l Pl l 2) EI 2 3 反对称弯矩图 l l 10 Pl 3 1 ( ) 1 l 3 EI yc yc Mi 0 AB 0 ABX EI EI
W外=W内
或写成
W=Wi
上式称为虚功方程,式中
W ——外力虚功
Wi——内力虚功
内力虚功的计算
给定力状态 给定位移状态
微段dS上内力的变形虚功为
A RA
P
M
q B
q
dS
RB
Q N 力状态 A
ds B dS
dWi=Ndu+QdS+Md
整个结构内力的变形虚功为
N+dN Q+dQ
Wi=
(6—2)
虚功方程为
例 图示梁EI 为常数,求C点竖向位移。
q ql 2 / 8
MP
A
l/2 C l/2
1
C
B
l/2
Mi
1 1 3ql 2 l 3 l l ql 2 l C ( ) EI EI 3 8 2 4 2 2 8 4 5ql 3 ( ) 128EI
yc
例 图示梁 EI 为常数,求C点竖向位移 。
例 试求图示结构B点竖向位移
Pl
EI
P B
l
Mi
1
l
EI
MP
l
解: By

MM P EI ds
yc
EI 1 1 2 ( Pl l l Pl l l ) EI 2 3 4 Pl 3 () 3 EI
例 求图示梁(EI=常数,跨长为l)B截面转角 B



y
O
yC 形心 EI M P图 C MP 则积分运算化简为 A B dx 一个弯矩图的面积乘 以其形心处所对应的另 yC M B x 一个直线弯矩图上的竖 x A xC yC=xCtg 标 yC。
d=MPdx 面积
tg xd ∫ EI 而 有 tg xC EI
如果结构上所有各 杆段均可图乘则位移计 算公式可写成
QB
MB
qL2 8
MA

截面不相等时,均应分段相乘,然后叠加。
当y 所属图形是由若干段直线组成时,或各杆段的
C
1
2
3
y3
1
I1
2
I2
3
I3
y1
y2
y1
y2
y3
△=
(1y1+ 2y2+ 3y3)
△=
例 求下图所示刚架C、D两点间距离的改变。设EI=常数。
C D
1
qL2 8
形心
在应用单位荷载法计算时,应据所求位移不同,设 置相应的虚拟力状态。
2. 虚拟状态的设置
例如:
A
实际状态
求△
1 1
B
A A A
AH

A
A
1
虚拟状态
虚拟状态
求△
1
AB

AB
B
1
虚拟状态
虚拟状态
1
广义力与 广义位移
当结构只受到荷载作用时,求K点沿指定方向的位 移△KP,此时没有支座位移,故式为
3. 计算位移的目的
(1)校核结构的刚度。 (2)结构施工的需要。 (3)为分析超静定结构打 基础。

起拱高度
除荷载外,还有一些因素如温度变化、支座移动、 材料收缩、制造误差等,也会使结构产生位移。 结构力学中计算位移的一般方法是以虚功原理为 基础的。本章先介绍变形体系的虚功原理,然后讨论 静定结构的位移计算。
P
PL 4
PL 2
EI
A
P 1
D
L
PL
M P图
M图
解: 1. 作MP图、 2. 图乘计算。

△Ay=
2 1 ( L‧L ) PL 1 PL 3L PL ∑ (L‧ ) = = (↓) EI EI 2 2EI 4 2 2 16EI
yC
例 求图示外伸梁C点的竖向位移△Cy。 EI=常数。 q
解:
1. 作MP图 2. 作 图 3. 图乘计算
顶点
二次抛物线
1=2/3(hL)
2=1/3(hL)

顶点
3L/8
5L/8
1
4L/5 L
2
L/5
4 .图乘的技巧 当图形的面积和形心位臵不便确定时,将它分解成简单 图形,之后分别与另一图形相乘,然后把所得结果叠加。
例如: a
L

b
MP图

c a
ya
yb
d
M图
ya=2/3×c+1/3×d yb=1/3×c+2/3×d
1 1 对称弯矩图 1 1
l
Mi
1 1
Mi
l
l
作变形草图
绘制变形图时,应根据弯矩图判断杆件的凹凸方向,注意 反弯点的利用。如:
Pl
P
P
1
1
1 1
练习
求B点水平位移。
§4—2 变形体系的虚功原理 B
A
dW=P dS Cos
w=
dW = P Cos dS
(a )
P
常力功
A
B


变力功
力偶功
A
W= P △ Cos (b) 力由0→P 由A→B, 1 W= P △ Cos (c ) 2 P d
常力 W= M·
B
变力 W= 1 M· 2
求任一指定截面K 沿任一指定方向 k—k 上的位移△K 。 利用虚功原理计算
外力虚功
c1
c2
R 1 R 2
虚拟状态-力状态
实际状态-位移状态
c1、c2、c3、△K du、d、ds
N、 M、 Q、 R i、PK 1
W= = 内力虚功 Wi= 这便是平面杆系结构位移计算的一般公式,若计算结 果为正,所求位移△ K与假设的 PK=1同向,反之反向。 可得 (7-5) 这种方法又称为单位荷载法。
相关文档
最新文档