数学六年级(下)沪教版(长方体的再认识Ⅱ)教师版

合集下载

六年级下册数学教案-第八章《长方体的再认识》|沪教版

六年级下册数学教案-第八章《长方体的再认识》|沪教版

沪教版六年级教案第八章8.1 长方体的元素 【学习目标/难点重点】1.认识长方体,掌握长方体的特征,初步学会看立体图形,2.认识并理解长方体的各个构成元素及之间的联系. 【学习过程】 一、课前复习1.问题1:下列图形是我们以前学过的哪些几何图形? 二、新课学习1.观察长方体,思考下列问题:1)长方体有几个面?是什么形状?相对的两个面有什么特点?2)数一数长方体有多少条棱.相对的棱长短怎样? 3)3条棱相交的点叫做顶点.数一数长方体有几个顶点. 2.长方体的元素的性质: 1)长方体的每个面都是:;2)长方体的条棱可以分为组,每组中的条棱的长度都; 3)长方体的个面可以分为组,每组中的个面的和都.3.长方体的相关量的计算,设长方体的长、宽、高分别为:a 、b 、h 1)长方体的表面积的计算: 2)长方体的体积的计算: 3)长方体的棱长和:4.初步认识长方体的立体图.1)从不同角度进行观察,最多能看到它的几个面?2)思考:如果长方体摆放的位置不同,画出的立体图一样吗? 5.练习1:判断题(对的打“√”,错的打“×”)1)长方体的每个面都是长方形. ( ) 2)长方体有十二条棱. ( )ab h3)六个面、十二条棱和八个顶点组成的图形都是长方体. ( ) 4)长方体相对的两个面的面积都相等. ( ) 6.练习2:小明想用一根长度为250厘米的塑料管和橡皮泥做一个三条棱分别为10厘米、30厘米、15厘米的长方体架子,应如何裁剪这根塑料管? 三、课堂小结1.长方体的元素及其性质.四、课堂检测:数学习题册 习题8.1 课课精炼 一、填空题:1.如图所示的长方体中,与棱AB 长度相等的棱是.2.如图所示,长方体中,与平面ABEH 相对的面是,它上面的底面用字母表示是.3.如图所示,长方体中被遮住的棱是,从点F 出发的棱是.4.当长方体的所有棱长都相等时,长方体就变成.5.如果正方体的棱长为a ,那么这个正方体的表面积为,体积为. 二、选择题:6.如果一个长方体的长、宽高都扩大到原来的2倍,那么这个长方体的体积就扩大到原来的A.2倍B.4倍C.6倍D.8倍7.下列说法中正确的个数有 ( ) (1)正方体是特殊的长方体 (2)长方体的表面中不可能有正方形(3)棱长为6cm 的正方体的表面积和体积的数值相等 (4)具有6个面,12条棱和8个顶点的图形都是长方体A.1个B.2个C.3个D.4个 三、解答题 8.如图,在长方体中,.求四边形ADHE 、四边形EFGH 、四边形DCGH 的面积,并求出此长方体的体积.9.把一根长36分米的木条截开后刚好能搭成一个正方体架子,求这个正方体的表面积和体积.10.如图,是边长为10厘米的三个小正方体拼成的图形,这个图形共有几个面?求出它的表面积和体积. 11.如图,把一个棱长4厘米的正方体的六个面都涂上红色,再将它的棱四等分,然后从等分点把正方体锯开.AB CDEF GHEABFDCGH1)能得到多少个棱长为1厘米的小正方体? 2)三个面有红色的小正方体有多少个? 3)两个面有红色的小正方体有多少个? 4)一个面有红色的小正方体有多少个?5)有没有各面都没有红色的小正方体?如果有,那么有多少个? 8.2 长方体直观图的画法 【学习目标/难点重点】1.认识长方体,掌握长方体的特征,初步学会看立体图形,2.认识并理解长方体的各个构成元素及之间的联系. 【学习过程】 一、课前复习1.长方体有个面,个顶点,条棱.2.长方体的每个面都是;长方体的条棱可以分为组,每组中的条棱的长度;长方体的个面可以分为组,每组中的个面的和都.3.设长方体的长、宽高分别为a 、b 、h ,则表面积为,体积为. 二、新课学习 1.平面:1)几何表示(即:作图)把水平放置的平面画成一边是水平位置,另一边与水平线所成的角为45度的平行四边形. 2)字母表示:平面ABCD 或平面2.平面的画法——“斜二测”画法: 思考:如何将这个长方体直观地画在纸上? 基本步骤:第一步:画平行四边形ABCD ,使AB 等于长方体的长,AD等于长方体宽的二分之一,∠DAB=450.第二步:过A 、B 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长度都等于长方体的高. 第三步:顺次连接EFGH.第四步:将被遮住的线段改用虚线表示. 这样,长方体的直观图就画成了. 分步图解:A CDαGH EFABCD3.一块橡皮的形状是长方体,小杰量得其长、宽、高分别为4厘米、2厘米和1厘米,请你画出该橡皮的直观图.4.补全下面的图形,使之成为长方体(虚线表示被遮住的部分) 三、课堂小结:1.“斜二测”画法.四、课堂检测:数学习题册 习题8.2 课课精炼 一、填空题:1.长方体的直观图的画法有很多种,通常我们采用画法.通常在画图时,所画的长方体的宽是实际宽的(填分数),长与宽的夹角为.2.如图所示的长方体中, 1)从正面看,看不见的棱有, 2)与棱EH 相等的棱有, 3)与平面ABEH 相对的平面有, 4)位于水平位置的平面有. 二、选择题:3.在①平整的镜面;②平整的地面;③平整的斜面;④平放的桌面;⑤平静的湖面;⑥光滑的墙面中,通常情况下可以看成水平面的有 ( )A.①③⑥B.②④⑤C. ①③⑤D.②④⑥ 4.用斜二测画法画长方体的直观图中,表示看不到的面有 ( ) A.1个 B.2个 C.3个 D.4个 三、解答题8.补全下面各图,使之成为长方体(虚线表示被遮住的部分) 9.画一个长方体,使它的长、宽、高分别为5厘米、2厘米、3厘米.8.3 长方体中棱与棱位置关系的认识 【学习目标/难点重点】1.认知且能用数学语言正确地表述长方体中棱与棱位置关系和空间两直线的三种位置关系,2.在动手操作、观察和思考的过程中体会认知事物的概括分类思想,体会空间想象能力. 【学习过程】 一、课前复习AB CDEF GH1) 2)3)4)1.“斜二测”画法. 二、新课学习 1.观察并思考:1)棱AB 与棱AE 是什么位置关系?2)棱AB 与棱EF 是什么位置关系? 1)棱AB 与棱GC 是什么位置关系?2.观察生活实例:跑道、铁门的横竖栏、铁路轨道和公路的位置关系(图1)读作:直线AB 与直线CD ,(图2)读作:直线AB 与直线CD ,记作:直线AB 直线CD (也可读作直线AB 直线CD.(图3)读作:直线AB 与直线CD. 3.小结——空间两直线位置关系: 5.例题1:在长方体ABCD-EFGH 中, 1)哪些棱与棱AB 平行? 2)哪些棱与棱AB 相交?3)哪些棱与棱AB 异面?6.练习2:在长方体ABCD-EFGH 中, 1)棱FB 与棱HD 的位置关系是 记作: 为什么?2)棱HG 与棱HD 的位置关系是 为什么?3)棱EF 与棱HD 的位置关系是 为什么?4)有条棱与棱HD 平行?它们分别是.GHEFA BCDαmlCDF EGH有条棱与棱HD 相交?它们分别是. 有条棱与棱HD 异面?它们分别是.三、课堂小结1.长方体中棱与棱位置关系和空间两直线的三种位置关系. 四、课堂检测数学习题册 习题8.3课课精炼一、填空题:1.如图,在长方体ABCD-HEFG 中, 1)与棱AB 平行的棱有, 与棱AB 相交的棱有, 与棱AB 异面的棱有;2)与棱GH 平行的棱有,与棱GH 相交的棱有, 与棱GH 异面的棱有.2.如图,一张长方形纸片ABCD 对折后翻开所成的图形中, 1)与直线DF 平行的直线是, 2)与直线EF 平行的直线是, 与直线EF 相交的直线是, 3)与直线AE 异面的直线是, 与直线BC 异面的直线是. 二、选择题:3.如图所示的长方体中,与棱AB 平行的棱有 ( )A.2条B.3条C.4条D.8条4.如图所示,下面各条棱中,与棱CD 垂直的是 ( )A.棱ABB.棱EFC.棱BFD.棱HG 三、解答题5.在长方体ABCD-EFGH 中,指出下列各对棱的位置关系: 1)棱EF 与棱BC ; 2)棱EF 与棱DC ; 3)棱EF 与棱FB ;AB CDEF GHABDCFEEA BFDC GHEABFDCGH4)棱EH 与棱BC ;6.如图,是将一个长方体沿它的底面的对角线切去一半后剩下的部分. 1)与直线FG 平行的直线是, 2)与直线BC 异面的直线是, 3)与直线BC 相交的直线是, 4)AB 与EF , 5)AE 与FG , 6)FG 与CG.7.数一数,在长方体ABCD-EFGH 中,有多少对平行的棱?有多少对相交的棱?有多少对异面的棱?8.4 长方体中棱与平面位置关系的再认识 【学习目标/难点重点】1.理解长方体中棱与平面的垂直关系;会用数学式子表示直线与平面的垂直,2.理解长方体中的棱与面分别是直线和平面的部分;能举出直线与平面垂直的实例,3.知道检验直线与平面是否垂直的常用方法,知道使用各种方法检验的实际对象;在长方体中找出现成的检验棱与平面垂直的合页型折纸. 【学习过程】 一、课前复习1.长方体中棱与棱的位置关系. 二、新课学习1.观察并思考:竖直方向上的每一条棱与下底面的位置关系是怎样的?2.直线与平面的垂直关系:表示方法: 直线AD 垂直于平面CDHG 记为 :直线AD ⊥平面CDHG 3.思考——长方体中棱与平面的垂直关系: 1)长方体中每一条棱都与几个面垂直? 2)长方体中每个面都与几条棱垂直?3)长方体中一共可以写出多少对棱与面的垂直关系?4.生活实例:请同学们说出生活环境中还有那些直线与平面垂直的例子.5.检验直线与平面垂直的方法:1)铅垂线法:只能用于检验直线与水平面是否垂直; 2)三角尺法:可以检验一般的直线与平面是否垂直;ABFGAC BD FEG H GFEHAD CB3)合页型法:可以检验一般的直线与平面是否垂直;6.思考: 1)“三角尺”检验法与“合页型折纸”检验发有什么相同之处? 2)要检验尖顶屋上的旗杆是否与地面垂直,应用哪种方法比较合理.7.例题1:在长方体中找出能够说明棱与平面是否垂直现成的合页型折纸三、课堂小结1.长方体中棱与平面的垂直关系,会用数学式子表示直线与平面的垂直,2.检验直线与平面是否垂直的常用方法,知道使用各种方法检验的实际对象.四、课堂检测数学习题册 习题8.4(线面垂直部分)课课精炼一、填空题:1.如图,在长方体ABCD-EFGH 中, 1)与棱DH 垂直的面是, 2)与棱BC 垂直的面是, 3)与棱AB 垂直的面是, 4)与面ABCD 垂直的棱有, 5)与面ABFE 垂直的棱有, 6)与面BCGF 垂直的棱有,7)在长方体中的每一条棱有个面和它垂直,每一个面有条棱和它垂直. 2.如图,是教室相邻的三面墙(或地面), 1)与墙面ADFE 垂直的墙角线是, 2)与墙角线AD 垂直的墙面是, 3)与墙角线DF 垂直的墙面是, 4)与地面ABCD 垂直的墙角线是. 二、选择题:3.如图所示的长方体中,与面ADHE 垂直的棱是 ( )A.棱AE 和棱EHB.棱AB 和棱EFC.棱EF 和棱FGD.棱BC 和棱FB4.下列说法中,错误的是 ( )A.旗杆垂直于地面B.墙面一般垂直于地面EA BFD C G HB F GCEHDAGFEH ADCBGE BCDC.东方明珠电视塔垂直于地面D.树木一定垂直于地面 三、解答题5.在长方体ABCD-EFGH 中, 1)写出所有与棱AB 垂直的面; 2)写出所有与面EFGH 垂直的棱.6.在如图所示的长方体中,,求与平面BCGF 垂直的所有棱的长度之和.7.如图,指出图中可以用来检验AE 垂直于面ABCD 的现成的合页型折纸.8.如何检验山顶上直立的旗杆是否与水平面垂直? 8.5 长方体中平面与平面位置关系的认识 【学习目标/难点重点】1.理解长方体中平面与平面的垂直关系;会用数学式子表示平面与平面的垂直,2.能举出平面与平面垂直的实例,3.知道检验平面与平面是否垂直的常用方法;在长方体中找出现成的检验平面与平面垂直的合页型折纸. 【学习过程】 一、课前复习1.长方体中棱与棱的位置关系.2.长方体中棱与面的位置关系. 二、新课学习1.观察并思考:正面与下底面有怎样的位置关系?2.平面与平面的垂直关系:表示方法:平面ABCD 垂直于平面CDHG 记为 :平面ABCD ⊥平面CDHG3.思考——长方体中平面与平面的垂直关系:1)长方体中每一个面都与几个面垂直?2)长方体中相邻两个面之间的位置关系是怎样的? 3)长方体中一共可以写出多少对面与面的垂直关系? 4.生活实例:请同学们说出生活环境中还有那些平面与平面垂直的例子.5.检验平面与平面垂直的方法:EAB FDC GHG HDC A B FEE A BF DC GHGFEHADCBG F EH A DCB1)铅垂线法:检验墙面与地面(水平面)是否垂直;2)合页型折纸法: 3)三角尺法:6.例题1:在长方体中,能够说明平面ABFE ⊥平面ABCD 的合页型折纸是什么?7.如果把骰子看作是一个正方体.点数1的对面是6,点数的对面是2,点数4的对面是3,那么: 1)与点数1的面垂直的面有哪些? 2)哪些面与点数4的面垂直?3)在6个面中,互相垂直的面共有几对?三、课堂小结1.长方体中平面与平面的垂直关系,会用数学式子表示平面与平面的垂直,2.检验平面与平面是否垂直的常用方法,知道使用各种方法检验的实际对象. 四、课堂检测数学习题册 习题8.5(面面垂直部分)课课精炼一、填空题:1.如图,在长方体ABCD-EFGH 中, 1)与面ABFE 垂直的面是, 2)与面BCGF 垂直的面是, 3)与面EFGH 垂直的面是,4)在长方体中每个面都有个平面和它垂直, 5)与面ADHE 垂直的棱有, 6)与棱 DC 垂直的面有,2.用可以检验墙面是否垂直于水平面, 用可以检验橱柜的隔板是否垂直于侧面, 用可以检验两个墙面是否垂直.3.长方体中相邻的两个面有的关系. 二、选择题:4.长方体中,与一个面垂直的面有 ( )A.1个B.2个C.3个D.4个5.下列方法中,不能用于检验平面与平面是否垂直的是 ( )EA BFDC GHGFEHADCB11 / 11 A.长方形纸片 B.三角尺 C.合页型折纸 D.铅垂线三、解答题6.在长方体ABCD-EFGH 中,1)写出所有与面ABCD 垂直的面;2)写出所有与面DCGH 垂直的面;3)面DCFE 与面BCGF 是否垂直?如果垂直,请在图中画出现成的合页型折纸;4)写出与面DCFE 垂直的面.7.如果把骰子看作是一个正方体.点数1的对面是6,点数的对面是2,点数4的对面是3.1)与点数2的面垂直的面的点数分别是多少?2)与点数1的面垂直的面的点数之和是多少?8. 如图,在桌面上放着一本翻开的书,图中有几个面与桌面垂直?你的判断依据是什么?请把这些写出来.B A E F D H GC A B C DHF E G。

沪教版(五四制)六年级下册数学第八章 长方体的再认识同步讲义

沪教版(五四制)六年级下册数学第八章 长方体的再认识同步讲义

-------------长方体的再认识(★★★)1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱、棱与面、面与面的位置关系;4.掌握棱与面、面与面的垂直及平行的验证方法;知识结构棱、面的三个特点:(1)长方体的每个面都是长方形构成长方体的三要素:点、棱、面(2)长方体的十二条棱可分为三组,每组中的四条棱相等(3)长方体的六个面可分为三组,每组中两个面的形状大小相同面与面的位置关系(1)平行.检验方法:棱与棱的位置关系:棱与平面的位置关系:长方形纸片(1)相交 (1)平行(2)垂直检验方法:(2)垂直.检验方法:(3)异面⑴铅垂线法⑵长方形纸片法(1)铅垂线(2)三角板法(3)合页型折纸(2)垂直检验方法:⑴铅垂线法⑵三角板法⑶合页型折纸1.本部分建议时长5分钟.2.请学生先试着自行补全上图,发现学生有遗忘时教师帮助学生完成.1.本部分建议时长20分钟.2.进行例题讲解时,教师宜先请学生试着自行解答.若学生能正确解答,则不必做过多的讲解;若学生不能正确解答,教师应对相关概念、公式进行进一步辨析后再讲解例题.3.在每一道例题之后设置了变式训练题,应在例题讲解后鼓励学生独立完成,以判断学生是否真正掌握了相关考点和题型.4.教师应正确处理好例题与变式训练题之间的关系,宜采用讲练结合的方式,切不可将所有例题都讲完后再让学生做变式训练题.例题1一个长方体中,有公共点的三条棱的长度的比为2:3:4,最小的一个面的面积为2162cm , (1)求这个长方体的所有棱长的总和;“典例精讲”这一部分的教学,可采用下面的策略:“知识结构”这一部分的教学,可采用下面的策略:(2)求这个长方体的表面积; (3)求这个长方体的体积。

(★★)答案:(1)216cm ;(2)18722cm ;(3)51843cm两条较短的棱为长和宽的长方形的面积,是最小的面积,又知三棱长之比,故可求得三棱长,进而可得其他所求。

难点详解沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试题(含答案解析)

难点详解沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试题(含答案解析)

六年级数学第二学期第八章长方体的再认识重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由4个相同的小正方体组合而成的几何体,从左面看得到的平面图形是().A.B.C.D.2、如图所示,该几何体的主视图是()A.B.C.D.3、如图,一个圆柱体被截去一部分,则该几何体的主视图是()A.B.C.D.4、下列几何体中,面的个数最多的是()A.B.C.D.5、如图所示的几何体的俯视图是()A.B.C.D.6、如图所示的几何体的主视图是()A.B.C.D.7、一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.8、如图所示的一个六角螺帽毛坯底面正六边形的边长、高和内孔直径都相等,其主视图是()A.B.C.D.9、下面的几何体的左视图是()A.B.C.D.10、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方体的一个平面展开图如图所示,则在原正方体上“百”的对面是 __.2、一个棱长为2厘米、6厘米、8厘米的长方体,最多可切割出棱长为1厘米、2厘米、3厘米的长方体_______个.3、一个长方体的每一条棱扩大到原来的3倍后,它的体积是3162cm ,原来长方体的体积是_______3cm .4、在长方体1111ABCD A B C D 中,与平面11AA D D 垂直的棱有________条.5、凡与铅垂线重合的直线必与平面_______(填“垂直”或“平行”).三、解答题(5小题,每小题10分,共计50分)1、如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a ,图2中几何体的表面积为b ,那么a 与b 的大小关系是 ;A .a >b ;B .a <b ;C .a =b ;D .无法判断.(2)小明说“设图1中大正方体的棱长之和为m ,图2中几何体的各棱长之和为n ,那么n 比m 正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.2、已知长方体无盖纸盒的长、宽、高分别为9cm 、7cm 、5cm ,这个纸盒的外表面积和容积各是多少?3、如图是由若干个相同的正方体组成的立体图形从上往下看所得到的平面图形,正方形上标注的数字表示该位置上正方体的个数.请画出这个立体图形从左面看所得到的平面图形.4、补画下列图形,使它成为长方体.(注意:遮住的线段应该用虚线表示)5、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.-参考答案-一、单选题1、D【分析】根据左视图的定义即可求解.【详解】从左面看得到的平面图形是故选D.【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.2、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3、C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是一个的矩形少了一个角,如图所示:,故选:C.【点睛】本题考查了三视图,解题关键是树立空间观念,准确识图,注意:看见的棱是实线.4、C【分析】分别分析选项中各个图形有几个面然后确定正确答案即可.【详解】解:A选项有一个底面一个侧面,共两个面;B选项有两个底面三个侧面,共五个面;C选项有两个底面四个侧面,共六个面;D选项有两个底面一个侧面,共三个面;故选:C.【点睛】本题主要考查立体图形的认识,分别数出每个图形的面数是解题的关键.5、A【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个三角形.故选:A.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.6、B【分析】根据主视图即从物体的正面观察进而得出答案.【详解】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B【点睛】本题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.7、B【分析】主视图的列数与俯视图的列数相同,且每列小正方形的数目为俯视图中该列小正方数字中最大数字,从而可得出结论.【详解】由已知条件可知:主视图有3列,每列小正方形的数目分别为4,2,3,根据此可画出图形如下:故选:B.【点睛】本题考查了从不同方向观察物体和几何图像,是培养学生观察能力.8、C【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看,是一行三个矩形,中间的矩形的长较大,两边的矩形相同.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解题关键是明确主视图的概念,准确识图.9、D【分析】根据几何体的特点即可求解.【详解】从左边看,第一排三个正方形,第二排两个,第三排一个.即故选D.【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、建【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在原正方体上“百”的对面是“建”.故答案为:建.【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.2、16【分析】先分别求出原长方体和需要切割的小长方体的体积,再相除计算即可.【详解】∵()326896cm ⨯⨯=,()31236cm ⨯⨯=, ∴96616÷=(个).故答案为:16.【点睛】此题考查长方体的体积,解题的关键是抓住长方体切割成小正方体的特点进行计算.3、6【分析】根据长方体的体积公式:v=abh ,再根据积的变化规律,积扩大是倍数等于因数扩大倍数的乘积.由此解答.【详解】解:()()31623336cm ÷⨯⨯=. 所以,原长方体的体积是63cm .故答案为:6.【点睛】此题考查的目的是使学生掌握长方体体积的计算方法,理解长方体体积的变化规律是解题关键. 4、4【分析】长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D 垂直的棱.【详解】解:如图示:根据图形可知与面AA D D垂直的棱有AB,CD,C D'',A B''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直.5、垂直【分析】根据铅垂线法可直接作答.【详解】因为凡与铅垂线重合的直线必与平面垂直;故答案为垂直.【点睛】本题主要考查长方体中棱与面的位置关系,熟练掌握位置关系解题的关键.三、解答题1、(1)C;(2)不正确,理由见解析;(3)图③不是图②几何体的表面展开图,改后的图形见解析【分析】(1)根据“切去三个面”但又“新增三个面”,因此与原来的表面积相等;(2)根据多出来的棱的条数及长度得出答案;(3)根据展开图判断即可.【详解】解:(1)根据“切去三个小面”但又“新增三个相同的小面”,因此与原来的表面积相等,即a =b 故答案为:a =b ;(2)如图④红颜色的棱是多出来的,共6条,当且仅当每一条棱都等于原来正方体的棱长的一半,n 比m 正好多出大正方体的3条棱的长度,故小明的说法是不正确的;图④ 图⑤(3)图③不是图②几何体的表面展开图,改后的图形,如图⑤所示.【点睛】本题考查几何体表面积的意义、棱长之和、几何体的表面展开图,考查学生的观察能力,关键是抓住几何图形变换后边长和棱长的变与不变的量.2、外表面积为2223cm ,容积为2315cm【分析】根据长方体的表面积和容积的计算公式计算即可;【详解】纸盒的外表面积为()29795752223cm ⨯+⨯+⨯⨯=;容积为3975315cm ⨯⨯=. 答:这个纸盒的外表面积为2223cm ,容积为2315cm .【点睛】本题主要考查了长方体的棱与棱的关系及面积、体积公式应用,准确分析是解题的关键.3、图见解析.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为2,3.据此可画出图形.【详解】解:如图【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4、画图见详解【分析】直接根据长方体的概念进行作图即可.【详解】【点睛】本题主要考查长方体的概念,关键是根据长方体的概念进行作图即可.5、见解析【分析】主视图有3列,每列小正方形数目分别为1,2,3;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每行小正方形数目分别为1,1,2.【详解】解:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.。

沪教版数学六年级下册第八章《长方体的再认识》复习教学设计

沪教版数学六年级下册第八章《长方体的再认识》复习教学设计

沪教版数学六年级下册第八章《长方体的再认识》复习教学设计一. 教材分析沪教版数学六年级下册第八章《长方体的再认识》复习教学内容主要包括长方体的特征、表面积和体积的计算方法以及长方体在实际生活中的应用。

本章内容是对长方体知识的系统复习和巩固,旨在帮助学生深化对长方体的认识,提高空间想象能力和解决问题的能力。

二. 学情分析六年级的学生已经学习过长方体的相关知识,对长方体的特征、表面积和体积的计算方法有一定的了解。

但在实际应用中,部分学生可能会遇到困难和问题。

因此,在复习教学中,需要关注学生的学习情况,针对性地进行指导和帮助。

三. 教学目标1.知识与技能:通过对长方体的再认识,使学生掌握长方体的特征、表面积和体积的计算方法,提高空间想象能力和解决问题的能力。

2.过程与方法:通过复习教学,培养学生自主学习、合作学习的能力,提高学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和团队协作精神,使学生在数学学习中获得成就感。

四. 教学重难点1.教学重点:长方体的特征、表面积和体积的计算方法。

2.教学难点:长方体在实际生活中的应用,空间想象能力的培养。

五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考,发现长方体的特征和计算方法。

2.案例分析法:教师提供实际生活中的案例,引导学生运用长方体的知识解决问题。

3.小组合作学习法:学生分组讨论,共同完成任务,提高团队协作能力。

六. 教学准备1.教学课件:制作长方体的特征、表面积和体积的计算方法的教学课件。

2.教学案例:收集实际生活中的长方体应用案例。

3.学习任务单:设计学习任务单,引导学生进行自主学习和合作学习。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾长方体的特征、表面积和体积的计算方法,激发学生的学习兴趣。

2.呈现(10分钟)教师利用课件展示长方体的特征和计算方法,让学生直观地感受长方体的结构。

沪教版小学六年级第八章 长方体的再认识2

沪教版小学六年级第八章 长方体的再认识2

第八章 长方体的再认识 第二课时一、 概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。

③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。

3、 正方体是特殊的长方体。

4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。

记作:平面ABCD 或平面α。

5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。

6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。

长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。

7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交;② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行;③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。

8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。

9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ;④ 无盖表面积 = S ab -、S bc -、S bc -10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。

11、长方体不一定是正方体;正方体一定是长方体。

12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。

13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。

14、长方体中面与面的位置关系有2种,分别是:平行、垂直。

沪教版六年级数学长方体的再认识讲义家教

沪教版六年级数学长方体的再认识讲义家教

添加标题
添加标题
添加标题
添加标题
容积的计算公式为:容积=长×宽× 高。
容积的单位是立方米,常用于描述 物体的体积大小。
长方体容积的计算公式
定义:长方体容积是指长方体内部所占的空间大小 计算公式:容积 = 长 × 宽 × 高 单位:容积的单位是立方单位,如立方米、立方厘米等
应用:长方体容积的计算是日常生活中常见的需求,如计算容器能容纳多少液体等
解题思路:根据长方 体体积的计算公式, 体积=长×宽×高,代 入题目中给出的数值 进行计算。
计算过程:体积=8 厘米×6厘米×4厘 米=192立方厘米。
答案:这个长方体 的体积是192即长、宽、高的乘积。
长方体容积的定义
需要注意的是,长方体的容积是指 其内部所能容纳的空间,不包括其 外部的表面积。
计算长方体容积的实例
题目:一个长方体水槽,长5分米,宽4分米,高3分米,求这个水槽的容积是多少升? 题目:一个长方体纸盒,长10厘米,宽6厘米,高5厘米,这个纸盒的容积是多少立方厘米? 题目:一个长方体鱼缸,长40厘米,宽30厘米,高20厘米,这个鱼缸最多能装多少升水? 题目:一个长方体冰箱,长5分米,宽4分米,高3分米,这个冰箱的容积是多少升?
长方体应用题的实例解析
体积计算:求长方体的体积,可以通过长、宽、高的乘积得出。 表面积计算:求长方体的表面积,可以通过计算六个面的面积之和得出。 截面形状:通过截取长方体的不同位置,可以得到不同的截面形状。 实际应用:长方体在现实生活中有着广泛的应用,如包装箱、建筑材料等。
汇报人:XX
长方体应用题的类型
计算长方体的表面积 计算长方体的体积 长方体在生活中的应用 长方体的组合与切割问题
长方体应用题的解题思路

最新沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试卷(精选含答案)

最新沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试卷(精选含答案)

六年级数学第二学期第八章长方体的再认识重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由4个相同的小正方体组合而成的几何体,从左面看得到的平面图形是().A.B.C.D.2、如图所示零件的左视图是()A.B.C.D.3、下列几何体中,截面不可能是三角形的是()A.长方体B.正方体C.圆柱D.圆锥4、若要使图中的平面展开图折叠成正方体后,相对面上两个数之和为6,则y x ()A.625 B.64 C.125 D.2435、如图所示的几何体由一个长方体和一个圆锥组成,则该几何体的俯视图是()A.B.C.D.6、如图摆放的几何体的左视图是()A.B.C.D.7、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A.3个B.4个C.5个D.6个8、如图是由7个相同的小正方体搭成的几何体,在标号为①的小正方体上方添加一个小正方体后,所得几何体的三视图与原几何体的三视图相比没有发生变化的是()A.主视图和俯视图B.主视图和左视图C.左视图和俯视图D.主视图和左视图9、分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.B.C.D.10、如图所示的立体图形的主视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果把骰子看作是一个正方体,点数1的对面是6,点数5的对面是2,点数4的对面是3,则与点数是3的面垂直的所有的面的点数和是_______.2、如果一个长方体的棱长总和是108cm,长、宽、高的比是4:3:2,那么该长方体的体积是_______3cm.3、观察一个长方体最多能看到它的________个面.4、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“成”字所在面相对面上的汉字是_______.5、如图所示,将图沿虚线折起来得到一个正方体,那么“1”的对面是_____,“2”的对面是_____(填编号).三、解答题(5小题,每小题10分,共计50分)1、如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)2、如图,三棱柱的上下底面均为周长为12cm 的等边三角形,现要从中截取一个上下底面均为等边三角形且底面周长为3cm 的小三棱柱.(1)请写出截面的形状______;(2)若小三棱柱的高为6cm ,则截去小三棱柱后,剩下的几何体的棱长总和是多少?3、在奇妙的几何之旅中,我们惊奇的发现图形构造的秘密:点动成线,线动成面,面动成体.这样就 构造出来各种美妙的图案.我们将直角边长分别为3,4,斜边长5的直角三角形绕三角形其中一边旋 转一周就可以得到一个几何体.请你计算一下所有几何体的体积(提示:21,33V r h =ππ≈). 4、将棱长为3厘米的正方体木块表面涂成红色,切割成棱长为1厘米的小正方体,分别求出三面红色、两面红色和没有红色的小正方体的数量.5、画出如图所示几何体的三视图.-参考答案-一、单选题1、D【分析】根据左视图的定义即可求解.【详解】从左面看得到的平面图形是故选D.【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.2、D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选:D.【点睛】本题考查了三视图,从左边看得到的图形是左视图,注意看到的线画实线.3、C【分析】根据各个几何体截面的形状进行判断即可得.【详解】解:A、长方体的截面可能是三角形,则此项不符题意;B、正方体的截面可能是三角形,则此项不符题意;C、圆柱的截面可能是圆形、长方形、梯形、椭圆形,不可能是三角形,则此项符合题意;D、圆锥的截面可能是三角形,则此项不符题意;故选:C.【点睛】本题考查了截一个几何体,熟练掌握常见几何体的截面特征是解题关键.4、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可得答案.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,1与x是相对面, 3与y是相对面,∵相对面上两个数之和为6,∴x=5,y=3,∴35125,y x ==故选:.C【点睛】本题主要考查了正方体相对两个面上的文字或数字,注意正方体是空间图形,掌握“正方体的表面展开图,相对的面之间一定相隔一个正方形.”是解题的关键.5、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面可以看到一个矩形与和它两条较长边相切的圆,圆有圆心,如图所示:故选:D .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,解题关键是树立空间观念,准确识图.6、A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7、B【分析】根据立体图形的定义即可解答;【详解】正方体、长方体、圆柱、六棱柱是柱体;圆锥、六棱锥是椎体;球是球体;圆台是台体.故答案为:B【点睛】此题考查立体图形的认识,掌握认识立体图形是解答本题的根本.8、A【分析】主视图是从正面观察得到的图形,左视图是从左面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.【详解】解:若在正方体①的正上方放上一个同样的正方体,则主视图与原来相同,都是3层,底层3个正方形,中间是2个正方形,上层左边是1个正方形,左齐;俯视图与原来相同,都是两层,上层3个正方形,下层1个正方形,左齐;左视图发生变化,原来是左视图的右边1列只有1个正方形,后来变为2个正方形.所以主视图不变,俯视图不变.故选:A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从左面观察得到的图形,俯视图是从物体的上面看得到的视图.9、D【分析】根据正方体、三棱柱、圆锥、圆柱的三视图的形状进行判断即可.【详解】解:根据三视图的定义可知,选项A主视图和左视图都是三角形,但俯视图是有圆心的圆;选项B主视图和左视图都是矩形,但俯视图是圆;选项C主视图是一个矩形,中间有一条线段,左视图是矩形,俯视图是三角形;选项D的主视图、左视图和俯视图都是正方形,完全相同.故选D.【点睛】本题考查简单几何体的三视图,掌握简单几何体三视图的形状是正确判断的前提.10、B【分析】从正面看得到的图形是主视图,根据正视图的定义依次判断即可得答案.【详解】解:A.为左视图;B.从正面看,底层是三个小正方形,上层右边是两个小正方形,右齐.C.不是三视图;D.不是三视图;故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题1、14【分析】根据正方体中面与面的位置关系知道除了点数是4的面,其他的面都与点数是3的面垂直.【详解】+++=.解:与点数是3的面垂直的所有的面的点数和是165214故答案是:14.【点睛】本题考查正方体中面与面的位置关系,解题的关键是搞清楚正方体中各个面的位置关系.2、648【分析】根据题意易得长方体的长、宽、高的长度,然后根据长方体的体积计算公式求解即可.【详解】解:由题意得:()÷÷,∴长为:34=12cm1084+3+24=3⨯,⨯,宽为:33=9cm⨯,高为:23=6cm∴长方体的体积为:31296=648cm⨯⨯.故答案为648.【点睛】本题主要考查长方体的体积及棱长和,关键是根据题意得到长方体的长宽高.3、3【分析】根据从不同方向看物体进行判断即可;【详解】由分析可知,从一个位置观察长方体最多能看到它3个面;故答案是3.【点睛】本题主要考查了从不同方向观察物体和几何体,准确判断是解题的关键.4、非【分析】由正方体展开图的性质,得出“成”字所在面相对面上的汉字即可.【详解】由正方体展开图的性质,可得:“成”与“非”是相对面,“功”与“然”是相对面,“绝”与“偶”是相对面.故答案为:非.【点睛】本题主要考查正方体的展开图的性质,掌握正方体展开图的性质是解题关键.5、5 4【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,“3”与“6”是相对面.故答案为:5,4.【点睛】本题考查的是正方体的表面展开图,掌握正方体的表面展开图的特点是解题的关键.三、解答题1、(1)360平方厘米;(2)花费1.8元钱.【分析】(1)根据长方体表面积公式计算即可;(2)根据题意列式计算即可.【详解】解:(1)由题意得,()()2⨯⨯+⨯+⨯=;212612666360cm答:制作这样的包装盒需要360平方厘米的硬纸板;=平方厘米,(2)1平方米10000÷⨯⨯=(元),36010000510 1.8答:制作10个这的包装盒需花费1.8元钱.【点睛】本题考查了几何体的表面积,正确的计算长方体的表面积是解题的关键.2、(1)长方形;(2)46【分析】(1)依据大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱,即可得到截面的形状;(2)依据△ADE 是周长为3的等边三角形,△ABC 是周长为10的等边三角形,即可得到四边形DECB 的周长,再计算棱长总和.【详解】解:(1)由题意可知,截面是长方形,故填:长方形;(2)1cm DE =,3cm BD CE ==,4cm BC =()1334246222446+++⨯+⨯=+=(cm ). 【点睛】本题主要考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.3、48,36,28.8.【分析】分别绕直角三角形三边旋转时形成三种情况下的几何体,分别根据公式来求即可.【详解】当直角三角形绕边长为3的一边旋转时,得到底面半径为4高为3的圆锥,其体积为:2114331634833V π=⨯⨯≈⨯⨯⨯=; 当直角三角形绕边长为4的一边旋转时,得到底面半径为3高为4的圆锥,其体积为:211343943633V π=⨯⨯≈⨯⨯⨯=; 在直角边长为3,4,斜边长为5的直角三角形中,斜边上的高为:345=2.4⨯÷,当直角三角形绕边长为5的一边旋转时,得到底面半径为2.4,高和为5的两个共底圆锥,其体积为:2112.453 5.76528.833V π=⨯⨯≈⨯⨯⨯=. 【点睛】本题主要考查了点、线、面、体之间的关系,根据题目条件运用空间几何体的知识得出旋转形成的几何体是解题的关键.4、三面红色的8个,两面红色的12个,没有红色的1个.【分析】根据题意得三面涂色的在8个顶点上,两面涂色的在除了顶点外的棱上,没有颜色在第二层正中间,故可直接得出答案.【详解】解:由题意得:因为313÷=(个),所以大正方体每条棱长上面都有3个小正方体;三面涂色的在8个顶点处,所以一共有8个;两面都涂有红色,在除了顶点外的棱上:()3111212--⨯=(个);一面涂色的在大正方体的6个面上,共166⨯=(个);没有涂色的在第二层正中间,只有1个.答:三面涂色的小正方体有8个,两面涂色的有12个,没有涂色的只有1个.【点睛】本题主要考查长方体的面与面的位置关系的应用,关键是根据题意得到大正方体的切割方式,然后分别求出问题的答案即可.5、见解析【分析】主视图和左视图都是等腰梯形,俯视图是圆环,依此画出即可;【详解】如图所示.依次为主视图、左视图、俯视图【点睛】考查了作图-三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.。

沪教版数学六年级下册第八章《长方体的再认识》教学设计

沪教版数学六年级下册第八章《长方体的再认识》教学设计

沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。

教材通过丰富的图片和实际例子,帮助学生进一步理解和掌握长方体的特征,提高学生的空间想象能力和抽象思维能力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对长方体已经有了一定的了解。

但是在具体操作和解决问题时,部分学生可能会存在一些困难。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。

三. 教学目标1.知识与技能:学生能够进一步理解和掌握长方体的特征,提高空间想象能力和抽象思维能力。

2.过程与方法:通过观察、操作、思考、交流等过程,学生能够深化对长方体的认识,培养解决问题的能力。

3.情感态度与价值观:学生能够积极参与数学学习,体验数学学习的乐趣,增强对数学的兴趣。

四. 教学重难点1.教学重点:学生能够进一步理解和掌握长方体的特征。

2.教学难点:学生能够在实际问题中灵活运用长方体的特征,解决问题的能力。

五. 教学方法1.情境教学法:通过丰富的图片和实际例子,激发学生的学习兴趣,提高学生的空间想象能力。

2.引导发现法:教师引导学生观察、操作、思考,发现长方体的特征,培养学生的抽象思维能力。

3.合作交流法:学生通过小组合作、交流,共同解决问题,提高学生的合作能力和沟通能力。

六. 教学准备1.教具准备:长方体模型、图片、实物等。

2.学具准备:学生每人准备一个长方体模型。

七. 教学过程1.导入(5分钟)教师通过展示长方体的图片和生活实例,引导学生回顾长方体的特征,激发学生的学习兴趣。

2.呈现(10分钟)教师通过长方体模型和实物,引导学生观察和操作,让学生直观地感受长方体的特征。

同时,教师引导学生思考:长方体有哪些特征?这些特征是如何体现在实际物体中的?3.操练(10分钟)教师提出一些有关长方体的问题,让学生分组讨论和操作,共同解决问题。

沪教版六年级数学长方体的再认识讲义+家教

沪教版六年级数学长方体的再认识讲义+家教

学科教师辅导讲义课题长方体的再认识教学目的1、认识长方体的面、棱、顶点以及长宽高(棱长)的含义。

2、掌握长方体直观图的画法。

3、掌握长方体中棱、面的位置关系,以及空间性质。

教学内容一、作业检查二.长方体知识梳理1.长方体的元素:8个顶点、12条棱,6个面长方体的表面积(6个面的面积之和)、体积(长×宽×高)长方体的每个面都是长方形.长方体的十二条棱可以分成三组:每组中的四条棱的长度相等长方体的六个面可以分成三组,每组中的两个面的形状和大小都相同.2.长方体直观图的画法:斜二侧画法.注意:①12条棱分三组,注意每组4条是互相平行、相等的;其中看不见的三条棱画成虚线,②把水平放置的两个面画成含45°角的平行四边形,③画长方体直观图时,宽要减半画。

3.长方体中棱与棱的位置关系:(1)如图所示的长方体AG中,棱EH与棱EF所在的直线在同一个面内,它们有唯一的公共点,我们称这两条棱相交.(2)棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行.(3)棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面.定义:空间两条直线有三种位置关系:相交、平行、异面.(1)一般地,如果直线AB与直线CD在同一平面内,具有唯一公共点,那么称这两条直线的位置关系为相交,读作:直线AB与直线CD相交.(2)如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:AB∥CD,读作:直线AB与直线CD平行.(3)如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面.4、长方体中棱与面的位置关系:(1)如图所示的长方体AG中,棱(直线)EA垂直于面ABCD。

读作:棱(直线)EA垂直于平面ABCD(2) 如图所示的长方体AG中,棱(直线)EF平行于面ABCD。

读作:棱(直线)EF平行于平面ABCD5、长方体中面与面的位置关系:(1)如图所示的长方体AG中,平面EFBA垂直于面ABCD。

上海市六年级数学第二学期同步课程春季班第19讲:长方体的再认识-教师版

上海市六年级数学第二学期同步课程春季班第19讲:长方体的再认识-教师版

上海市六年级数学第二学期同步课程长方体的再认识是初中数学六年级下学期第4章的内容.通过本章的学习,同学们需要掌握长方体的表示方法、长方体直观图的画法,理清长方体中棱与棱的位置关系、棱与平面的位置关系、平面与平面的位置关系,并要学会如何检验直线与平面是否垂直、直线与平面是否平行、平面与平面是否垂直、平面与平面是否平行的方法.难点是相关的长方体的表面积和体积的计算.1、长方体的元素长方体有六个面,八个顶点,十二条棱.2、长方体的元素特征(1)长方体的每个面都是长方形.(2)长方体的十二条棱可以分为三组,每组中的四条棱的长度相等.长方体的再认识内容分析知识结构模块一:长方体的元素知识精讲(3)长方体的六个面可以分为三组,每组中的两个面的形状和大小相同.3、正方体是特殊的长方体例题解析【例1】填空:(1)长方体有______个顶点;(2)长方体有______个面,每个面都是______,相对的两个面的面积______;(3)长方体共有______条棱,按棱的长短可分为______组,每组棱的长度相等,每组有______条棱.【难度】★【答案】见解析.【解析】(1)8;(2)6;长方形;相等;(3)十二;三;四.【总结】考查长方体的相关元素的概念.【例2】判断:(1)若长方体的十二条棱都相等,这个长方体就是正方体;()(2)桌面所在的平面的大小就是桌面的大小;()(3)长方体共有6个面;()(4)长方体的六个面,至少有四个面的形状、大小相同;()(5)平面就是水平面;()(6)水平面是平面.()【难度】★【答案】见解析.【解析】(1)正确;(2)错误:桌面所在的平面是无穷无尽的,但是桌面的面积是固定的;(3)正确;(4)错误,长方体至少有两个面形状大小相同;(5)错误:平面不一定是水平面(6)正确:水平面就是一个平面.【总结】考查长方体的元素,注意进行辨析.【例3】在长方体ABCD– EFGH中,与棱EF相等的棱是()A.棱AB、棱CD、棱GH B.棱AB、棱AE、棱BFC.棱GH、棱EH、棱FG D.棱BC、棱CG、棱GF【难度】★【答案】A【解析】画图即可观察出,与一条棱相等的棱共有三条,分别是棱AB、棱CD、棱GH.【总结】考查长方体的棱的概念.【例4】用一根长为100厘米的塑料管和橡皮泥做一个棱长为5厘米,6厘米和7厘米的长方体架子,应该如何截取?材料够吗?【难度】★★【答案】够,还剩28cm材料剩余.【解析】由题意,若按照棱长分别为5cm、6cm、7cm来做的话,可以做一个长方体架子,用掉(5+6+7)×4=72cm材料,还有28cm材料剩余.【总结】考查长方体的总棱长的和的概念.【例5】棱长总和是24厘米的正方体,它的表面积为______,体积为______.【难度】★★【答案】24平方厘米;8立方厘米.【解析】由题意可知正方体的棱长为:24÷12=2cm,故表面积为:2×2×6=24平方厘米,体积为:2×2×2=8立方厘米.【总结】考查正方体的表面积与体积的计算.【例6】长方体的长、宽、高之比为2 : 1 : 1,棱长总和是80厘米,把这个长方体截成两正方体时,表面积增加了_____.【难度】★★【答案】50平方厘米.【解析】设长为2x,宽为x,高为x,则有:(2x+x+x)×4=80,解得:x=5,所以长方体的长为:5×2=10cm;宽为5×1=5cm;高为5×1=5cm,当长方体被截成两个正方体时,即增加了两个面,则增加的面积为:5×5×2=50平方厘米.【总结】考查正方体的表面积问题,注意切割后表面积的变化.【例7】 要做一个棱长分别为3厘米、5厘米和7厘米的无盖的长方体纸盒,最少需要多大的纸?最多需要多大的纸? 【难度】★★★【答案】最少107平方厘米,最多127平方厘米.【解析】要使得需要的纸最少:即使得无盖的那一面面积最大,此时需要: (3×5+3×7)×2+5×7=107平方厘米;要使得需要的纸最大:即使得无盖的那一面面积最小,此时需要: (3×7+5×7)×2+3×5=127平方厘米.【总结】考查长方体的表面积的运算,注意对无盖的理解.【例8】 一根长为36分米的铁丝截开后刚好能够搭成一个长方体架子,这个长方体架子的长、宽、高的长度均为整数分米,且互不相等,求这个长方体的体积. 【难度】★★★【答案】12立方分米或立方分米15或24立方分米.【解析】由题意可得,长宽高的和为36÷4=9,由题意有以下三种情况:①长、宽、高分别为:1、2、6,此时体积为:12立方分米 ②长、宽、高分别为:1、3、5,此时体积为:15立方分米 ③长、宽、高分别为:2、3、4,此时体积为:24立方分米 【总结】考查长方体的体积,注意分类讨论.1、 长方体的直观图画法:斜二侧画法水平放置的长方体直观图通常画法的基本步骤:第一步:画平行四边形ABCD ,使AB 等于长方体的长,AD 等于长方体宽的二分之一,45DAB ∠=︒.(如图1所示)第二步:过AB 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长度都等于长方体的高.(如图2所示)模块二:长方体直观图的画法知识精讲第三步:顺次联结E 、F 、G 、H .(如图3所示)第四步:将被遮住的线段改用虚线(隐藏线)表示.(如图4所示)图4表示的长方体通常表示为ABCD -EFGH .它的六个面通常表示为:平面ABCD 、平 面ABFE 、平面BCGF 等.它的十二条棱通常分别表示为:棱AB 、棱AE 、棱EF 等.【例9】 图中长方体正确表示为( ) A .长方体ABCD B .长方体EFGH C .长方体AB D .长方体ABCD -EFGH 【难度】★ 【答案】D【解析】长方体的表示方法必须表示出每一个点,并且按照一定的顺序来表示. 【总结】考查长方体的表示方法.【例10】 要补全一个长方体的直观图,至少需要知道_____条棱,这几条棱应该分别是____________. 【难度】★【答案】3;长、宽、高.【解析】知道长、宽、高,便能画出长方体的直观图. 【总结】考查长方体的画法.例题解析ABCDABCDEFG HAB CD E F GHABCD E FG H图1 图2 图3图4 ABCDEFGH【例11】 画一个棱长分别是2厘米、3厘米、4厘米的长方体. 【难度】★ 【答案】见解析.【解析】①画平行四边形ABCD ,使AB 等于4,AD 等于长方体宽的二分之一,即1.5, 作45DAB ∠=︒(如图1所示);②过AB 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长 度都等于长方体的高(如图2);③顺次联结E 、F 、G 、H ,(如图3所示);④将被遮住的线段改用虚线(隐藏线)表示.(如图4)图4即为所求的长方体ABCD -EFGH .【总结】考查长方体的斜二测画法,注意对画图语言的准确表示.【例12】 画一个棱长总和为36厘米的正方体. 【难度】★★ 【答案】见解析.【解析】由题可确定正方体棱长为36÷12=3cm ,根据斜二测画法要求即可. 【总结】考查长方体的画法.ABCDAC D EFGHABCD EFGHABC D EFGH图1图2 图3图4【例13】 补画下列各图,使它成为长方体(虚线部分表示被遮住的部分).【难度】★★ 【答案】见解析.【解析】如下图所示:原图中给的三条线一定分别是长宽高,按照图示补全即可.(1) (2) (3) (4) 【总结】考查长方体的画法,注意对所给的棱的准确分析.1、 长方体中棱与棱的位置关系如图所示的长方体ABCD -EFGH 中:棱EH 与棱EF 所在的直线在同一平面内,它们有唯一的公共点,我们称这两条棱相交.棱EF 与棱AB 所在的直线在同一平面内,但它们没有公共点,我们称这两条棱平行.棱EH 与棱AB 所在的直线既不平行,也不相交,我们称这两条棱异面.空间两条直线有三种位置关系:相交、平行、异面.模块三:长方体中棱与棱位置关系的认识知识精讲A BCD EFGH【例14】 在如图所示的长方体中,哪些棱与棱AD 平行?哪些棱与AD 相交?哪些棱与AD异面? 【难度】★ 【答案】见解析.【解析】与棱AD 平行的棱有:棱BC 、棱FG 、棱EH ;与棱AD 相交的棱有:棱AB 、棱AE 、棱DH 、棱DC ; 与棱AD 异面的棱有:棱EF 、棱HG 、棱BF 、棱CG . 【总结】考查棱与棱的位置关系.【例15】 在长方体中,每一条棱与______条棱平行,每一条棱与______条棱相交,每一条棱与______条棱异面,互相平行的棱有______对,互相异面的棱有______对,相交的棱有______对. 【难度】★★【答案】3;4;4;18;48;24.【解析】①每一条棱与3条棱平行;②每条棱与4条棱相交;③每条棱与4条棱异面; ④每组互相平行的4条棱中,同一平面内互相平行的共有4对,异面平行的有2对; 因此共有:(4+2)×3=18对棱平行;⑤与每一条棱异面的有4对,那么共有:12×4=48 对棱互相异面;⑥因为每条棱与4条棱相交,剔除重复的部分,所以相交的棱共有: 4×12÷2=24对.【总结】考查长方体中棱与棱之间的位置关系,这些都是不变的,可以要求学生记住.【例16】 如图,在长方体ABCD —EFGH 中,填写下列各对线段所在直线的位置关系.(1)棱AD 与AG :_________________; (2)棱DH 与EG :_________________; (3)EG 与BD :_________________; (4)棱DC 与DB :_________________. 【难度】★★ 【答案】见解析.【解析】(1)相交;(2)异面;(3)异面;(4)相交. 【总结】考查长方体中棱与棱之间的位置关系.例题解析ABCD EFGH ABCD EFGH【例17】 垂直于同一直线的两条直线的位置关系是____________. 【难度】★★【答案】平行或异面或垂直.【解析】在同一平面内,垂直于同一条直线的两直线平行;若没有强调同一平面,则垂直于同一直线的两直线可能异面,也可能垂直. 【总结】考查直线的位置关系.【例18】 如果两条直线在同一平面上的投影是两条平行线,那么这两条直线的位置关系是__________. 【难度】★★★ 【答案】见解析.【解析】平行或异面,由于是投影,那么原两条直线未必在同一平面内,可能异面,只要满 足投影平行即可,可以让学生自己拿着笔,打开手电筒演示一下. 【总结】考查两直线的位置关系.1、 长方体中棱与平面的位置关系如图1,直线PQ 垂直于平面ABCD ,记作:直线PQ 平面ABCD ,读作:直线PQ 垂直于平面ABCD .如图2,直线PQ 平行于平面ABCD ,记作:直线PQ // 平面ABCD ,读作:直线PQ 平行于平面ABCD .模块四:长方体中棱与平面位置关系的认识知识精讲ABCD PQ ABCDPQ 图1图2如图4所示的长方体ABCD -EFGH 中:棱EF 与面BCGF ,棱FG 与面ABFE ,棱BF 与面ABCD 都给我们以直线与平面垂直的形象.棱EF 与面ABCD ,棱BF 与面ADHE ,都给我们以直线与平面平行的形象. 2、 检验直线与平面是否垂直的方法“铅垂线”法、“三角尺法”、“合页型折纸”法. 3、 检验直线与平面是否平行的方法“铅垂线”法、“长方形纸片”法.【例19】 教室里的日光灯与地面的位置关系是______,桌腿与桌面的位置关系是______. 【难度】★ 【答案】见解析.【解析】(1)平行;(2)垂直. 【总结】考查直线与平面的位置关系.【例20】 如图,在长方体ABCD -EFGH 中:(1)与棱DH 垂直的平面是___________________; (2)与棱BC 平行的平面是___________________; (3)与平面ADHE 垂直的棱是________________; (4)与平面EFGH 平行的棱是________________; 【难度】★ 【答案】见解析.【解析】(1)平面ABCD 、平面EFGH ;(2)平面EFGH 、平面AEHD ; (3)棱AB 、棱EF 、棱HG 、棱DC ;(4)棱AB 、棱BC 、棱CD 、棱AD . 【总结】考查直线与平面的位置关系,注意进行辨析.例题解析ABCDEFGH【例21】 铅垂线是垂直于____面的直线,用___________法可以检验课桌的边沿是否与地面平行,用__________法可以检验细棒是否与地面垂直. 【难度】★ 【答案】见解析.【解析】地、铅垂线、铅垂线. 【总结】考查直线与平面的位置关系.【例22】 如图,用__________法可以检验细棒是否与斜面垂直. 【难度】★★ 【答案】三角尺法. 【解析】三角尺法.【总结】考查直线与平面的位置关系.【例23】 在长方体中的每一条棱有______个平面和它垂直,每一个面有______条棱与它垂直,每一条棱有______个平面和它平行,每一个面有______条棱与它平行. 【难度】★★ 【答案】见解析. 【解析】2、4、2、4.【总结】考查直线与平面的位置关系.【例24】 在长方体ABCD -EFGH 中,AB = 3厘米,BF = 5厘米,与棱AB 垂直的平面的面积之和是32平方厘米,求这个长方体的表面积. 【难度】★★★ 【答案】81.2平方厘米.【解析】由题意,与棱AB 垂直的平面即为左右两个侧面,面积和为32,则每个侧面面积 为16,因为BF =5cm ,可得:BC =3.2cm ,所以长方体的表面积为: 2×(3×3.2+3×5+3.2×5)=81.2平方厘米.【总结】考查直线与平面的位置关系,综合性较强,注意认真分析.αββα1、 长方体中平面与平面的位置关系如下左图,平面α垂直于平面β,记作平面α⊥平面β,读作平面α垂直于平面β.如上右图,平面α平行于平面β,记作平面α//平面β,读作平面α平行于平面β.如图所示的长方体ABCD -EFGH 中:面EFGH ,面ABFE 与面BCGF 三个面中,任意两个都 给我们以平面与平面垂直的形象.面ABCD 与面EFGH ,面BCGF 与面ADHE ,面ABFE 与面DCGH ,都给我们以平面与平面平行的形象. 2、 检验平面与平面是否垂直的方法“铅垂线”法、 “合页型折纸”法、“三角尺”法. 3、 检验平面与平面是否平行的方法“长方形纸片”法.【例25】 如图,与平面ABFE 垂直的平面有____________,与平面BCGF 平行的平面有_____________. 【难度】★ 【答案】见解析.【解析】面BCGF 、面ADHE 、面ABCD 、面EFGH ; 面ADHE .【总结】考查平面与平面的位置关系.知识精讲例题解析模块五:长方体中平面与平面位置关系的认识ABCDEFGHABCDEFGHC A BDE F【例26】 下列结论正确的是( )A .在长方体中,与其中的一个面垂直的面有2个B .在长方体中,与其中的一个面平行的面有4个C .长方体有两个相对的面是正方形,那么这个长方体有6条棱的长度相等D .长方体相邻的两个面互相垂直,相对的两个面互相平行 【难度】★★ 【答案】D【解析】A 错误,有四个;B 错误,有1个;C 错误,还有一条高不能确定;D 正确 【总结】考查平面与平面的位置关系.【例27】 如图,与面ADHE 垂直的面有__________________________. 【难度】★★ 【答案】见解析【解析】面ABFE 、面ABCD 、面EFGH 、面DCGH . 【总结】考查直线与平面的位置关系.【例28】 可以用________________检验教室的墙面与地面是否垂直. 可以用________________检验衣橱里横向的两块隔板是否平行. 【难度】★★ 【答案】见解析.【解析】铅垂线法或合页型折纸法、长方形纸片法. 【总结】考查直线与平面的位置关系的检测方法.【例29】 如图,是一个正方体的展开图,在原正方体中,与平面C 垂直的平面是________.(用图中的字母表示) 【难度】★★★ 【答案】见解析.【解析】与已知面垂直的平面是与之相邻的四个平面:B 、D 、E 、F . 【总结】考查平面与平面的位置关系.A BCD EFGH【例30】 如图,在长方体ABCD -EFGH 中,找出与平面BCHE 垂直的平面,并找出现成的合页型折纸,在图上用阴影部分表示. 【难度】★★★ 【答案】见解析.【解析】由题意可知,与平面BCHE 垂直的平面分别是: 平面ABFE 、平面DCGH .【总结】考查平面与平面的位置关系,注意认真分析,综合性较强.【习题1】 正方体的棱长扩大2倍后,体积增大到原来的______倍. 【难度】★ 【答案】8.【解析】正方体的体积等于长×宽×高,所以棱长扩大两倍后,体积就扩大2×2×2=8倍. 【总结】考查正方体的棱长与体积的关系.【习题2】 在图中的长方体中:(1)从正面看,看不见的棱有___________; (2)与棱EH 相等的棱有_______________; (3)与平面ADHE 相对的平面有________; (4)位于水平位置的平面有_____________. 【难度】★ 【答案】见解析.【解析】(1)棱:AD 、DC 、BC 、EH 、GF 、HG 、HD 、GC ;(2)棱:AD 、GF 、BC ; (3)面BCGF ;(4)面ABCD 、面EFGH . 【总结】考查长方体的棱与面的位置关系.随堂检测ABCDEFGHABCDEFGHABCDEFGH 【习题3】 在长方体中,若两条棱没有公共点,则这两条棱的位置关系是__________. 【难度】★ 【答案】平行异面.【解析】两条棱没有公共点,则说明这两条棱要么平行,要么异面. 【总结】考查长方体中棱与棱的位置关系.【习题4】 下列说法正确的是( )A .平静的水面是水平面,所以光滑的镜面也是水平面B .长方体中棱与平面不是垂直就是平行C .若两条直线都平行于同一个平面,那么这两条直线也平行D .长方体中任何一条棱都与两个平面平行 【难度】★★ 【答案】D【解析】A 、光滑的镜面不一定是水平面,与所放的位置有关;B 、棱可能正好在这个平面 内;C 、这两条直线可能相交,只要它们都在平行于该平面的某个平面内;D 正确. 【总结】考查对长方体的基本位置关系的认识.【习题5】 如图所示的六面体中,AEFB 和DHGC 是相同的直角梯形,其余都是长方形,则:(1)其中有______条棱与平面ADHE 垂直; (2)其中有______条棱与平面AEFB 垂直; (3)其中有______条棱与平面ABCD 垂直; (4)其中有______条棱与平面BFGC 垂直. 【难度】★★【答案】(1)4;(2)4;(3)2;(4)0.【解析】(1)AB 、DC 、HG 、EF ,共4条;(2)AD 、EH 、BC 、FG ,共4条;(3)AE 、DH ,共2条;(4)0条.【总结】考查立体图形中棱与棱的关系,注意进行辨析.145 321 5?3 【习题6】 一个正方体的每个面上都标有数字1、2、3、4、5、6,根据图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是( )A .1B .2C .4D .6【难度】★★ 【答案】D .【解析】第三个图5和3相邻,第二个图1和3相邻,因此4对面是3,1对面是6,5对面 是2,6和3、5相邻,所以问号处是6,故选D . 【总结】考查对长方体的面的认识.【习题7】 长方体的总棱长是72厘米,它的长 : 宽 = 2 : 1,宽 : 高 = 2 : 3,这个长方体的体积是______. 【难度】★★ 【答案】3192cm .【解析】因为长方体的总棱长为72厘米,故长+宽+高=72418÷=厘米, 由题意知长:宽:高=4:2:3,设长宽高分别为423x x x 、、,则423182x x x x ++==,解得:,所以长、宽、高分别为8、4、6, 所以体积是3846192cm ⨯⨯=. 【总结】考查长方体的体积的计算.【习题8】 把一块长是50厘米的长方体分成2 : 3两部分后,它的表面积增加了300平方厘米,则分成的两块长方体木块的体积分别为__________. 【难度】★★★【答案】3330004500cm cm 、. 【解析】把一块长是50厘米的长方体分成2 : 3两部分后,长分别为20厘米和30厘米.因为切割后表面积增加了300平方厘米,故原厂方体的长×宽为:23002150cm ÷=, 故分成的两块长方体木块的体积分别为:3201503000cm ⨯=、3301504500cm ⨯=. 【总结】本题综合性较强,一方面考查长方体的体积计算,另一方面要对增加的表面积进行 准确理解.【习题9】小方制作了一个无盖的长方体木盒,木盒的棱长分别为3厘米、5厘米和8厘米,求这个木盒的表面积.【难度】★★★【答案】见解析.【解析】当有盖时,表面积为:()2⨯⨯+⨯+⨯=,2353858158cm①当高是3厘米时,木盒的表面积为:2-⨯=;15858118cm②当高是5厘米时,木盒的表面积为:2-⨯=;15838134cm③当高是8厘米时,木盒的表面积为:2-⨯=.15835143cm【总结】考查长方体的表面积计算,注意要分类讨论.【习题10】一个长方体的表面积是88平方厘米,这个长方体可以被分割为5个完全相同的正方体,求这个长方体的体积.【难度】★★★【答案】340cm.【解析】设正方形边长为x厘米,则由题意可得:22,解得:,+⨯⨯==245882x x x故这个长方体的体积为:3⨯⨯⨯=.222540cm【总结】本题综合性较强,主要考查长方体的表面积与体积的计算,注意认真分析题意.课后作业【作业1】长方体中经过同一顶点的面的个数有()A.1个B.2个C.3个D.4个【难度】★【答案】C【解析】C【总结】考查长方体的基本认识.A BCDEF【作业2】如图,在一张长方形纸片ABCD对折后翻开所成的图形中:(1)与直线DF平行的直线是_____________;(2)与直线EF平行的直线是_____________;与直线EF相交的直线是______________;(3)与直线AE异面的直线是_____________;与直线BC异面的直线是______________.【难度】★【答案】见解析.【解析】(1)与直线DF平行的直线是AE;(2)与直线EF平行的直线是AD、BC,与直线EF相交的直线是AE、BE、DF、CF;(3)与直线AE异面的直线是BC、FC,与直线BC异面的直线是AE、DF.【总结】考查立体图形中直线间的位置关系.【作业3】在长方体中,若两条棱异面,则与这两条棱都相交的棱()A.不一定存在B.有且只有一条C.可能有一条,也可能有两条D.不止两条【难度】★★【答案】B【解析】画图观察即可.【总结】考查长方体的棱与棱之间的位置关系.【作业4】补画长方体:【难度】★★【答案】见解析.【解析】如图所示:【总结】考查长方体的画法.A BCD EFGH【作业5】 下列图形中,不能围成长方体的是( )A .B .C .D .【难度】★★ 【答案】B【解析】B 选项两个面重复了,围不成长方体. 【总结】考查长方体的展开图,注意进行分析.【作业6】 如图,桌面上放着一本打开的书,(1)与桌面垂直的平面有哪几个? (2)平面ABFE 与平面ABHG 是否垂直? 【难度】★★ 【答案】见解析.【解析】(1)平面ABHG 、平面ABFE 、平面ABDC ; (2)不一定,当90HBF ∠=o 时,两面垂直. 【总结】考查平面之间的位置关系.【作业7】 将一个长、宽、高分别为2厘米、2.5厘米、3厘米的长方体切割成一个体积最大的正方体,则切割剩余部分的体积是______.【难度】★★ 【答案】37cm .【解析】要切割成体积最大的正方体,则所切得的正方体的边长为2厘米, 故切割剩余部分的体积是:332 2.5327cm ⨯⨯-=. 【总结】考查长方体的切割问题,注意认真分析.【作业8】 将两个长是5厘米、宽是4厘米、高是3厘米的长方体重叠放置,它的表面积是_________________.【难度】★★★【答案】222164158148cm cm cm 或或.AB CDOEFPNMGH【解析】表面积分别为:()()2554553432164cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦; ()()2445443532158cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦; ()()2335334542148cm +⨯++⨯+⨯⨯=⎡⎤⎣⎦.【总结】考查长方体的表面积计算,注意进行分类讨论.【作业9】 12个棱长为1厘米的正方体叠在一起,成为一个长方体,求这个长方体的表面积. 【难度】★★★【答案】222504038cm cm cm 或或.【解析】当以121⨯叠放时,表面积为:[]212112111250cm ⨯+⨯+⨯⨯=;当以62⨯叠放时,表面积为:()2626121240cm ⨯+⨯+⨯⨯=⎡⎤⎣⎦;当以43⨯叠放时,表面积为:()2434131238cm ⨯+⨯+⨯⨯=. 【总结】考查长方体叠放及表面积的计算问题,注意进行分类讨论.【作业10】 如图,把一块长是108厘米的长方体木块的棱AE 分成3 : 1的两段,分点为M ,过点M 按平行于面ABCD 的方向把长方体分成两块后,表面积增加了800平方厘米,这两块长方体的体积分别是多少? 【难度】★★★【答案】331080036400cm cm 和.【解析】因为把长方体分成两块后,表面积 增加了800平方厘米,所以原长方体的宽×高为:8002=400÷平方厘米.故大长方体的体积为:3108400324004⨯⨯=立方厘米,小长方体的体积为:1108400108004⨯⨯=立方厘米.【总结】考查长方体的分割及体积计算问题,注意进行认真分析.。

沪教版六年级C专题(长方体的再认识2星)

沪教版六年级C专题(长方体的再认识2星)

-------------长方体的再认识(★★)1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱、棱与面、面与面的位置关系;4.掌握棱与面、面与面的垂直及平行的验证方法;知识结构棱、面的三个特点:(1)长方体的每个面都是长方形构成长方体的三要素:点、棱、面(2)长方体的十二条棱可分为三组,每组中的四条棱相等(3)长方体的六个面可分为三组,每组中两个面的形状大小相同面与面的位置关系(1)平行.检验方法:棱与棱的位置关系:棱与平面的位置关系:长方形纸片(1)相交 (1)平行(2)垂直检验方法:(2)垂直.检验方法:(3)异面⑴铅垂线法⑵长方形纸片法(1)铅垂线(2)三角板法(3)合页型折纸(2)垂直检验方法:⑴铅垂线法⑵三角板法⑶合页型折纸“知识结构”这一部分的教学,可采用下面的策略:1.本部分建议时长5分钟.2.请学生先试着自行补全上图,发现学生有遗忘时教师帮助学生完成.“典例精讲”这一部分的教学,可采用下面的策略:1.本部分建议时长20分钟.2.进行例题讲解时,教师宜先请学生试着自行解答.若学生能正确解答,则不必做过多的讲解;若学生不能正确解答,教师应对相关概念、公式进行进一步辨析后再讲解例题.3.在每一道例题之后设置了变式训练题,应在例题讲解后鼓励学生独立完成,以判断学生是否真正掌握了相关考点和题型.4.教师应正确处理好例题与变式训练题之间的关系,宜采用讲练结合的方式,切不可将所有例题都讲完后再让学生做变式训练题.例题1长方体有个面,顶点,条棱。

(★)答案:6、8、12例题2长方体的面可以分为三组,每组中的两个面的和都相同,长方体的棱可以分为三组,每组四条棱的长度都;长方体中相交于同一顶点的三条棱是长方体的、(★)答案:形状、大小;相等;长、宽、高我们发现:从面角度看:长方体有六个面,每个面都是长方体,相对的面完全相同;从棱角度看:长方体有12条棱,相互平行的棱的长度相等;从顶点看:长方体有8个顶点。

沪教版数学六年级下册第八章《长方体的再认识》教学设计

沪教版数学六年级下册第八章《长方体的再认识》教学设计

沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。

教材通过大量的图片和生活实例,让学生进一步理解长方体的特征,提高学生的空间想象能力,并能运用长方体的特征解决实际问题。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于长方体的特征已经有了一定的了解。

但是,学生在应用长方体的特征解决实际问题时,还存在着一定的困难。

因此,在教学过程中,教师需要结合学生的实际情况,引导学生通过观察、操作、思考、交流等途径,进一步理解和掌握长方体的特征。

三. 教学目标1.让学生通过观察和操作,进一步理解长方体的特征。

2.培养学生空间想象能力和运用长方体的特征解决实际问题的能力。

3.培养学生合作学习的能力和语言表达能力。

四. 教学重难点1.长方体的特征。

2.如何运用长方体的特征解决实际问题。

五. 教学方法1.情境教学法:通过生活实例和图片,引发学生的学习兴趣,提高学生的学习积极性。

2.操作教学法:通过学生的动手操作,培养学生的空间想象能力。

3.问题驱动法:通过提出问题,引导学生思考和交流,进一步理解和掌握长方体的特征。

4.合作学习法:通过小组合作,培养学生的合作意识和团队精神。

六. 教学准备1.教具:长方体模型、正方体模型、多媒体教学设备。

2.学具:每个学生准备一个长方体模型。

七. 教学过程导入(5分钟)教师通过展示一些生活中的长方体物体,如牙膏盒、鞋盒等,引导学生回顾长方体的特征。

同时,教师提出问题:“你们认为长方体有哪些特征呢?”让学生进行思考和交流。

呈现(10分钟)教师通过多媒体展示长方体的三维图像,让学生直观地感受长方体的特征。

同时,教师引导学生观察长方体的六个面、十二条棱和八个顶点,并讲解长方体的名称和定义。

操练(10分钟)教师分发长方体模型给每个学生,让学生亲自操作长方体模型,观察和体验长方体的特征。

2022年最新精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识必考点解析试题(含解析)

2022年最新精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识必考点解析试题(含解析)

六年级数学第二学期第八章长方体的再认识必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的左视图是()A.B. C.D.2、如图,该几何体的三视图中面积相等的是()A.主视图与俯视图B.主视图与左视图C.俯视图与左视图D.三个视图都不相等3、如图,下面每一组图形都由四个等边三角形组成,其中是正三棱锥展开图的是()A.仅图①B.图①和图②C.图②和图③D.图①和图③4、图1所示的是一个上下两个面都为正方形的长方体,现将图1的一个角切掉,得到图2所示的几何体,则图2的俯视图是()A.B.C.D.5、一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.6、如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.7、如图,是由两个相同的小正方体和一个球体组成,其主视图是()A.B.C.D.8、如图所示,该几何体的主视图是()A.B.C.D.9、如图,下列图形中经过折叠不能围成一个直四棱柱的是()A.B.C.D.10、如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一个长方体截成两个长方体后,棱的数量增加了__________条.2、一个棱柱的棱数是15,则这个棱柱的面数是________.3、在长方体中,已知它的宽为8cm,长是宽的2倍少6cm,高是宽的35,则这个长方体的体积是_______.4、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为_____.5、已知一个直角三角形的两直角边分别是3和4,将这个直角三角形绕它的直角边所在直线旋转一周,可以得到圆锥,则圆锥的体积是_______.(213π圆锥V r h ,结果保留π) 三、解答题(5小题,每小题10分,共计50分)1、如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.2、(1)画出图中的10块小立方块搭成几何体的主视图、左视图和俯视图.(2)一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.3、某商厦在楼梯铺红地毯,准备从A点逐级向上铺到B点为止,所铺地毯的宽度与楼梯的宽度相同,若红地毯的价格为每平方米80元,则购买地毯共要用去多少钱?4、如图所示,线段BC垂直于平面ABFE,问:是否存在一个平面过点C,且与平面ABFE平行?若存在,请把这个平面在图中表示出来;反之,说明理由.5、如图所示,长方体ABCD EFGH中,从点F出发的三条棱FE、FG、FB的长度比为1:2:3,该长方体的棱长总和为144厘米,求与面ADHE垂直的各个面的面积之和.-参考答案-一、单选题【分析】根据从左边看得到的图形是左视图,可得答案.【详解】该几何体的左视图有两层,第一层有1个正方形,第二层有1个正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,属于基础题型.2、A【分析】作出该几何体的三视图,根据三视图的面积求解即可.【详解】解:该几何体的三视图为:可得出主视图与俯视图的面积相等.故选:A.【点睛】本题考查了简单组合体的三视图,解答本题的关键在于熟练掌握三视图的概念,并能找出正确的三视图.【分析】由平面图形的折叠及三棱锥的展开图解题.【详解】解:只有图①、图②能够折叠围成一个三棱锥.故选:B.【点睛】本题考查了展开图折叠成几何体的问题,熟练掌握三棱锥展开图的形状是解题关键.4、C【分析】根据俯视图的意义,从上面看该几何体所得到的图形即可.【详解】解:从上面看该几何体,看到的是一个有一条对角线的正方形,选项C中的图形比较符合题意,故选:C.【点睛】本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.5、B【分析】主视图的列数与俯视图的列数相同,且每列小正方形的数目为俯视图中该列小正方数字中最大数字,从而可得出结论.【详解】由已知条件可知:主视图有3列,每列小正方形的数目分别为4,2,3,根据此可画出图形如下:故选:B.【点睛】本题考查了从不同方向观察物体和几何图像,是培养学生观察能力.6、A【分析】找到从几何体的左边看所得到的图形即可.【详解】解:从几何体的左边看有两层,底层两个正方形,上层左边一个正方形.故选:A.【点睛】此题主要考查了简单几何体的三视图,熟练掌握三视图的观察方法是解题的关键.7、C【分析】主视图从正面看,下面由两个相同的小正方体和上面是一个球体组成同,根据题意很明显可知选项.【详解】主视图从正面看,下面两个小正方体其主视图是个长方形,上面是一个球体其主视图是个圆,且在长方形上面的右侧.故选:C.【点睛】考查了几何体三视图的应用,关键是学会从不同方向观察视图,即可知选项.8、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9、C【分析】利用平面图形的折叠及长方体的展开图解题即可.【详解】A、B、D可以围成直四棱柱,C不能围成一个棱柱,故选:C.【点睛】本题考查了展开图折叠成几何体,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.10、C【分析】根据从左面看得到的视图是左视图,可得答案.【详解】解:从左边看下面是一个长方形,上面是一个三角形,故选:C.【点睛】本题考查了简单几何体的三视图,解题关键是明确从左面看得到的视图是左视图,树立空间观念,准确识图.二、填空题1、12【分析】把一个长方体截成两个长方体之后,棱长个数从一个长方体的棱长个数变成两个长方体的棱长个数.【详解】一个长方体棱长个数是12,截成两个之后棱长个数变成24,所以增加了12条.故答案是:12.【点睛】本题考查长方体棱的性质,解题的关键是熟悉长方体棱的个数.2、7【详解】解:一个直棱柱有15条棱,这是一个五棱柱,有7个面;故答案为:7【点睛】本题考查五棱柱的构造特征.棱柱由上下两个底面及侧面组成,五棱柱上下底面共有10条棱,侧面有5条棱.3、3384cm【分析】先根据题意得到长方体的长和高,然后根据体积计算公式直接求解即可.【详解】解:由题意得:长为82610cm ⨯-=,高为3248=55cm ⨯,则有长方体的体积为324810384cm 5⨯⨯=. 故答案为3384cm .【点睛】本题主要考查长方体的体积,熟练掌握计算公式是解题的关键.4、7,12【分析】正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.【详解】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12 故答案为:7,12【点睛】此题考查了截一个几何体,解决本题的关键是找到在原来几何体的基础上增加的面和棱数.5、12π或16π或12π【分析】分两种情况:①以直角边为3所在直线旋转一周得到一个圆锥,底面半径是4,高是3,然后利用圆锥的体积公式213π圆锥V r h =,计算即可; ②以直角边为4所在直线旋转一周得到一个圆锥,底面半径是3,高是4,然后利用圆锥的体积公式213π圆锥V r h =,计算即可. 【详解】解:一个直角三角形的两直角边分别是3和4,①以直角边为3所在直线旋转一周得到一个圆锥,底面半径是4,高是3,所以213π圆锥V r h ==2π431613π⋅⋅=, ②以直角边为4所在直线旋转一周得到一个圆锥,底面半径是3,高是4, 所以213π圆锥V r h ==2π341213π⋅⋅=, 故答案为:12π或16π.【点睛】此题考查了点、线、面、体中的面动成体,解题关键是:分两种情况①以直角边为3所在直线旋转一周得到一个圆锥,②以直角边为4所在直线旋转一周得到一个圆锥,三、解答题1、见解析【分析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.【详解】由图可得几何体的三视图如下:主视图 左视图 俯视图【点睛】本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.2、(1)见解析;(2)见解析.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,2,左视图有3列,每列小正方形数目分别为1,2,2,俯视图有3列,每列小正方形数目分别为3,3,1.据此可画出图形;(2)主视图有3列,每列小正方形数目分别为3,4,3;左视图有3列,每列小正方形数目分别为4,2,2.【详解】(1)如图所示:(2)如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3、1608元【分析】先算得所铺红地毯的总面积,然后乘以单价,即可得到总价格.【详解】()⨯+⨯⨯=(元)答:购买地毯共要用去1608元钱.10 1.5 3.4 1.5801608【点睛】本题考查矩形面积的计算,通过空间想象,把红地毯的总面积拼接成两个矩形面积的和是解题关键.4、存在,画图见解析【分析】把平面ABFE看作是一个长方体的正面,线段BC看作是长方体的宽,补全成一个长方体即可【详解】存在,把平面ABFE看作是一个长方体的正面,线段BC看作是长方体的宽,只要把这个图形补全成一个长方体ABCD EFGH-,就可以得到过C点且与平面ABFE平行的平面CGHD.如图【点睛】本题考查了空间中线线、线面、面面间的位置关系等基础知识5、360平方厘米【分析】设棱FE、FG、FB的长度为x厘米、2x厘米、3x厘米,根据题意易得棱FE、FG、FB的长度,然后找到与面ADHE 垂直的各个面进行求解即可.【详解】解:设棱FE 、FG 、FB 的长度为x 厘米、2x 厘米、3x 厘米,由题意得: ∴()234144x x x ++⨯=,6x =,∴棱FE 、FG 、FB 的长度分别为6厘米、12厘米、18厘米, 则与面ADHE 垂直的面为面ABFE 、面ABCD 、面CDHG 、面EFGH ,面积之和为()6186122360⨯+⨯⨯=(平方厘米).【点睛】本题主要考查长方体面与面的位置关键及面积,关键是找到与面ADHE 垂直的面,然后进行求解即可.。

沪教版 提高班 课件版 第17讲长方形的再认识2

沪教版 提高班 课件版 第17讲长方形的再认识2

学科:初中中数学教材版本:沪教版学员年级:六年级课时数:3课题长方体的再认识教学目标1、了解长方体的各个元素的特征2、掌握两条直线之间相交、平行、异面三种位置关系3、掌握直线和平面以及平面和平面的位置关系教学内容知识点1:长方体的概念(1)长方体的元素:六个面、八个顶点、十二条棱①长方体的每个面都是长方形②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等③长方体的六个面可以分为三组,每组中的两个面形状大小都相同(2)正方体是特殊的长方体(长方体不一定是正方体,但正方体一定是长方体)知识点2:公式(1)三条棱长分别是c b a 、、的长方体①棱长和=4()a b c ++②体积=abc ③表面积=2()ab bc ac ++④无盖表面积=S ab -、S bc -、S bc -.(2)边长是a 正方体①棱长和=12a②体积=3a ③表面积=26a ④无盖表面积=25a 知识点3:斜二侧画法知识点4:两直线的位置关系(空间)空间中两直线的位置关系有三种:相交、平行、异面知识点5:长方体中的棱与面的位置关系(1)长方体中棱与棱的位置关系有3种,分别是平行、相交、异面(2)长方体中棱与面的位置关系有2种,分别是:平行、垂直(3)长方体中面与面的位置关系有2种,分别是:平行、垂直知识点6:检验垂直或平行的方法(1)检验直线与平面垂直的方法①铅垂线法②三角尺法③合页型折纸法(2)检验平面与平面垂直的方法①铅垂线法②三角尺法③合页型折纸法(3)检验直线与平面平行的方法①铅垂线法②长方形纸片法(4)检验平面与平面平行的方法:长方形纸片法【例题1】在右图所示的长方体中(1)从正面看,看不见的棱有(2)与棱EH相等的棱有(3)与平面BCGF相对的平面有(4)位于水平位置的平面有-中【检测1】①如图,在长方体ABCD EFGH(1)与平面ABCD平行的棱有哪些?(2)与棱BC平行的平面有哪些?(3)与平面ADGF平行的棱有哪些?-中②如右图所示,在长方体ABCD EFGH(1)写出所有与棱AB垂直的面(2)写出所有与平面EFGH垂直的棱【例题2】如右图所示回答下列问题1.在长方体ABCD EFGH -中,已知4AB =厘米,5AE =厘米,2AD =厘米,那么与平面BCGF 垂直的棱长和是多少?2.在长方体ABCD EFGH -中,已知6AB =厘米,4AE =厘米,2AD =厘米,求与棱EF 垂直的平面的面积和是多少?3.在长方体ABCD EFGH -中,已知6AB =厘米,4AE =厘米,4AD =厘米,与面EFGH 平行的棱长和是多少?【检测2】 1.在长方体ABCD EFGH -中,已知4AB =厘米,6AE =厘米,4AD =厘米,与棱EF 平行的平面的面积和是多少?2.在长方体ABCD EFGH -中,长、宽、高分别是6厘米、4厘米和3厘米,求与面ABCD 垂直的面的面积和是多少?【例题3】举出三个平面与平面平行的生活实例【检测3】请同学们在教室中找一下直线与平面垂直、直线与平面平行、平面与平面垂直和平面与平面平行的数学现象,并用适当的方法检验它们是否符合标准【例题4】如图所示,补画长方体中与面ABCD平行的棱.【检测4】已知平面ABCD线段DH垂直于平面ABCD(如下图)画一个平面HGFE,经过H点,且和ABCD平面平行【例题5】如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角各去掉边长是2厘米的正方形,然后将剩余的长方形硬纸板折叠成长方体容器,这个容器的体积是多少立方厘米?【检测5】在一个长、宽、高分别是7厘米、5厘米、4厘米的长方体中,挖去一个底面是边长为2厘米的正方形的长方体(如图所示),现要在这个物体的表面涂上颜色,求涂色部分的面积.【测试1】从一个棱长10厘米的长方体中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下的表面积是多少?、、,在与这三个面相对的面上依次【测试2】如图所示,在一个正方体的三个面上分别写上123、、(1的对面写上4,依次类推).如果与一个面垂直的面上的数字之和是14,那写上456么这个面上的数字是多少?【测试3】有一个棱长30cm的正方体木块,每面都涂上红漆.现把它锯成棱长是10cm的小正方体(1)需要锯几次?能锯成多少个小正方体?(2)四面都有红漆的小正方体有多少个?(3)三面都有红漆的小正方体有多少个?(4)两面有红漆的小正方体有多少个?(5)一面有红漆的小正方体有多少个?(6)没有红漆的小正方体有多少个?【测试4】如图,是由棱长为1的小正方体构成,其小正方体的个数为个【练习1】(1)长方体有个面,每个面都是,相对的两个面和都相同(2)长方体有条棱,如果按棱的长短分组,并把长度相等的棱作为一组,那么长方体的棱最多可以分成组,每组有条棱(3)长方形有个顶点,如果在长方体的表面上,将每两个顶点联结成线段,按这些线段的长短分组,并把长度相等的线段作为一组,那么最多可以分成组(4)长方体是正方体,正方体是长方体(填“一定”、“不一定”或“一定不”)【练习2】下面各种平面中,可以看作水平面的是()A.光滑的镜面B.玻璃幕墙C.长方体的各个面D.斜置的杯中的液面【练习3】细棒插入黄沙堆中,检验细棒是否垂直于地面常用的方法是()A.合页型折纸检验法B.三角尺检验法C.铅垂线检验法D.长方形纸片检验法【练习4】在右图中,找出符合下列条件的棱或面(1)与面ABCD垂直的棱有哪些?(2)与棱EF垂直的面有哪些?(3)与面ADHE平行的棱有那几条?(4)与棱EF平行的面有那几个?(5)与面DCGH垂直的平面有哪些?(6)与HGCD平行的平面有哪些?(7)数一数,长方体的6个面中,互相平行的棱有几对?【练习5】如图是一个透明的长方体容器,里面装着水,从里量长、宽、高分别为16厘米、4厘米、8厘米,水深6厘米.如果把长方体的右侧面作为底面,放在桌上,那么水深是多少厘米?。

2022年精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识难点解析练习题(含详解)

2022年精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识难点解析练习题(含详解)

六年级数学第二学期第八章长方体的再认识难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.2、如图所示的立体图形,其俯视图正确的是()A.B.C.D.3、如图所示的几何体,该几何体的左视图是()A.B.C.D.4、如图所示的立体图形的主视图是()A.B.C.D.5、如图是某个几何体的展开图,该几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥6、将一个等腰三角形绕它的底边旋转一周得到的几何体为()A.B.C.D.7、下列图形中,不是正方体表面展开图的是()A.B.C.D.8、某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球9、如图为某几何体的三视图,则该几何体是()A .圆锥B .圆柱C .三棱柱D .四棱柱10、如图,该几何体的三视图中面积相等的是( )A .主视图与俯视图B .主视图与左视图C .俯视图与左视图D .三个视图都不相等第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在长方体1111ABCD A B C D 中,与平面11AA D D 垂直的棱有________条.2、一个9棱柱,所有的侧棱长的和是72厘米,则每条侧棱长是______厘米.3、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为_____.4、建筑工地上的工人在建造楼房的时候,常用________来检验墙面是否垂直于水平面.5、观察一个长方体最多能看到它的________个面.三、解答题(5小题,每小题10分,共计50分)1、如图是由7个棱长为1的小正方体搭成的几何体.(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为(包括底面积);(3)若使得该几何体的俯视图和左视图不变,则最多还可以放个相同的小正方体.2、如图,这是由5个相同的小正方体搭成的一个几何体,请画出这个几何体从左面和上面看到的形状图.3、一个几何体是由若干个棱长为1cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示:(1)该几何体最少由_______个小立方体组成,最多由_______个小立方体组成.(2)将该几何体形状固定好,当几何体体积达到最大时,画出此时的主视图并求出几何体的表面积.4、在一个长10米,宽3.5米的长方形客厅的地面上铺设2厘米厚的木地板,至少需要木材多少立方米?铺好后要在地板上涂上油漆,油漆面积是多少.5、三个相同的小正方体拼成一个长方体,这个长方体的棱长总和为60厘米,求小正方体的棱长.-参考答案-一、单选题1、D【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】该几何体的左视图如图所示,故选:D.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.2、C【分析】根据从上边看得到的图形是俯视图,可得答案解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3、B【分析】根据左视图是从左面看到的图形判定即可.【详解】解:从左面看,是一个矩形,矩形的中间有一条横向的虚线.故选:B.【点睛】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4、A【分析】找出此几何体从正面看所得到的视图即可,看不见的棱用虚线.【详解】解:此立体图形从正面看所得到的图形为矩形,中间有两条看不见的棱,故主视图为矩形中有两条竖的虚线.【点睛】此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.5、A【分析】根据展开图的侧面与底面图形形状即可判断.【详解】解:由于该几何体的展开图的三个侧面均是长方形,两个底面是三角形,因此可以判定该几何体是三棱柱.故选:A【点睛】本题考查了学生对常见几何体及其展开图的理解与辨别,解决本题的关键是牢记这些几何体的特征,考查了学生对图形的认识与分析的能力.6、B【分析】根据面动成体的原理:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥.【详解】解:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥故选:B.【点睛】此题主要考查几何体的形成,解决本题的关键是掌握各种面动成体的体的特征.7、B【分析】根据正方体展开图的11种形式对各选项分析判断即可得解.【详解】解:由正方体四个侧面和上下两个底面的特征可知:A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【点睛】本题考查了几何体的展开图.熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.8、C【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】解:根据主视图是三角形,圆柱、正方体、球不符合要求,A、B、D错误,不符合题意;根据几何体的三视图,圆锥符合要求.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.9、C【分析】根据三视图判断该几何体即可.【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.故选:C.【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.10、A【分析】作出该几何体的三视图,根据三视图的面积求解即可.【详解】解:该几何体的三视图为:可得出主视图与俯视图的面积相等.故选:A.【点睛】本题考查了简单组合体的三视图,解答本题的关键在于熟练掌握三视图的概念,并能找出正确的三视图.二、填空题1、4长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D 垂直的棱.【详解】解:如图示:根据图形可知与面AA D D 垂直的棱有AB ,CD ,C D '',A B ''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直. 2、8【分析】9棱柱共有9条侧棱,已知所有的侧棱长的和是72厘米,计算出每条侧棱长即可.【详解】由题意可知,每条侧棱长是:8972=÷(厘米).故答案为:8.【点睛】本题主要考查立体图形的相关性质,熟记立体图形的性质是解题关键.3、7,12【分析】正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12 故答案为:7,12【点睛】此题考查了截一个几何体,解决本题的关键是找到在原来几何体的基础上增加的面和棱数.4、铅垂线【分析】根据铅垂线的定义理解填空解答.【详解】建筑工地上的工人在建造楼房的时候,常用铅垂线来检验墙面是否垂直于水平面.故答案为:铅垂线.【点睛】本题考查铅垂线的定义,正确理解相关概念是解题关键.5、3【分析】根据从不同方向看物体进行判断即可;【详解】由分析可知,从一个位置观察长方体最多能看到它3个面;故答案是3.【点睛】本题主要考查了从不同方向观察物体和几何体,准确判断是解题的关键.三、解答题1、(1)见解析;(2)30;(3)3【分析】(1)根据三视图的画法画出相应的图形即可;(2)三视图面积的2倍加被挡住的面积即可;(3)根据俯视图和左视图的特点即可求解.【详解】(1)这个几何体的主视图、左视图和俯视图如下:(2)(6+4+4)×2+2=30,故答案为:30;(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,故答案为:3.【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.2、见解析【分析】根据从左面和上面看到的形状画图即可.【详解】解:如图所示:【点睛】本题考查了从不同方向看立体图形,解题关键是树立空间观念,准确画图.3、(1)9;14;(2)画图见解析;几何体的表面积为46.【分析】(1)根据左视图,俯视图,分别在俯视图上写出最少,最多两种情形的小正方体的个数即可解决问题;(2)根据立方体的体积公式即可判断,分上下,左右,前后三个方向判断出正方形的个数解决问题即可.【详解】解:(1)观察图象可知:最少的情形有2+3+1+1+1+1=9个小正方体,最多的情形有2+2+3+3+3+1=14个小正方体,故答案为9,14;(2)该几何体体积最大值为33×14=378(cm3),体积最大时的几何体的三视图如下:因此这个组合体的表面积为(9+6+6)×2+4=46(cm2),故答案为:46cm2.【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.4、至少需要木材0.7立方米,油漆面积为35平方米.【分析】根据长方体的体积及长方形的面积计算公式直接进行求解即可.【详解】S=⨯=(平方米)V=⨯⨯=(立方米);10 3.53510 3.50.020.7答:至少需要木材0.7立方米,油漆面积为35平方米.【点睛】本题主要考查长方体的体积及长方形的面积,熟练掌握计算公式是解题的关键.5、3厘米【分析】设小正方体的棱长为a厘米,可得到长方体的长、宽、高分别为3a厘米,a厘米,a厘米,根据题意列出式子计算即可;【详解】设小正方体的棱长为a厘米,则这个长方体的长、宽、高分别为3a 厘米,a 厘米,a 厘米, 由题意得()4360a a a ++=,解得3a =.答:小正方体的棱长为3厘米.【点睛】本题主要考查了长方体和正方体的棱长计算,准确计算是解题的关键.。

2022年精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识难点解析试题(无超纲)

2022年精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识难点解析试题(无超纲)

六年级数学第二学期第八章长方体的再认识难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由4个相同的小正方体组合而成的几何体,从左面看得到的平面图形是().A.B.C.D.2、如图,以下三个图形是由立体图形展开得到的,相应的立体图形的顺次是()A.正方体、圆柱、三棱锥B.正方体、三棱锥、圆柱C.正方体、圆柱、三棱柱D.三棱锥、圆锥、正方体3、图中所示几何体从上面看,得到的平面图形为()A.B.C.D.4、下列几何体中,每个面都是由同一种图形组成的是()A.圆柱B.圆锥C.三棱柱D.正方体5、如图所示的几何体的左视图是()A.B. C.D.6、如图,该几何体的三视图中面积相等的是()A.主视图与俯视图B.主视图与左视图C.俯视图与左视图D.三个视图都不相等7、如图,是由两个相同的小正方体和一个球体组成,其主视图是()A.B.C.D.8、如图是正方体的一个平面展开图,如果原正方体上前面的字为“友”,则后面的字为()A.爱B.国C.诚D.善9、如图所示的立体图形的主视图是()A.B.C.D.10、将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个长方体的每一条棱扩大到原来的3倍后,它的体积是3162cm,原来长方体的体积是_______ 3cm.2、观察一个长方体最多能看到它的________个面.3、桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.4、观察一个长方体最多能看到它的________个面.5、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“成”字所在面相对面上的汉字是_______.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在长方体ABCD EFGH中,写出所有互相平行的平面.2、如图是正方体的两种表面展开图,用字母C,D分别表示与A、B相对的面,请分别在图1、图2上标出C、D.3、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.4、如图:因为平面EFGH和平面ABCD之间有两个长方形(长方形DAEH和长方形CBFG)图中相互平行的面是哪些?5、如图所示,线段BC垂直于平面ABFE,问:是否存在一个平面过点C,且与平面ABFE平行?若存在,请把这个平面在图中表示出来;反之,说明理由.-参考答案-一、单选题1、D【分析】根据左视图的定义即可求解.【详解】从左面看得到的平面图形是故选D.此题主要考查三视图,解题的关键是熟知左视图的定义.2、C【分析】根据正方体、圆柱、三棱柱表面展开图的特点解题.【详解】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱.故选:C.【点睛】本题考查正方体、圆柱、三棱柱表面展开图,记住这些立体图形的表面展开图是解题的关键.3、D【分析】根据从上面可以看到三个矩形判断即可.【详解】解:从上面看,可以看到三个矩形,如图,故选:D.【点睛】本题考查了从不同方向看几何体,解题关键是建立空间想象能力.4、D分别找出每个图形的每个面是由什么图形组成的即可.【详解】解:A、圆柱是由长方形和圆组成的,故此选项不符合题意;B、圆锥是由扇形和圆组成,故此选项不符合题意;C、三棱柱是由三角形和长方形组成,故此选项不符合题意;D、正方体是由正方形组成,故此选项符合题意;故选:D.【点睛】此题主要考查了认识立体图形,关键是掌握各立体图形的形状.5、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】该几何体的左视图有两层,第一层有1个正方形,第二层有1个正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,属于基础题型.6、A【分析】作出该几何体的三视图,根据三视图的面积求解即可.【详解】解:该几何体的三视图为:可得出主视图与俯视图的面积相等.故选:A.【点睛】本题考查了简单组合体的三视图,解答本题的关键在于熟练掌握三视图的概念,并能找出正确的三视图.7、C【分析】主视图从正面看,下面由两个相同的小正方体和上面是一个球体组成同,根据题意很明显可知选项.【详解】主视图从正面看,下面两个小正方体其主视图是个长方形,上面是一个球体其主视图是个圆,且在长方形上面的右侧.故选:C.【点睛】考查了几何体三视图的应用,关键是学会从不同方向观察视图,即可知选项.8、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“国”与“信”是相对面,“诚”与“友”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9、B【分析】从正面看得到的图形是主视图,根据正视图的定义依次判断即可得答案.【详解】解:A.为左视图;B.从正面看,底层是三个小正方形,上层右边是两个小正方形,右齐.C.不是三视图;D.不是三视图;故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10、B【分析】根据面动成体的原理以及空间想象力可直接选出答案.【详解】解:将如图所示的图形绕着给定的直线L 旋转一周后形成的几何体是圆台,故选:B .【点睛】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.二、填空题1、6【分析】根据长方体的体积公式:v=abh ,再根据积的变化规律,积扩大是倍数等于因数扩大倍数的乘积.由此解答.【详解】解:()()31623336cm ÷⨯⨯=. 所以,原长方体的体积是63cm .故答案为:6.【点睛】此题考查的目的是使学生掌握长方体体积的计算方法,理解长方体体积的变化规律是解题关键. 2、3【分析】根据从不同方向看物体进行判断即可;【详解】由分析可知,从一个位置观察长方体最多能看到它3个面;故答案是3.【点睛】本题主要考查了从不同方向观察物体和几何体,准确判断是解题的关键.3、4【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.【详解】解:观察图形知道点数三和点数四相对,点数二和点数五相对且滚动四次一循环,÷=∵20204505,∴滚动第2020次后与第1个相同,∴朝下的数字是3的对面4,故答案为:4.【点睛】本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4、3【分析】根据从不同方向看物体进行判断即可;【详解】由分析可知,从一个位置观察长方体最多能看到它3个面;故答案是3.【点睛】本题主要考查了从不同方向观察物体和几何体,准确判断是解题的关键.5、非【分析】由正方体展开图的性质,得出“成”字所在面相对面上的汉字即可.【详解】由正方体展开图的性质,可得:“成”与“非”是相对面,“功”与“然”是相对面,“绝”与“偶”是相对面.故答案为:非.【点睛】本题主要考查正方体的展开图的性质,掌握正方体展开图的性质是解题关键.三、解答题1、互相平行的平面有:面ABCD与面EFCH、面ADHE与面BCGF、面ABFE与面DCGH【分析】根据长方体的特征相对面平行,进行解答即可.【详解】面ABCD与面EFCH、面ADHE与面BCGF、面ABFE与面DCGH【点睛】本题主要考查长方体的特征,熟练掌握棱与面的位置关系:12条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.2、见解析【分析】利用正方体及其表面展开图的特点解题.【详解】解:如图所示:【点睛】此题主要考查正方体及其表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3、见解析【分析】主视图有3列,每列小正方形数目分别为1,2,3;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每行小正方形数目分别为1,1,2.【详解】解:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.4、面ADHE和面BCGF;面ABFE和面DCGH【分析】本题判平面与平面平行的问题,直接观察图形,得出平行的平面.【详解】通过观察得知:面ADHE和面BCGF平行;面ABFE和面DCGH平行.【点睛】本题主要考查了平面与平面位置关系,熟练掌握长方体的结构特点是解答本题的关键.5、存在,画图见解析【分析】把平面ABFE看作是一个长方体的正面,线段BC看作是长方体的宽,补全成一个长方体即可【详解】存在,把平面ABFE看作是一个长方体的正面,线段BC看作是长方体的宽,只要把这个图形补全成一个长方体ABCD EFGH,就可以得到过C点且与平面ABFE平行的平面CGHD.如图【点睛】本题考查了空间中线线、线面、面面间的位置关系等基础知识。

沪教版六年级下数学长方体的再认识讲义

沪教版六年级下数学长方体的再认识讲义

4、如图,是由棱长为 1 的小正方体构成,其小正方体的个数为
个。
培养孩子终生学习力
4
巩固练习
1、长方体中,一个面与(
)个面垂直
(A) 1
(B) 2
(C) 3
(D) 4
2、长方体中相邻的两个面(

(A) 有垂直关系
(B) 有平行关系
(C) 可能垂直也可能平行
(D) 无法确定
教师姓名
学生姓名
年 级 预初
上课时间
学科
数学 课题名称
长方体的再认识
周次
15
教学目标 教学重难点
1、 认识长方体的面、棱、顶点以及长宽高(棱长)的含义。 2、 掌握长方体直观图的画法。 3、 掌握长方体中棱、面的位置关系,以及空间性质。 1、长方体直观图的画法。 2、长方体中棱、面的位置关系,以及空间性质。
2、把两个完全一样的长方体木块拼成一个大长方体,这个大长方体的表面积比原来两个小长方体的表面积之和减少了 46 平方厘米,而长是原来长方体的 2 倍。如果拼成的长方体的长是 24 厘米,那么它的体积是多少立方厘米?
3、把 24 个棱长是 1 厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?
一个
形,与它平行的棱有__________.
6、如图,它是一个正方体六个面的展开图, 那么原正方体中与平面 B 互相平行的平面是_______.(用图中字母表示)
三、简答题
1、一个长方体的六个面都是长方形,其中三个长方形的面积之比是 5:7:2,最大的面积比最小的面积大 60cm2 ,求这
个长方体的表面积。
培养孩子终生学习力
2
5.在一个长方体中,下列说法正确的是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学学科教师辅导讲义
图1 图2
通过掌握长方体中面与面之间的关系有垂直和平行,从而认识各种图形中的平面与平面的垂直(如图β
平面)与平行(如图4所示:β
∥平面)关系:
图3
可以使用长方形纸片、直角三角尺两次;(2)熟练掌握定义之后,也可以直接进行判读
、、、与面MNPQ平行;
BC CG GF BF
GF;
∆的AC、
中,分别与ACF
、平面AEHD、平面CDHG.
E
F
H
G
ABCD(如下图)
ABCD平面平行.
E
F
G
要把遮挡的部分用虚线表示出来.
如果把图中的骰子看作是一个立方体,点数1的对面是6.点数2的对面是
垂直的面的点数和是多少?
l、点数3、点数4扣点数6.然后求出点数和
;不对,没有交叉放置.
要严格按照检验两个面平行的方法去检验,注意方法中的“交叉”二字.
厘米的小长方体,剩下的表面积是多少?
-=(平
(平方厘米).就是6008592
的面垂直的面上的数字和是14.
厘米、高是8厘米,从这块木头上切下一个最大的正方体后,剩下部分的表
这里介绍一种在平面上表达立体图形的又一个常用方法——“三视图”法,即从三个方向(前面、上面和左面)
-)无论从前面、上看一个物体,然后描绘三张所看见的图形来表达这个立体的形状的方法.例如,长方体(图820
-所示.
有一个规则的立体图形,它的三视图如下图822
想一想,这个立体是什么形状呢?
、平面ADHE、平面DBFH;
、平面EFGH;。

相关文档
最新文档