(完整版)等差数列教学设计
《等差数列》的教学设计
《等差数列》的教学设计一、教学目标1.知识与技能目标:(1)理解等差数列的概念,并能够分析和判断一个数列是否为等差数列;(2)掌握等差数列的通项公式及前n项和的公式;(3)运用等差数列的概念和公式解决实际问题。
2.过程与方法目标:(1)通过示例引入的方式,激发学生对等差数列的兴趣,提高学习积极性;(2)采用讲解与练习相结合的方式,帮助学生巩固理论知识,提高解题能力;(3)引导学生运用等差数列的思维方式解决问题,培养学生的问题解决能力。
3.情感态度与价值观目标:(1)培养学生对数学的兴趣与探索精神,提高数学学习的积极性;(2)培养学生的逻辑思维能力和数学推理能力;(3)培养学生良好的合作精神和团队意识。
二、教学重点和难点1.教学重点:(1)等差数列的概念和特点;(2)等差数列的通项公式及前n项和的公式;(3)运用等差数列的概念和公式解决实际问题。
2.教学难点:(1)等差数列的通项公式的推导及应用;(2)运用等差数列的概念和公式解决实际问题。
三、教学过程1.导入新课阶段(15分钟)(1)引入:通过举例的方式引入等差数列的概念,如:1,3,5,7,9是一个等差数列,问学生这个数列有什么特点?对于这个数列,我们能否找出一般规律?当然,这只是一个小数列,我们如何来判断一个数列是否为等差数列呢?(2)导入:出示一个数列:1,3,5,7,9,并引导学生分析该数列的特点,如:相邻两项之间的差是相等的。
2.概念解释和探究阶段(20分钟)(1)定义:讲解等差数列的定义和特点,即相邻两项之间的差是相等的。
(2)探究:通过抛出问题,引导学生分析和总结等差数列的特点,如:两项之差相等、首项、公差等。
(3)活动:设置数列填空的活动,让学生根据等差数列的特点填写缺失的数字,帮助巩固对等差数列的理解。
3.公式导出和应用阶段(30分钟)(1) 公式的导出:引导学生通过观察和总结,导出等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
《等差数列》教案优秀3篇
《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
数学等差数列教案(精选10篇)
数学等差数列教案数学等差数列教案(精选10篇)作为一名老师,就难以避免地要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
快来参考教案是怎么写的吧!以下是小编为大家整理的数学等差数列教案,仅供参考,希望能够帮助到大家。
数学等差数列教案篇1[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。
通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]1.教学重点:等差数列的概念的理解,通项公式的推导及应用。
2.教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。
[教学过程]一.课题引入创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)二、新课探究(一)等差数列的定义1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。
这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?(2)公差d是哪两个数的差?(二)等差数列的通项公式探究1:等差数列的通项公式(求法一)如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?根据等差数列的定义可得:因此等差数列的通项公式就是:,探究2:等差数列的通项公式(求法二)根据等差数列的定义可得:将以上-1个式子相加得等差数列的通项公式就是:,三、应用与探索例1、(1)求等差数列8,5,2,…,的第20项。
(2)等差数列-5,-9,-13,…,的第几项是–401?(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。
《等差数列》教学设计-优秀教案
等差数列【教学目标】1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2.过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
【教学重、难点】重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
难点:概括通项公式推导过程中体现出的数学思想方法。
【学法与教学用具】学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。
教学用具:投影仪【教学过程设计】一、创设情景上节课我们学习了数列。
在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。
今天我们就先学习一类特殊的数列。
二、由学生观察分析并得出答案:(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。
其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。
如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。
那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。
等差数列的教学设计(合集5篇)
等差数列的教学设计(合集5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等差数列的教学设计(合集5篇)等差数列的教学设计(1)一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5.10,15.20,25.…;(2)48,53.58,63.…;(3)18,15.5.13.10.5.8,5.5…;(4)10 072.10 144.10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3.第四个数列的第7项为10 510.师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生:这是由第二个数列的后一项总比前一项多 5.依据这个规律性我得到了这个数列的第7项为78.师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生:1每相邻两项的差相等,都等于同一个常数.师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒.师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n ≥2.n∈NX,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)(2)(3)(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5.数列(2)通项公式为5n+43.数列(3)通项公式为2.5n-15.5.….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1.公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;师:好!规律性·的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-(1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-(1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-(1)d,即a1=am-(m-(1)d.则an=a1+(n-(1)d=am-(m-(1)d+(n-(1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式) 由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5.2,…的第20项;(2)-401是不是等差数列-5.-9,-13…的项?如果是,是第几项?师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-(1)X(-(3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-(5)=-4得数列通项公式为an=-5-4(n-(1)由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-(1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥(2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n ≥(2)〕an-an-1=(pn+(1)-[p(n-(1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=pX+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3.7,11.…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3.d=7-3=4.∴该数列的通项公式为an=3+(n-(1)X4.即an=4n-1(n≥1.n∈NX)∴a4=4X4-1=15.a 10=4X10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-(1)X(-(2)即an=-2n+12.所以a20=-2X20+12=-28.评述:要求学生:注意解题步骤的规范性与准确性.(3)100是不是等差数列2.9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2.d=9-2=7.因而此数列通项公式为an=2+(n-(1)X7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥(2);其次要会推导等差数列的通项公式an=a1+(n-(1)d(n≥(1)等差数列的教学设计(2)【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。
等差数列教学设计及教案
教案:等差数列教学设计及教案第一章:等差数列的概念1.1 引入通过实际例子(如计算连续自然数的和)引入等差数列的概念。
1.2 等差数列的定义引导学生理解等差数列的定义,即每一项与前一项的差是一个常数。
解释等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
1.3 等差数列的性质探讨等差数列的性质,如相邻两项的差是常数,首项和末项的关系等。
第二章:等差数列的求和2.1 等差数列的前n项和公式引导学生理解等差数列的前n项和的概念,即前n项的和。
解释等差数列的前n项和公式:Sn = n/2 (a1 + an),其中Sn表示前n项的和。
2.2 等差数列的求和应用通过例题引导学生运用前n项和公式计算等差数列的和。
探讨等差数列求和的其他方法,如分组求和、错位相减等。
第三章:等差数列的通项公式3.1 等差数列的通项公式的推导引导学生理解等差数列的通项公式,并解释如何推导出该公式。
利用等差数列的性质和数学归纳法推导出通项公式。
3.2 等差数列的通项公式的应用通过例题引导学生运用通项公式计算等差数列的特定项的值。
探讨等差数列的特定项的性质,如第n项的值与首项和公差的关系。
第四章:等差数列的性质和求和4.1 等差数列的性质引导学生理解等差数列的性质,如相邻两项的差是常数,首项和末项的关系等。
利用性质解决问题,如找出等差数列中的特定项的值。
4.2 等差数列的求和引导学生运用前n项和公式计算等差数列的和。
探讨等差数列求和的其他方法,如分组求和、错位相减等。
第五章:等差数列的综合应用5.1 等差数列的应用问题通过实际问题引导学生运用等差数列的知识解决实际问题,如计算工资、统计数据等。
5.2 等差数列的综合练习提供一些综合练习题,让学生运用等差数列的知识解决问题。
分析和解答练习题,帮助学生巩固等差数列的知识。
第六章:等差数列的图像和性质6.1 等差数列的图像引导学生绘制等差数列的图像,展示等差数列的单调性。
数学等差数列教案
数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。
由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。
013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。
给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。
通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。
整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d。
则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。
等差数列教学设计及教案
等差数列教学设计及教案第一章:等差数列的概念1.1 等差数列的定义引导学生回顾数列的概念,理解数列的顺序性和连续性。
引入等差数列的定义,解释公差的概念。
1.2 等差数列的性质探讨等差数列的性质,如相邻两项的差为常数,首项和末项的关系等。
引导学生通过观察和归纳总结等差数列的性质。
第二章:等差数列的通项公式2.1 等差数列的通项公式的推导引导学生回顾数列的通项公式的概念,理解通项公式与数列的关系。
通过示例和引导学生推导等差数列的通项公式。
2.2 等差数列的通项公式的应用探讨等差数列的通项公式在解决实际问题中的应用,如求指定项的值等。
引导学生通过练习题目的方式,加深对通项公式的理解和应用。
第三章:等差数列的前n项和3.1 等差数列的前n项和的定义引导学生回顾数列的前n项和的概念,理解前n项和的含义。
引入等差数列的前n项和的定义,解释首项和末项的关系。
3.2 等差数列的前n项和的公式探讨等差数列的前n项和的公式,引导学生理解和记忆公式。
通过示例和练习题目,引导学生应用前n项和公式解决问题。
第四章:等差数列的求和性质4.1 等差数列的求和性质引导学生回顾数列的求和性质,如等差数列的求和与项数的关系等。
引入等差数列的求和性质,如等差数列的求和与首项和末项的关系。
4.2 等差数列的求和性质的应用探讨等差数列的求和性质在解决实际问题中的应用,如求特定项的和等。
引导学生通过练习题目的方式,加深对求和性质的理解和应用。
第五章:等差数列的综合应用5.1 等差数列在实际问题中的应用通过实际问题引入等差数列的综合应用,如人口增长模型、投资收益等。
引导学生运用等差数列的知识解决实际问题。
5.2 等差数列在数学竞赛中的应用探讨等差数列在数学竞赛中的重要性,引导学生了解等差数列在竞赛中的应用。
提供一些数学竞赛题目,引导学生挑战自我,提高解题能力。
第六章:等差数列的图像与性质6.1 等差数列的图像引导学生回顾数列图像的基本知识,如数列的点表示等。
数学等差数列教案(优秀5篇)
数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
高三数学必修五教案等差数列优秀4篇
高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
等差数列教案(多篇)
一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。
2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。
3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。
4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。
二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。
2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。
4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。
三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。
2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。
3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。
4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。
四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。
2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。
3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。
4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。
五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。
2. 针对学生的练习情况,进行讲解和解答疑惑。
3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。
等差数列教学设计及教案
等差数列教学设计及教案教学目标:1. 理解等差数列的定义和性质。
2. 学会求等差数列的通项公式和前n项和公式。
3. 能够运用等差数列解决实际问题。
教学重点:1. 等差数列的定义和性质。
2. 等差数列的通项公式和前n项和公式。
教学难点:1. 等差数列的通项公式的推导。
2. 等差数列前n项和公式的推导。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾等差数列的定义和性质。
2. 提问:等差数列有哪些性质?如何判断一个数列是等差数列?二、等差数列的通项公式(15分钟)1. 介绍等差数列的通项公式:an = a1 + (n-1)d。
2. 解释通项公式的含义和推导过程。
3. 举例说明如何使用通项公式求等差数列的第n项。
三、等差数列的前n项和公式(15分钟)1. 介绍等差数列的前n项和公式:Sn = n/2 (a1 + an)。
2. 解释前n项和公式的含义和推导过程。
3. 举例说明如何使用前n项和公式求等差数列的前n项和。
四、等差数列的实际应用(15分钟)1. 举例说明如何运用等差数列解决实际问题,如求等差数列的和、求等差数列中的特定项等。
2. 让学生尝试解决一些实际问题,并讨论解题思路和方法。
五、总结与作业(5分钟)1. 总结等差数列的定义、性质、通项公式和前n项和公式。
2. 布置作业:求等差数列的第n项和前n项和,以及解决一些实际问题。
教学反思:本节课通过导入、讲解、举例和实际应用等环节,让学生掌握了等差数列的定义、性质、通项公式和前n项和公式。
在教学过程中,注意引导学生主动参与,积极思考,通过练习题的解答和实际问题的解决,巩固了所学知识。
在下一节课中,可以进一步拓展等差数列的应用领域,让学生更好地理解和运用等差数列。
六、等差数列的性质深入探讨(15分钟)1. 讲解等差数列的单调性,即等差数列是递增还是递减的。
2. 解释等差数列的奇数项和偶数项的性质。
3. 举例说明等差数列的性质在解决实际问题中的应用。
(完整word版)等差数列的概念教学设计
6.2.1 等差数列的概念【教学目标】1.理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念.2.逐步灵活应用等差数列的概念和通项公式解决问题.3.通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.【教学重点】等差数列的概念及其通项公式.【教学难点】等差数列通项公式的灵活运用.【教学方法】本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.解因为a 3 = 5, a 8= 20,根据通项公式得教师点拨、引导:会找到多种不同的解决办法,教师要逐J a1+(3 —1) d = 5[a 1+(8 —1) d = 20整理,得f a 1+2 d = 5《f a 1+7 d = 20解此方程组,得a 1 = —1, d = 3.所以a25 = —1+(25 —1)X3 = 71.强调:已知首项a 1和公差d,便可求得等差数列的任意项a n.练习五(1)例题给出了哪些量?如何用数列符号表示?(2)例题中的所求量是什么?需要知道哪些条件?教师总结学生思路,给出解题过程.学生自主练习.一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主(1)已知等差数列{a n}中,a 1 = 3, 教师巡视指导.解答,培养学生运算新a n = 21,d = 2,求n. 请个别学生在黑板上做题能力.课(2)已知等差数列{an}中,a4 = 10,a5 = 6,求a8 和d.后,师生共同订正.例5梯子的最高一级是33 cm, 教师出示例题. 通过例题,强化最低一级是89 cm,中间还有7级,各级的宽度成等差数列,求中间各级的宽度.解用{a n}表示题中的等差数歹人已知a 1= 33, a n = 89, n = 9, 贝U a9 = 33+(9 —1)d ,即89 = 33 + 8d, 解得d = 7.于是a2 = 33 + 7 = 40, a3 = 40 + 7 =47, a4 = 47 + 7 = 54, a 5 = 54 +7 = 61, a6 = 61 + 7 = 68, a7 = 68 +7 = 75, a8 = 75 + 7 = 82.引导学生将题中的已知和未知转化为用数列符号表示.学生解答.教师巡视指导.教师出示解题过程,强调解题步骤要规范、严谨,叙述要简明、完整.学生对等差数列通项公式的理解,强化学生学以致用的意识.。
《等差数列》教学设计-经典教学教辅文档
《等差数列》教学设计
教学目标:
1.知识与技能教学目标:
理解等差数列的概念,掌握等差数列的通项公式;初步培养先生观察、归纳、推理论证的逻辑思想能力;培养先生数学应意图识和言语表达能力;浸透分类讨论的数学思想,培养先生逻辑思想的严谨性,进步数学素养。
2.过程与方法教学目标:
由实践例子引发先生探求数学知识的愿望,师生共同探求知识的发生发展的过程,促进先生自主探求合作交流,使技能得以进步,充分发挥先生的主观能动性。
3.情感态度与价值观:
充分激发先生学习数学的兴味,让先生体验成功的快乐,培养先生严谨的科学态度和实事求是的精神,让先生建立正确的人生观和价值观,提升先生实践用用的能力。
重点:掌握等差数列的概念及其通项公式的推导过程和运用:
难点:①理解等差数列“等差”的特点及通项公式的含义;
②“数学建模”的思想方法。
五、板书设计:表现重点,难点,及知识结构。
设计如下:
3.2等差数列
一、等差数列的定义……………… 练习:……………
二、等差数列的本质……………… ……………
三、等差数列的通项公式………… 成绩:……………例1
例2。
完整版等差数列教学设计
兰州市数学集体大备课活动经验交流材料教学设计:等差数列授课教师:武小鹏9・132011附录:教学流程图兰州市大集体备课活动(数学)教学设计兰州市第十四中学武小鹏课题§ 2.2.1等差数列(一)教材普通高中课程标准实验教材人教(A版)必修5教学方法参与式教学一、教材内容分析数列是高屮重要内容之一,它不仅有着广泛的应用,而且起到承前启后的作用.数列作为一种特殊的函数,其屮蕴含着丰富的函数思想,而等差数列是在学生学习了数列的有关概念和给出数列的两种方法一一通项公式和递推公式的基础上,对数列知识的进一步深入和拓展•同时等差数列也为今后学习等比数列打下了“联想”“类比”的基础。
二、学情分析经过前几个模块的学习,一部分学生知识经验已经较为丰富,有了一定的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣不是很浓,所以在教学时注重从具体的生活实际出发,注重引导、启发、探究和探索,从而进一步促进思维能力的发展。
三、教法分析在教学过程屮,遵循学生的认知规律,在教学过程屮突出学生的主体地位,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发学生的学习兴趣,发挥他们的主观能动性•创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力。
使学生认识到生活和数学紧密相关。
四、学法分析学生对本节内容的知识背景比较熟悉,因而好多学生对问题都存在着“眼高手低”的现象.引导学生发现新奇,让学生参与到动手计算、动手操作的教学环境屮来.学生根据具体题目,通过运算、分析解决实际问题,更深入地理解等差数列及其通项公式•留给学生足够的自由发挥,自由探讨,发现问题,分析问题,解决问题的空间。
重点:理解等差数列的概念,探索并掌握等差数列的通公式点:概括通公式推程中体出的数学思想方法七、学习者特征分析本的学者特征分析主要是根据教平学生的了解和学生前面的学表而做出的。
•学生是州市第十四中学高二年的学生;•学生有比成熟的小合作探究的学方法;•学生已初步掌握了数列的基本概念和基本的特征。
等差数列教案(5篇)
等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计:等差数列授课教师:武小鹏 2011.9.13 兰州市数学集体大备课活动经验交流材料附录:教学流程图教学过程流程图教学内容与教师的活动媒体的运用学生的活动教师进行逻辑选择开始导入新课教师引导教师引导复习得出结论否是小组素材交流展示,组间评价小节、布置作业结束课件学生回顾复习完成是否学生自主回答完成课件展示图片引入新课给出问题小组讨论教师引导否是兰州市大集体备课活动(数学)教学设计兰州市第十四中学武小鹏课题§2.2.1 等差数列(一)教材普通高中课程标准实验教材人教(A版)必修5教学方法参与式教学一、教材内容分析数列是高中重要内容之一,它不仅有着广泛的应用,而且起到承前启后的作用.数列作为一种特殊的函数,其中蕴含着丰富的函数思想,而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展.同时等差数列也为今后学习等比数列打下了“联想”“类比”的基础。
二、学情分析经过前几个模块的学习,一部分学生知识经验已经较为丰富,有了一定的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣不是很浓,所以在教学时注重从具体的生活实际出发,注重引导、启发、探究和探索,从而进一步促进思维能力的发展。
三、教法分析在教学过程中,遵循学生的认知规律,在教学过程中突出学生的主体地位,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发学生的学习兴趣,发挥他们的主观能动性.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力。
使学生认识到生活和数学紧密相关。
四、学法分析学生对本节内容的知识背景比较熟悉,因而好多学生对问题都存在着“眼高手低”的现象.引导学生发现新奇,让学生参与到动手计算、动手操作的教学环境中来.学生根据具体题目,通过运算、分析解决实际问题,更深入地理解等差数列及其通项公式.留给学生足够的自由发挥,自由探讨,发现问题,分析问题,解决问题的空间。
五、教学目标1.知识与技能通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式,能在具体的问题情境中探索数列的等差关系;2. 过程与方法通过观察实际生活中的数列,引导学生探索交流,归纳总结抽象出等差数列的概念,并应用归纳、叠加等方法探索等差数列的通项公式;3.情态与价值培养学生的观察和归纳能力及参与课堂的意识。
六、教学重、难点重点:理解等差数列的概念,探索并掌握等差数列的通项公式难点:概括通项公式推导过程中体现出的数学思想方法七、学习者特征分析本节课的学习者特征分析主要是根据教师平时对学生的了解和学生前面的学习表现而做出的。
·学生是兰州市第十四中学高二年级的学生;·学生有比较成熟的小组合作探究的学习方法;·学生已初步掌握了数列的基本概念和基本的特征。
八、教学情境设计环节问题情境设计师生活动设计意图创设情境启迪思维(一)问题情境1.在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,并且天文学家陈丹预测出会在2062年再次发现哈雷彗星:1682,1758,1834,1910,1986,(2062)2、在现实生活中,我们经常这样数数,从0开始,每5个数数一次,可以得到数列:0, 5,____,____,____,____,…, ____3.某系统抽样所抽取的样本号分别是:7,19,31,43,55,67,79,91,1034.24届到29届奥运会举行年份依次为:1988,1992,1996,2000,2004,2008问题1:你能发现以上这四个数列项与项之间存在什么共同特征吗?能用语言来描述它吗?问题2:你能用符号语言刻画这一特征吗?学生一边观察投影中展示的实际生活中的例子,一边思考例子中的数列特征.初步体会等差数列的项与项之间的关系.教师提示引导、激励学生有效参与教学活动中.1.通过学生身边的具体实例,让学生体会到等差数列处处存在;2.注重了知识的生成过程,学生在观看实例过程中得出等差数列的特征;3.问题设计进一步启发学生从何处观察,如何用语言概括,进一步用数学符号语言描述,步步深入,层层递进,等差数列定义水到渠成.深入探究获得新知(二)等差数列的定义我们把具有以上特征的数列就叫做等差数列,你能尝试着给出等差数列下个定义吗?等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差通常用d表示.数学符号表示:1(2,)n na a d n d--=≥为常数(1)引导学生找到定义中的关键词;(2)启发学生找定义的等价形式.等差中项问题3:如果在实数a与实数b中间插入一个实数A,使,,a A b成等差数列,那么A应满足什么条件?,=2a bA a b A+⇔是的等差中项学生思考探索、总结归纳出函数的定义.教师引导学生就此问题展开讨论,并作及时恰当的评价.1.培养学生的概括归纳能力;2.通过找关键词,等价形式,让学生进而理解数学对象的本质,提高分析问题解决问题的能力;3.用文字语言和符号语言两种形式来刻画等差数列的定义,目的让学生多角度透视概念,加深对概念的理解.(三) 等差数列公式的推导问题4:是不是每一个等差数列都可以写出它的通项公式?可以的话怎么写?若一个数列n{}a是等差数列,首项是1a,公差是d,那么数列n{}a的通项公式是什么?等差数列的通项公式:1(1)na a n d=+-学生以小组为单位展开讨论,讨论结束后作小组汇报,非汇报组对汇报组作出评价.教师引导学生有效参与课堂,并组织小组汇报,及时恰当的评价、鼓励.1.让学生有效参与到课堂当中,探索问题,让学生充分体现数学知识的形成过程;2.展现学生的探究成果,体验成功的快乐,培养学生学习数学的兴趣,增强学好数学的信心;3.让学生初步认识等差数列通项公式与一次函数的关系,渗透函数的思想.应用举例加深理解例(1)求等差数列L8,5,2,,的第20项?18,583,20;a d n==-=-=Q解:208(201)(3)49a∴=+-⨯-=-(2)等差数列5,9,13,,---L的第几项是401-?1=5,9(5)4;a d-=---=-Q解:5(1)(4)401;na n∴=-+-⨯-=-100n∴=得到学生自己分析、解决问题;老师对学生分析的结果作出点评.1.在小组合作解决问题的过程中培养合作意识和竞争意识;2.形成竞争氛围,提高解决问题的速度.3.通过总结方法更进一步加深对等差数列的深入理解;4.渗透等差数列中方程的思想.反馈训练形成方法在等差数列中,填写下表:1a d nna(1)-8 2 15(2) 5 4 105(3)-45 31 9.5(4)0.4 11 9.2(小组练习)问题5:通过以上问题的解决,你对等差数列通项公式有什么新的认识?基本量法:设法得到数列的首相和公差.方程思想:公式中的四个量1,,,na a n d已知其中三个可以得到另外一个.学生以小组为单位,以比赛的形式参与解题,最后学生说出自己对等差数列通项公式的认识教师对学生的解题过程作出判断和评价,和学生一起探讨解决等差数列问题的新认识.小结反思拓展引申本章主要内容为:1.等差数列的定义:即1(2)n na a d n--=≥2.等差数列的通项公式:1(1)(1)na a n d n=+-≥本章主要解题方法为:基本量法:设法得到数列的首相和公差学生自主回顾本节课学习的内容和需要注意的知识点.教师对学生的结果做点评.由学生总结,深化知识结构,领悟思想方法,培养学生在自主探索知识的能力和良好的学习习惯.分层作业激发新疑1.已知{}na是等差数列.(1)5372a a a=+是否成?5192a a a=+呢?为什么?(2)112(1)n n na a a n-+=+≥是否成立?据此你得到什么结论?2(1)n n k n ka a a n-+=+≥是否成立?据此你又得到什么结论?2.完成本节练习4.5并猜想等差数列有哪些性质?1a d板书设计§2.2.1 等差数列(一)等差数列的定义:等差数列通项公式的推导:1(2,)n na a d n d--=≥为常数 (不完全归纳法)等差数列的通项公式:1(1)(1)na a n d n=+-≥电子白板(投影区)课后反思课堂学习评价量表学生姓名:科目:课题名称:时间:指标评价要素达到程度A B C D情绪状态学生对课堂充满热情;小组之间有序协作。
学生有适度的紧张感;对知识的探求欲望。
参与交往状态学生与老师、学生与学生之间相互尊重、理解、平等.学生对学习感兴趣,积极主动参与各项活动。
学生和学生、学生和老师、学生和教材之间保持多向、丰富、和谐、有效的信息交流。
*有的学生能出色地参与教的活动。
思维状态学生在探究学习的过程中能发现、提出问题。
学生和学生、学生和老师、学生和教材之间围绕着学习目标对问题进行有效的分析与讨论。
学生通过分析与讨论能较好地解释或解决问题。
*学生能提出具有挑战性与独创性的问题与解。
21321n na a da a da a d-=+=+=+M学习达成状态学生在不同程度上都有喜悦和成功的体验。
学生掌握了必要的基础知识与技能。
学生在各自的基础上都获得了进一步发展的能力。
*学生全身心地投入到学习的过程中,出现了课已完,意未尽的感人场面。
其他评语(改进建议)A B C D说明:标有“*”的内容是带有导向性的较高要求,不作为指标的基本要素。
模型中提出的四种状态用来了解教学过程中对于学生不同层面的关注:没有情绪状态、交往状态、就不能激活课堂,单有情绪状态、交往状态、容易形成课堂教学中的“泡沫现象”、“表面繁荣”,四大状态的协调统一,才可能对课堂教学效果作出准确的评价。