数理统计 第2章(1)共40页文档
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章
第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22/C53=1/10,P{X=4}=C32/C53=3/10,P{X=5}=C42/C53=3/5,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60},即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1,当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)k p=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5. F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarc tanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞==23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-32=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-)=0.1,所以Φ(x-)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595. (2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2X2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={1/[2π(y-1)]e-(y-1)/4, y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同. 总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3) 8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于元, 元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出X(元),要使保险公司亏本,则必须X>即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于元}=P{-X≥}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.,即保险公司获利不少于元的概率在98%以上.P{保险公司获利不少于元}=P{-X≥}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.,即保险公司获利不少于元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X,300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x) 1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+ 1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2( 12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0..习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X 表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3,有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。
自考04183概率论与数理统计(经管类) 自考核心考点笔记 自考重点资料
《概率论与数理统计(经管类)》柳金甫、王义东主编,武汉大学出版社新版第一章随机事件与概率第二章随机变量及其概率分布第三章多维随机变量及其概率分布第四章随机变量的数字特征第五章大数定律及中心极限定理第六章统计量及其抽样分布第七章参数估计第八章假设检验第九章回归分析前言本课程包括两大部分:第一部分为概率论部分:第一章至第五章,第五章为承前启后章,第二部分为数理统计部分:第六章至第九章。
第一章随机事件与概率本章概述.内容简介本章是概率论的基础部分,所有内容围绕随机事件和概率展开,重点内容包括:随机事件的概念、关系及运算,概率的性质,条件概率与乘法公式,事件的独立性。
本章内容§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
概率论与数理统计第2章ppt课件
1 3x
0
1
2
3X
处的离跳散跃型高随度机恰变为量P{的X=分x布i}.函数为跳跃函数,在xi
§4. 连续型随机变量的概率密度
1. 定义:对于随机变量X的分布函F(x), 如果存在非负函数f(x),使对于任意实数x有:
F(x)xf(t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称密度函数。
精选课件
21
例4. 3个人抓阄数。
解:X的概率分布: P{X=1}=1/3
P{X=2}=2/3×1/2=1/3
P{X=3}=2/3×1/2×1/1=1/3
X的分布函数:
Y
0 x <1
1
1/3 1 x <2
2/ 3
F(x)=
2/3 2 x <3 1/ 3
则:P{X=k} Cnk pnkqnnk 其中:qn=1-pn
(令=μV; pn=μ△V=μV/n= /n):
考虑当 n +时
P{X=k} =nl imCnkpnkqnnk
limn! ()k(1)nk
nl n i m k1 k !!n(nn (n n k1)) !n (n n kn 1)k((11 n))kn
k
k!
k=0、1、2、3、……
n
Poissn定理:n为正整数,pn=/n, >0。 则对任一非负整数k有:
nl im Cnkpnkqnnk
k
k!
其中:= npn.
例3. 某人打靶命中率为0.001, 重复射击 5000次,求至少命中2次的概率。
解:设X为至命中次数。
P(X2) =1-P(X<2) =1-P(X=0)-P(X=1)
概率论及数理统计课件第2章
在随机试验中,人们除了对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验结果相联系的变量。在
本章中,我们将用实数来表示随机试验的各种结果(数量化),即随机变量。这样,不仅可以更全面揭示随机试验的客 观存在的统计规律性,而且可使我们用(数学分析)微积分的方法来讨论随机试验。
在随机试验中,如果把试验中观察的对象与实数对应起来,即建立对应关系X,使其对试验的每个结果 ,都有一
个实数X( )与之对应,
试验的结果
对应关系X
实数X( )
则X的取值随着试验的重复而不同, X是一个变量,且在每次试验中,究竟取什么值事先无法预知,也就是说X是 一个随机取值的变量,称X为随机变量。
(1)在有些试验中,试验结果本身就是由数量表示的,如掷骰子观察得到骰子的点数1、2、3、4、5、6。
则称P(X=xk)=pk(k=1, 2, … ) 为随机变量X 的概率分布律或称分布律,也称概率函数。
分布律可用表格形式表示为:
X
x1
x2
x3
…
xk
…
P
p1
p2
p3
…
pk
…
# 概率分布
1、写出可能取值--即写出了样本点 2、写出相应的概率--即写出了每一个样本点出现的概率
例 设袋中有5只球,其中有2只白球,3只黑球。现从中任取3只球(不放回),求抽得的白球数X为k的概率 。
X()1,1,=反正 面面
例 将一枚硬币抛掷三次,观察正面H、反面T出现情况的试验中,其样本空间为 S={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}.
记每次试验出现正面的总次数为随机变量X,则X作为样本空间S上的函数定义为
概率论与数理统计--第二章PPT课件
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
概论论与数理统计 第2章_PPT课件
1 2
分别表示两事件
发生的概率.
一般地,对任意实数集 I ,随机变量 X 在 I 上取值常写成 {X I} ,
它表示事件 {e | X (e) I} ,此时有
P{X I} P{e | X (e) I} .
§2.2 离散型随机变量及其分布
定 义 2.3 设 离 散 型 随 机 变 量 X 所 有 可 能 取 值 为 xi (i 1, 2, ) ,则称 X 取 xi 的概率
X ~ P() . 显然有下式成立:
(1) P{X k} 0 ( k 0,1, 2, );
(2) P{X k 0
k}
e
k 0
k
k!
e k
k0 k !
e
e
1.
定理 2.1(泊松定理)对二项分布 b(n, p) ,设 np , 0 ,
则
lim
n
Ckn
pk
(1
p)nk
k e (k
系.设一个随机试验只有两个结果 A 和 A ,且 P(A) p ,
现将试验独立进行 n 次,记 X 为 n 次试验中 A 出现的次
数,则 X ~ b(n, p) ,记 Xi 为第 i 次试验中 A 出现的次数,
1, 第i次试验中A 出现即Xi Nhomakorabea0,
第i次试验中A
不出现
,i
1, 2,
, n ,则 Xi ~ b(1, p) ,
对应数.这样随机试验的结果就是随机变化的变量,把随机试
验的结果数量化,便于应用数学知识研究随机现象,使对随机
现象的研究更深入和简单.
▪
例2.1 抛掷一枚硬币两次,观察出现正面(记为 H )
和反面 (记为T )的情况.
概率论与数理统计课件第2章
信息管理学院 徐晔
17
例4 判别下列函数是否为某随机变量的分布函数?
0, x2
(1) F(x)1/2, 2x0;
1,
x0
解 (1)由题设, F(x)在 ( , )上单调不减,
右连续, 并有
F () liF m (x ) 0 ,F () liF m (x ) 1 ,
一、离散型随机变量的分布律
定义 如果一个随机变量仅可能取得有限个或可 数无穷多个数值,并且所有的数可按一定的顺序 排列,则称该随机变量为离散型随机变量.
设离散型随机变量X其可能的取值为
Xx1,x2, ,xk, ,xn,
称
p i P {X x i}i 1 ,2 ,3 ,
为离散型随机变量X的概率分布或概率函数,也 称为分布列或分布律
有
P(X0)
C C
3 3 3 5
0.1
P(X1)
C 21C
C
3 5
2 3
0.6
P(X2)
C 22C
C
3 5
1 3
0.3
信息管理学院 徐晔
10
例2 上午 8:00~9:00 在某路口观察,令 Y:该时间间隔内通过的汽车数.则Y 就是一 个随机变量.它的取值为 0,1,….
Y100
x
x
所以 F(x)是某一随机变量 X的分布函数.
信息管理学院 徐晔
18
例4 判别下列函数是否为某随机变量的分布函数?
0, x0
(2) F(x)sinx, 0x;
1,
x
解 (2)因 F(x) 在 ( , ) 上单调下降, 所以 F(x)
2
不可能是分布函数.
概率论与数理统计课件第二章
P( X 1) 1 P( X 0) 1 C 0.1 0.9
0 n 0 n 0
1 0.9 0.9
n
n 22.
例4. 某车间有5台车床,由于种种原因(由
于装、卸工作等),时常需要停车.设各 台车床的停车或开车是相互独立的. 若车床在任一时刻处于停车状态的 概率是1/3,求车间中恰有一台车床处 于停车状态的概率。 解:X:处于停车状态的车床数 X~B(5,1/3)
当0 x 1时,F ( x) P( X x) P( X 0) 0.3
当1 x 2时,F ( x) P( X x) P( X 0) P( X 1) 0.9
当x 2时,F ( x) P( X 0) P( X 1) P( X 2) 1
k nk CM CN M P( X k ) , n CN
k 0,1,..., l ,
其中n≤N,M<N,l=min{n,M},n,N,M均为正 整数,则称X服从参数为N,M,n的超几何分 布,记作X~H(N,M,n).
例8. 某班有学生20名,其中有5名女生, 今从班上任选4名学生去参观展览, 求被选到的女同学人数X的分布律。 X~H(20,5,4)
Ω X R X(w)
w
随机变量的分类
离散型随机变量
有限个或可列个 可能值
随 机 多,而且还不能 一一列举,而是充满 一个区间.
许多随机事件都可以通过形如{X≤x}的 事件来表示:
1 { X x} X x k k 1
(5) F ( x)是连续函数, 若f ( x)在x0连续, 有 F ( x0 ) f ( x0 ) .
例1. 设连续型随机变量X的概率密度为
第二章数理统计的基本概念1精品PPT课件
Max=1572, Min=738, 组数=6 组距=(Max-Min)/6=139140 取a0=735, 则分组区间及相关数据如下
组序 分区区间 频数 频率 累计频率
1 (735,875] 6 0.2
0.2
2 (875,1015] 8 0.27 0.47
0,
Fn
(
x)
k n
1,
x x(1) , x(k) x x(k1) , k 1, 2 n 1, x(n) x.
例3 从总体X中抽取容量为8的样本,其观测 值为
33,45,25,33,35,65,30,27。 试求X的经验分布函数。
解:将样本观测值由小到大排序得 25<27<30<33=33<35<45<65
统计量的值 1186.66 1080.00 156450.00 395.54 1250.00
频数/频率直方图
例2 某地区30名2000年某专业毕业实习生实习期满 后的月薪数据如下: 909 1091 967 1232 1096 1164 1086 1071 1572 950 808 971 1120 1081 825 775 1224 950 999 1130 914 1203 1044 866 1320 1336 992 1025 871 738
简单随机样本
设X1,X2, …,Xn为总体X的一个容量为n的样本。 若它满足
• 独立性,即X1,X2, …,Xn 相互独立; • 代表性,即每个Xi都与总体X服从相同的分布. 则称这样的样本为简单随机样本,简称为样本。
§2.2
一、统计量
设X1,X2, …,Xn是总体X的样本,g(X1,X2, …,Xn) 是样本的实值函数,且不包含任何未知参数, 则称g(X1,X2, …,Xn)为统计量。
概率论与数理统计第二章
k 1− k
n
服从参数为n和 的二项分布 的二项分布, 称 r.v X 服从参数为 和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B(1, p) 此时有 P {X = k } = p (1 − p )
, k = 0,1
(0 <
p < 1)
即(0-1)分布是二项分布的一个特例. )
第二章 随机变量及其分布
Random Variable and Distribution 在前面的学习中,我们用字母A 在前面的学习中,我们用字母A、B、 C...表示事件 并视之为样本空间S 表示事件, C...表示事件,并视之为样本空间S的子 针对等可能概型 主要研究了用排 可能概型, 集;针对等可能概型,主要研究了用排 列组合手段计算事件的概率 手段计算事件的概率。 列组合手段计算事件的概率。 本章,将引入随机变量表示随机事件, 本章,将引入随机变量表示随机事件, 随机变量表示随机事件 以便采用高等数学的方法描述、 高等数学的方法描述 以便采用高等数学的方法描述、研究随 机现象。 机现象。
设 P { A} = p , 则 P { A} = 1 − p
抛硬币: 出现正面” 抛硬币:“出现正面”,“出现反面” 出现反面”
例如: 例如
抽验产品: 是正品” 抽验产品:“是正品”,“是次品” 是次品”
将伯努利试验E独立地重复地进行 次 将伯努利试验E独立地重复地进行n次 ,则称这 一串重复的独立试验为n重伯努利试验 重复的独立试验为 一串重复的独立试验为 重伯努利试验 . 次试验中P(A)= p 保持不变 保持不变. “重复”是指这 n 次试验中 重复” 独立” “独立”是指各 次试验的结果互不影响 .
依题意, 可取值 可取值0, 解: 依题意 X可取值 1, 2, 3,4.以p表示每组信号 以 表示每组信号 灯禁止汽车通过的概率 设 Ai={第i个信号灯禁止汽车通过 i=1,2,3,4 个信号灯禁止汽车通过}, 第 个信号灯禁止汽车通过
概率论与数理统计2
德
第 5页
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率:
(1)P( A B ); (2)P( AB); (3)P( A B); (4)P( AB ).
制作人---张德平
德
第 6页
§4. 等可能概型(古典概型)
等可能概型的两个特点: (1) 样本空间中的元素只有有限个;
加 强 交 通 建 设管理 ,确保 工程建 设质量 。07:48:1507:48:1507:48Friday, October 30, 2020
安 全 在 于 心 细,事 故出在 麻痹。 20.10.3020.10.3007:48:1507:48:15October 30, 2020
踏 实 肯 干 , 努力奋 斗。2020年 10月 30日 上午7时 48分20.10.3020.10.30
德
3制.作频人---率张德的平 特性: 波动性和稳定性.
第 2页
(二)概率 1.定义: 设S是样本空间, E是随机试验. 对于E的 每个事件A对应一个实数P(A), 称为事件 A的概率, 其中集合函数P(.)满足下列条件:
(1) 对任一事件A,有P(A)≥0; (非负性)
(2) P(S)=1;(规范性)
例7. 某接待站在某一周曾接待过12次来访, 且都是 在周二和周四来访. 问是否可以推断接待时间是有 规定的?
注
实际推断原理:“小概率事件在一 次试验中实际上是不可能发生1 页
古典概型概率的间接计算:
一. 加法公式和逆事件概率公式的应用:
练P例(习a(逆加+A1:b.概1法袋(n配公中)A,对式2试有问求a只题至对白)某少A任球n人取)一和一出事bi次一只n1件写只P黑(A了白A球, n球i,)封从P的信(中1概Ai,同)率分j时n.别1P任(在A取Pni(A个nA只j信)).球封上 写个了信这封中n个,人试的求收没信有地一址封.1信如ij的果k信他n P纸任(和A意i信地A封将j A配nk张)对信的纸概装率入. n
数理统计第二章课后习题答案
第二章 参数估计2.2 对容量为n 的子样,对密度函数其22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩ 中参数α的矩法估计。
解:1202()()a E x x x dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n =+++ 为n 个样本的观察值。
2.6 设总体X 的密度函数为12(;),,,,n f x X X X θ 为其样本,求下列情况下θ∧的MLE 。
(ii)1,01(;)0,x x f x αθθ-⎧=⎨⎩ 其它 0θ (v )1,0(;)0,x e x f x θθθ-⎧≥⎪=⎨⎪⎩其它 0θ 解:(ii)1111()n n n i i i i L x x θθθθθ--====∏∏1ln ()ln (1)ln n i i L n x θθθ==+-∑11111ln ()ln 01(ln )(ln )n i i n n i i i i d L n x d n x x n θθθθ=∧--===+==-=-∑∑∑ (v)111()n i i x n L e θθθ=-∑= 11ln ()ln()nii L n x θθθ==--∑211ln ()101,n i i n i i d L n X d x x X n θθθθθ=∧==-+===∑∑2.10 设总体123(,1),,,X N X X X μ 为一样本,试证明下述三个估计变量11232123312313151021153412111362X X X X X X X X X μμμ=++=++=++ 都是μ的无偏估计量,并求出每一估计量的方差,问哪一个最小? 证:1123131()()()()5102E E X E X E X μ=++131()5102μμ=++= 同理:2123115()()()()3412E E X E X E X μ=++ 115()3412μμ=++= 3123111()()()()362E E X E X E X μ=++ 111()362μμ=++= ∴12,,μμμ是μ的无偏估计量。
数理统计第2章(2)
{
}
母体均值 µ 在1-α置信水平下的置信区间为 置信水平下的置信区间为
S X± tα (n −1 ) n 2
*
x = 2.705 s = 0.029 母体均值µ在1-α置信水平下的置信区间为 σ 0.029
n = 2.705 ± 0.01545 = (2.69,2.72) x ± tα 2 (n −1) = 2.705 ± 2.131× 16
铁水平均含碳量在4.269% 4.459%之间 铁水平均含碳量在4.269%至4.459%之间 4.269%至
(x −
σ0
uα , x +
σ0
uα )
计算得
及方差σ 二、单母体均值μ及方差σ2的区间估计
及方差σ (一)单正态母体均值μ及方差σ2的区间估计
*单正态母体N(μ, σ2)的抽样分布
X −µ
(二)区间的估计方法 1、θ的置信区间的理论公式的构造方法 即构造[ 即构造 θ1(X1, …, Xn) ,θ2(X1, …, Xn)]满足 满足
P{θ1( X1,L, Xn ) <θ <θ1( X1,L, Xn )} =1−α
① W与θ有关,与其他未知参数无关; 有关, 其他未知参数无关; 2 ②分布为已知分布。 分布为已知分布。 N(0,1) χ t F
α/2 α/2
−uα
(X −
σ0
n
2
uα
uα , X +
2
σ0
n
uα )
2
2
α 1-α
(X −
σ0
n
uα ,+∞)
uα
α
− uα
(−∞, X +
σ0
概率论与数理统计第二章课件PPT
例2 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 .
X ~ B (3, 0.8),
P( X k)C (0.8) (0.2) , k 0,1,2,3
k 3 k
3k
P{X 1} =P{X=0}+P{X=1} =(0.2)3+3(0.8)(0.2)2
X
p
1
0
1
2
3 0.1
a b 0.2 0.3
求a,b满足什么条件。
a b 0.4, a 0, b 0
一旦知道一个离散型随机变量X的分布律后,我们便可求得X
所生成的任何事件的概率。特别地,对任意 a ,有 b
P a X b P X x P X x i i a x b a x b 1 1 pk
解
用泊松定理 取 =np=(400)(0.02)=8, 故 近似地有 P{X2}=1- P{X=0}-P {X=1}
=1-(1+8)e-8=0.996981.
泊松分布(Poisson distribution)
定义2 设随机变量X的可能取值为0,1,2,…,n,…,而X 的分布律为
pk P X k
路口1
路口2
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 1 P(X=3)= P( A1 A2 A3 ) =1/8 2 2 2
即
X
p
0
1
2
3
1 2
1 4
概率论与数理统计教程(茆诗松)第2章
华东师范大学
第二章 随机变量及其分布
第17页 17页
2.2.1 数学期望的概念 数学期望的概念
若按已赌局数和再赌下去的“期望” 分, 则甲的所得 X 是一个可能取值为0 或100 的随机变量,其分布列为:
X P 0 1/4 100 3/4
甲的“期望” 所得是:0×1/4 +100 × 3/4 = 75.
x2 …… xn …… p2 …… pn ……
华东师范大学
第二章 随机变量及其分布
第7页
分布列的基本性质
pi ≥ 0,
(1)
(非负性) (正则性)
(2)
∑pi =1.
i
27 July 2011
华东师范大学
第二章 随机变量及其分布
第8页
注 意 点 (2)
对离散随机变量的分布函数应注意: (1) F(x)是递增的阶梯函数; (2) 其间断点均为右连续的; (3) 其间断点即为X的可能取值点; (4) 其间断点的跳跃高度是对应的概率值.
27 July 2011
华东师范大学
第二章 随机变量及其分布
第4页
两类随机变量
若随机变量 X 可能取值的个数为有限个或 可列个,则称 X 为离散随机变量. 若随机变量 X 的可能取值充满某个区间 [a, b],则称 X 为连续随机变量. 前例中的 X, Y, Z 为离散随机变量; 而 T 为连续随机变量.
27 July 2011
华东师范大学
第二章 随机变量及其分布
第34页 34页
2.4.2 泊松分布
若随机变量 X 的概率分布为
P( X = k) =
λk
k!
e−λ ,
k = 0,1, 2,⋯ ⋯
概率论与数理统计教程(华东师范大学)
称
f n ( A)
为事件A的频率.
频率fn(A)会稳定于某一常数(稳定值). 用频率的稳定值作为该事件的概率.
9 April 2018
华东师范大学
第一章 随机事件与概率
第29页
1.2.4 确定概率的古典方法
古典方法 设 为样本空间,若
① 只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为:
第23页
1.2.1 概率的公理化定义
• 非负性公理: P(A)0; • 正则性公理: P(Ω)=1; • 可列可加性公理:若A1, A2, ……, An …… 互不相容,则
P Ai i 1
P( A )
i i 1
9 April 2018
华东师范大学
第一章 随机事件与概率
9 April 2018
华东师范大学
第一章 随机事件与概率
第19页
3. 设事件 A = “甲种产品畅销,乙种产品滞销” , 则 A 的对立事件为( ④ ) ① 甲种产品滞销,乙种产品畅销; ② 甲、乙两种产品均畅销; ③ 甲种产品滞销; ④ 甲种产品滞销或者乙种产品畅销. 4. 设 x 表示一个沿数轴做随机运动的质点位置, 试说明下列各对事件间的关系 A B ① A ={|xa|<σ},B ={x a<σ} ② A ={x>20}, B ={x≤22} 相容 ③ A ={x>22}, B ={x<19} 不相容
解:1) 先考虑样本空间的样本点数: 甲先坐、乙后坐,则共有n(n1) 种可能. 2) 甲在两端,则乙与甲相邻共有2种可能. 3) 甲在中间(n2)个位置上,则乙左右都可坐,
所以共有2(n2)种可能。由此得所求概率为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1
点估计
一、点估计的一般提法
1、引例(1)求人的平均身高μ
解:总人数为N
,则有
1 N
N i 1
xi
注:这样计算几乎是不可能;找10000人(子
样)测这10000人的身高,计算
x 1010001i0010x0i
x 可作为μ的估计值。
记作 ˆ x
(2)一批产品,求次品率 p
此时μ=μ(θ) ;
② 用μ=μ(θ) 反解出θ,θ=θ(μ)
③ θ的矩估计为 ˆ (ˆ)
注:μ为母体原点1阶矩,故可用子样1阶
原点矩估计μ 。即 ˆ X
故的矩估计ˆ (X)
A1 X
例:母体 X为参数为 p 的0-1分布,求p
的矩估计。
解:母体分布为 p(x)px(1p)1 xx0 ,1
① μ=E(X)= p ② p = μ ③ p 的矩估计为 pˆ X
例:已知灯管的寿命服从指数分布,其密 度函数f(x)如下,从一批产品取出10件产品。 测得寿命为2700 3660 3870 1500 3200
1800 3000 2000 1300 1000 求λ的估计。
例:已知灯管的寿命服从指数分布,其密
度函数f(x)如下,从一批产品取出10件产品。
测得寿命为2700 3660 3870 1500 3200
解:产品总数为N,检验所有产品得次品数M , 则有p= M/ N (计算几乎是不可能,也不必要)
!检验 n 件产品,得 m 件次品,得 m /n 作为 p
的估计值,记为 pˆ m n
2、点估计的一般提法:设母体 X 的分布为
F(x ,θ),θ是未知参数,子样值为x1, …, xn
如果用 ˆ(x1,x2,,xn)作为θ的估计值,
1800 3000 2000 1300 1000 求λ的估计。
ex x0
f(x)
0
x0
解:由于 1ˆ1ˆX 1
λ的估计值 ˆ1 10 0.000416
x 24030
(2)如果有2个未知参数 1,2
① 用母体分布F(x ,θ)计算
1E (X ) ,2E (X 2)此时一定有
*21
1(1,2) 2(1,2)
பைடு நூலகம்
二、估计量的求法
*经验法:例如10个评委评分,往往用去掉
最高分和最低分再取平均数作为参赛者分数。
*统计推断法
(一)矩法(矩估计法)
1、依据:大数定律,设X1, X2, … Xn …独立
同分布且数学期望存在,μ=E(Xi) 则有
1 n
nLi m P ni1
Xi 1对任意正数ε成立
即 X 可作为μ的估计。
a1 3(212)
b ˆˆ13 (ˆ2ˆ1 2)X 3 S
a ˆ ˆ13 ( ˆ2 ˆ1 2)X3 S
解法2:由均匀分布的数学期望及方差为
ab,21ba2
2
12
ab2,ba23
b3 ,a3
而 ˆ X , ˆ 2 S 2
故
bˆX 3S
aˆX 3S
(二)最大似然估计(极大似然估计)
1、依据:最大似然思想( Fisher),即小 概率原理(小概率事件在某一特定试验中
解:由于正态分布的数学期望及方差
μ=E(X), =D(X),故μ,的矩估计
ˆ X , ˆ 2 S 2
例:母体X服从U[a,b],求a,b的矩估计。
解:母体X的密度函数
1 f (x) ba
0
a xb 其他
由此2 得b ab x 12a d b ab x x3 a b (3 b d xa a 3)2b( 2b b 2 aa 2)a 3b b 2aa 2
2、矩估计法: 用子样的原点矩 A k
估计母体的原点矩 k
即:ˆk AK 其中αk =E(X k), X 母体
Ak
1 n
n i1
Xik
!子样原点矩可通过试验得数据进行计算!
原理:对 X1k,X2k,,Xik,用大数定律则可
(1)如果仅有一个未知参数θ
ˆk AK
αk =E(X k)
① 用母体分布F(x ,θ)计算μ=E(X)
应用:一大批产品,从中抽取100件进行检验,
发现有4件次品,估计次品率p。
解:设X为抽取一件产品所得的次品数,则X的
分布律为 X 0 1
P 1- p p
pˆ x m4% n
例:母体 X为参数为 θ 的指数分布,求θ
的矩估计。 解:母体密度为
f
(x)
1
1 x
e
① μ=E(X)=θ
0
x0 x0
② θ = μ ③ θ 的矩估计为 ˆ X
b a 21 , b 2 a a b 2 32 a 21 b , a b 41 2 32
21 b b 241 2 32
b 2 21 b 41 2 32 0
关于b的一元二次方程,解方程得
b21 4124(41232)
2
b1 3(212) a1m3(212) 由于a <b 故 b1 3(212)
例:母体 X,参数μ=E(X)为母体平均
数, =D(X)为母体方差。求μ和的矩
估计。(注意:母体的分布并不知道)
解: 2E (X2) 1D (E X ()X ) EX 222
2
1 2 12
ˆ2
ˆ ˆ1 ˆ2 ˆ12
ˆ X ˆ 2 S 2
例:母体X服从正态分布N(μ, ),求 μ,的矩估计。
21
1(1,2 ) 2 (1,2 )
② 用*反解出 1,2 得
ˆ11,2A1的矩1n估in1计X为i X ˆˆ21
ˆ2
A2
1 n
1(A1, A2)
2(A1, A2)
n i1
Xi2
注意:
ˆ1
A1
1 n
n i1
Xi
X
ˆ2
A2
1 n
n i1
Xi2
ˆ2ˆ12
1 n ni1
Xi2X2
ˆ2ˆ121 ni n1(Xi X)2S2
则称 ˆ(X1,X2,,Xn)称为θ的估计量。
估计量和估计值统称为估计,记为 ˆ
注:(1)估计量不唯一,例如平均年龄 可用平均指标,也可用中位数、众数;由 此提出两个问题:其一是如何求估计量; 其二是如何评价估计量。(2)同一个估 计量,不同的试验者所得的估计值也不相 同。例如不同的人做试验所得10万人的 平均身高是不一样的。即估计值并不是参 数的真值,所以提出求参数的真值的范围, 即参数的区间估计。
不应该发生) 例:一大批产品,从中抽取100件进行检验,
发现有4件次品,估计次品率p。
解:设X为抽取一件产品所得的次品数,则X为 0-1分布,其分布律为
X 01
P 1- p p
p ( x ) P X x p x ( 1 p ) 1 x