《斐波那契数列》备课讲稿
数列教案二斐波那契数列的性质与应用
![数列教案二斐波那契数列的性质与应用](https://img.taocdn.com/s3/m/12c0927b3868011ca300a6c30c2259010302f36a.png)
数列教案二:斐波那契数列的性质与应用引言:斐波那契数列是数学上一种非常有趣的数列,被广泛运用在各个领域中。
它的前几项是:1、1、2、3、5、8、13、21、34、……(后面的项依次为前面两项之和)。
在本文中,我们将介绍斐波那契数列的性质与应用。
一、斐波那契数列的性质1.黄金分割比:斐波那契数列的性质之一是黄金分割比。
定义为,将一个线段分成两段,较长的一段与整个线段的比值等于较短的一段与较长的一段的比值,该比值为φ (phi),即:$\frac{a+b}{a}=\frac{a}{b}=\phi$其中,a 和 b 分别为较长和较短的线段。
斐波那契数列中,相邻两个数的比值逐渐趋近于黄金分割比,即:$\frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, ……$这个比值在美学和建筑学中应用广泛。
2.递归性:斐波那契数列的定义是:F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)。
这个定义具有递归性质,即当前的某一项可以由前面的两项推导而来。
这个递归特性可以简化许多计算程序。
3.对称性:斐波那契数列具有左右对称性,即第 n 个项与第 (n+1)个项在黄金分割比两侧的距离是相等的。
例如:F(6)=8=F(7)-F(5)F(7)=13=F(6)+F(5)F(8)=21=F(7)+F(6)……由此可见,斐波那契数列在建筑学和对称性的应用上正好符合黄金分割比的几何形态。
二、斐波那契数列的应用1.斐波那契螺旋线:斐波那契数列可以绘制成螺旋线,称为斐波那契螺旋线。
它有以下性质:(1)外形美观,符合数学美学;(2)螺旋线与出生生长的自然界中普遍存在的螺旋形态极为相似;(3)斐波那契螺旋线可以用于编程、、图像处理等领域。
2.斐波那契数列的金融应用:(1)股票投资:斐波那契数列被广泛应用于股票市场。
《斐波那契数列》主题探究教学设计方案讲解
![《斐波那契数列》主题探究教学设计方案讲解](https://img.taocdn.com/s3/m/6cef1222a300a6c30c229fc0.png)
《斐波那契数列》主题探究教学设计方案一、概述本主题为人教课标必修5第二章——《数列》中关于有阅读与思考的内容.本主题是在已有数列基本知识的基础上,探索斐波那契数列的发展历史、实际生活中的斐波那契数列,以及斐波那契数列的一些特性.斐波那契数列与实际生活联系比较紧密,有着广泛的应用,而且本身也有许多特殊的性质.使学生体会数学的科学价值、应用价值,领会数学的美学价值,从而提高自身的文化素质和创新意识.二、教学目标分析1.进一步巩固数列的相关知识,加深对数列的认识,能在具体问题情境中,发现数列的关系,并能用有关知识解决相应的问题.2.初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值,开拓视野,激发学习数学的兴趣,提高自身的文化素养和创新意识.三、学习者特征分析学生已经掌握数列、等差、等比数列的知识,能在具体的情境问题中,发现数列中特殊的关系:等差或等比关系,能用相关知识解决相应的问题.部分学生有一定的自主学习能力、协作学习能力.但应用意识不强,创新能力不强,因此需要一定的指导.学生具有一定的计算机运用能力,能够通过网络搜索相关资源,能借助计算机解决相应的问题.四、教学策略选择与设计主要采用网络探究,小组协作的方式,在复习数列相关知识,然后逐步探究斐波那契数列的历史、应用、特征,教师做好指导、协调工作,对于学生探究结论给予相应评价.五、教学资源与工具设计1.人教A版普通高中课程标准实验教科书必修5;2.网络课件;3.斐波那契数列计算器;4.网络型多媒体教室.六、教学过程本主题共需1个课时.具体安排如下:(一)问题引入由学生计算,教师给予相应的指导.如果一对兔子每月能生1对小兔子(一雄一雌),而每1对小兔子在它出生后的第三个月里,又能生1对小兔子.假定在不发生死亡的情况下,由1对出生的小兔子开始,50个月后会有多少对兔子?提示:每月底兔子对数是:1,1,2,3,5,8,13,21,34,55,89,144,233,……,50个月后是12586269025 对.这就是著名的斐波那契数列.或许大自然懂得数学,树木的分杈、花瓣的数量、种子的排列、鹦鹉螺的螺旋线……都遵循这个数列.你能写出以后的项吗?设计意图:通过斐波那契的兔子问题引入,让学生通过计算、思考,对斐波那契数列有感性认识.(二)数列知识1.数列的起源人们对数列的研究主要源于生产、生活的需要,以及出于对自然数的喜爱.数是刻画静态物体下的量,一系列的数刻画物体的变化情况,这些按一定顺序排列着的一列数称为数列(sequence of number).数列是刻画离散过程的重要数学模型,在生活中经常遇到的存款利息、细胞分裂等问题都与数列有关.在古希腊,对毕氏学派而言,万物都是数.他们将数用小石子排列成各种形状,可以排成三角形的小石子数称为三角形数,可以排成正方形的小石子数称为正方形数.三角形数:正方形数:五边形数:每种多边形数均是一个数列.设计意图:让学生对于数列的起源有所了解,便于理解研究数列的意义.2.数列的相关知识让学生快速梳理数列的基本知识:(1)数列的一般形式:⋅⋅⋅⋅⋅⋅,,,,,321n a a a a ,简记为}{n a .(2)数列的表示方法:(1)列表法;(2)图象法;(3)通项公式法.(3)数列的分类:项数有限无限:⎩⎨⎧无穷数列有穷数列 项数的随序号的变化情况:⎪⎪⎩⎪⎪⎨⎧摆动数列常数列递减数列递增数列(4)数列通项公式:)(n f a n =;主要方法:①观察数列的特点,寻找项数与对应序号的关系.②化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列). ③逐差全加(对于后一项与前一项差中含有未知数的数列).例如:数列}{n a 中,n a a a n n 2,111=-=-,求n a .④逐商全乘法(对于后一项与前一项商中含有未知数的数列).例如:数列}{n a ,12,111-=÷=-n n a a a n n ,求n a . ⑤正负相间:利用n )1(-或1)1(--n .⑥(隔项有零:利用]1)1[(21+-n 或]1)1[(211+--n .(5)数列求和的主要方法①利用等差或等比的求和公式.②利用通项列项求和.③错项相减法:适用于通项为等比和等差通项之积形式的数列求和.④倒序相加法:例如等差数列求和公式的推导.⑤配对法:适合某些正负相间型的数列.学生思考:若我们分别以n n n P T S ,,来代表下图的正方形数、三角形数及五边形数,你能发现求出通项公式吗?三者的关系呢?(可以借助图形特点)n 个n 个 n 个n 个教师给予适当的指导.提示:由上图我们不难看出:2n S n =. 而2)1(+=n n T n . 每个正方形数都可以看成两个三角形数的和1-+=n n n T T S .观察五角形数n 个可以知道1)(32)-(3741)13(]}1)1(3[{)13(11+++⋅⋅⋅+++=⋅⋅⋅=+++-+=++=-+n n ••••••••n n P n p P n n n 即2)13(22)1(3)23(23)23(11-=-+=-=-=-=∑∑==n n n n n •••n T n •••k k P n n k n k n设计意图:让学生回顾数列的基本知识,便于将知识系统化,能更好的从整体上把握,灵活应用数列解决相应问题.3.数列与函数的关系让学生回顾.数列可以看成是定义域为正整数集*N (或它的有限子集)的函数.当自变量顺次从小到大依次取值时对应的一列函数值,而数列的通项公式则是相应的函数解析式.由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点,所以说数列是一类特殊的函数.数列具有函数的一般性质,可以借助数形结合的思想研究问题,但研究的侧重点有所不同,函数侧重研究单调性、最值、奇偶性等,数列侧重研究下标子数列或两个数列的合成的性质等.设计意图:回顾函数与数列的关系,进一步加深认识研究数列的角度和意义.4.特殊数列让学生填写下列表格:设计意图:对比中学中重要的两个特殊数列:等差数列和等比数列的性质,加深对这两种数列的理解和应用,通过系统比较能更好的理解.(三)斐波那契教师适当的加以介绍,可以在让学生利用互联网收集相关资料.中世纪最有才华的数学家斐波那契(1175年~1259年)出生在意大利比萨市的一个商人家庭.因父亲在阿尔及利亚经商,因此幼年在阿尔及利亚学习,学到不少时尚未流传到欧洲的阿拉伯数学.成年以后,他继承父业从事商业,走遍了埃及、希腊、叙利亚、印度、法国和意大利的西西里岛.斐波那契是一位很有才能的人,并且特别擅长于数学研究.他发现当时阿拉伯数学要比欧洲大陆发达,因此有利于推动欧洲大数学的发展.他在其他国家和地区经商的同时,特别注意搜集当地的算术、代数和几何的资料.回国后,便将这些资料加以研究和整理,编成《算经》(1202年,或叫《算盘书》).《算经》的出版,使他成为一个闻名欧洲的数学家.继《算经》之后,他又完成了《几何实习》(1220年)和《四艺经》(1225年)两部著作.《算经》在当时的影响是相当巨大的.这是一部由阿拉伯文和希腊文的材料编译成拉丁文的数学著作,当时被认为是欧洲人写的一部伟大的数学著作,在两个多世纪中一直被奉为经典著作.在当时的欧洲,虽然多少知道一些阿拉伯记数法和印度算法,但仅仅局限在修道院内,一般的人还只是用罗马数学记数法而尽量避免用“零”.斐波那契的《算经》,介绍了阿拉伯记数法和印度人对整数、分数、平方根、立方根的运算方法,这部著作在欧洲大陆产生了极大的影响,并且改变了当时数学的面貌.他在这本书的序言中写道:“我把自己的一些方法和欧几里得几何学中的某些微妙的技巧加到印度的方法中去,于是决定写现在这本15章的书,使拉丁族人对这些东西不会那么生疏.在斐波那契的《算经》中,记载着大量的代数问题及其解答,对于各种解法都进行了严格的证明.书中记载的一个有趣的问题:理想中的兔子繁殖问题,兔子每个月对数就构成了著名的斐波那契数列.据载首先是由19世纪法国数学家吕卡将级数}{n F :1,1,2,3,5,8,13,21,34,...命名为斐波那契级数,它是一种特殊的线性递归数列,在数学的许多分支中有广泛应用.1963年美国还创刊《斐波那契季刊》来专门研究数列.设计意图:了解斐波那契的历史,提高学习数学的兴趣,感受数学家的严谨态度和锲而不舍的探索精神.(四)斐波那契数列特性小组探究,归纳总结结论,可以参照提示,对于能力较强的小组可以进一步探究其它性质.教师对于各小组的探究过程加以评价.斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……1.通项公式观察斐波那契数列项数之间有什么关系?提示:从第三项开始每一项等于其前两项的和,即若用n F 表示第n 项,则有)3(21≥+=--n ••F F F n n n .通过递推关系式⎩⎨⎧≥+==--)3(2,1121n ••F F •••••••••n F n n n ,我们可以一步一个脚印地算出任意项,不过,当n 很大时,推算是很费事的.我们必须找到更为科学的计算方法.你能否寻找到通项公式,借助网络资源,能否给予证明?提示:1730年法国数学家棣莫弗给出其通项表达式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=n n n S 25125151,19世纪初另一位法国数学家比内首先证明这一表达式,现在称为之为比内公式.可以利用归纳法证明.网络资源:求斐波那契数列的通项公式.2.项间关系根据下列问题分组探究,写下探究的结果.有能力的学生可以继续研究其他性质.提供斐波那契数列计算器的网页.斐波那契数列有许多奇妙的性质,下面一起研究部分性质: (1)问题:观察相邻两项之间有什么关系? 相邻两项互素,(1,+n n F F )(2)1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , …第3项、第6项、第9项、第12项、……的数字,有什么共同特点? 提示:能够被 2 整除.第4项、第8项、第12项,能够被 3 整除. 第 5项、第 10 项、……的数字,能够被 5 整除. 你还能发现哪些类似的规律? (3)23211+=++⋅⋅⋅+++n n F F F F F如果你把前五加起来再加 1,结果会等于第七项;如果把前六项加起来,再加 1,就会得出第八项.那么前 n 项加起来再加 1,会不会等于第 n + 2 项呢?提示:1 + 1 +2 +3 + 5 + 1 = 13 1 + 1 + 2 + 3 + 5 + 8 + 1 = 21由于每一项都是其前两项的和,所以23211+=++⋅⋅⋅+++n n F F F F F(4)如果我们分别对偶数项与奇数项做加法运算的话,情形又如何呢?1 +2 + 5 = 8 1 + 2 + 5 + 13 = 21 1 + 1 + 3 + 8 = 13 1 + 1 + 3 + 8 + 21 = 34 提示:我们可以得到下列的结果:nn F F F F 21231=+⋅⋅⋅++-122421+=+⋅⋅⋅+++n n F F F F你是否能给出证明?(5)不可思议的是,如果我们把第三项的平方加上第四项的平方会得到第七项.22 + 32 = 4 + 9 = 13 32 + 52 = 9 + 25 = 34 82 + 132 = 64 + 169 = 233试试看其它的情形.12212++=+n n nF F F 是不是都成立呢?(6)更不可思议的是,你能想象到吗,斐波那契数列与杨辉三角居然有联系? 提示:3.黄金分割动手做一下:把斐波那契数列中从第二项开始的每一项除以前一项, 得到一个新的数列,并画出图象,分析新数列的特点.提示:1,2,1.5,1.67,1.6,1.63,1.615,1.619,1.618, .....下图中横轴为 n 的值,纵轴为nn F F 1+的取值:nn F F 1+看起来好像会趋近某个定值,大约为 1.61…….这为人所知作为金黄比率, 并且因此斐波那奇的序列并且称金黄序列, 开普勒发现斐波那契数列的黄金比率.4.探究其它特性利用斐波那契数列计算器和互联网,每小组探究斐波那契数列的其它性质,然后利用网络搜索所得到的性质,是否已经被发现。
小学数学《斐波那契数列课题》教学设计新部编版
![小学数学《斐波那契数列课题》教学设计新部编版](https://img.taocdn.com/s3/m/0dfd18c64b73f242326c5f6b.png)
优选授课授课设计设计| Excellent teaching plan教师学科授课设计[ 20–20学年度第__学期]任授课科: _____________任教年级: _____________任教老师: _____________xx市实验学校《斐波那契数列的应用》课题设计一、课题的确定:孩子们小学六年学习了六年的数学,却向来没有想过为什么要学习数学,有的同学是认为学习数学是为了计算,而有的同学是认为学习数学是为了应用于生活,却向来没有亲自领悟感觉过数学的奇异,有没有一个课题能让学生感觉到学习数学的目的,特别是让学生亲自领悟感觉一下数学的美,感觉大自然的造物的奇异呢?我思虑再三最后确定了研究课题《斐波那契数列的应用》。
二、课题的部署与指导:《斐波那契数列的应用》是数学史上特别出名的一个数列,课本是作为一段阅读资料表现的,以《兔子的生殖》为例介绍了斐波那契数列的产生,我本节课确定的目标主若是经过研究让孩子们领悟学习数学的目的,感觉一下数学自己的魅力以及大自然造物的奇异。
我是从四个方面来部署的课题研究任务: 1、以《兔子的生殖》为例,研究数列的产生,每个小组都要进行研究。
前一天进行了部署,第二天我们就进行了交流告告,孩子们研究的不错。
于是又接着分组部署了任务:第一小组:从计算的角度研究斐波那契数列的奥秘。
第二三小组:从应用的角度出发,到大自然中到生活中去观察可否有斐波那契数列。
孩子们真的是很善于思虑,第二小组潘珂在爸爸领着去花棚里买花时,发现了花瓣里的斐波那契现象,而另一个同学惠鹏程却在住的小区里发现了植物叶序也存在着斐波那契现象。
第三小组的费枫舒在和妈妈去商场买东西时看到了正在削菠萝的阿姨,产生了兴趣蹲在那一个多小时发现了菠萝里的斐波那契现象。
而惠荣薪则是在一次上课快迟到了,健步如飞的迈楼梯,突发奇想研究研究台阶的迈法,和她的小伙伴发现了楼梯里的斐波那契的奥秘,组成了课题研究的第四小组。
我把孩子们的研究情况进行了汇总,考虑到时间有限,最后确定了把数列的产生不纳入到本节课的报告中间。
《斐波那契数列》课件
![《斐波那契数列》课件](https://img.taocdn.com/s3/m/20a3a57842323968011ca300a6c30c225901f0cf.png)
特征方程
特征方程
对于斐波那契数列,其特征方程为x^2=x+1。通过解这个方程,可以得到斐波 那契数列的通项公式。
通项公式
斐波那契数列的通项公式为F(n)=((φ^n)-(-φ)^-n))/√5,其中φ=(1+√5)/2是黄 金分割比。这个公式可以用来快速计算斐波那契数列中的任意数字。
03
斐波那契数列的数学模型
在生物学中的应用
遗传学研究
在遗传学中,斐波那契数列可以用于 描述DNA的碱基排列规律,有助于深 入理解遗传信息的传递和表达。
生物生长规律
许多生物体的生长和繁殖规律可以用 斐波那契数列来描述,如植物的花序 、动物的繁殖数量等。
在计算机图形学中的应用
图像处理
在图像处理中,斐波那契数列可以用于生成复杂的图案和纹理,增加图像的艺术感和视觉效果。
斐波那契数列的递归算法
F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
03
递归算法的时间复杂度
O(2^n),因为递归过程中存在大量的重复计算。
迭代算法
迭代算法的基本思想
迭代算法的时间复杂度
从问题的初始状态出发,通过一系列 的迭代步骤,逐步逼近问题的解。
O(n),因为迭代过程中没有重复计算 。
实际应用价值
斐波那契数列在计算机科指导 意义。
对未来研究的展望
深入探索斐波那契数列的性质
01
随着数学研究的深入,可以进一步探索斐波那契数列的性质和
规律,揭示其更深层次的数学原理。
跨学科应用研究
02
未来可以将斐波那契数列与其他学科领域相结合,如生物学、
表示方法
通常用F(n)表示第n个斐波那契数 ,例如F(0)=0,F(1)=1,F(2)=1 ,F(3)=2,以此类推。
斐波那契数列教案 适合小学
![斐波那契数列教案 适合小学](https://img.taocdn.com/s3/m/8af219491fb91a37f111f18583d049649b660e84.png)
拓展课斐波那契数列【教学内容】斐波那契数列相关知识。
【教学目标】1. 使学生认识“斐波那契数列”及其部分特性,并探究著名的兔子问题。
2. 在经历感知、分析、归纳和应用过程中培养学生的思维能力,会利用从易入难的数学思想方法解决问题,培养良好的思维品质。
3. 在知识结构不断拓展、能力不断提升的过程中,感悟数学文化的广袤和久远,培养积极的数学阅读习惯,形成积极的数学情感。
【教学重难点】重点:发现斐波那契数列的规律,探究兔子问题难点:会利用从易入难的数学思考方法解决问题【教学准备】课件、学习单【教学流程】一、图片欣赏,引出课题1.出示自然界中的图片师:一起欣赏这些大自然的图片,它们都有什么特点?预设:它们都有螺旋线2.出示鹦鹉螺师:鹦鹉螺的内部是非常美丽的螺旋线,我们可以把它画出来。
3. 出示斐波那契螺旋线,观察是怎么画出来的师:用数学的眼光看一看,说说它是怎么画出来的。
引导学生从最小的正方形数起。
预设:最小的正方形边长是1,有2个这样的小正方形预设:是正方形的对角线师:是的,需要先从里到外画出正方形,再画出正方形对角顶点相连的弧提问:这些正方形的边长都是多少?1,1,2,3,5,8,13,21……师:老师加了省略号是为什么?预设:还可以继续画下去。
师:你们发现后面应该是几了吗?预设:34预设:这串数字是有规律的,每次都是前两个数字之和师小结并揭示课题:像这些正方形的边长形成的一列有序的数,我们叫它数列(板贴:数列)。
4. 出示人物介绍,认识斐波那契最早研究这个数列的是莱昂纳多斐波那契,他是中世纪意大利的一位数学家。
因此这个数列就已他的名字命名,叫斐波那契数列。
(板贴:斐波那契)今天我们一起来研究学习斐波那契数列。
(指着板贴读课题)二、探究问题,学习新知1.兔子繁殖问题师:这个数列可不是斐波那契凭空想出来的,最早是斐波那契以兔子繁殖为例子而引入,让我们也像数学家一样研究兔子繁殖的规律吧。
出示兔子繁殖的故事,请学生朗读,并加以理解。
斐波那契数列小学三年级教学设计
![斐波那契数列小学三年级教学设计](https://img.taocdn.com/s3/m/98c9a217c4da50e2524de518964bcf84b9d52df8.png)
《斐波那契数列》教学设计一、教学背景:《斐波那契数列》是人民教育出版社《普通高中课程标准实验教科书·数学·必修5》第32页的阅读材料,是学生在学习完数列(主要是等差数列和等比数列)后安排的一节课外学习内容.考虑到本节内容学生自学有一定难度,同时本节课对培养学生学习数学的兴趣,提升数学素养,提高自己对数列的认识和后续学习都很有帮助,而且本课所强调的自主探索、合作交流的学习能力在我们的学生中还有待进一步提高,因此我决定用一节课引导学生学习本节内容. 多媒体技术是现代课堂教学的重要手段,它为我们提供大量的信息和课程内容,是提高课堂效率、丰富课堂内容的有效途径.在本节课我主要借助PowerPoint演来向学生展示本节的主要学习思路和大纲,通过小故事的讲解吸引学生的注意力,然后学生分组讨论,自主探讨,老师在旁加以指导用“叠罗汉”的思想得出通项公式,然后观察几个神奇的特例及一个有意思的视频结束本节课.二、教学目标(一)知识与技能1.了解斐波那契数列及其特性;2.向学生展示生活中的数学,感受数学美和数学思想;(二)过程与方法在经历感知、分析、归纳和应用的过程中培养学生的思维能力,会利用从易入难的数学思想解决问题,培养良好的思维品质.(三)情感态度与价值观在知识结构不断拓展、能力不断提升的过程中,感悟数学文化的广袤和久远,培养积极的数学阅读习惯,形成积极的数学情感.三、教学过程(一)创设情景,引入主题先用PowerPoint让学生看电影《达芬奇.密码》开头的故事,设置悬念引入斐波那契数列.然后再给学生讲解斐波那契看小男孩喂兔子的故事,由此引出一个有趣的问题:如果一对大兔子每个月可以生一对小兔子(一雄一雌),而一对小兔子在他出生后的第三个月里,又能生一对小兔子.假定一年内没有死亡,由一对初生的小兔子开始,一年内可有多少对兔子呢?(二)斐波那契数列的递推公式先由学生自己思考,我不急于公布答案,而是与同学们共同做如下研究:用动画引导学生逐月统计兔子的对数,生动有趣,并配以讲解,使学生理解递推的本质. 最后将结果以表格形式给出:(五)观察大自然中的斐波那契数列。
Fibonacci数列教案罗萍
![Fibonacci数列教案罗萍](https://img.taocdn.com/s3/m/87ac1895a0c7aa00b52acfc789eb172dec63997f.png)
Fibonacci数列教案罗萍一、教学目标:1. 让学生了解Fibonacci数列的定义和性质。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对数学美的欣赏能力,培养学生的创新思维。
二、教学内容:1. Fibonacci数列的定义及通项公式。
2. Fibonacci数列的性质及应用。
3. Fibonacci数列与黄金分割的关系。
三、教学重点与难点:1. Fibonacci数列的定义及通项公式的推导。
2. Fibonacci数列性质的理解与应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究Fibonacci数列的性质。
2. 利用信息技术辅助教学,展示Fibonacci数列在自然界中的实例。
3. 开展合作学习,让学生在讨论中加深对Fibonacci数列的理解。
五、教学过程:1. 导入:介绍Fibonacci数列的历史背景,激发学生的兴趣。
2. 新课:讲解Fibonacci数列的定义,引导学生推导通项公式。
3. 案例分析:分析Fibonacci数列在自然界中的应用,如植物叶序、动物繁殖等。
4. 性质探索:引导学生发现Fibonacci数列的性质,如递推关系、黄金分割等。
5. 练习巩固:布置相关习题,让学生巩固所学知识。
6. 总结:对本节课内容进行总结,强调Fibonacci数列的重要性。
7. 拓展:引导学生思考Fibonacci数列在其他领域的应用,如艺术、经济学等。
8. 作业布置:布置适量作业,让学生进一步巩固所学知识。
10. 评价与反馈:对学生学习效果进行评价,及时给予反馈,促进学生改进学习方法。
六、教学评价1. 评价方式:采用过程性评价与终结性评价相结合的方式,全面评估学生的学习效果。
2. 评价内容:a. 学生对Fibonacci数列定义和性质的理解。
b. 学生运用Fibonacci数列解决实际问题的能力。
c. 学生在讨论和探究中的参与度。
d. 学生的作业完成情况及创新能力。
人教版小学数学六年级下册《斐波那契数列》课件.doc
![人教版小学数学六年级下册《斐波那契数列》课件.doc](https://img.taocdn.com/s3/m/fb907203be1e650e52ea99d3.png)
人教版小学数学六年级下册《斐波那契数列》课件假设: : 一对刚出生的兔子一个月后就能长成大兔,再过一个月便能生下一对小兔子,并且此后每个月都会生一对小兔子,一年内没有死亡,那么,12 个月后会有多少对兔子呢?1 123 5 8 6 月 5 月4 月 3 月 2 月 1 月1 123 5 8 6 月 5 月4 月 3 月 2 月 1 月斐波那契斐波那契((1170 1250 )意大利杰出的数论学家。
1202 年著作《算盘书》。
1 12 13 24 35 56 87 138 21 9 34 10 55 11 89 12 144 【第1 年】 13 233 14 377 15 610 16 987 17 1597 18 2584 19 418120 6765 21 10946 22 17711 23 28657 24 46368 25 75025 26 121393 27 196418 28 317811 29 51422930 832040 31 1346269 32 2178309 33 3524578 345702887 35 9227465 36 14930352 37 24157817 38 39088169 39 63245986 40 102334155 41 165580141 42 267914296 43 433494437 44 701408733 45 1134903170 46 1836311903 47 2971215073 48 4807526976 斐波那契数列与数学4807526976 【第2 年】【第3 年】【第4 年】1 123 5 8 斐波那契螺旋黄金螺旋黄金矩形大自然中的斐波那契数列鹦鹉螺大自然中的斐波那契数列种子的排列(松果)大自然中的斐波那契数列种子的排列(松果)大自然中的斐波那契数列 8种子的排列(松果)大自然中的斐波那契数列 13大自然中的斐波那契数列有13 条逆时针螺旋和21 条顺时针螺旋有13 条顺时针螺旋和21 条逆时针螺旋蓟大自然中的斐波那契数列大自然中的斐波那契数列 21 条和34条条最多可达89 条和144条条 34 条和55 条 55 条和89条条台风旋转云图台风旋转云图水流漩涡水流漩涡星云星云1 123 5 8斐波那契数列。
课题:菲波那契数列
![课题:菲波那契数列](https://img.taocdn.com/s3/m/cd6e61f7700abb68a982fb7d.png)
课题:斐波那契数列桂林市第十七中学王嵘指导教师桂林师专数学系蒋晓云一.教学目标1.知识方面使学生理解斐波那契数列,掌握斐波那契数列通项公式的求法,能应用斐波那契数列解决日常生活中的一些问题。
2.能力方面培养学生的观察能力、探究发现的能力、解决实际问题的能力、审美意识。
3.品质素养方面使学生体会,数学来源于生活的大众数学思想;通过主动探究,培养学生的认知力、观察力、想象力、注意力、记忆力和独创的实践力。
二.重点难点重点:斐波那契数列、斐波那契数列的应用。
难点:斐波那契数列通项公式的求法、将实际问题转化为数学问题。
三.教学手段多媒体辅助教学四.教学过程(一)提出问题今天这节课我们来看一个有趣的问题,它最初是由一名意大利数学家在十三世纪初提出的:兔子出生两个月后就能生小兔,若每次不多不少恰好生一对(一雌一雄),假如养了初生的小兔一对,试问第八个月共有多少对兔子(若生下的小兔都不死的话)?(二)分析问题1.先让学生自由讨论,教师再辅以课件分析:第一个月:只有一对小兔第二个月:小兔未长成不会生殖,仍然只有一对。
第三个月:这对兔子生了一对小兔,这时共有两对。
第四个月:老兔又生了一对小兔,而上月出生的小兔还未成熟,这时共三对。
第五个月:这时已有两对兔子有生殖(原来的老兔和第三个月出生的小兔)于是生了两对小兔,这时共五对兔子。
……月份1234567兔子数(对)11235813如此推算下去,我们不难得出下面结果:月份数兔子数(对)12345678 (1)123581321…∴ 第八个月共21对兔子2.如果我们把上表中下面一列数用{}n u 表示,下标n 表示月份数,则有:{} ,21,13,8,5,3,2,1,1:n u它给我们数列的形象,由于这个问题是由意大利数学家斐波那契提出的,故这个数列被称为斐波那契数列,n u 称为斐波那契数,我们这节课就来研究这个有趣的数列问题(板书课题)。
3.还是回到生小兔问题,假如问一年后有多少对兔子?一年半后?两年后?显然继续用这种方法来推算,似乎有些“笨”,而且越往后越使人觉得复杂,有无简单的办法推算?提示学生观察数列的项的关系?4.学生讨论得出该数列中各项有如下递推关系:⎩⎨⎧≥+===--)3(12121n u u u u u n n n鼓励学生的同时,提出:在当时,这个简单的递推关系却是在斐氏死后近四百年后由一名叫奇拉特的数学家发现的。
人教版小学数学六年级下册《斐波那契数列》教学设计(课例)
![人教版小学数学六年级下册《斐波那契数列》教学设计(课例)](https://img.taocdn.com/s3/m/9c16d25f5acfa1c7aa00cc7c.png)
(2)第五个月、第六个月有多少对兔子呢,你们愿意自己尝试着研究一下吗?把你研究的过程记录在这张纸上,咱们比一比,看谁的研究成果能让人一眼就看得懂、看得明白,拿出纸笔,开始吧!(完成的和周围同学说说,大家互相学习)哪位同学愿意来给大家讲讲自己的作品?他画的什么意思,听明白了吗?孩子,我有个问题:咱们研究的是兔子,你怎么画了这么多图形啊?(简单、好画)是这样吗?你们也是这样画的吗?还有画的不一样的吗?来看看这几位同学画的,也都是用了各种图形、符号,我们研究兔子,你们想到用图形代替,这种数学的思维意识非常好。
比较一下这几种不同的画法,你有什么想法吗?(展台同时展示几种不同的方法)(生评价)生1:画兔子的,麻烦、慢生2:用三角、圆、四边形的,不能一眼看出哪个是大兔哪个是小兔。
生3:用大圆和小圆的,用“大”“小”字的,一下就能看出哪个是大兔哪个是小兔。
我们研究的成果不仅要自己懂,还要让所有看图的人都懂。
在面对“第5个月第6个月有多少对兔子”这个比较复杂的问题时,我们通过画图就能简洁的、清晰的理解题意,其实在我们学习数学的过程中,有很多问题都可以借助图形、符号进行研究并帮助我们解决问题。
(课件验证)现在我们请小兔子们亲自为同学们演示一下,想看吗?月月月月月月现在如果要算算6月有多少对兔子,你能用一个算式表示吗?11235112358斐波那契螺旋——黄金螺旋黄金矩形大自然中的斐波那契数列 )除了动物,哪里还会有呢?①看,这是什么?松果里有螺旋吗?种子的排列(松果)大自然中的斐波那契数列8 种子的排列(松果)大自然中的斐波那契数列13大自然中的斐波那契数列有13条逆时针螺旋和21条顺时针螺旋有13条顺时针螺旋和21条逆时针螺旋大自然中的斐波那契数列大自然中的斐波那契数列21条和34条最多可达89条和14434条和55条条和89条它的种子也排列成?(两组交错的斐波那契螺旋)一般是34和55条螺旋一组,还有和89条螺旋一组的,目前植物学家发现最多是条螺旋一组。
小学数学《斐波那契数列课题》教学设计新部编版
![小学数学《斐波那契数列课题》教学设计新部编版](https://img.taocdn.com/s3/m/dea3bc6d3169a4517623a346.png)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《斐波那契数列的应用》课题设计一、课题的确定:孩子们小学六年学习了六年的数学,却从来没有想过为什么要学习数学,有的同学是认为学习数学是为了计算,而有的同学是认为学习数学是为了应用于生活,却从来没有亲身体会感受过数学的神奇,有没有一个课题能让学生感受到学习数学的目的,特别是让学生亲自体会感受一下数学的美,感受大自然的造物的神奇呢?我思考再三最终确定了研究课题《斐波那契数列的应用》。
二、课题的布置与指导:《斐波那契数列的应用》是数学史上非常著名的一个数列,课本是作为一段阅读材料呈现的,以《兔子的繁殖》为例介绍了斐波那契数列的产生,我本节课确定的目标主要是通过研究让孩子们领略学习数学的目的,感受一下数学本身的魅力以及大自然造物的神奇。
我是从四个方面来布置的课题研究任务:1、以《兔子的繁殖》为例,研究数列的产生,每个小组都要进行研究。
前一天进行了布置,第二天我们就进行了交流汇报,孩子们研究的不错。
于是又接着分组布置了任务:第一小组:从计算的角度研究斐波那契数列的秘密。
第二三小组:从应用的角度出发,到大自然中到生活中去观察是否有斐波那契数列。
孩子们真的是很善于思考,第二小组潘珂在爸爸领着去花棚里买花时,发现了花瓣里的斐波那契现象,而另一个同学惠鹏程却在住的小区里发现了植物叶序也存在着斐波那契现象。
第三小组的费枫舒在和妈妈去超市买东西时看到了正在削菠萝的阿姨,产生了兴趣蹲在那一个多小时发现了菠萝里的斐波那契现象。
而惠荣薪则是在一次上课快迟到了,大步流星的迈楼梯,突发奇想研究研究台阶的迈法,和她的小伙伴发现了楼梯里的斐波那契的秘密,组成了课题研究的第四小组。
我把孩子们的研究情况进行了汇总,考虑到时间有限,最终确定了把数列的产生不纳入到本节课的汇报当中。
《斐波那契数列》课件
![《斐波那契数列》课件](https://img.taocdn.com/s3/m/6c5743dbdbef5ef7ba0d4a7302768e9951e76ebd.png)
03
斐波那契数列的应用
在自然界的运用
生长与繁殖
许多动植物的生长和繁殖遵循斐 波那契数列的规律。例如,菠萝 表面的小眼通常以斐波那契数列
的顺序排列。
植物生长
许多植物的花瓣、叶子和分支遵 循斐波那契数列的规律,如向日 葵花盘上的花瓣数量、松果的鳞
片排列等。
动物行为
一些动物的行为模式,如蜘蛛网 的构造、蜜蜂的蜂巢等,也与斐
02
在建筑设计中的应用
斐波那契数列的美学价值使得它在建 筑设计中也有所应用。通过运用斐波 那契数列的规律和比例,可以在建筑 设计中创造出和谐、优美的作品。
03
在音乐和艺术领域的 应用
斐波那契数列在音乐和艺术领域也有 所应用。例如,在作曲中可以利用斐 波那契数列来安排和声和旋律,在绘 画中可以利用斐波那契数列来构图和 布局。
在计算机科学中的应用
数据结构和算法设计
斐波那契数列在计算机科学中被广泛应用于数据结构和算 法设计。例如,斐波那契堆是一种优化的数据结构,用于 实现高效的内存管理和动态调整。
加密和安全
斐波那契数列在加密算法和网络安全领域也有所应用。例 如,利用斐波那契数列的特性可以设计出更安全的加密算 法。
计算机图形学
寻找新的应用领域
除了在生物学、经济学等领域的应用,未来可以 寻找斐波那契数列在其他领域的新应用,如物理 学、计算机科学等。
优化算法和计算方法
随着计算能力的提高,可以进一步优化斐波那契 数列的计算方法和算法,提高计算效率和精度。
如何将斐波那契数列应用到实际生活中
01
在金融领域的应用
斐波那契数列在金融领域有广泛的应 用,如股票价格预测、风险评估等。 通过分析历史数据,可以利用斐波那 契数列预测未来的市场走势。
Fibonacci数列教案罗萍
![Fibonacci数列教案罗萍](https://img.taocdn.com/s3/m/b6917aa1a8956bec0875e349.png)
高校青年教师教学竞赛
2012年8月
§7.2 Fibonacci数列
【教材分析】
本节课内容选自周炜编著的由清华大学出版社出版的《组合数学》第七章第二节:§7.2 Fibonacci 数列.该内容既是对第一节知识的应用,也因此得到组合计数问题中常用的一类特殊数:Fibonacci数.
【学情分析】
学习本节之前,学生在§7.1节已经学习了递推关系、掌握了常系数齐次线性递推方程通解的求法,具备了相关基础知识,为学习本节内容奠定了基础.【教学目标】
1.知识与技能
通过兔子问题了解Fibonacci 数列(斐波那契数列)的由来,掌握Fibonacci 数列的概念、通项公式的求法及其性质,提高探究发现问题和应用斐波那契数列解决实际问题的能力.
2.过程与方法
通过主动探究,体会数学来源于生活的数学思想、模型化思想、化归思想、特殊到一般的思想. 在经历感知、分析、归纳和应用的过程中增强思维能力,形成一定的数感.
3.情感态度价值观
通过学习,感受数学美,形成良好的思维品质.
【教学重点】
斐波那契数列的概念、通项公式的求法及其性质.
【教学难点】
兔子问题转化为数学问题,斐波那契数列的应用.
【教学方法与手段】
采用探究式、启发式、问题驱动式的教学方法,运用多媒体教学.
【教学设计】
性质的应用:魔术师的地毯
【板书设计】
lim
(f n+
. .
.。
人教版小学数学六年级下册《斐波那契数列》教学设计(课例)
![人教版小学数学六年级下册《斐波那契数列》教学设计(课例)](https://img.taocdn.com/s3/m/7e038902effdc8d376eeaeaad1f34693daef100f.png)
人教版小学数学六年级下册《斐波那契数列》教学设计(课例)课题:斐波那契数列年级:六年级学科:数学设计者:未知教学目标:1.知识与技能:使学生了解斐波那契数列的由来、特点和规律,并感受斐波那契数列与自然的神秘联系。
2.过程与方法:培养学生的观察、分析、概括及探究能力。
3.情感、态度和价值观:向学生展示生活中的数学,使学生在欣赏的同时,感受数学的神奇,产生热爱数学、热爱自然的情感。
同时培养学生科学研究的态度和方法。
教学过程:一、探究数列:1.情境引入:老师出示兔子的图片,引导学生探究斐波那契数列。
如果刚开始第一个月有1对小兔,到了第5个月兔子怎么样?到了第8个月呢?这是怎么回事呢?2.探索研究:1)学生读懂了关于小兔子的问题,老师出示大兔子、小兔子的图片,让学生用图来摆出这段话的意思。
学生可以通过生贴生讲的方式,将每个月之间的关系、每对兔子之间的关系摆出来,让同学们能够清晰地理解。
2)老师引导学生自己尝试着研究第五个月、第六个月有多少对兔子。
学生可以记录下自己的研究过程,与周围的同学交流,互相研究。
学生可以用各种图形、符号来代替兔子,这种数学的思维意识非常好。
老师可以展示几种不同的方法,让学生比较并评价。
我们可以用大圆和小圆来区分大兔和小兔。
当面对“第5个月第6个月有多少对兔子”这个复杂的问题时,我们可以通过画图来清晰地理解题意。
在研究数学的过程中,我们可以利用图形和符号来解决许多问题。
现在,让我们看看如何计算6月有多少对兔子。
我们可以先看4月和5月的情况。
4月的2对大兔到5月仍然是大兔,而1对小兔则长大了。
因此,5月有3对大兔和2对小兔。
接着,5月的3对大兔到6月仍然是大兔,而2对小兔则也长大了。
因此,6月有5对大兔和3对小兔。
我们可以用算式3+5=8来表示这个结果。
那么,如何知道6月一定有3对小兔呢?我们可以通过观察5月的3对大兔来得知。
同样地,我们可以通过观察4月的兔子数来得知5月和6月的情况。
斐波那契数列教案
![斐波那契数列教案](https://img.taocdn.com/s3/m/de820f5ecc7931b764ce154f.png)
《斐波那契数列》教学设计教学内容:第65页阅读资料“斐波那契数列”。
教学目标:1、使学生认识“斐波那契数列”及其部分特性。
2、在经历感知、分析、归纳和应用的过程中培养学生的思维能力。
3、培养积极的数学阅读习惯,形成积极的数学情感。
教学过程:一、故事引入,提出问题很久很久以前,有个意大利人发现了一对神奇的小兔子,和兔子相处一年之后,他便成为一个举世闻名的数学家。
这一年到底发生了什么呢他用一道数学题清楚的告诉了我们,请看大屏幕:假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢1、请学生读题,分析、理解题意。
你觉得题目中哪句话的意思很重要,需要提醒大家注意呢重点理解:①一对大兔生过一对小兔后,下个月会接着生,无死亡;②小兔一个月后长成大兔,以后一直是大兔。
2、模拟兔子生长过程⑴请同学们讨论,你想了解哪些问题如何解决(这一年当中,兔子的数量到底是怎样增长的)我们来模拟一下,好不好⑵师生共同参与模拟过程,记录数据。
1月—4月,由教师带领学生体会兔子变化过程。
⑶引导发现规律,小组合作完成剩下月份的推导⑷汇报交流,解决问题。
二、合作探究,解决问题1、刚才大家表现得很踊跃。
下面我们就来研究这个着名的数学问题,它就是这个数列:1,1,2,3,5,8,13,21,……2、观察前后数的关系,从这个数列中你发现了什么规律①学生举手汇报,说出规律:前两个数之和等于第三个数。
②若一个数列,首两项等于1,而从第三项起,每一项是前两项之和,则称该数列为斐波那契数列。
三、应用新知,练习巩固根据你发现的规律填空四、课堂小结请说一说这节课你学会了什么。
“斐波那契数列”教学设计
![“斐波那契数列”教学设计](https://img.taocdn.com/s3/m/6defeda3c77da26925c5b040.png)
一
步
一
教 师利 用课 件 展示兔 子 数列 假 设
:
一
对 兔 子 每隔
K + + H
认识 和 研 究 斐 波 那 契 数列
—
。
个月 生
一
对
一
雌
一
雄 的 小 兔子 每对 小 兔子 在 两个
,
- -
- ?
?
\
H
-
+
-
H
H
- - *
1
?
— ?
WV C D 所 以 Z A 以 A S / / / / Z A CM Z D 丄
i
=
=
,
,
得 到 西 格玛
例
EF
,
ZDC W
J
。
又因 为
=
Z A CD
。
= J ,
Z A CM + Z D C W 所 以
2
模型 的变形
1 1
,
。
ZA +Z D
:
Z ACD
=
所以 在图
。
7
中 应该 得 到 这样 的
7
如 图
A
,
AB
/ /
CD / /
^
 ̄
b
 ̄
结论 ZA +Z D
,
事 半 功倍 的效 果
。
&
月 以
,
设计
h u c a n c om
2 01 6
'
年第 8期
|
:
,
,
I
s
中 学数 学教 学参 考
, ,
(
下旬
数学教师讲课直播稿范文
![数学教师讲课直播稿范文](https://img.taocdn.com/s3/m/0ff55208e55c3b3567ec102de2bd960590c6d98c.png)
数学教师讲课直播稿范文大家好!今天我要给大家讲解一个非常有趣的数学问题——斐波那契数列。
这个问题在数学领域有着重要的意义,也是我们在高中数学中经常会遇到的内容之一。
斐波那契数列是由意大利数学家列昂纳多·斐波那契在13世纪提出的,他是欧洲数学史上最重要的数学家之一。
斐波那契数列的定义非常简单,也非常直观:数列的第一项和第二项都是1,从第三项开始,每一项都等于前两项的和。
根据这个定义,我们可以列出前几项斐波那契数列:1,1,2,3,5,8,13,21,34,54,89……可以看出,斐波那契数列是由一个个整数构成的。
斐波那契数列在数学中有着广泛的应用,尤其在自然界的规律研究以及金融领域中有非常重要的地位。
斐波那契数列中的数值是递增的,并且数值间的比值趋于一个特殊的常数——黄金分割比。
黄金分割比在建筑设计、艺术、金融投资等领域有很多应用。
斐波那契数列还有很多有趣的性质和规律。
比如,当我们计算斐波那契数列的每一项与它的前一项的比值时,随着项数的增加,这个比值会趋向于一个固定的值金斯雷特常数,约等于1.618。
这一点在数学中很有意义。
此外,斐波那契数列还有一些有趣的数学关系。
比如,相邻两项的比值会趋向于黄金分割比,而隔一位的比值会趋向于黄金分割比的平方,以此类推。
这些关系是斐波那契数列的独特之处,也是它在数学研究中引起广泛关注的原因之一。
对于我们高中生而言,斐波那契数列的应用非常广泛。
它可以用来解决很多实际问题,比如经济学中的投资分析、生态学中的物种数量变化、计算机科学中的算法设计等等。
了解斐波那契数列的性质和规律,不仅可以提高我们的数学素养,还能帮助我们更好地理解和应用数学知识。
总结一下,斐波那契数列是一个非常有趣且应用广泛的数学问题。
通过学习斐波那契数列,我们可以了解到数学中的规律和性质,也可以看到数学在现实生活中的应用。
希望大家在今后的学习中能够更加深入地理解和应用斐波那契数列,提升自己的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答
11
1月 1对 2月 1对
解答
12
1月 1对 2月 1对 3月 2对
解答
13
1月 1对 2月 1对 3月 2对 4月 3对
解答
14
1月 1对 2月 1对 3月 2对 4月 3对 5月 5对
解答
15
1月 1对 2月 1对 3月 2对 4月 3对 5月 5对 6月 8对
解答
16
解答
1月 1对 2月 1对 3月 2对 4月 3对 5月 5对 6月 8对 7 月 13 对
个月时,共有多少对兔子?
月 份 Ⅰ Ⅱ Ⅲ Ⅳ ⅤⅥ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ 大兔对数 1 1 2 3 5 8 13 21 34 55 89 144 小兔对数 0 1 1 2 3 5 8 13 21 34 55 89
到十二月时有大兔子144对,小兔子89对, 共有兔子144+89=233对。
19
用斐波那契数列及其推广变魔术
所以右式的答案是: 21 11 = 231
+
1 2 3 5 8 13 21 34 55 89 ??
21
“十秒钟加数”的秘密
34 55
又例如:
89
144
右式的答案是:
233
377
610 = 6710
610
987
1597
+ 2584
????
22
兔子数列
斐波那契数列
1
1 2 3 5 8 13 21 34 55 + 89 ??
十秒钟加数
请用十秒,计算出 左边一列数的和。
时间到!
答案是 231。
2
34 55 89 144 233 377 610 987 1597 + 2584 ????
十秒钟加数
再来一次!
时间到!
答案是 6710。
3
这与“斐波那契数列”有关
6
斐波那契的才能受到弗里德里希二世 的重视,因而被邀请到宫廷参加数学竞 赛。他还曾向官吏和市民讲授计算方法。
他的最重要的成果在不定分析和数论 方面,除了《算盘书》外,保存下来的还 有《实用几何》等四部著作。
7
六、 斐波那契协会和《斐波那契季刊》
1. 斐波那契协会和《斐波那契季刊》
斐波那契1202年在《算盘书》中从兔子 问题得到斐波那契数列1,1,2,3,5,8, 13,…之后,并没有进一步探讨此序列,并且 在19世纪初以前,也没有人认真研究过它。没 想到过了几百年之后,十九世纪末和二十世 纪,这一问题派生出广泛的应用,从而突然活 跃起来,成为热门的研究课题。
17
解答
可以将结果以列表形式给出:
1月 2月 3月 4月 5月 6月 112358
7月 8月 9月 10月 11月 12月 13 21 34 55 89 144
因此,斐波那契问题的答案是 144对。 以上数列, 即“斐波那契数列”
18
规律
兔子问题的另外一种提法: 第一个月是一对大兔子,类似繁殖;到第十二
让观众从你写出的斐波那
1
契数列中任意选定连续的
1
十个数,你能很快说出这
2
些数的和。
3
5
其实有公式:这个
8
和,就是所选出的十个 13
数中第七个数的11倍。 21
34
55 89 144 233 377 610 987 …
20
“十秒钟加数”的秘密
数学家发现:连续 10个斐波 那契数之和,必定等于第 7个 数的 11 倍!
若一个数列,前两项等于1,而从第三项 起,每一项是其前两项之和,则称该数 列为斐波那契数列。即:
1 , 1 , 2 , 3 , 5 , 8 , 13 , … …
4
兔子问题和斐波那契数列
1. 兔子问题 1) 问题 ——取自意大利数学家 斐波那契的《算盘书》 (1202年)
(L.Fibonacci,1170-1250)
5
2. 斐波那契生平 斐波那契 (Fibonacci.L,1175—1250)
出生于意大利的比萨。他小时候就对算术很 有兴趣。后来,他父亲带他旅行到埃及、叙利亚、 希腊(拜占庭)、西西里和普罗旺斯,他又接触 到东方国家的数学。斐波那契确信印度—阿拉伯 计算方法在实用上的优越性。1202年,在回到家 里不久,他发表了著名的《算盘书》。
8
有人比喻说,“有关斐波那契数 列的论文,甚至比斐波那契的兔子 增长得还快”,以致1963年成立了 斐波那契协会,还出版了《斐波那 契季刊》。
9
兔子问题
假设一对初生兔子要一个月才到成熟 期,而一对成熟兔子每月会生一对兔子, 那么,由一对初生兔子开始,12 个月后会 有多少对兔子呢?
10
1月 1对