2020-2021学年最新冀教版九年级数学上学期期中考试模拟试题及答案解析-精编试题

合集下载

2021年冀教版九年级数学上册期中考试题及答案【完美版】

2021年冀教版九年级数学上册期中考试题及答案【完美版】

2021年冀教版九年级数学上册期中考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .122.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD •AC D . AD AB AB BC = 9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.分解因式:x 2-2x+1=__________.3.正五边形的内角和等于__________度.4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241x -+1=11x x -+2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、B5、A6、A7、D8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、(x-1)2.3、5404、55、706、(﹣1,5)三、解答题(本大题共6小题,共72分)1、无解.2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)略;(2)AC .5、(1)14;(2)166、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

冀教版数学九年级上册期中测试题一、选择题1.下列方程是一元二次方程的是()A.2x+1=0B.C.m2+m=2D.ax2+bx+c=0 2.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是()A.90分B.91分C.92分D.93分3.若,则k的值为()A.B.1C.﹣1D.4.如果∠A=30°,则sinA的值为()A.B.C.D.5.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是()A.147B.151C.152D.1566.方程x2﹣3=0的根是()A.B.﹣C.±D.37.如图,△ABC与△ADE都是等腰直角三角形,且它们的底分别是BC=5,DE=3,则△ABC与△ADE的面积比为()A.:B.25:9C.5:3D.5:38.x=2不是下列哪一个方程的解()A.3(x﹣2)=0B.2x2﹣3x=2C.(x﹣2)(x+2)=0D.x2﹣x+2=09.一个三角形的三边分别为3,4,5,另一个与它相似的三角形中有一条边长为8,则这个三角形的边长不可能是()A.B.C.9D.1010.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD与BE、AE分别交于点P、M.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MP•MD=MA•ME;④2CB2=CP•CM.其中正确的是()A.①②B.①②③C.①③④D.①②③④11.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8 12.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5B.9C.5D.7二.填空题13.一组数据2、8、7、8、7、9、8的众数是.14.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为.15.四边形ABCD∽四边形A1B1C1D1,它们的面积比为9:4,四边形ABCD的周长是24,则四边形A1B1C1D1的周长为.16.如图,在△ABC中,∠A=30°,tanB=,AC=2,则AB的长是.17.一个直角三角形,斜边长为4cm,两条直角边的长相差4cm,求这个直角三角形的两条直角边的长,可设较长直角边为xcm,根据题意可列方程.三.解答题18.解方程(1)(x﹣1)2=9;(2)2x2+3x﹣4=0.19.如图,D、E分别是AB、AC上的点,△ADE∽△ACB,且DE=4,BC=12,AC=8,求AD的长.20.一个不透明的口袋中有12个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一个球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一个球,记下颜色……小明重复上述过程100次,其中60次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池若彩球池里共有3000个球,则需准备多少个红球?21.如图,小明在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米,镜子与小明的距离ED=2米时,小明刚好从镜子中看到铁塔顶端A.已知小华的眼睛距地面的高度CD=1.6米,求铁塔AB的高度.(根据光的反射原理,∠1=∠2)22.长泰大桥是长春市“两横三纵”快速路的关键节点工程,大桥建筑类型为斜拉式高架桥,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长AB=152米,主塔处桥面距地面CD=7.9米,试求出主塔高BD的长.(结果精确到0.1米,参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60)23.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?参考答案一.选择题1.【解答】解:A、未知数的最高次数是1,不是一元二次方程,故本选项错误;B、不是整式方程,不是一元二次方程,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、方程二次项系数可能为0,不是一元二次方程,故本选项错误.故选:C.2.【解答】解:小红一学期的数学平均成绩是=91(分),故选:B.3.【解答】解:当a+b+c=0时,a=﹣(b+c),因而k===﹣1;当a+b+c≠0时,k==.故k的值是﹣1或.故选:D.4.【解答】解:∵∠A=30°,∴sinA的值为:.故选:A.5.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,发现152处在第3位.所以这组数据的中位数是152,故选:C.6.【解答】解:x2﹣3=0,x2=3,x=±,故选:C.7.【解答】解:∵△ABC与△ADE都是等腰直角三角形,∴△ABC∽△DAF,∴=()2=.8.【解答】解:A,当x=2时,方程的左边=3×(2﹣2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22﹣3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22﹣2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.9.【解答】解:当边长为8的边长与三角形的三边分别为3,4,5,中边长为3的对应成比例时,则另两条边长分别为:,;当与边长为4的对应成比例时,其另两条边长分别为:6,10;当与边长为5的对应成比例是,其另两条边长分别为:,;则这个三角形的边长不可能是9,故选:C.10.【解答】解:∵在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,∠ABC=∠AED=90°,∴∠BAC=45°,∠EAD=45°,∴∠CAE=180°﹣45°﹣45°=90°,即∠CAM=∠DEM=90°,∵∠CMA=∠DME,∴△CAM∽△DEM,故①正确;由已知:AC=AB,AD=AE,∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD,∴=,即=,即CD=BE,故②错误;∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴=,∴MP•MD=MA•ME,故③正确;由②MP•MD=MA•ME∠PMA=∠DME∴△PMA∽△EMD∴∠APD=∠AED=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB,∴2CB2=CP•CM,故④正确;即正确的为:①③④,故选:C.11.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.12.【解答】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,m2+2m﹣7=0,即m2+2m=7,则原式=m2+2m+m+n=7﹣2=5,故选:C.二.填空题13.【解答】解:∵在数据2、8、7、8、7、9、8中数据8出现次数最多,∴这组数据的众数为8,故答案为:8.14.【解答】解:∵AD∥BE∥FC,∴=,∵=,DF=7.5,∴=,解得:DE=3,故答案为:3.15.【解答】解:设四边形A1B1C1D1的周长为x,∵四边形ABCD∽四边形A1B1C1D1,它们的面积比为9:4,∴=,∴四边形ABCD的周长:四边形A1B1C1D1的周长=3:2,∴24:x=3:2,解得,x=16,故答案为:16.16.【解答】解:如图,作CD⊥AB于D,在Rt△ACD中,∠A=30°,AC=2,∴CD=AC=,AD=CD=3,在Rt△BCD中,tanB=,∴=,∴BD=2,∴AB=AD+BD=3+2=5.故答案为:5.17.【解答】解:设较长直角边为xcm,则较短直角边为(x﹣4)cm,根据题意得:x2+(x﹣4)2=(4)2.故答案为:x2+(x﹣4)2=(4)2.三.解答题18.【解答】解:(1)(x﹣1)2=9,开方得:x﹣1=±3,解得:x1=4,x2=﹣2;(2)2x2+3x﹣4=0,∵a=2,b=3,c=﹣4,b2﹣4ac=9﹣4×2×(﹣4)=41,∴x==,∴x1=,x2=.19.【解答】解:∵△ADE∽△ACB,∴=,∴=,解得:AD=.20.【解答】解:(1)设白球的个数为x个,根据题意得:=,解得:x=18,小明可估计口袋中的白球的个数是18个.(2)3000×=1200,即需准备1200个红球.21.【解答】解:∵由光的反射可知,∠1=∠2,∠CED=∠AEB,CD⊥BD,AB⊥CB,∴∠CDE=∠ABE=90°,∴△CDE∽△ABE,∴=,∵ED=2,BE=20,CD=1.6,∴=,∴AB=16,答:AB的高为16米.22.【解答】解:在Rt△ABC中,∠ACB=90°,sinA=,∴BC=AB•sinA=152×sin31°=152×0.52=79.04,∴BD=BC+CD=79.04+7.9=86.94≈86.9(米)答:主塔BD的高约为86.9米.23.【解答】解:设销售单价降低x元/件,则每天的销售量是(50+5x)件,根据题意得:(100﹣x﹣50)(50+5x)=4000,整理得:x2﹣40x+300=0.解得:x1=10,x2=30.∴100﹣x=90或70.答:销售单价为90元/件或70元/件时,每天的销售利润可达4000元.冀教版数学九年级上册期末测试题一、单选题1.已知关于x的方程x2-kx-3=0的一个根为3,则k的值为()A. 1B. -1C. 2D. -22.下列命题中,不正确的命题是()A. 平分一条弧的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O中,AB、CD是弦,则AB CDD. 圆是轴对称图形,对称轴是圆的每一条直径.3.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是()A. 80,2 B. 80,C. 78,2 D. 78,4.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是()A. 168(1+a)2=128B. 168(1﹣a%)2=128C. 168(1﹣2a%)=128D. 168(1﹣a2%)=1285.如图,△ABC内接于⊙O,作OD⊥BC于点D,若∠A=60°,则OD:CD的值为()A. 1:2 B. 1:C. 1:D. 2:6.若反比例函数y= 的图象经过点(2,3),则它的图象也一定经过的点是()A. (﹣3,﹣2)B. (2,﹣3) C. (3,﹣2) D. (﹣2,3)7.下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b= ,c= ,d=4C.a=4,b=5,c=8,d=10D.a=2,b=3,c=4,d=58.如图,已知⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且==,则四边形ABCD的周长等于()A. 4cmB. 5cmC. 6cmD. 7cm9.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2 B. 1:3 C. 2:3 D. 3:210.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A. ∠C=2∠AB. BD平分∠AB C C. S△BCD=S△BOD D. 点D为线段AC的黄金分割点二、填空题11.若,则的值为________.12.已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是________.13.墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=________m.14.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是________.15.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.16.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.17.点A(-2,5)在反比例函数(k≠0)的图象上,则k的值是________.18.在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是________.19.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题21.计算:.22.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.23.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE 的长.24.如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2,AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.25.已知:关于x的方程x2+4x+(2﹣k)=0有两个不相等的实数根.(1)求实数k的取值范围.(2)取一个k的负整数值,且求出这个一元二次方程的根.26.已知:如图, AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.27.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,≈1.73)28.李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分100 100 100小聪72 98 60小亮90 75 95调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?29.如图,D在AB上,且DE∥BC交AC于E,F在AD上,且AD2=AF•AB.求证:EF∥CD.30.如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题1.【答案】C∵方程x2-kx-3=0的一个根为3,∴将x=3代入方程得:9-3k-3=0,解得:k=2.故选C2.【答案】C在圆内的弦不一定平行,故C选项错误.3.【答案】C解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故答案为:C4.【答案】B解:当商品第一次降价a%时,其售价为168﹣168a%=168(1﹣a%);当商品第二次降价a%后,其售价为168(1﹣a%)﹣168(1﹣a%)a%=168(1﹣a%)2.∴168(1﹣a%)2=128.故选B.5.【答案】C解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°.∵OB=OC,OD⊥BC,∴∠COD= ∠BOC=60°,∴=cot60°= ,即OD:CD=1:.故选C.6.【答案】A根据题意得k=2×3=6,所以反比例函数解析式为y= ,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y= 的图象上.故答案为:A.7.【答案】DA、2×6=3×4,能成比例,不符合题意;B、4×1= ×2 ,能成比例,不符合题意;C、4×10=5×8,能成比例,不符合题意;D、2×5≠3×4,不能成比例,符合题意.故答案为:D.8. 【答案】B解:如图,连接OD、OC.∵==(已知),∴∠AOD=∠DOC=∠COB(在同圆中,等弧所对的圆心角相等);∵AB是直径,∴∠AOD+∠DOC+∠COB=180°,∴∠AOD=∠DOC=∠COB=60°;∵OA=OD(⊙O的半径),∴△AOD是等边三角形,∴AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,∴AD=CD=BC=OA,∴四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×1cm=5cm;故选:B.9.【答案】B∵AD=1,BD=2,∴AB=AD+BD=3.∵△ADE∽△ABC,∴AD:AB=1:3.∴△ADE与△ABC的相似比是1:3.故选B.10. 【答案】CA、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误。

2021年冀教版九年级数学上册期中考试及答案【完美版】

2021年冀教版九年级数学上册期中考试及答案【完美版】

2021年冀教版九年级数学上册期中考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是()A.8 B.18C.18-D.-82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱4.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩5.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或06.若关于x的一元一次方程x−m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A .80°B .70°C .85°D .75°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .23C .3D .2.510.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)+-=__________.2.因式分解:39a a -=_______.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,在ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若ECF △的面积为1,则四边形ABCE 的面积为________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:271326+=++x x x2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点. (1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (m 3)之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水40m 3(二月份用水量不超过25m 3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m 3?5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、C5、B6、C7、A8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a(a+3)(a-3)3、84、﹣2<x <25、36、8﹣2π三、解答题(本大题共6小题,共72分)1、16x = 2、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139), 4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

2021年冀教版九年级数学上册期中测试卷(及参考答案)

2021年冀教版九年级数学上册期中测试卷(及参考答案)

2021年冀教版九年级数学上册期中测试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .12 2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.下列计算正确的是( )A .a 2+a 3=a 5B .3221=C .(x 2)3=x 5D .m 5÷m 3=m 24.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<327.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .43 8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,ABC 中,ACB 90∠=,A 30∠=,AB 16=,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC(或边CB)于点Q ,设AP x =,APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:27﹣12=__________.2.因式分解:2()4()a a b a b ---=_______.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,1.732)4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、D6、B7、A8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)12、()()()22 a b a a-+-3、24、72°5、40°6、2 5三、解答题(本大题共6小题,共72分)1、原方程无解.2、13、(1)点B距水平面AE的高度BH为5米. (2)宣传牌CD高约2.7米.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.。

2021年冀教版九年级数学上册期中测试卷及参考答案

2021年冀教版九年级数学上册期中测试卷及参考答案

2021年冀教版九年级数学上册期中测试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2 2C .2D .27.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个8.如图,在ABC 中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则( )A .AD AN AN AEB .BDMN MN CE C .DN NE BM MC D .DNNE MC BM9.观察下列图形,是中心对称图形的是( )A .B .C .D .10.如图,ABC 中,ACB 90∠=,A 30∠=,AB 16=,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC(或边CB)于点Q ,设AP x =,APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算22111m m m ---的结果是__________. 2.分解因式:33a b ab -=___________.3.若n 边形的内角和是它的外角和的2倍,则n =__________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、C6、B7、A8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、11m -2、ab (a+b )(a ﹣b ).3、64、15°5、136、三、解答题(本大题共6小题,共72分)1、x 3=-2、(1)点B 的坐标为1(2,)a -;(2)对称轴为直线1x =;(3)当12a ≤-时,抛物线与线段PQ 恰有一个公共点.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭4、(1)2)xx 2﹣33)点P 存在,坐标为(94,﹣8). 5、()117、20;()22次、2次;()372;()4120人.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

2021年冀教版九年级数学上册期中试卷及答案【通用】全文

2021年冀教版九年级数学上册期中试卷及答案【通用】全文

可编辑修改精选全文完整版2021年冀教版九年级数学上册期中试卷及答案【通用】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .122.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,5 6.函数123y x x =+--的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算182÷的结果是__________.2.分解因式:3x-x=__________.3.若n边形的内角和是它的外角和的2倍,则n=__________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x=+(2)21124xx x-=--2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知:如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为多少;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、D5、C6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、x (x+1)(x -1)3、64、15°5、406、49三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =-2、-53、略.4、(1)反比例函数的解析式为22y x =,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =. 5、(1)享受9折优惠的概率为14;(2)顾客享受8折优惠的概率为16.6、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。

2021年冀教版九年级数学上册期中考试及参考答案

2021年冀教版九年级数学上册期中考试及参考答案

2021年冀教版九年级数学上册期中考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.2B.2 C.22D.39.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数-的点P应落在()25A.线段AB上B.线段BO上C.线段OC上D.线段CD上10.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.分解因式:32-+=__________.44a a aa b=________.3.已知a、b为两个连续的整数,且28<<,则+a b4.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为__________.5.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223 x x=--2.先化简,再求值:2221111x x xx x++⎛⎫-÷⎪--⎝⎭,其中2x=.3.如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、C7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、2(2)a a -;3、114、72°5、.6、3三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、11x +,13. 3、(1)略;(2)略.4、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)600(2)见解析(3)3200(4)6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

2021年冀教版九年级数学上册期中模拟考试含答案

2021年冀教版九年级数学上册期中模拟考试含答案

2021年冀教版九年级数学上册期中模拟考试含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2的倒数是( ) A .-2 B .12- C .12 D .22.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)1.计算:()()201820195-252+的结果是__________.2.分解因式:a 2b+4ab+4b=_______.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.如图,点A是反比例函数y=4x(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是__________.三、解答题(本大题共6小题,共72分)1.解下列方程(1)232x x=-(2)214111xx x+-=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、B6、A7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)122、b (a+2)23、x ≥-3且x ≠2415、40°6、2.三、解答题(本大题共6小题,共72分)1、(1)x =6;(2)分式方程无解.2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1) 65°;(2) 25°.4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。

2021年冀教版九年级数学上册期中模拟考试及参考答案

2021年冀教版九年级数学上册期中模拟考试及参考答案

2021年冀教版九年级数学上册期中模拟考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元3.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .17.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D .10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:2218x-=______.3.若正多边形的每一个内角为135,则这个正多边形的边数是__________.4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需__________米.5.如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm2.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213 xx x--=-2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2b=123.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C,若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、B6、D7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、2(3)(3)x x +-3、八(或8)4、5、4π6、5三、解答题(本大题共6小题,共72分)1、95x =2、原式=a ba b -=+3、(1)y=﹣x 2+2x+3(2,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为7584、(1)1.8(015)2.49(15)x xx x>≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m3、28m35、(1)60,10;(2)96°;(3)1020;(4)2 36、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

2021年冀教版九年级数学上册期中模拟考试及完整答案

2021年冀教版九年级数学上册期中模拟考试及完整答案

2021年冀教版九年级数学上册期中模拟考试及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+- 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A .55×105B .5.5×104C .0.55×105D .5.5×1055.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A 5B .2C .52D .510.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.分解因式:2ab a -=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__________.(结果保留)π6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:271326+=++x x x2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、B6、B7、A8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、a (b +1)(b ﹣1).3、0x ≥且1x ≠. 4、31- 5、π.6、322三、解答题(本大题共6小题,共72分)1、16x = 2、223、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、(1)略;(2)4.95、(1)600(2)见解析(3)3200(4)6、(1)4元或6元;(2)九折.。

2021年冀教版九年级数学上册期中模拟考试(参考答案)

2021年冀教版九年级数学上册期中模拟考试(参考答案)

2021年冀教版九年级数学上册期中模拟考试(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k ≥﹣1且k ≠0D .k >﹣1且k ≠07.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.若关于x的一元二次方程2210-++=有两个不相等的实数根,则一次x x kb=+的图象可能是:()函数y kx bA. B.C. D.10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.分解因式:2242a a ++=___________.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、B6、D7、A8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、22(1)a +3、0x ≥且1x ≠. 4、﹣2<x <25、-36、49三、解答题(本大题共6小题,共72分)1、x =7.2、(1)k>-1;(2)13、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)2)y=3x y=3x 2﹣3)点P 存在,坐标为(94).5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)120件;(2)150元.。

2021年冀教版九年级数学上册期中考试题及答案【完整】

2021年冀教版九年级数学上册期中考试题及答案【完整】

2021年冀教版九年级数学上册期中考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .122.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .8.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.因式分解:x 2y ﹣9y =________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.5.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为__________.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、B5、D6、A7、A8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、y(x+3)(x﹣3)3、x≥-3且x≠24、22.5°5、6、15.三、解答题(本大题共6小题,共72分)1、x=12、13、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)略;(2)5、(1)90人,补全条形统计图见解析;.(2)48 ;(3)560人.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

2021年冀教版九年级数学上册期中考试卷及答案【完美版】

2021年冀教版九年级数学上册期中考试卷及答案【完美版】

2021年冀教版九年级数学上册期中考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 4.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:x 3﹣4x=_______.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE. (1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.5.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为多少;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、B5、D6、C7、B8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、x(x+2)(x﹣2)3、如果两个角是等角的补角,那么它们相等.4、805、x=26、2三、解答题(本大题共6小题,共72分)1、x=12、3.3、(1)略;(2)略.4、(1)略;(2)78°.5、(1)享受9折优惠的概率为14;(2)顾客享受8折优惠的概率为16.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

2021年冀教版九年级数学上册期中试卷(附答案)

2021年冀教版九年级数学上册期中试卷(附答案)

2021年冀教版九年级数学上册期中试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是____________.2.分解因式:3x 9x -=_______.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.如图,901,2,AB CD BCD AB BC CD E ∠=︒===,,为AD 上的中点,则BE =__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.(1)计算:1862(2)解方程:2533322x x x x --+=--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m的值为多少?3.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、D5、A6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、42、()()x x 3x 3+-3、(1,8)45、136、23π 三、解答题(本大题共6小题,共72分)1、(1)2)4x =.2、(1)34m ≥-;(2)m 的值为3. 3、(1)略(2)略4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)14;(2)166、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.某篮球队12名队员的年龄如下表所示:A .18,19B .19,19C .18,19.5D .19,19.52.若点P是线段AB的黄金分割点,且AP >BP,则下列结论正确的是( ) A.AP 2=BP •AB B.BP 2=AP •AB C.AB 2=AP •AB D.以上都不对3.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A.甲 B.乙C.丙D.丁4.一组数据3,3,4,2,8的中位数和平均数分别是 ( ) A.3和3 B.3和4 C.4和3D.4和45.某商品原价289元,经连续两次降价后售价为256元,设平均每 次降价的百分率为x,则下面所列方程正确的是( ) A.289(1−x )2=256 B.256(1−x )2=289 C.289(1−2x )2=256 D.256(1−2x )2=2896.已知2121003m x x m -++=是关于x 的一元二次方程,则m的值应为( ) A.m =2 B.23m =C.32m = D.无法确定7.若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )A.1B.2C.−1D.−28.(2013•宜宾中考)若关于x的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是( )A.k <1B.k >1C.k =1D.k ≥09.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为() A.9B.10C.12D.1510.如图,在长为8 cm,宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A.2 cm 2B.4 cm 2C.8 cm 2D.16 cm 2 11.如图,在梯形ABCD中,AD ∥BC,对角线AC,BD相交于点O,若AD =1,BC =3,则AOCO的值为( ) A.12B.13C.14D.19第9题图12.如图,在平行四边形AAAA 中,A 是AA 的中点,AA 和AA 交于点A ,设△AAA 的面积为A ,△AAA 的面积为√5,则下列结论中正确的是()A.A =5B.A =4√5C.A =3√5D.A =10二、填空题(每小题3分,共24分)13.如图,已知∠1=∠2,若再增加一个条件就能使结论“AA •AA =AA •AA ”成立,则这个条件可以是____________.(只填一个即可)14.(2013•山东淄博中考)在△AAA 中,A 是AA 上的动点(A 异于A ,A ),过点A 的一条直线截△AAA ,使截得的三角形与△AAA 相似,我们不妨称这种直线为过点A 的△AAA 的相似线.如图,∠A =36°,AA =AA ,当点A 在AA 的垂直平分线上时,过点A 的△AAA 的相似线最多有______条.15.如果16(A −A )2+40(A −A )+25=0,那么A 与A 的关系是________. 16.如果关于x 的方程022=--k x x 没有实数根,则k 的取值范围为_____________.17.已知杭州市某天六个整点时的气温绘制成如下统计图,则这六个整点时气温的中位数是 ℃.第14题图18.如图,∠AAA =∠A ,AA ⊥AA 于A ,AA ⊥AA 于A ,若AA =6,AA =8,则AA ∶AA =______.19.若432z y x ==(A ,A ,A 均不为0),则z z y x -+2的值为 .20.在△ABC 中,AA =15 cm,AA =20 cm,AA =30 cm,另一个与它相似的△A ′A ′A ′的最短边长为45 cm ,则△A ′A ′A ′的周长为________.三、解答题(共60分)21.(6分)已知关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值.22.(6分)如果关于A 的一元二次方程(A 2−4)A 2−2(A −2)A +1=0有实数根,求A 的取值范围.23.(8分)如图,在梯形AAAA 中,AA ∥AA ,点A 是边AA 的中点,连接AA 交AA 于A ,AA 的延长线交AA 的延长线于A .(1)求证:AA AA =AAAA;(2)若AA =2,AA =3,求线段AA 的长.第17题图24.(9分)嘉淇同学用配方法推导一元二次方程ax²+bx+c=0(a≠0)的求根公式时,对于b2-4ac>0的情况,她是这样做的:(1)嘉淇的解法从第步开始出现错误;事实上,当b2-4ac>0时,方程ax²+bx+c=0(a≠0)的求根公式是.(2)用配方法解方程:x2-2x-24=0.25.(8分)阅读下面材料:小腾遇到这样一个问题:如图①,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图②).请回答:∠ACE的度数为____,AC的长为____.①②③第25题图参考小腾思考问题的方法,解决问题:如图③,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.26.(6分)已知关于x的方程2(2)20(0)-++=≠.mx m x m(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.27.(8分)小林准备进行如下操作实验;把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由28.(9分)如图①,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60︒,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=1秒时,则OP=,S△ABP=;2(2)当△ABP是直角三角形时,求t的值;(3)如图②,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3..期中检测题参考答案1.A解析:篮球队12名队员中年龄是18岁的人最多,有5名,所以12名队员年龄的众数是18岁; 这12名队员年龄的平均数18519420212228191212x ⨯+⨯++⨯===(岁).2.A 解析:由AA >AA ,知AA 是较长线段,根据黄金分割点的定义,知AA 2=AA •AA .3.D 解析:方差是用来衡量一组数据波动程度的量,方差越大,表明这组数据越分散,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,即波动越小,数据越稳定.∵ 0.02<0.03<0.05<0.11,∴ 丁的训练成绩最稳定.4.B 解析:把这组数据按照从小到大的顺序排列为2,3,3,4,8,中间的数据是3,所以这组数据的中位数是3,这组数据的平均数x =.4582433=++++5.A 解析:根据题意可得两次降价后售价为289(1−A )2元,故方程为289(1−A )2=256.6.C 解析:由题意,得212m -=,解得32m =.故选C. 7.D 解析:将x n =代入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴ 2m n +=-.故选D.8.A 解析:∵ 关于A 的一元二次方程A 2+2A +A =0有两个不相等的实数根,a=1,b=2,c=k ,∴ A 2−4AA =22−4×1×A >0,∴ A <1.9.C 解析:估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为410×30=12. 10.C 解析:矩形AAAA 的面积是8×4=32(cm 2),矩形AAAA 与矩形AAAA 的相似比是8∶4=2∶1,因而面积的比是4∶1,所以留下矩形的面积是32÷4=8(cm 2).11.B 解析:在梯形AAAA 中,AA ∥AA ,对角线AA ,AA 相交于点A ,由题意知△AAA ∽△AAA ,所以AA AA=AA AA =13.12.B 解析:∵ AA ∥AA ,∴ △AAA ∽△AAA .又∵ A 是AA 的中点,∴ 2AA =AA =AA ,∴ A △AAA :A △AAA =(AA ∶AA )2=4∶1,即A =4√5.13. ∠A =∠A 或∠A =∠AAA (答案不唯一) 解析:要使AA •AA =AA •AA 成立,需证△AAA ∽△AAA ,在这两个三角形中,由∠1=∠2可知∠AAA =∠AAA ,还需的条件可以是∠A =∠A 或∠A =∠AAA . 14.3 解析:当AA ∥AA 时,△AAA ∽△AAA , 当AA ∥AA 时,△AAA ∽△AAA , 如图所示,连接AA ,∵ ∠A =36°,AA =AA ,点A 在AA 的垂直平分线上, ∴ AA =AA ,∠AAA =∠AAA =72°,∴∠AAA =∠AAA =36°,∴ ∠AAA =36°,∴∠AAA =∠A . 又∵∠A =∠A ,∴△AAA ∽△AAA , 故过点P 的△ABC 的相似线最多有3条. 15.A −A =−54 解析:原方程可化为[]24()50x y -+=,∴ A −A =−54. 16.1k <- 解析:∵ 224(2)41()440b ac k k -=--⨯⨯-=+<,∴ 1k <-.17.15.6 解析:先将数据从小到大排列为4.5,10.5,15.3,15.9,19.6,20.1,排在中间的两个数为15.3和15.9,其平均数为15.6,所以这六个整点时气温的中位数是15.6. 18.3∶4 解析:∵ AA ⊥AA ,AA ⊥AA ,∴ ∠AAA =∠AAA =90º.又∵ ∠A =∠A ,∴ △AAA ∽△AAA ,∴ AA ∶AA =AA ∶AA =6∶8=3∶4. 19.1 解析:设()0432≠===m m zy x ,所以A =2A ,A =3A ,A =4A ,所以 第14题答图.144622=-+=-+mmm m z z y x 20.195 cm 解析:因为△ABC ∽△A ′A ′A ′,所以A ′A ′AA=A ′A ′AA=A ′A ′AA. 又因为在△ABC 中,边AA 最短, 所以A ′A ′AA=A ′A ′AA=A ′A ′AA=4515=3,所以A ′A ′=60 cm,A ′A ′=90 cm,所以△A ′A ′A ′的周长为45 cm +60 cm +90 cm =195 cm . 21. 解:由题意得{A 2−1=0,A −1≠0,所以A =−1.即当1m =-时,一元二次方程012)1(22=-++-m x x m 的常数项为 0. 22.解:由于方程是一元二次方程,所以A 2−4≠0,解得A ≠±2.由于方程有实数根,因此A 2−4AA =[−2(A −2)]2−4(A 2−4)=−16A +32≥0, 解得A ≤2.因此A 的取值范围是A <2且A ≠−2.23.(1)证明:∵ AA ∥AA ,∴ ∠AAA =∠AAA . ∵ ∠A =∠A ,∴ △AAA ∽△AAA ,∴AA =AA. ∵ 点A 是边AA 的中点,∴ AA =AA ,∴AA AA =AAAA. (2)解:∵ AA ∥AA ,∴ ∠AAA =∠AAA ,∠AAA =∠AAA , ∴ △AAA ∽△AAA ,∴AA AA =AAAA. 由(1)知,AA =AA ,∴ AA =AA.∵ AA =2,AA =3,∴ 22+3+=AA3,∴ AA =1.24.解:(1)四x =(2)x 2-2x =24,x 2-2x +1=24+1, (x -1)2=25,x -1=±5,∴ x 1=6 ,x 2=-4.25.解:∠ACE 的度数为75°,AC 的长为3. 过点D 作DF ⊥AC 于F ,如图. ∵ ∠BAC=90°,∴ AB ∥DF ,∴ △ABE ∽△FDE. ∴2.AB AE BEDF EF ED=== ∴ EF=1 , AB=2DF.∵ 在△ACD 中,∠CAD=30°,∠ADC=75°, ∴ ∠ACD=75°,∴ AC=AD. ∵ DF ⊥AC,∴ ∠AFD=90°.在Rt △AFD 中,∠DAF=30°,AF=2+1=3,设DF=x,则AD=2x , 由勾股定理得2294x x +=,解得x =2AD x ==. AC AB ==∴BC =∴26.(1)证明:∵ ()22242448m m m m m ∆=+-⨯=++-()224420,m m m =-+=-≥∴ 方程总有两个实数根. (2)解:2(2)20,mx m x -++= 即()1(2)0,x mx --=∴ 1221,.x x m==∵ 方程的两个根为整数,∴ 22x m=为整数, ∴ 正整数m 的值为1或2.27.解:(1)设剪成的较短的一段长为A cm,较长的一段长为(40−A )cm, 由题意,得(A 4)2+(40−A 4)2=58,解得A 1=12,A 2=28.当A =12时,较长的一段长为40−12=28(cm ); 当A =28时,较长的一段长为40−28=12<28(舍去). ∴ 较短的一段长为12 cm,较长的一段长为28 cm .(2)小峰的说法对.理由:设剪成的较短的一段长为A cm,较长的一段长为(40−A )cm,第25题答图由题意,得(A 4)2+(40−A 4 )2=48,变形为A 2−40A +416=0, ∵ A 2−4AA =(−40)2−4×416=−64<0,∴ 原方程无解,∴ 小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.28.(1)解:1; (2)解:①∵ ∠A<∠BOC =60︒,∴ ∠A 不可能是直角.②当∠ABP =90︒时,如图①所示,∵ ∠BOC =60︒,∴ ∠OPB =30︒.∴ OP =2OB ,即2t =2.∴ t =1.① ②③当∠APB =90︒时,如图②所示,作PD ⊥AB ,垂足为D ,则∠ADP =∠PDB =90︒. 在Rt △POD 中,∵ ∠POD=60︒,∴ ∠OPD=30︒.∵ OP =2t ,∴ OD =t ,PD,AD =2+t ,BD =1-t (△BOP 是锐角三角形). 方法1:∴ BP 2=BD 2+PD 2=(1-t )2+3t 2,AP 2=AD 2+PD 2=(2+t)2+3t 2.∵ BP 2+AP 2=AB 2,∴ (1-t)2+3t 2+(2+t)2+3t 2=9,即4t 2+t -2=0.解得t 1,t 2(舍去). 方法2:∵ ∠APD +∠BPD =90︒,∠B +∠BPD =90︒,∴ ∠APD =∠B.∴ △APD ∽△PBD.∴ .AD PD PD BD=∴ PD 2=AD ·BD. 于是2=(2+t)(1-t),即4t 2+t -2=0.第27题答图解得t 1,t 2(舍去). 综上,当△ABP 为直角三角形时,t =1. (3)证法1:∵ AP =AB ,∴ ∠APB =∠B.如图③所示,作OE ∥AP ,交BP 于点E ,∴ ∠OEB =∠APB =∠B.③∵ AQ ∥BP ,∴ ∠QAB +∠B =180︒.又∵ ∠3+∠OEB =180︒,∴ ∠3=∠QAB.又∵ ∠AOC =∠2+∠B =∠1+∠QOP ,∠B =∠QOP ,∴ ∠1=∠2. 在△QAO 和△OEP 中,∵ ∠3=∠QAO ,∠1=∠2,∴ △QAO ∽△OEP.∴ AQ AO EO EP=,即AQ ·EP =EO ·AO. ∵ OE ∥AP ,∴ △OBE ∽△ABP.∴ 13OE BE BO AP BP BA ===.∴ OE =13AP =1,BP =32EP. ∴ AQ ·BP =AQ ·32EP =32AQ ·EP =32AO ·EO =32⨯2⨯1=3.证法2:如图④所示,连接PQ ,设AP 与OQ 相交于点F.第27题答图④∵ AQ∥BP,∴∠QAP=∠APB.∵ AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.在△QFA和△PFO中,∵∠QAF=∠FOP,∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1. ∵∠AOC=∠2+∠B=∠1+∠QOP,∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ AP BO BP=.∴ AQ·BP=AP·BO=3⨯1=3.第27题答图。

相关文档
最新文档