发光二极管测试方法(精)

合集下载

发光二极管的简易测试(精)

发光二极管的简易测试(精)

发光二极管的简易测试发光二极管,简称LED,是一种能把电能转换成光能的半导体器件,当管子上通过一定的正向电流时,便可以光的形式将能量释放出来,发光强度与正向电流近似成正比,发光颜色与管子的材料有关。

一、LED的主要特点(1)工作电压低,有的仅需1.5 - 1.7V即能导通发光;(2)工作电流小,典型值约1OmA;(3)具有和普通二极管相似的单向导电特性,只是死区电压略高些;(4)具有和硅稳压二极管相似的稳压特性;(5)响应时间快、从加电压到发出光的时间仅1一1Oms,响应频率可达100Hz;则使用寿命长,一般可达10万小时以上。

目前常用的发光二极管有发红光和绿光的磷化稼(GaP)LED,其正向压降V F=2.3V;发红光的磷砷化稼(GaASP) LED,其正向压降V F= 1.5 - 1.7V;以及采用碳化硅和蓝宝石材料的黄色、蓝色LED,其正向压降V F=6V。

由于LED的正向伏安曲线较陡,故在应用时,必须串接限流电阻,以免烧坏管子。

在直流电路中,限流电阻R可用下式估算:R=(E-V F)/I F在交流电路中,限流电阻R可用下式估算:R= (e-V F )/2I F,式中e为交流电源电压的有效值。

二、发光二极管的测试在无专用仪器的情况下,LED也可用万用表估测(这里以MF30型万用表为例)。

首先,将万用表置于Rx1k档或Rx100档,测量LED的正反向电阻,若正向电阻小于50kΩ,反向电阻无穷大,表明管子正常。

若正、反向均为零或均为无穷大,或正反向电阻值比较接近,均说明管子有问题。

然后,还须测量LED的发光情况。

因其正向压降为1.5V以上,故无法用Rx1, Rx1O, Rx1k档直接测量,R x1Ok档虽然使用15V电池;但内阻太高,也不能使管子导通发光。

但可采用双表法测试。

将两块万用表串联起来,均置于Rx1档,这样电池总电压为3V,总内阻为50Ω,则提供给L印的工作电流大于1OmA,足以使管子导通发光。

发光二极管可靠性和寿命评价试验方法_图文(精)

发光二极管可靠性和寿命评价试验方法_图文(精)

第29卷第4期应用光学 V01.29No.4 2008年7月 Journal of Applied 0ptics JuI.2008文章编号:1002—2082(200804一0533一04大功率发光二极管可靠性和寿命评价试验方法贺卫利,郭伟玲,高伟,史辰,陈曦,吴娟,陈建新(北京工业大学电控学院光电子技术实验室,北京100022摘要:介绍了发光二极管(LED的发展简史。

提出可能影响LED可靠性的几种因素,主要有封装中的散热问题和LED本身材料缺陷。

对于LED可靠性,主要方法是通过测试其寿命来分析其可靠性,一般采取加速实验的方法来测试推导LED寿命。

介绍了根据加速应力(主要分为单一加速应力和复合加速应力2种评价LED寿命的测试方法。

在不同加速试验应力条件下测试了大功率LED可靠性,并建立了LED寿命的几种数学模型。

最后根据具体实例,通过选择加速应力和试验方法,给出具体推导LED寿命的数学公式。

关键词:发光二极管;寿命评价试验方法;加速应力;数学模型中图分类号:TN384文献标志码:ATest method of life—time and reliability eValuation for high—power LEDHE Wei—li, GUO Wei—ling,GA0 (0ptoelectronic Technology Lab, Wei,SHI Chen,CHEN Xi,Beijing University of Technology,WU Juan,CHEN Jian—xin Beijing 100022,ChinaAbstract:The development history of the light—emitting diode(LEDis introduced. SeVeral factors influencing LED reliability are put forward,among which the materialdefectiVeness of LED and the heat dissipation during packaging are the main factors.The reliability eValuation of LED is analyzed by testing the LED lifetime,which is usually derived from the accelerated test. The testing methods to evaluate LED lifetime according to the accelerated stress(single and composite accelerated stressesare listed and introduced. The reliability of high—power LEDs was tested and several mathematical models of the LED lifetime were derived under different accelerated stresses. The mathematical formula for deriving the LED lifetime is given based on some examples.Key words:light—emitting diode (LED; testing method of lifetimeeValuation;accelerated stress;mathematical model引言自1968年利用氮掺杂工艺使GaAsP红色发光二极管(LED的发光效率达到1lm/w以来,LED 的研究得到迅速发展。

发光二极管的测试方法

发光二极管的测试方法

发光二极管的测试方法发光二极管(LED)是一种能够将电能直接转化为光能的半导体元件。

从市场上常见的LED的类型来看,有红、绿、蓝、黄等不同颜色的LED。

为了确保LED的质量和性能,需要对其进行测试。

下面将介绍一些常用的LED测试方法。

首先是对LED光电参数的测试,主要包括:1. 测试光通量(Luminous Flux): 光通量是LED的发光亮度的量度,单位为流明(lm)。

可以使用一台光度计来测量LED的光通量值。

2. 测试光强度(Luminous Intensity): 光强度是LED光线在特定方向上发射的明亮程度,单位为坎德拉(cd)。

光强度的测试可以通过使用一个集成球、透镜和接口装置结合光度计来完成。

3. 测试色度坐标(Chromaticity Coordinates): 色度坐标是用来描述LED的颜色特性的参数。

可以使用色度仪来测量LED的色度坐标。

此外,还需要对LED的电性能进行测试,主要包括:1. 测试正向电压(Forward Voltage): 当LED处于导通状态时,正向电压是LED正向电流通过后产生的电压降。

可以使用数字式万用表或特定的LED测试仪进行测量。

2. 测试正向电流(Forward Current): 正向电流是指在正向电压下流过LED的电流。

可以通过直流电源和电流表进行测试。

3. 测试反向电流(Reverse Current): 当LED处于反向偏置状态时,如果流过LED的电流过高,则可能导致LED短路。

可以使用数字式万用表或特定的LED测试仪进行测试。

4. 测试开启电压(Breakdown Voltage): LED在反向偏置状态下的电压,即开启电压。

可以使用数字式万用表或特定的LED测试仪进行测试。

最后,还需要对LED的可靠性进行测试,主要包括:1.高温寿命测试:将LED置于恒定高温环境中,通电并持续观察其工作性能的变化情况,以判断其在高温环境下的寿命和稳定性。

发光二极管怎么用万用表测试-发光二极管测试方法

发光二极管怎么用万用表测试-发光二极管测试方法

发光二极管怎么用万用表测试?发光二极管测试方法1、用万用表检测普通发光二极管:A.用指针式万用表R×10k档,测量发光二极管的正、反向电阻值。

正常时,正向电阻值(黑表笔接正极时)约为几十至200kΩ,反向电阻值为∞(无穷大)。

在测量正向电阻值时,较高灵敏度的发光二极管,管内会发微光。

若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降约在2V左右(部分发光二极管压降在3V 左右,如白色发光二极管等),而万用表R×1k档内电池的电压值为1.5V,故不能使发光二极管正向导通。

B、用指针式万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。

C、用3V直流电源,在电源的正极串接1只47Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极,正常的发光二极管应发光。

或将1节1.5V电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。

D、如果有两块指针万用表(最好同型号)。

用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。

余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。

两块万用表均置×10Ω挡。

正常情况下,接通后发光二极管就能正常发光。

若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。

应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。

万用表测发光二极管的方法

万用表测发光二极管的方法

万用表测发光二极管的方法引言发光二极管(Light-Emitting Diode,简称LED)是一种常见的电子器件,常用于指示灯、显示屏和照明等应用。

要正确测量和测试LED的参数,万用表是必不可少的工具之一。

本文将详细介绍如何使用万用表来测量和测试发光二极管的各种参数。

仪器和材料1.一台万用表2.一颗发光二极管3.电源(可以是电池或直流稳压电源)4.连接线(以夹子为夹头的测试线)测量电压测量发光二极管的电压是判断其工作状态和负载电阻是否合适的重要步骤。

下面是测量LED电压的步骤:1.先将发光二极管的正极(阳极)和负极(阴极)连接到电源的正负极,稍后会讲到如何判断LED的极性。

2.将万用表的旋钮旋到电压测量位,并选择适当的测量范围。

3.将万用表的电压探头依次连接到LED的阳极和阴极上,确保正确接触。

4.查看万用表上显示的电压值,并记录下来。

测量电流测量发光二极管的电流是非常关键的,因为LED在不同电流下的亮度和寿命会有很大的不同。

下面是测量LED电流的步骤:1.先将发光二极管的正极(阳极)和负极(阴极)连接到电源的正负极,确保极性正确。

2.将万用表的旋钮旋到电流测量位,并选择适当的测量范围。

3.将万用表的电流探头的黑色接线夹连接到LED的阴极上,红色接线夹连接到负极(电源的负极)上,确保连接牢固。

4.查看万用表上显示的电流值,并记录下来。

测量亮度发光二极管的亮度是与电流成正比的,因此可以通过测量电流来间接测量亮度。

下面是测量LED亮度的步骤:1.按照上述步骤测量LED的电流值。

2.使用亮度计或光照度计等专业设备来测量LED所发出的光强,记录下来。

3.根据测量到的电流值和光强值绘制亮度曲线,以便分析LED的亮度随电流变化的规律。

判断极性判断发光二极管的极性是确保正确连接的前提。

下面介绍两种常见的判断极性的方法:1.外观判断:LED的两腿通常长度不一样,其中一腿较长,为阳极(正极),另一腿较短为阴极(负极)。

半导体发光二极管测试国标(精)

半导体发光二极管测试国标(精)

基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。

1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。

由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。

通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。

图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。

2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。

(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。

变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。

如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。

_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。

图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。

而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。

(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。

因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。

发光二极管测量方法

发光二极管测量方法

发光二极管测量方法发光二极管(LED)是一种高效率、节能、环保的光源,被广泛应用于LED灯的照明、显示屏、信号灯、车灯等各个领域。

为了保证LED的品质,我们需要进行LED的测量。

下面,我们来分步骤阐述发光二极管测量方法。

第一步:准备工作在进行LED测量之前,需要准备相应仪器。

首先是电源,需要选择一种稳定可靠的电源,以保证LED的工作电流稳定。

其次是万用表或者LED专用测试仪,可以测量LED的电压和电流等参数。

还需要一个适合分波长的光度计,可以测量LED的光通量和光效等参数。

第二步:测量前检查在进行LED测量之前,需要对LED进行检查。

首先是外观,检查是否有损坏、腐蚀等情况。

其次是极性,要清楚哪个引脚是正极哪个引脚是负极。

最后是电气特性,需要检查电压、电流和发光强度等参数是否在规定范围内。

第三步:测量在检查完成后,可以开始测量。

首先是电气测量,将LED连接到电源上,通过电流表测量电流值,通过万用表或者LED专用测试仪测量电压值。

最后将测量结果填入测量数据表格中。

其次是光学测量,通过光度计测量LED的光通量和光效等参数,并将结果填入测量数据表格中。

第四步:数据分析在测量完成后,需要对数据进行分析。

可以将测量结果与LED的规格书进行比较,了解LED是否符合规格。

还可以对数据进行统计,根据数据绘制相应的统计图表,以更直观地了解LED的性能。

以上就是发光二极管测量方法的分步骤阐述。

在进行LED测量时既要注意仪器的选用,也要注意测量前的检查,以保证测量结果的准确性。

同时,对测量数据的分析也是非常重要的,可以帮助我们更全面地了解LED的性能。

发光二极管的测试方法

发光二极管的测试方法

电特性测试方法: 1.正向电压:目的:测量器件在规定正向工作电流下,两电极间产生的电压降。

测试原理:D ——被测器件; G ——恒流源; A ——电流表; V ——电压表。

正向电压测量原理图测量步骤:正向电压的测量按下列步骤进行: a) 按图连接测试系统,并使仪器预热;b) 调节恒流源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。

规定条件:——环境或管壳温度; ——正向偏置电流。

2.反向电压:目的:测量通过器件的反向电流为规定值时,在两电极之间产生的反向电压。

G测量原理:D ——被测器件; G ——稳压源; A ——电流表; V ——电压表。

反向电压测量原理图测量步骤:反向电压的测量按下列步骤进行: c) 按图连接测试系统,并使仪器预热;d) 调节稳压电源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。

规定条件:——环境或管壳温度; ——反向电流。

3.反向电流:目的:测量在被测器件施加规定的反向电压时产生的反向电流。

测量原理:V A+-GV +-GD——被测器件;G——稳压源;A——电流表;V——电压表。

反向电流测量原理图测量步骤:反向电压的测量按下列步骤进行:e)按图连接测试系统,并使仪器预热;f)调节稳压电源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。

规定条件:——环境或管壳温度;——反向电压。

4.总电容:目的:在被测器件施加规定的正向偏压和规定频率的信号时,测量被测器件两端的电容值。

测量原理:D——被测器件;——隔离电容;CA——电流表;V——电压表L——电感。

总电容测量原理图测量步骤:总电容的测量按下列步骤进行: g) 按图连接测试系统,并使仪器预热;h) 调节电压源和调节电容仪,分别给被测器件施加规定的正向偏压和规定频率的信号,将电容仪刻度盘上读数扣去电容C 0等效值即为被测器件总电容值。

规定条件:——环境或管壳温度; ——正向偏置电压;——电容仪提供规定频率的信号。

发光二极管亮度 检测方法

发光二极管亮度 检测方法

发光二极管亮度检测方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!发光二极管亮度检测方法引言发光二极管(LED)作为一种常见的光电器件,在各种应用中都扮演着重要角色。

发光二极管的主要参数及测量方法

发光二极管的主要参数及测量方法

发光二极管参数的测量一发光二极管的结构和基本原理1 发光二极管的结构发光二极管(light emission diode LED)图1显示了LED的结构截面图。

要使LED 发光,有源层的半导体材料必须是直接带隙材料,越过带隙的电子和空穴能够直接复合发射2 LED的基本工作原理LED 是一种直接注入电流的发光器件,是半导体晶体内部受激电子从高能级回复到低能级时,发射出光子的结果,这就是通常所说的自发发射跃迁。

当LED的PN结加上正向偏压,注入的少数载流子和多数载流子(电子和空穴)复合而发光。

值得注意的是,对于大量处于高能级的粒子各自分别自发发射一列一列角频率为ν=E g/h的光波,但各列光波之间没有固定的相位关系,可以有不同的偏振方向,并且每个粒子所发射的光沿所有可能的方向传播,这个过程称为自发发射。

其发射波长可用下式来表示:λ(μm)=E g(eV)二发光二极管的特性及测试方法1 LED的光谱特性及测试方法由于LED没有光学谐振腔选择波长,所以它的光谱是以自发发射为主的光谱,图2显示出了LED的典型光谱曲线。

发光光谱曲线上发光强度最大时所对应的波长称为发光峰值波长,光谱曲线上两个半光强点所对应的波长差称为谱线宽度(简称线宽),其典型值在30-40nm之间。

峰值波长和谱线宽度的测试方法如图3所示,当被测器件的正向工作电流达到规定值时,旋转单色仪波鼓,使指示器达到最大值,读出波长峰值,此即为该器件的发光峰值波长。

在旋转单色仪波鼓(朝相反方向各转一次),使指示器读数为最大值的一半时,读出两个等于最大值一半的数值,两者之差即为光谱谱线宽度。

波长图2 LED的光谱曲线图3 LED的峰值波长和线宽测试方框图由图2可以看出,当器件温度升高时,光谱曲线随之向右移动,从峰值波长的变化可以求出LED的波长温度系数。

2 LED 的伏安特性及测试方式LED 通常都具有图4所示的较好的伏安特性。

当LED 管芯通过正向电流为规定的值时,正、负极之间产生的电压降,即为正向压降(以V F 表示,单位为V ),由于正向电阻比较小,故V F 一般都较低,图5示出了V F 的测试原理图3 LED 的电光转换特性及测试方法电光转换特性是LED 的光输出功率与注入电流的关系曲线,即P -I 曲线,因为是自发辐射光,所以P -I 曲线的线性范围比较大如图6所示。

半导体发光二极管LED的测试方法

半导体发光二极管LED的测试方法

34技术应用T echnology and application半导体发光二极管(LED,light emitting diode )是一种新型的发光体,具有电光转换效率高、体积小、寿命长、电压低,节能、环保等优点,是下一代理想的照明器件。

LED 光电测试是检验LED 光电性能的重要手段,相应的测试结果是评价和反映当前我国LED 产业发展水平的依据。

文章结合有关LED 测试方法的国家的相关标准,介绍了LED 光电性能测试的几个主要方面。

半导体发光二极管LED 的测试方法沈光地 北京光电子技术实验室主任半导体发光二极管(L E D)已经被广泛应用于指示灯、信号灯、仪表显示、车载光源、大屏幕显示、背光源等场合,白光L E D技术也不断地发展,L E D在照明领域的应用越来越广泛。

过去,对于L E D的测试没有较全面的国家标准和行业标准,在生产实践中只能以相对参数为依据,不同的厂家、用户、研究机构对此争议很大,导致国内L E D 产业的发展受到很大影响。

结合国内外关于L E D测试方法的各种标准,基于L E D各个应用领域的实际需求,本文从电特性、光特性、开关特性、颜色特性、热学特性、可靠性等方面进行了介绍。

LED 的发光原理1955年,美国无线电公司(R a d i o Corpor of America Rubin Braunstein)发现了砷化鎵G a A s与及其他半导体合金的红外线放射作用。

而 1962年美国通用电气公司(GE Nick Holonyak Jr)则开发出可见光的L E D。

不过,L E D真正的起飞是 1990 年代白光 LED出现后,才开始渐渐被重视,而应用面越来越广。

L E D具备二极管的特性,是一种可以将电能转化为光能的电子零件,也就是具备一正极一负极,L E D最特别的地方在于只有从正极通电才是会发光,故一般给予直流电时,L E D会稳定地发光,但如果接上交流电,L E D会呈现闪烁的型态,闪亮的频率依据输入交流电的频率而定。

发光二极管的测试技巧与常见问题解答

发光二极管的测试技巧与常见问题解答

发光二极管的测试技巧与常见问题解答发光二极管(Light Emitting Diode,LED)作为一种新型的半导体光源,广泛应用于照明、电子显示、通信等领域。

然而,LED的测试和故障排除一直是工程师们头疼的问题。

本文将介绍一些测试技巧和常见问题的解答,帮助读者更好地了解和应用LED。

测试技巧1. 测试工具:在测试过程中,我们需要使用一些常见的测试工具,如万用表、示波器和校准器。

其中万用表用于测量LED的电流和电压,示波器可以观察到LED的工作状态和波形,校准器则可以校准LED的亮度和颜色。

2. 正确接线:在测试LED时,正确的接线非常重要。

一般来说,LED的长脚代表阳极(Anode),短脚代表阴极(Cathode)。

在连接LED时,将阳极连接到正极,阴极连接到负极,否则LED将无法正常工作。

3. 限流电阻:为保护LED不受过高电流的损坏,我们通常需要加入限流电阻。

计算限流电阻的公式为R = (V电源 - VLED) / I。

其中,V电源表示电源电压,VLED表示LED的工作电压,I表示所需驱动电流。

根据计算结果,选择合适的电阻值进行连接,确保LED能够正常工作。

4. 静态测试和动态测试:静态测试是指直接测量LED的电流、电压和亮度等参数。

动态测试则是通过改变电流或电压来观察LED的发光变化,并绘制电流-亮度曲线图。

这两种测试方法都有助于我们了解LED的性能和特性。

常见问题解答1. LED发光异常:如果LED无法正常发光或发光异常,首先要检查是否存在接线错误或电路故障。

确保LED的阳极和阴极正确连接,排除电路中的故障点。

另外,LED发光的亮度与工作电流密切相关,如果电流过小,可能导致发光昏暗;如果电流过大,可能导致LED发光过亮,甚至烧毁。

2. LED颜色变化:LED的颜色与其材料和工作电流有关。

如果LED的颜色与预期不符,可能是选择了错误的材料或工作电流不匹配。

此时,需要更换合适的LED型号,或调整电流来匹配所需的颜色。

二极管如何测量_各种二极管测量方法

二极管如何测量_各种二极管测量方法

、二极管如何测量_各种二极管测量方法一. 二极管测量方法_普通二极管的检测(检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个pn结构成的半导体器件,具有单向导电特性。

通过用万用表检测其正、反向电阻值,判别出二极管的电极,还可估测出二极管是否损坏。

1.极性的判别将万用表置于r×100档或r×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。

两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。

在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。

2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1k左右,反向电阻值为300左右。

硅材料二极管的电阻值为5 k左右,反向电阻值为∞(无穷大)。

正向电阻越小越好,反向电阻越大越好。

正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。

若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。

若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。

3.反向击穿电压的检测二极管反向击穿电压(耐压值)用晶体管直流参数测试表测量。

其方法是:测量二极管时,应将测试表的“npn/pnp”选择键设置为npn,再将被测二极管的正极接测试表的“c”插孔内,负极测试表的“e”插孔,按下“v(br)”键,测试表指示出二极管的反向击穿电压值。

也兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极,用万用表(置于合适的直流电压档)监测二极管两端的电压。

如图4-71,摇动兆欧表手柄(应由慢加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。

二. 二极管测量方法_稳压二极管的检测1.正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。

发光二极管热阻抗测试方法

发光二极管热阻抗测试方法

发光二极管热阻抗测试方法
发光二极管(LED)热阻抗测试方法包括以下步骤:
1. 样品选择:选择需要测试的LED样品,确保样品的质量和可靠性。

2. 测试系统搭建:搭建测试系统,包括LED驱动电路、温度测量电路、数
据采集和处理电路等。

3. 测试环境设置:设置测试环境温度,保持测试环境稳定,避免外界干扰。

4. 电流注入:通过LED驱动电路向LED注入恒定电流,记录电流值。

5. 温度测量:通过温度测量电路测量LED结温,记录结温值。

可以采用红
外测温仪、热敏电阻等方法测量结温。

6. 数据采集和处理:采集测试数据,包括电流值和结温值,进行处理和分析。

可以计算出LED的热阻抗值,并进行统计分析。

7. 重复测试:重复以上步骤,对不同型号、不同批次、不同工作条件下的LED进行测试,得出测试结果。

8. 结果分析和报告:对测试结果进行分析和比较,得出结论,编写测试报告。

测试报告应包括测试条件、测试数据、结果分析等内容。

需要注意的是,测试时应遵循安全规范和操作规程,确保人员安全和设备安全。

同时,应保证测试的准确性和可靠性,对测试数据进行统计分析,避免误差和异常值对测试结果的影响。

发光二极管LED最新测试方法

发光二极管LED最新测试方法

发光二极管LED最新测试方法1.电压测试:测试LED在额定电流下的电压降,通常使用数字万用表进行测量。

测试时需要将LED连接到稳流电源上,并在额定电流下测量其电压降。

2.亮度测试:测试LED的亮度是其最常见的测试方法之一、可以使用光度计或光度计系统对LED的辐射光通量进行测量。

测试时需要将LED置于测试装置中,并将测量结果与标准亮度进行比较。

3.色度测试:测试LED的颜色特性是测试LED的另一个重要指标。

常用的测试方法是使用光谱分析仪测量LED的光谱分布,并根据光谱数据计算出色坐标和相关色度指标,如色温、色容差等。

4.色品测试:测试LED的色品是测试其色彩性能的重要方法之一、可以使用色差仪进行测量,通过比较样品光源和标准光源的颜色差异来评估LED的色品效果。

5.效率测试:测试LED的光电转换效率是衡量其能量利用率的重要指标。

可以使用光度计和功率计对LED的光输出和电功率进行测量,并计算出光电转换效率。

6.可靠性测试:测试LED的可靠性是评估其寿命和稳定性的关键。

常用的可靠性测试方法包括温度循环测试、湿热循环测试、阻尼振动测试等。

7.稳定性测试:测试LED的稳定性是评估其长期性能保持能力的重要方法。

可以通过长时间连续使用LED,并检测其亮度、电流和电压等参数的变化来评估其稳定性。

8.一致性测试:测试LED的一致性是确保生产的LED具有相似的电气和光学性能的重要方法。

可以使用测试电路对一批LED进行批量测试,并对测试结果进行统计和分析。

综上所述,LED的测试涉及多个方面的指标,包括电气特性、光电特性、可靠性和一致性等。

在测试过程中,需要使用专业的测试设备和仪器,并严格按照测试标准和规程进行操作,以确保测试结果的准确性和可靠性。

半导体发光二极管测试方法

半导体发光二极管测试方法

半导体发光二极管测试方法发光二极管(LED)是一种半导体器件,能够将电能转化为光能,具有高效、节能、长寿命等特点,被广泛应用于照明、数码显示、通信等领域。

为保证LED的质量和可靠性,测试方法至关重要。

本文将介绍LED的测试方法,包括性能测试和可靠性测试。

性能测试是指对LED的电学和光学性能进行测试。

首先是电性能测试,包括正向电压-VF测试、正向电流-IF测试和反向漏电流-IR测试。

其中,VF测试可以通过直流电流源和万用表测试。

将LED正向引线连接到电流源的正极,负向引线连接到万用表的电压测量端,设置电流源输出电流为LED标称电流IF,读取万用表上的电压值即为VF。

同样的方法可以测试IF和IR。

为了减小测试误差,可以将测试过程自动化。

接下来是光学性能测试,主要包括光通量测试、光强测试和色温测试。

光通量测试用于测量LED的总辐射功率,可以使用光通量集成球进行测试。

将LED安装在光通量集成球的中心位置,并通过光电二极管将光通量收集起来,然后利用功率计进行测量。

光强测试用于测量LED发出的光的强度,可以使用光强计进行测试。

色温测试用于测量LED发出的光的颜色温度,可以使用光谱仪进行测试。

可靠性测试是指在一定的环境条件下,对LED的长期稳定性进行测试。

首先是热老化测试,通过将LED置于高温环境下,并施加一定的电流,观察LED的光亮度变化和色温变化,以评估其在高温环境下的稳定性。

其次是湿热老化测试,通过将LED置于高温高湿环境下,并施加一定的电流,观察LED的性能变化,以评估其在高温高湿环境下的稳定性。

最后是机械冲击测试,通过将LED置于冲击装置中,进行机械冲击,观察LED的性能变化,以评估其在振动环境下的稳定性。

在测试过程中,需要严格控制测试条件,如温度、湿度、电流等。

同时,需要进行数据记录和分析,以便评估LED的性能和可靠性。

测试结果应符合相关的标准和规范,如国家标准、行业标准等。

同时,测试设备和仪器应保持良好的校准状态,以确保测试结果的准确性和可靠性。

发光二极管测试方法

发光二极管测试方法

發光二極體測詴方法摘要系統地介紹了與發光二極體測詴有關的術語和定義,在此基礎上,詳細介紹了測詴方法和測詴裝置的要求。

1 前言半導體發光二極體是一種重要的光電子器件,它在科學研究和工農業生産中均有非常廣泛的應用.發光二極體雖小,但要準確測量它的各項光和輻射參數並非一件易事.目前在世界範圍內的測詴比對還有較大的差異.鑒於此,CIE(國際照明委員會)TC2-34小組對此進行了研究,所提出的技術報告形成了CIE127-1997文件.中國光學光電子行業協會光電器件專業分會根據國內及行業內部的實際情況,初步制定了行業標準"發光二極體測詴方法",2002年起在行業內部詴行.本文敍述了與發光二極體測詴有關的術語和定義,在此基礎上,詳細介紹了測詴方法和測詴裝置的要求,以期收到抛磚引玉之效果.本文涉及的測詴方法適用於紫外/可見光/紅外發光二極體及其元件,其晶片測詴可以參照進行。

2 術語和定義2.1發光二極體LED除半導體雷射器外,當電流激勵時能發射光學輻射的半導體二極體。

嚴格地講,術語LED應該僅應用於發射可見光的二極體;發射近紅外輻射的二極體叫紅外發光二極體(IRED,Infrared Emitting Diode);發射峰值波長在可見光短波限附近,由部份紫外輻射的二極體稱爲紫外發光二極體;但是習慣上把上述三種半導體二極體統稱爲發光二極體。

2.2光軸Optical axis最大發光(或輻射)強度方向中心線。

2.3正向電壓V F Forward voltage通過發光二極體的正向電流爲確定值時,在兩極間産生的電壓降。

2.4反向電流I R Reverse current加在發光二極體兩端的反向電壓爲確定值時,流過發光二極體的電流。

2.5反向電壓V R Reverse voltage被測LED器件通過的反向電流爲確定值時,在兩極間所産生的電壓降。

2.6總電容C Capacitance在規定正向偏壓和規定頻率下,發光二極體兩端的電容。

怎么用万用表测试发光二极管是好是坏

怎么用万用表测试发光二极管是好是坏

一.万用表检测普通二极管的极性与好坏。

检测原理:根据二极管的单向导电性这一特点性能良好的二极管,其正向电阻小,反向电阻大;这两个数值相差越大越好。

若相差不多说明二极管的性能不好或已经损坏。

测量时,选用万用表的“欧姆”挡。

一般用R x100或R xlk挡,而不用Rx1或R x10k挡。

因为Rxl挡的电流太大,容易烧坏二极管,R xlok挡的内电源电压太大,易击穿二极管.测量方法:将两表棒分别接在二极管的两个电极上,读出测量的阻值;然后将表棒对换再测量一次,记下第二次阻值。

若两次阻值相差很大,说明该二极管性能良好;并根据测量电阻小的那次的表棒接法(称之为正向连接),判断出与黑表棒连接的是二极管的正极,与红表棒连接的是二极管的负极。

因为万用表的内电源的正极与万用表的“—”插孔连通,内电源的负极与万用表的“+”插孔连通。

如果两次测量的阻值都很小,说明二极管已经击穿;如果两次测量的阻值都很大,说明二极管内部已经断路:两次测量的阻值相差不大,说明二极管性能欠佳。

在这些情况下,二极管就不能使用了。

必须指出:由于二极管的伏安特性是非线性的,用万用表的不同电阻挡测量二极管的电阻时,会得出不同的电阻值;实际使用时,流过二极管的电流会较大,因而二极管呈现的电阻值会更小些。

二.特殊类型二极管的检测。

①稳压二极管。

稳压二极管是一种工作在反向击穿区、具有稳定电压作用的二极管。

其极性与性能好坏的测量与普通二极管的测量方法相似,不同之处在于:当使用万用表的Rxlk挡测量二极管时,测得其反向电阻是很大的,此时,将万用表转换到Rx10k档,如果出现万用表指针向右偏转较大角度,即反向电阻值减小很多的情况,则该二极管为稳压二极管;如果反向电阻基本不变,说明该二极管是普通二极管,而不是稳压二极管。

稳压二极管的测量原理是:万用表Rxlk挡的内电池电压较小,通常不会使普通二极管和稳压二极管击穿,所以测出的反向电阻都很大。

当万用表转换到Rx10k挡时,万用表内电池电压变得很大,使稳压二极管出现反向击穿现象,所以其反向电阻下降很多,由于普通二极管的反向击穿电压比稳压二极管高得多,因而普通二极管不击穿,其反向电阻仍然很大。

发光二极管的测试方法

发光二极管的测试方法

发光二极管的测试方法发光二极管(LED)是一种半导体器件,广泛应用于照明、显示、通信等领域。

测试LED的特性和性能是确保其质量和可靠性的关键步骤。

下面是发光二极管的测试方法,可分为外观检查、静态电参数测试和光电参数测试三部分。

一、外观检查1.外观检查是发光二极管最基本的一个测试。

用肉眼或显微镜检查LED是否有裂纹、杂质、污染等缺陷。

2.外观检查还包括引线的焊接是否齐全、导电是否可靠。

二、静态电参数测试1.正向电压-电流特性测试*在限制电流下,应用逐步增大的正向电压,记录电流的变化。

绘制LED的电流-电压曲线,可以得到正向击穿电压、正向导通电阻、正向压降等参数。

*正向电压一般范围是0.2V到5V,根据不同的LED型号和应用需求可能有所差异。

2.反向电压测试*在限制电流下,应用逐步增大的反向电压,记录电流的变化。

根据电流的大小和反向电压的极限,可以判断LED对反向电压的抗性。

3.反向漏电流测试*测量未加正向电压时,LED器件上的反向漏电流。

使用特定的测试电路和仪器,精确测量反向电流的大小,一般单位是微安(μA)级别。

4.导通压降测试*测量在给定的正向电流条件下,LED两端的电压降。

通常用万用表或电源仪表进行测量。

三、光电参数测试1.亮度测试* 使用亮度计,将LED表面与亮度计接触,测量出LED的亮度。

常用的亮度单位是流明(lm)或坎德拉(cd)。

2.发光效率测试* 测量LED发出的光功率和输入的电功率,通过光电功率比可以计算出发光效率。

常见的单位是lm/W。

3.光谱测试*使用光谱仪测量LED发光的光谱分布。

通过测量不同波长下的辐射功率,可以得到LED的光谱特性。

4.色度坐标测试*使用色差仪或分光光度仪来测量LED发光的色度坐标,通常使用CIE1931色度坐标系或CIE1976色度坐标系。

5.显色性测试*使用光谱仪配合专用测试软件,测量LED发光的光谱以及色容差等参数,评估其显色性能。

6.角度测试*使用专用光度计或光强计,测量LED的发光角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子发烧友 电子技术论坛发光二极管测试方法摘要系统地介绍了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求。

1 前言半导体发光二极管是一种重要的光电子器件,它在科学研究和工农业生产中均有非常广泛的应用.发光二极管虽小,但要准确测量它的各项光和辐射参数并非一件易事.目前在世界范围内的测试比对还有较大的差异.鉴于此,CIE(国际照明委员会)TC2-34小组对此进行了研究,所提出的技术报告形成了CIE127-1997文件.中国光学光电子行业协会光电器件专业分会根据国内及行业内部的实际情况,初步制定了行业标准"发光二极管测试方法",2002年起在行业内部试行.本文叙述了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求,以期收到抛砖引玉之效果.本文涉及的测试方法适用于紫外/可见光/红外发光二极管及其组件,其芯片测试可以参照进行。

2 术语和定义2.1发光二极管 LED除半导体激光器外,当电流激励时能发射光学辐射的半导体二极管。

严格地讲,术语LED应该仅应用于发射可见光的二极管;发射近红外辐射的二极管叫红外发光二极管(IRED,Infrared Emitting Diode);发射峰值波长在可见光短波限附近,由部份紫外辐射的二极管称为紫外发光二极管;但是习惯上把上述三种半导体二极管统称为发光二极管。

2.2光轴 Optical axis最大发光(或辐射)强度方向中心线。

2.3正向电压VF Forward voltage通过发光二极管的正向电流为确定值时,在两极间产生的电压降。

2.4反向电流IR Reverse current加在发光二极管两端的反向电压为确定值时,流过发光二极管的电流。

2.5反向电压VR Reverse voltage被测LED器件通过的反向电流为确定值时,在两极间所产生的电压降。

2.6总电容C Capacitance在规定正向偏压和规定频率下,发光二极管两端的电容。

2.7开关时间 Switching time涉及以下概念的最低和最高规定值是10%和90%,除非特别注明。

2.7.1开启延迟时间td(on) Turn-on delay time输入脉冲前沿最低规定值到输出脉冲前沿最低规定值之间的时间间隔。

2.7.2上升时间tr Rise time输出脉冲前沿最低规定值到最高规定值之间的时间间隔。

2.7.3开启时间ton Turn-on time器件所加输入脉冲前沿的最低规定值到输出脉冲前沿最高规定值之间的时间间隔。

ton= td(on)+tr 电子发烧友 电子技术论坛2.7.4关闭延迟时间td(off) Turn-off delay time器件所加输入脉冲后沿的最高规定值到输出脉冲后沿最高规定值之间的时间间隔。

2.7.5下降时间tf Fall time输出脉冲后沿最高规定值到最低规定值之间的时间间隔(见图1)。

图1 开关时间延迟时间2.7.6关闭时间toff Turn-off time器件所加输入脉冲后沿的最低规定值到输出脉冲后沿最低规定值之间的时间间隔。

toff =td(off)+tf2.8光通量Φv Luminous flux通过发光二极管的正向电流为规定值时,器件光学窗口发射的光通量。

2.9辐射功率Φe Radiant power通过发光二极管的正向电流为规定值时,器件光学窗口发射的辐射功率。

2.10辐射功率效率ηe Radiant power efficiency器件发射的辐射功率与器件的电功率(正向电流乘以正向电压)的比值:ηe =Φe/(IF·VF)注:在与其它术语不会混淆时,可简称为辐射效率 (Radiant efficiency)。

电子发烧友 电子技术论坛 2.11光通量效率ηv Luminous flux efficiency器件发射的光通量Φv 与器件的电功率(正向电流 IF乘以正向电压 VF)的比值:ηv =Φv/(IF·VF)注:在与其它术语不会混淆时,可简称为发光效率(Luminous efficiency)。

2.12发光(或辐射)空间分布图及相关特性2.12.1发光(或辐射)强度Iv Luminous(or Radiant) intensity光源在单位立体角内发射的光(或辐射)通量,可表示为Iv =dΦ/dΩ。

发光(或辐射)强度的概念要求假定辐射源是一个点辐射源,或者它的尺寸和光探测器的面积与离光探测器的距离相比是足够小,在这种情形,光探测器表面的光(或辐射)照度遵循距离平方反比定理,即E=I/d2 。

这里I是辐射源的强度,d是辐射源中心到探测器中心的距离。

把这种情况称为远场条件。

然而在许多应用中,测量LED时所用的距离相对较短,源的相对尺寸太大,或者探测器表面构成的角度太大,这就是所谓的近场条件。

此时,光探测器测量的光(或辐射)照度取决于正确的测量条件。

2.12.2平均LED强度 Averaged LED intensity照射在离LED一定距离处的光探测器上的通量Φ与由探测器构成的立体角Ω 的比值,立体角可将探测器的面积S除以测量距离d的平方计算得到。

I=Φ/Ω=Φ/(S/d2)CIE推荐标准条件A和B(见7.2.1.2)来测量近场条件下的平均LED强度,可以分别用符号ILED A和ILED B来表示,用符号ILED Ae和ILED Av分别表示标准条件A测量的平均LED辐射强度和平均LED发光强度。

2.12.3发光(或辐射)强度空间分布图 Luminous(or Radiant)diagram反映器件的发光(或辐射)强度空间分布特性(见图2):Iv(或Ie)=f(θ)图2 辐射图和有关特性注1:除非另外规定,发光(或辐射)强度分布应该规定在包括机械轴Z的平面内。

注2:如果发光(或辐射)强度分布图形有以Z轴为旋转对称特性,发光(或辐射)强度空间分布图 电子发烧友 电子技术论坛仅规定一个平面。

注3:如果没有以Z轴为旋转对称特性,各种角度θ的发光(或辐射)强度分布应有要求,X、Y、Z方向要求可有详细规范定义。

2.12.4半强度角θ1/2 Half-intensity angle在发光(或辐射)强度分布图形中,发光(或辐射)强度大于最大强度一半构成的角度(见图2)。

2.12.5偏差角Δθ Misalignment angle在发光(或辐射)强度分布图形中,最大发光(或辐射)强度方向(光轴)与机械轴Z之间的夹角(见图2)。

2.13光谱特性2.13.1峰值发射波长λp Peak-emission wavelength光谱辐射功率最大的波长。

2.13.2光谱辐射带宽Δλ Spectral radiation bandwith光谱辐射功率大于等于最大值一半的波长间隔。

2.13.3光谱功率(能量)分布P(λ) Spectral power distribution在光辐射波长范围内,各个波长的辐射功率分布情况。

3 最大额定值3.1 最低和最高储存温度(Tstg )3.2 最低和最高工作环境温度或管基温度(Tamb 或Tcase )3.3 最大反向电压(VR )注:不可用于相互首尾相接的双管器件。

3.4 在25℃环境或管基温度时的最大连续正向电流(IF )和减额定值曲线或减额定值系数。

3.5 在适当地方,在规定脉冲条件下,在25℃环境或管基温度时的最大峰值正向电流(IFM ) 4 主要光电特性(见表1) 电子发烧友 电子技术论坛5 一般要求5.1 试验条件除非另有规定,器件的光电参数测试应按本标准规定试验条件进行。

5.1.1 标准大气条件温度:15℃~35℃相对湿度:20%~80%气压:86kPa~106kPa5.1.2 仲裁试验的标准大气条件温度:25℃±1℃;相对湿度:48%~52%;气压:86kPa~106kPa5.1.3 环境条件a)测试环境应无影响测试准确度的机械振动和电磁干扰;.b)除非另有规定,器件全部光电参数均应在热平衡下进行;c)测试系统应接地良好。

5.2 参数要求除非另有规定,器件测试应采取预防措施和保持下述公差。

虽然在有关文件中规定的测试条件严于下述公差,但在一般情况下,应遵循下述规定的条件。

a)偏置条件应在规定值的±3%以内;b)输入脉冲特性,重复频率和频率等的误差应在±10%以内;c)测量开关参数的误差应在±5%以内;d)测量直流电参数误差不大于±2%;e)测量辐射功率的误差不大于5%; 电子发烧友 电子技术论坛 f)测量峰值辐射波长的误差不大于±2nm;g)测量半强度角误差不大于10%;h)测量发光强度误差不大于25%。

6 测试方法测试方法分为:a) 1000类电特性测试方法--方法1001 正向电压--方法1002 反向电压--方法1003 反向电流--方法1004 总电容b) 2000类光特性测试方法--方法2001 平均LED强度--方法2002 半强度角和偏差角--方法2003 光通量和发光效率--方法2004 辐射通量和辐射效率--方法2005 峰值发射波长,光谱辐射带宽和光谱功率分布c) 3000类光电特性测试方法--方法3001 开关时间6.1 1000类电特性测试方法6.1.1 方法1001:正向电压6.1.1.1 目的测量LED器件在规定正向工作电流下,两电极间产生的电压降。

6.1.1.2 测试框图(见图3)图3 方法1001测试框图D--被测LED器件;G--恒流源;A--电流表;V--电压表。

6.1.1.3 测试步骤a)按图3原理连接测试系统,并使仪器预热; 电子发烧友 电子技术论坛 b)调节恒流源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。

6.1.1.4 规定条件环境或管基温度;电源电压;正向偏置电流。

6.1.2 方法1002:反向电压6.1.2.1 目的测量通过LED器件的反向电流为规定值时,在两电极之间产生的反向电压。

6.1.2.2 测试框图(见图4)图4 方法1002测试框图D--被测LED器件;G--稳压源;A--电流表;V--电压表。

6.1.2.3 测试步骤a)按图4原理连接测试系统,并使仪器预热。

b)调节稳压电源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的反向电压。

6.1.2.4 规定条件环境或管基温度;电源电压;反向电流。

6.1.3 方法1003:反向电流6.1.3.1 目的测量在被测LED器件施加规定的反向电压时产生的反向电流。

6.1.3.2 测试框图(见图5) 电子发烧友 电子技术论坛图5 方法1003测试框图D--被测LED器件;G--稳压源;A--电流表;V--电压表。

相关文档
最新文档