六年级奥数4011假设法解题(二)

合集下载

举一反三- 六年级奥数 -第11讲 假设法解题(二)

举一反三- 六年级奥数 -第11讲 假设法解题(二)

第11讲假设法解题(二)一、知识要点已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

二、精讲精练【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?练习1:1、丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2、在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?练习2:1、甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2、上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?【例题3】小红的彩笔枝数是小刚的21,两人各买5枝后,小红的彩笔枝数是小刚的32,两人原来各有彩笔多少枝?练习3:1、小华今年的年龄是爸爸年龄的61,四年后小华的年龄是爸爸的41,求小华和爸爸今年的年龄各是多少岁?2、小红今年的年龄是妈妈的83,10年后小红的年龄是妈妈的21,小红今年多少岁?【例题4】王芳原有的图书本数是李卫的54,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的107,两人原来各有图书多少本?练习4:1、甲书架上的书是乙书架上的54,从这两个书架上各借出112本后,甲书架上的书是乙书架上的74,原来甲、乙两个书架上各有多少本书?2、小明今年的年龄是爸爸的116,10年前小明的年龄是爸爸的94,小明和爸爸今年各多少岁?【例题5】某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的43,现在男、女生各有多少人?练习5:1、甲车间的工人是乙车间的52,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的97,现在甲、乙两个车间各有多少人?2、有一堆棋子,黑子是白子的32,现在取走12粒黑子,添上18粒白子后,黑子是白子的125,现在白子、黑子各有多少粒?三、课后作业1、两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

六年级上册奥数第11讲 假设法解题(二)

六年级上册奥数第11讲  假设法解题(二)

第11讲设数法解题(2)讲义专题简析已知甲是乙的几分之几、又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数各是多少,这样的应用题称为变倍问题。

应用題中的变倍同题、有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答的关健是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几、从而求出单位“1”的量,其他要求的量就迎刃而解了。

例1、水果店里西瓜的个数与白兰瓜的个数的比为7∶5,如果每天卖白兰瓜40个、西瓜50个,若十天后白兰瓜正好卖完,西瓜还剩36个。

水果店里原有西瓜多少个?练习:1、红星幼儿园里白皮球的个数与红皮球的个数的比是3∶5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。

红星幼儿园有多少个班?2、食堂里面粉的质量是大米质量的,每天吃去30吨面粉,45吨大米。

若干天后,面粉正好吃完,大米还有150吨,食堂里原有面粉多少吨?3、师、徒两人加工一批零件,师傅的任务比徒弟的任务多,徒弟每天加工7个,师傅每天加工12个,若干天后,师傅正好完成了任务,徒弟还有30个零件没有加工。

这批零件共有多少个?例2、王明平时积攒下来的零花钱比陈刚的3倍还多6.40元。

若两人各买了一本4.40元的故事书后,王明的钱数就是陈刚的7倍。

陈刚原来有零花钱多少元?练习:1、甲书架上的书比乙书架上书的3倍多50本。

若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上书的2倍。

甲、乙两个书架原来各有多少本书?2、上学年,马村中学的学生比牛庄小学的学生的2倍多54人。

本学年,马村中学增加了学生20人,牛庄小学减少了学生8人,则马村中学的学生比牛庄小学的学生的4倍少26人。

上学年,马村中学和牛庄小学各有学生多少人?3、箱子里有红、白两种玻璃球,红球的数量比白球的数量的3倍多2个,每次从箱子里取出7个白球和15个红球。

若干次后,箱子里剩下3个白球和53个红球。

六年级奥数举一反三-假设法解题小学

六年级奥数举一反三-假设法解题小学

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

六年级假设法解题思路和步骤

六年级假设法解题思路和步骤

假设法是一种常用的解决问题的方法,特别适用于一些复杂的实际问题。

在六年级的数学学习中,假设法主要用于解决一些百分比、倍数等比例关系的问题。

以下是一般的解题思路和步骤:1. 阅读问题:仔细阅读问题,确保理解问题的要求和条件。

2. 确定假设:根据问题内容,确定一个合适的假设。

假设是对问题中未知部分的猜测或推测。

3. 推导结果:利用所给条件和已知信息,推导出与假设相关的结果。

使用逻辑推理和数学运算等方法进行推导。

4. 验证假设:将推导出的结果与问题中给出的要求进行对比,验证假设是否成立。

5. 分析结果:根据验证结果,判断假设是否正确。

如果假设成立,则得到最终答案;如果假设不成立,则需重新考虑假设并重复上述步骤。

下面是一个简单的示例来说明假设法解题的步骤:问题:某个数字的百位数字是3,十位数字是4,个位数字是1,它能被5整除吗?步骤:1. 阅读问题:数字的百位数字是3,十位数字是4,个位数字是1,要求判断是否能被5整除。

2. 确定假设:假设这个数字是XYZ(百位是X,十位是Y,个位是Z),所以假设这个数字是341。

3. 推导结果:由于我们已经假设百位是3,十位是4,个位是1,所以数字341能被5整除的条件是个位是0或者5。

但是341的个位数字是1,所以假设不成立。

4. 验证假设:根据推导结果,我们发现341不能被5整除,与问题要求相反,说明假设不正确。

5. 分析结果:根据验证结果,我们得出结论:数字341不能被5整除。

通过以上步骤,我们使用假设法解题,最终得出了数字341不能被5整除的结果。

在使用假设法时,一定要确保假设是合理且能够帮助解答问题的。

同时,要记住最后一步是对结果的检验,以确保答案的正确性。

假设法解题(小学奥数)

假设法解题(小学奥数)

假设法解题【专题简析】:假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合来推算,用假设法思考某些问题,可以找到巧妙的解法例1、一批零件甲独做8天完成,乙独做10天完成,现在由两人合作这批零件,中途甲因事请假一天,完成这批零件共用多少天?练习1、一件工作,甲独做15天完成,乙独做10天完成,两队合作若干天后甲休息了几天,结果共用8天完成,甲休息了几天?例2、彩色电视机和黑白电视机共250台,如果彩色电视机卖出91,则比黑白电视机多5台,问:两种电视机原来各多少台?练习2、学校有篮球和足球共21个,篮球借出31后,比足球少一个,原来足球和篮球各多少个?例3.、甲乙两数的和是300,甲数的52比乙数的41多55,甲乙两数各是多少?练习3、畜牧场有绵羊和山羊共800只,山羊的52比绵羊的21多50只,这个畜牧场有绵羊和山羊各多少只?例4、某小学上学期共有学生750名,本学期男生人数增加61,女生人数减少51,现在全校有710人,问:本学期男女同学各多少人?练习4、袋子里有红球和白球119个,将红球增加83,白球减少52后,红球与白球的总数变为121个,问:原来袋子里红球和白球各多少个?例5、足球门票15元一张,降价后观众增加一倍,收入增加51,问:一张门票降价了多少元?练习5、某次考试,平均分为70分,其中43及格,及格的同学的平均分是80分,那么不及格的同学的平均分是多少? 综合练习1、一项工程,甲乙两人合作12天完成,中途甲因有事停工了5天,因此用了15天完成,问:甲独做这项工程多少天完成?2、姐妹俩养兔共120只,如果姐姐卖掉71,还比妹妹多10只,姐妹俩各养了多少只兔?3、师徒两人加工一批零件一共840个,师傅加工零件个数的85,比徒弟加工零件的32多60个,师徒两人各加工了多少个?4、金放在水里称重量减轻191,银在水中称重量减少101,一块中770g 的金银合金,放在水里称是720g ,这块合金含金银各多少克?5、游泳池里有30%的小学生,又来了一批学生后学生总数增加了20%,小学生占总人数的40%,小学生增加了百分之几?6、某小学为庆祝儿童节,如果费用全部由男生支付,那么每名男生要支付30元,如果费用全部由女生支付,那么每名女生要支付20元,如果全年级男女共同支付,那么每人要支付多少钱?7、某班买来单价为0.5元的练习本若干本,如果将这些练习本分给女生,则平均每人分得15本,如果将这些练习本分给男生,则平均每人分得10本,将这些练习本平均分给全班同学,则每人应付多少钱?。

六年级奥数:假设法解题

六年级奥数:假设法解题

六年级奥数:假设法解题六年级奥数:假设法解题假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

小学六年级奥数-假设法解题(二)

小学六年级奥数-假设法解题(二)
• (2+3×2/3)÷(3/4-2/3)=48(人)
• 48×3/4=36(人)
• 答:现在男生有36人,女生有48人。
练习5:
• 1.甲车间的工人是乙车间的2/5,后来甲车间增加20 人,乙车间减少35人,这样甲车间的人数是乙车间的 7/9,现在甲、乙两个车间各有多少人?
• 2.有一堆棋子,黑子是白子的2/3,现在取走12粒黑 子,添上18粒白子后,黑子是白子的5/12,现在白子 、黑子各有多少粒?
• 小刚原来:(5-5×1/2)÷(2/3-1/2)-5=10 (枝)
• 小红原来:10×1/2=5(枝)
• 答:小刚原来有彩笔10枝,小红原来有彩笔5枝。
练习3:
• 1.小华今年的年龄是爸爸年龄的1/6,四年后小华的 年龄是爸爸的1/4,求小华和爸爸今年的年龄各是多 少岁?
• 2.小红今年的年龄是妈妈的3/8,10年后小红的年龄 是妈妈的1/2,小红今年多少岁?
二、精讲精练
• 【例题1】两根铁丝,第一根长度是第二根的3倍,两 根各用去6米,第一根剩下的长度是第二根剩下的长 度的5倍,第二根原来有多少米?
• 【思路导航】假设第一根用去6×3=18米,那么第一 根剩下的长度仍是第二根剩下长度的3倍,而事实上 第一根比假设的少用去(6×3-6)=12米,也就多 剩下第二根剩下的长度的(5-3)=2倍。
• 3.甲书架上的书是乙书架上的5/7,甲、乙两个书架 上各增加90本后,甲书架上的书是乙书架上的4/5, 甲、乙两各书架原来各有多少本书?
• 【例题4】王芳原有的图书本数是李卫的4/5,两人各 捐给“希望工程”10本后,则王芳的图书的本数是李 卫的7/10,两人原来各有图书多少本?
• 【思路导航】假设李卫捐了10本后,王芳的图书仍是 李卫的4/5,则王芳只需捐10×4/5=8本,实际王芳 捐了10本,多捐了10-8=2本,将李卫捐书后剩下的 图书看作“1”,着2本书相当于4/5-7/10=1/10。

小学奥数各年级经典题解题技巧大全——假设法

小学奥数各年级经典题解题技巧大全——假设法

小学奥数各年级经典题解题技巧大全——假设法假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。

这种解题方法就叫做假设法。

用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。

有些用一般方法能解答的应用题,用假设法解答可能更简捷。

(一)假设情节变化解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:3+2=5(份)原来篮球的个数是:原来足球的个数是:21-12=9(个)答略。

例2 :甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。

两场原来各存煤多少吨?(适于六年级程度)解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4甲场原来存煤:92-50=42(吨)答略。

(二)假设两个(或几个)数量相等例1:有两块地,平均亩产粮食185千克。

其中第一块地5亩,平均亩产粮食203千克。

如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多:203-170=33(千克)5亩地要多产:33×5=165(千克)两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是:165÷15=11(亩)第二块地的亩数是:11-5=6(亩)答略。

解:此题可以有三种答案。

答:剩下的两根绳子一样长。

答:甲绳剩下的部分比乙绳剩下的部分长。

举一反三六年级_第11周_假设法解题

举一反三六年级_第11周_假设法解题

第十一周假设法解题(二)专题简析:已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

例题1 两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。

(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。

练习11. 丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2. 在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?3. 两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

求第二堆煤原来是多少吨?例题2 王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。

六年级奥数分册:第11周 假设法解题

六年级奥数分册:第11周 假设法解题

第十一周假設法解題(二)專題簡析:已知甲是乙的幾分之幾,又知甲與乙各改變一定的數量後兩者之間新的倍數關係,要求甲、乙兩個數是多少,這樣的應用題稱為變倍問題。

應用題中的變倍問題,有兩數同增、兩數同減、一增一減等各種情況。

雖然其中的數量關係比較複雜,但解答時的關鍵仍是確定哪個量為單位“1”,然後通過假設,找出變化前後的相差數相當於單位“1”的幾分之幾,從而求出單位“1”的量,其他要求的量就迎刃而解了。

例題1。

兩根鐵絲,第一根長度是第二根的3倍,兩根各用去6米,第一根剩下的長度是第二根剩下的長度的5倍,第二根原來有多少米?【思路導航】假設第一根用去6×3=18米,那麼第一根剩下的長度仍是第二根剩下長度的3倍,而事實上第一根比假設的少用去(6×3-6)=12米,也就多剩下第二根剩下的長度的(5-3)=2倍。

(6×3-3)÷(5-3)+6=12(米)答:第二根原來有12米。

練習11.丁曉原有書的本數是王陽的5倍,若兩人同時各借出5本給其他同學,則丁曉書的本數是王陽的10倍,兩人原來各有書多少本?2.在植樹勞動中,光明中學植樹的棵數是光明小學的3倍,如果中學增加450棵,小學增加400棵,則中學是小學的2倍。

求中、小學原來各植樹多少棵?3.兩堆煤,第一堆是第二堆的2倍,第一堆用去8噸,第二堆用去11噸,第一堆剩下的重量是第二堆的4倍。

求第二堆煤原來是多少噸?例題2。

王明平時積蓄下來的零花錢比陳剛的3倍多6.40元,若兩個人各買了一本4.40元的故事書後,王明的錢就是陳剛的8倍,陳剛原來有零花錢多少元?【思路導航】假設仍然保持王明的錢比陳剛的3倍多6.40元,則王明要相應地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那麼王明買書後的錢比陳剛買書後的錢的3倍多6.40+8.80=15.20元,而題中已告訴:買書後王明的錢是陳剛的8倍,所以,15.20元就對應著陳剛花錢後剩下錢的8-3=5倍。

2020-2021学年六年级数学:第11周 假设法解题

2020-2021学年六年级数学:第11周 假设法解题

2020-2021学年六年级数学:第十一周假设法解题(二)专题简析:已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

例题1。

两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。

(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。

练习11.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

求第二堆煤原来是多少吨?例题2。

王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。

六年级奥数第五讲 假设法解题 全集

六年级奥数第五讲 假设法解题 全集

第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。

抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出91,则比黑白电视机多5台。

问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。

问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的75、乙队人数的73,共抽调188人参加灭火。

问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。

六年级上册奥数基础+提高练习-第11讲 假设法解题(二) 通用版(含答案)

六年级上册奥数基础+提高练习-第11讲 假设法解题(二) 通用版(含答案)

奥数重点常考题第十一讲假设法解题(二)基础卷1、建筑工地上水泥的质量是黄沙质量的23,每天用去12吨水泥,15吨黄沙。

若干天后,水泥正好用完,黄沙还有12吨,工地上原有水泥多少吨?2、小娟的画片张数是小芳画片张数的35,两人各买5张后,小娟的画片张数是小芳的23。

两人各有画片多少张?3、甲桶里的油比乙桶里的油的2倍多40千克,若甲、乙两桶里的油各倒出20千克,则甲桶里的油是乙桶里油的4倍,甲、乙两桶原来各有油多少千克?4、女儿的年龄是妈妈年龄的14,6年后女儿的年龄是妈妈年龄的514,求女儿和妈妈今年的年龄各是多少岁?5、小明今年的年龄是爸爸年龄的13,4年前小明的年龄是爸爸年龄的14,小明和爸爸今年各多少岁?6、甲、乙、丙三所学校共有学生2900人,如果甲校学生人数减少111,乙校学生人数增加14人,则三校学生人数相等。

甲、乙、丙三校各有学生多少人?提高卷1、两个修路队合修一条路,甲队的任务比乙队多14,乙队每天修20千米,甲队每天修30千米,若干天后,甲队正好完成了任务,乙队还有20千米没修。

这条路共长多少千米?2、袋子里有红、黑两种球,红球比黑球的3倍多2个,每次从袋子里取出4个红球和2个黑球,若干次后,袋子里剩下12个红球和2个黑球,那么,袋子里黑球原有多少个?3、甲书架上的书是乙书架上书的23,从这两个书架上各借出5本后,甲书架上的书是乙书架上书的35,原来甲、乙两个书架上各有多少本书?4、某校六年级男生人数是女生人数的78,后来转进4名男生,转走1名女生,这时男生人数是女生人数的1011,现在男、女生各有多少人?5、有一堆围棋子,黑子是白子的45,现在取走4粒黑子,添上2粒白子后,黑子是白子的23,现在黑子、白子各有多少粒?6、长方形的周长是100cm,如果长增加13,宽增加14,那么周长增加30 cm,长方形原来的面积是多少平方厘米?答案基础卷。

六年级奥数假设法解题

六年级奥数假设法解题

专题一:假设法解题(一)一、假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设要求的两种量是同一种量。

用假设法解题时要找准与假设的内容相对应的关系,善于把假定的内容和数据加以调整,从而得到正确的答案。

例1.有5元的和10元的人民币共14张,共100元。

问5元币和10元币各多少张?【思路导航】假设一:5元和10元的张数相等,此时5元和10元各有7张,总面值为105元,与实际值相差5元,此时将1张10元换为1张5元即可,5÷(10-5)=1(次)。

假设二:全是5元币,此时总面值为5×14=70(元),与实际值相差:100-70=30(元),将1张5元换为1张10元面值将增加5元,需要调换次数为:30÷(10-5)=6(次)。

假设三:全是10元币。

随堂练习:有1元、2元、5元的汽车票50张,总面值为116元。

已知1元的比2元的多2张,问三种面值的汽车票各有几张?【思路导航】条件处理:先取出2张1元,此时2元与1元票数相等。

假设一:假设三种票值票数相等为:(50-2)÷3=16(张)。

此时总票值为:16×(1+2+5)=128(元),为保证每次换票后1元票与2元票张数相等,需要用两张5元票与1元票、2元票各一张进行对换。

由于假设值大于实际值:116-2=114(元)。

其中相差:128-114=14(元),每次对换改变票值为:5+5-1-2=7(元)。

需要对换次数为:14÷7=2(次)。

假设二:假设全是5元票以此展开。

例2.甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

两人各投10次,共得152分。

其中甲比乙多得16分,问两人各中多少次?【思路导航】条件处理:先利用数量关系求解甲乙各自分数,然后参照例1确定假设思路求解问题。

随堂练习:甲组工人生产一种零件,每天生产250个。

六年级奥数假设法解题

六年级奥数假设法解题

学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第07讲——假设法解题授课类型T同步课堂P实战演练S归纳总结教学目标①初步学会运用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤;②在解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力;③养成独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获取解决问题的成功体验,提高学好数学的信心。

授课日期及时段T(Textbook-Based)——同步课堂实战演练➢课堂狙击1、有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?2、五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?3、用大、小两种汽车运货。

每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货价值2520元。

大、小汽车各有多少辆?4、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

两人各投10次,共得152分。

其中甲比乙多得16分,两人各中多少次?5、买来5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角和1角5分的邮票张数相等,问三种邮票各购几张?直击赛场1、(走美杯)两根同样长的绳子,甲绳剪去1/3,乙绳剪去1/3米,剩下的绳子哪一根长?2、(希望杯)一辆卡车运矿石,晴天每天可运20次,雨天每天只运12次,它一共运了112次,平均每天运14次,这几天有几是雨天?3、(祖冲之杯)有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?S(Summary-Embedded)——归纳总结名师点拨假设法是一种思考问题的方法,也是解答应用题的好方法。

有些应用题看似无法解答,但如果采用假设的方法,可以比较轻松地得到正确答案。

(最新)六年级奥数分册第11周 假设法解题

(最新)六年级奥数分册第11周 假设法解题

第十一周假设法解题(二)专题简析:已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

例题1。

两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。

(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。

练习11.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

求第二堆煤原来是多少吨?例题2。

王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数专题
假设法解题(二)
一、知识要点
已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

二、精讲精练
【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?
练习1:
1、丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?
2、在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?。

相关文档
最新文档