2017年中考数学相似三角形压轴题
2017年中考数学真题汇编--利用相似三角形的性质解答综合题
2017中考数学真题汇编---利用相似三角形的性质解答综合题1.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.2.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.3.如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.4.已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD?MN.5.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;6.已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA 于E,交OC于F,连接OD,DF.(1)求证:AB是⊙O的切线;(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG?OE.7.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.8.如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求的值.9.如图,已知AB、CD为⊙O的两条直径,DF为切线,过AO上一点N作NM ⊥DF于M,连结DN并延长交⊙O于点E,连结CE.(1)求证:△DMN∽△CED.(2)设G为点E关于AB对称点,连结GD、GN,如果∠DNO=45°,⊙O的半径为3,求DN2+GN2的值.10.已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.11.将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点E,分别连接EB,EC.(1)求证:EC平分∠AEB;(2)求的值.12.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).13.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC 于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.14.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.15.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.16.如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.(1)求证:△ACD∽△BAD;(2)求证:AD是⊙O的切线.17.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF?DA.18.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA?PB;(2)若PT=TB=,求图中阴影部分的面积.19.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)20.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.21.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB 于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.22.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.如图,以△ABC的边AC为直径的⊙O交AB边于点M,交BC边于点N,连接AN,过点C的切线交AB的延长线于点P,∠BCP=∠BAN.(1)求证:△ABC为等腰三角形.(2)求证:AM?CP=AN?CB.24.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.25.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF?AC.26.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF ⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.27.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF?GF=28时,请直接写出CE的长.28.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图1,当∠ABC=45°时,求证:AD=DE;(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.29.如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E、F,△AEF∽△ABC.(1)求证:△AED≌△AFD;(2)若BC=2AD,求证:四边形AEDF是正方形.30.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD 于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.31.将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.32.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F 在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.33.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?34.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F 为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.35.如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?36.如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.37.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC 交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?38.如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.求证:K是线段MN的中点.39.如图,过圆O直径的两端点M、N各引一条切线,在圆O上取一点P,过O、P两点的直线交两切线于R、Q.(1)求证:△NPQ∽△PMR;(2)如果圆O的半径为,且S△PMR=4S△PNQ,求NP的长.40.已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F.证明:△PME∽△PNF,PN=PM.(2)当PC=PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请分别写出线段PN、PM之间的数量关系(不用证明).参考答案与解析1.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°-∠B-∠DEB,∠CEF=180°-∠DEF-∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴BE:CF=DE:EF,∵点E是BC的中点,∴BE=CE,∴CE:CF=DE:EF,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.2.(2017?泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴=,解得:x=,故AE=1﹣=.【点评】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM∽△APD是解题关键.3.(2017?攀枝花)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.【分析】(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.【点评】本题考查了切线的判断和性质、相似三角形的判断和性质、圆周角定理以及三角函数的性质,熟记切线的判断和性质是解题的关键.4.(2017?黄冈)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD?MN.【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可;(2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可.【解答】证明:(1)∵ME平分∠DMN,∴∠OME=∠DME,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE∥DM,∵DM⊥DE,∴OE⊥DE,∵OE过O,∴DE是⊙O的切线;(2)连接EN,∵DM⊥DE,MN为⊙O的直径,∴∠MDE=∠MEN=90°,∵∠NME=∠DME,∴△MDE∽△MEN,∴=,∴ME2=MD?MN【点评】本题考查了切线的判定,圆周角定理,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.5.(2017?阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到BD=CE;(2)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.6.(2017?锦州)已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.(1)求证:AB是⊙O的切线;(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG?OE.【分析】(1)过O作OH⊥AB,由菱形的性质可求得OH=OD,由切线的性质可知OD为圆O的半径,可得OH为圆O的半径,可证得结论;(2)由条件可证明△DGF∽△DFO,再利用相似三角形的性质可证得结论.【解答】证明:(1)如图,过O作OH⊥AB,∵四边形OABC为菱形,∴AB=BC,∵BC为⊙O的切线,∴OD⊥BC,且OD为⊙O的半径,∴AB?OH=BC?OD,∴OH=OD,∴AB为⊙O的切线;(2)由(1)可知OD⊥CB,∴AO⊥DO,∴∠AOD=90°,∴∠DFE=∠AOD=45°,∵∠C=45°,且∠ODC=90°,∴∠DOF=45°,在△OGF中,∠DGF为△OGF的外角,∴∠DGF=∠DOF+∠GFO=45°+∠GFO,∵∠DFO=∠DFG+∠GFO=45°+∠GFO,∴∠DGF=∠DFO,且∠GDF=∠FDO,∴△DGF∽△DFO,∴=,即DF?GF=DG?OF,∵OF=OD=OE,∴DF=GF,∴GF2=DG?OE.【点评】本题主要考查切线的判定和性质及相似三角形的判定,掌握切线的判定方法和相似三角形的判定方法是解题的关键,注意等积法的应用.7.(2017?杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG ⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.8.(2017?巴中)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求的值.【分析】(1)连接OE,证明FG是⊙O的切线,只要证明∠OEF=90°即可;(2)先根据角平分线的性质得出EF=BE=6,再证明△ADF∽△FCE,根据相似三角形对应边成比例得出==.【解答】(1)证明:如图,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)解:∵四边形ABCD是矩形,∴EB⊥AB,∵EF⊥AF,AE平分∠FAH,∴EF=BE=6,又∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠DAF+∠AFD=90°,又∵AF⊥FG,∴∠AFG=90°,∴∠AFD+∠CFE=90°,∴∠DAF=∠CFE,又∵∠D=∠C,∴△ADF∽△FCE,∴=,又∵AF=12,EF=6,∴==.【点评】本题考查的是切线的判定,解决本题的关键是要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质,矩形的性质.9.(2017?德阳)如图,已知AB、CD为⊙O的两条直径,DF为切线,过AO上一点N作NM⊥DF于M,连结DN并延长交⊙O于点E,连结CE.(1)求证:△DMN∽△CED.(2)设G为点E关于AB对称点,连结GD、GN,如果∠DNO=45°,⊙O的半径为3,求DN2+GN2的值.【分析】(1)先利用直径所对的圆周角是直角和切线的性质得:∠DEC=∠NMD=90°,再证明CD∥NM,可得∠MND=∠EDC,根据两角对应相等可得两三角形相似;(2)先证明△GND是直角三角形,再根据△EGN是等腰直角三角形得∠GEN=45°,证明△GOD是直角三角形,利用勾股定理可得结论.【解答】证明:(1)∵DF为⊙O的切线,∴DF⊥CD,∵NM⊥DF,∴NM∥CD,∴∠MND=∠EDC,∵CD为⊙O的直径,NM⊥DF,∴∠DEC=∠NMD=90°,∴△DMN∽△CED;(2)连接GE,CG,OC,∵G为点E关于AB对称点,∴AO垂直平分EG,∴GN=EN,∠GNA=∠ENA,∵∠DNO=45°,∴∠ENA=45°,∴∠GNE=90°,∴∠GND=180°﹣90°=90°,∴△GND是直角三角形,∴DN2+GN2=DG2,∵△EGN是等腰直角三角形,∴∠GEN=45°,∴∠C=∠GEN=45°,∵OG=OC,∴∠CGO=∠C=45°,∴∠GOD=90°,∴△GOD是直角三角形,∴DG2=OG2+OD2=32+32=18,∴DN2+GN2=DG2=18.【点评】本题考查了切线的性质、等腰三角形的性质、相似三角形的判定与性质、等腰直角三角形的判定及性质、勾股定理等知识,第2问有难度,证明∠C=45°是解决第(2)小题的关键.10.(2017?十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边成比例的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.11.(2017?宁夏)将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点E,分别连接EB,EC.(1)求证:EC平分∠AEB;(2)求的值.【分析】(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根据圆周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代换得出∠AEC=∠BEC,即EC平分∠AEB;(2)方法1、设AB与CE交于点M.根据角平分线的性质得出=.易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==.作AF⊥CE于F,BG⊥CE于G.证明△AFM∽△BGM,根据相似三角形对应边成比例得出==,进而求出===.方法2、易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==,再用角平分线定理判断出CP=CQ,即可得出结论.【解答】(1)证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,∴∠BAC=∠ABC=45°,∵∠AEC=∠ABC,∠BEC=∠BAC,∴∠AEC=∠BEC,即EC平分∠AEB;(2)解:如图,设AB与CE交于点M.∵EC平分∠AEB,∴=.在Rt△ABD中,∠ABD=90°,∠D=60°,∴∠BAD=30°,∵以AB为直径的圆经过点E,∴∠AEB=90°,∴tan∠BAE==,∴AE=BE,∴==.作AF⊥CE于F,BG⊥CE于G.在△AFM与△BGM中,∵∠AFM=∠BGM=90°,∠AMF=∠BMG,∴△AFM∽△BGM,∴==,【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC交AB于G,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD?CG=×2×2=2.【点评】本题考查了相似三角形的判定与性质、垂径定理、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理,证明三角形相似是解决问题的关键.13.(2017?桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE:S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.14.(2017?衢州)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.【分析】(1)由切线的性质和垂直的定义得出∠E=90°=∠CDO,再由∠C=∠C,得出△COD∽△CBE.(2)由勾股定理求出BC==15,由相似三角形的性质得出比例式,即可得出答案.【解答】(1)证明:∵CD切半圆O于点D,∴CD⊥OD,∴∠CDO=90°,∵BE⊥CD,∴∠E=90°=∠CDO,又∵∠C=∠C,∴△COD∽△CBE.(2)解:在Rt△BEC中,CE=12,BE=9,∴BC==15,∵△COD∽△CBE.∴,即,解得:r=.【点评】本题考查了切线的性质、相似三角形的判定及其性质、勾股定理;熟练掌握相似三角形的判定与性质是解决问题的关键.15.(2017?乐山)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE?CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=C A2=(2)2=8.【点评】此题主要考查了切线的判定和相似三角形的性质和判定,关键是掌握切线的判定定理和相似三角形的判定与性质定理.16.(2017?怀化)如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.(1)求证:△ACD∽△BAD;(2)求证:AD是⊙O的切线.【分析】(1)根据等腰三角形的性质得到∠CAD=∠B,由于∠D=∠D,于是得到△ACD∽△BAD;(2)连接OA,根据等腰三角形的性质得到∠B=∠OAB,得到∠OAB=∠CAD,由BC是⊙O的直径,得到∠BAC=90°即可得到结论.【解答】证明:(1)∵AB=AD,∴∠B=∠D,∵AC=CD,∴∠CAD=∠D,∴∠CAD=∠B,∵∠D=∠D,∴△ACD∽△BAD;(2)连接OA,∵OA=OB,∴∠B=∠OAB,∴∠OAB=∠CAD,∵BC是⊙O的直径,∴∠BAC=90°,∴OA⊥AD,∴AD是⊙O的切线.【点评】本题考查了相似三角形的判定和性质,切线的判定,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.17.(2017?滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF?DA.【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF?DA,据此可得DE2=DF?DA.【解答】解:(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF?DA,∴DE2=DF?DA.【点评】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.18.(2017?黔东南州)如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA?PB;(2)若PT=TB=,求图中阴影部分的面积.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA?PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣?12=﹣.【点评】本题考查相似三角形的判定和性质、切线的性质、扇形的面积等计算等知识,解题的关键是正确寻找相似三角形解决问题,第二个问题的关键是证明△AOT的等边三角形.19.(2017?广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM?PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.20.(2017?天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.【点评】此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意数形结合思想的应用.21.(2017?德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE?BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x?3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.22.(2017?河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.。
2017全国中考数学压轴题——解答题部分(三)
2017全国中考数学压轴题——解答题部分(三)41.(河南省23)如图,直线y =-23x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y =-43x 2+bx +c 经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N ,①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与∆APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.42.(黑龙江大庆28)如图,直角∆ABC 中,∠A 为直角,AB =6,AC =8.点P ,Q ,R 分别在AB ,BC ,CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中:(1)求证:∆APR ,∆BPQ ,∆CQR 的面积相等;(2)求∆PQR 面积的最小值;(3)用t (秒)(0≤t ≤2)表示运动时间,是否存在t ,使∠PQR =90°,若存在,请直接写出t 的值;若不存在,请说明理由.43.(黑龙江哈尔滨26)已知:AB 是⊙O 的弦,点C 是︵AB 的中点,连接OB 、OC ,OC交AB 于点D .(1)如图1,求证:AD =BD ;(2)如图2,过点B 作⊙O 的切线交OC 的延长线于点M ,点P 是︵AC 上一点,连接AP 、BP ,求证:∠APB -∠OMB =90°;(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交⊙O 于点Q ,若MQ =6DP ,sin∠ABO =35,求MP MQ 的值.44.(黑龙江哈尔滨27)如图,在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,交y 轴于点C ,直线y =x -3经过B 、C 两点.(1)求抛物线的解析式;(2)过点C 作直线CD ⊥y 轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE ⊥x 轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN ⊥AC 于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接PC ,过点B 作BQ ⊥PC 于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST =TD 时,求线段MN 的长.45.(黑龙江龙东28)如图,矩形AOCB 的顶点A 、C 分别位于x 轴和y 轴的正半轴上,线段OA 、OC 的长度满足方程|x -15|+y -13=0(OA >OC ),直线y =kx +b 分别与x 轴、y 轴交于M 、N 两点,将△BCN 沿直线BN 折叠,点C 恰好落在直线MN 上的点D处,且tan ∠CBD =34(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.46.(黑龙江齐齐哈尔26)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次方程x2-12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:∆ADE≌∆COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.47.(黑龙江绥化28)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.48.(黑龙江绥化29)在平面直角坐标系中,直线y =-34x +1交y 轴于点B ,交x 轴于点A ,抛物线y =-12x 2+bx +c 经过点B ,与直线y =-34+1交于点C (4,-2).(1)求抛物线的解析式;(2)如图,横坐标为m 的点M 在直线BC 上方的抛物线上,过点M 作ME ∥y 轴交直线BC 于点E ,以ME 为直径的圆交直线BC 于另一点D ,当点E 在x 轴上时,求△DEM 的周长.(3)将△AOB 绕坐标平面内的某一点按顺时针方向旋转90°,得到△A 1O 1B 1,点A ,O ,B 的对应点分别是点A 1,O 1,B 1,若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的坐标.49.(湖北鄂州24)已知,抛物线y =ax 2+bx +3(a <0)与x 轴交于A (3,0)、B 两点,与y 轴交于点C .抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12. (1)求抛物线的解析式及顶点D 的坐标;(2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使S ∆ACP =12S ∆ACD ,求点P 的坐标;(4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.50.(湖北恩施24)如图12,已知抛物线y=ax2+c过点(-2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A,B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B,C,F,P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得∆QBF的面积最大,若存在,求出点Q的坐标及∆QBF的最大面积,若不存在,请说明理由.51.(湖北黄冈24)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3.动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t =1s 时,求经过点O ,P ,A 三点的抛物线的解析式;(2)当t =2s 时,求tan ∠QP A 的值;(3)当线段PQ 与线段AB 相交于点M ,且BM =2AM 时,求t (s )的值;(4)连接CQ ,当点P ,Q 在运动过程中,记∆CQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.52.(湖北黄石24)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A 4的打印纸等,其实这些矩形的长与宽之比都为2:1,我们不妨就把这样的矩形成为“标准矩形”.在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP =BC ,如下图所示.(1)如图①,求证:BA =BP ;(2)如图②,点Q 在DC 上,且DQ =CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求CG GB 的值;(3)如图③,已知AD =1,在(2)的条件下,连接AG 并延长交DC 的延长线于点F ,连接BF ,T 为BF 的中点,M 、N 分别为线段PF 与AB 上的动点,且始终保持PM =BN ,请证明:△MNT 的面积S 为定值,并求出这个定值.53.(湖北黄石25)如图,直线l :y =kx +b (k <0)与函数y =4x (x >0)的图象相交于A 、C两点,与x 轴相交于T 点,过A 、C 两点作x 轴的垂线,垂足分别为B 、D ,过A 、C 两点作y 轴的垂线,垂足分别为E 、F ;直线AE 与CD 相交于点P ,连接DE .设A 、C两点的坐标分别为(a ,4a ),(c ,4c ),其中a >c >0.(1)如图①,求证:∠EDP =∠ACP ;(2)如图②,若A 、D 、E 、C 四点在同一圆上,求k 的值;(3)如图③,已知c =1,且点P 在直线BF 上,试问:在线段AT 上是否存在点M ,使得OM ⊥AM ?若存在,请求出点M 的坐标;若不存在,请说明理由.54.(湖北荆门24)已知:如图所示,在平面直角坐标系xOy 中,∠C =90°,OB =25,OC =20.若点M 是边OC 上的一个动点(与点O ,C 不重合),过点M 作MN ∥OB 交BC 于点N .(1)求点C 的坐标;(2)当∆MCN 的周长与四边形OMNB 的周长相等时,求CM 的长;(3)在OB 上是否存在点Q ,使得∆MNQ 为等腰直角三角形?若存在,请求出此时MN 的长;若不存在,请说明理由.55.(湖北荆州25)如图在平面直角坐标系中,直线y =-34x +3与x 轴、y 轴分别交于A 、B 两点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 长为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为M .若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切?若存在,请直接写出此时点C 的坐标;若不存在,请说明理由.56.(湖北十堰24)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO =90º,AC ∥OP交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1)如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2)将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(0º<α<45º),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(45º<α<90º),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式;57.(湖北十堰25)抛物线y =x 2+bx +c 与x 轴交于A (1,0),B (m ,0),与y 轴交于C .(1)若m =-3,求抛物线的解析式,并写出抛物线的对称轴 ;(2)如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使S △ACE = 10 3S △ACD ,求E 点的坐标; (3)如图2,设F (-1,-4),FG ⊥y 轴于G ,在线段OG 上是否存在点P ,使∠OBP =∠FPG ? 若存在,求m 的取值范围;若不存在,请说明理由.图2x x58.(湖北随州24)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点. 下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当∠ABE =135°时,延长AD 、EF 交于点N ,求AM NE 的值;(3)在(2)的条件下,若AF AB =k (k 为大于2的常数),直接用含k 的代数式表示AM MF 的值.59.(湖北随州25)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将∆ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若∆AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.60.(湖北武汉23)已知四边形ABCD 的一组对边AD ,BC 的延长线相交于点E .(1)如图1,若∠ABC =∠ADC =90°,求证ED ·EA =EC ·EB ;(2)如图2,若∠ABC =120°,cos ∠ADC =35,CD =5,AB =12,∆CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB ,DC 的延长线相交于点F ,若cos ∠ABC =cos ∠ADC =35,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示).。
2017中考数学真题汇编-----用相似三角形解决问题(解)
点 C 的对应点为 C′,连接 BB′;
( 2)在( 1)所画图形中,∠ AB′B=
.
【问题解决】
如图②,在等边三角形 ABC中,AC=7,点 P 在△ ABC内,且∠ APC=9°0,∠ BPC=12°0,
求△ APC的面积.
小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△ APC 绕点 A 按顺时针方向旋转 60°,得到△ AP′,B连接 PP′,寻找
请你参考上面的思路,证明 DF=EF(只用一种方法证明即可) . ( 2)类比探究:在( 1)的条件下(如图 1),过点 D 作 DM⊥AC 于点 M ,试探 究线段 AM, MF,FC之间满足的数量关系,并证明你的结论. ( 3)延伸拓展:如图 2,在△ ABC中,若 AB=AC,∠ABC=2∠BAC, =m,请你
AB 于点 D,E,F,若 = , = ,求 的值.
6.已知,在△ ABC中,点 D 在 AB 上,点 E 是 BC延长线上一点,且 AD=CE,连 接 DE 交 AC于点 F. ( 1)猜想证明:如图 1,在△ ABC中,若 AB=BC,学生们发现: DF=EF.下面是 两位学生的证明思路: 思路 1:过点 D 作 DG∥BC,交 AC于点 G,可证△ DFG≌△ EFC得出结论; 思路 2:过点 E 作 EH∥ AB,交 AC 的延长线于点 H,可证△ ADF≌△ HEF得出结 论; …
△ ABC平移的时间为 t (s).
( 1)等边△ ABC的边长为
;
( 2)在运动过程中,当 t=
时, MN 垂直平分 AB;
( 3)若在△ ABC开始平移的同时.点 P 从△ ABC的顶点 B 出发.以每秒 2 个单
位长度的速度沿折线 BA﹣AC运动.当点 P 运动到 C 时即停止运动.△ ABC也随
中考三角形相似压轴题
选择题在△ABC和△DEF中,若△A = △D,AB/DE = AC/DF,则下列结论正确的是:A. △ABC △ △DEFB. △ABC和△DEF不一定相似C. △ABC和△DEF仅在一种情况下相似D. △ABC △ △DEF(正确答案)已知△PQR中,PQ = 6,QR = 8,RP = 10,且△STU中,ST/PQ = SU/QR = 3/4,则:A. △PQR与△STU的周长比为4:3B. △PQR与△STU的面积比为3:4C. △PQR与△STU是等腰三角形D. △PQR △ △STU且相似比为4:3(正确答案)下列哪组条件不能判定两个三角形相似?A. 两角分别相等B. 三边对应成比例C. 两边对应成比例且夹角相等D. 两边对应成比例且一边的对角相等(正确答案)在△ABC和△A'B'C'中,若AB/A'B' = BC/B'C'且△B = △B',则:A. △A = △A'且△C = △C'(正确答案)B. △A = △C'且△C = △A'C. △A与△A'、△C与△C'均不相等D. 无法确定△A、△C与△A'、△C'的关系已知△MNO与△XYZ相似,且MN = 2,NO = 3,MO = 4,XY = 6,则YZ的长度为:A. 8B. 9(正确答案)C. 10D. 12下列关于相似三角形的性质,错误的是:A. 相似三角形的对应角相等B. 相似三角形的对应边成比例C. 相似三角形的面积比等于对应边长的平方比D. 相似三角形的周长比等于对应边长的立方比(正确答案)在△GHK和△LMN中,若GH/LM = HK/MN,且△G = △L,△H = △M,则:A. △GHK与△LMN仅面积相等B. △GHK与△LMN仅周长相等C. △GHK与△LMN全等D. △GHK △ △LMN且全等方面也成立(正确答案,但更严谨的表述应为“△GHK △ △LMN”)已知△ABC中,AB = 5,BC = 6,AC = 7,△DEF中,DE = 10,EF = 12,且△A = △D,则:A. DF = 15且△ABC △ △DEFB. DF = 14且△ABC与△DEF不全等C. DF = 16且△ABC △ △DEFD. DF = 14且△ABC △ △DEF(正确答案)下列哪组条件足以证明△PQR与△STU相似,但不需要额外条件即可直接判定?A. △P = △S,△Q = △TB. PQ/ST = QR/TU,且QR = 2PTC. PQ/ST = QR/TU = RP/SU(正确答案)D. △P = △S,PQ/ST = RP/SU且QR ≠ TU。
2017年中考数学压轴题专题汇编05因动点产生的相似、全等三角形问题(解析版)
【类型综述】函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
【方法揭秘】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分和两种情况列方程.AB DE ACDF AB DF AC DE 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A 、B 两点的坐标,怎样求A 、B 两点间的距离呢?我们以AB 为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB 的长了.水平距离BC 的长就是A 、B 两点间的水平距离,等于A 、B 两点的横坐标相减;竖直距离AC 就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1【典例分析】例1 如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒.2(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.满分解答图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q 向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.例2 二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S 与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.满分解答图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F .由y =m(x +3)(x -1)=m(x +1)2-4m ,得D(-1,-4m).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,.所以.解得m =1.OA OC ECED 331m m 此时,.所以.所以△CDA ∽△OBC .3CA OC CD ED 3OCOB CAOC CD OB考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H(x,-2x -6).又因为P(x, 2x 2+4x -6),所以HP =-2x 2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH=(-2x 2-6x)=.3223273()24x 例3如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A(2, m).(1)求k 与m 的值;(2)此双曲线又经过点B(n, 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.。
初中数学《相似三角形》压轴30题含解析
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
2017中考数学全国试题汇编------二次函数中三角形相似综合压轴题
3
0 ,解得 c=2
∴ B( 0, 2),
∵抛物线 y
42 x
bx
c 经过点 A(3,0) ,
3
∴ 4 32 3b 2 0 ,∴ b= 10
3
3
∴抛物 线的解析式为 y
4 x2
10 x
2;
33
( 2)∵ MN x 轴, M (m,0),∴ N( m,
① 有( 1)知直线 AB 的解析式 为 y
2 x
得 M , P , N 三点成为 “共谐点 ”的 m 的值 .
【答案】( 1)B( 0,2), y
4 x2
10 x
2 ;( 2)① 点 M 的坐标为( 11 ,
3
3
8
0)或 M ( 5 ,0); ② m=-1 或 m= 1 或 m= 1 .
2
4
2
试题解析:
( 1)直线 y
∴x 轴交于点 A(3,0) ,
3
4 m2
10 m
2)
3
3
2, OA=3,OB=2
∵在 △APM 中和 △BPN中,∠ APM=∠BPN, ∠AMP=90°,
若使 △APM 中和 △BPN相似,则必须∠ NBP=90°或∠ BNP=90 °,
分两种情况讨论如下:
( I)当∠ NBP=90°时,过点 N 作 NC y 轴于点 C,
则∠ NBC+∠BNC=90°,NC=m,
∴
,
∴
,
∴ 16a2=4,
a=± ,
∵ a> 0,
∴ a= ;
∴ B (1, );
( 3)如图 3,设 AC=nBC,
由( 2)同理可知: A 的横坐标是 B 的横坐标的 n 倍,
中考数学 压轴题函数相似三角形问题精选解析(三)
中考数学压轴题函数相似三角形问题精选解析(三)例5如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标. ,图1 解析(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-. 解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--. 解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意. 综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=. 因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m . 当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6 考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图解析 (1)如图2,作BH ⊥AC ,垂足为点H .在Rt △ABH 中,AB =5,cosA =310AH AB =,所以AH =32=12AC .所以BH 垂直平分AC ,△ABC 为等腰三角形,AB =CB =5. 因为DE //BC ,所以AB AC DB EC =,即53y x=.于是得到53y x =,(0x >). (2)如图3,图4,因为DE //BC ,所以DE AE BC AC =,MN AN BC AC =,即|3|53DE x -=,1|3|253x MN -=.因此5|3|3x DE -=,圆心距5|6|6x MN -=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==.①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形. 如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DEC F 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA⋅=2?请你作出判断,并说明理由; (2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图1解析(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB tb ,+=t OC t b . 所以-=⋅t OC OB (|||||t b )( +t t b )|-=2|t 22|OA t tb ==.即22b t t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论: 因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5). ②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).附:高考各科的答题技巧一、掌握好基础知识掌握基础知识没有捷径,俗话说“巧妇难为无米之炊”,没有基础知识,再多的答题技巧也没有用,有了基础知识,才能在上面“玩一些复杂的花样”,让自己分数提高一个层次,其实很简单,上课认真听讲,放学再温习一两遍足矣。
中考数学压轴题【相似三角形的存在性问题】解题训练卷
中考数学压轴题【相似三角形的存在性问题】解题训练卷
1中考数学压轴题
【相似三角形的存在性问题】解题训练卷
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检
验,如例题1、2、3、4.
应用判定定理
1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理
3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组).例题解析
例?如图1-1,抛物线21
3
482y x x 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C
.动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、
F 两点,动点P 同时从点B 出发,在线段
OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由.
图1-1
【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠
B 的两条边.△AB
C 是确定的.由21
3
482y x x ,可得A (4,
0)、B (8,0)、C (0,4).于是得到BA =4,BC =45.还可得到12CE CO
EF OB .
△BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了.
在Rt △EFC 中,CE =t ,EF =2t ,所以5CF t .。
中考数学压轴题因动点产生的相似三角形问题专项练习(含答案)
中考数学压轴题因动点产生的相似三角形问题专项练习1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45° 后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q 为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB 时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB 于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长参考答案一.解答题(共36小题)【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠ PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得解得.,故直线AB的解析式为y=x+2;22(2)如图①,过点Q 作x 轴的垂线QC ,交AB 于点C ,再过点Q 作直线AB 的垂线,垂足为D ,根据条件可知△QDC 为等腰直角三角形,则QD=QC .设Q (m ,m 2),则C (m ,m+2).∴QC=m+2﹣m 2=﹣(m﹣ )+ ,QD= QC= [﹣(m﹣ )+ ].故当m= 时,点Q 到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ 中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B 作x 轴的平行线,与抛物线和y 轴分别交于点Q′、F .此时满足∠PBQ′=45°.∵Q′(﹣2,4),F (0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT 也是等腰直角三角形.(i )当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii )当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F 为圆心,FB 为半径作圆,则P 、B 、Q′都在圆F 上,设圆F 与y 轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n ,n 2)(﹣2<n <0),由FQ″=2,得n 2+(4﹣n 2)2=22,即n 4﹣7n 2+12=0.解得n 2=3或n 2=4,而﹣2<n <0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET= AE= ,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG= TG= a,AP=,∴ a+a= ,解得PT= a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴= ,∴BA2=BE•BF,∵BE•BF=y,∴y=BA2,∵∠ADO=∠ADB=90°,∴AD2=AO2﹣DO2,AD2=AB2﹣BD2,∴AO2﹣DO2=AB2﹣BD2,∵直径BC=8,BD=x,∴AB2=8x,则y=8x(0<x<4);方法二:∵BE•BF=y,BF=2BH,∴BE•BH=y,∵△BED∽△BOH,∴= ,∴OB•BD=BE•BH,∴4x=y,∴y=8x(0<x<4);(3)解:连接OF,如图2所示,∵∠GFB是公共角,∠FAE>∠G,∴当△FAE∽△FBG时,∠AEF=∠G,∵∠BHA=∠ADO=90°,∴∠AEF+∠DAO=90°,∠AOD+∠DAO=90°,∴∠AEF=∠AOD,∴∠G=∠AOD,∴AG=AO=4,∵∴∠AOD=∠AOF,∴∠G=∠AOF,又∵∠GFO是公共角,∴△FAO∽△FOG,∴= ,∵AB 2=8x ,AB=AF ,∴,∴AF=2x,=解得:x=3±,∵3+>4,舍去,∴BD=3﹣.3.【分析】(1)先通过解直角三角形求得A 的坐标,然后根据待定系数法即可求得直线AB 的解析式;(2)作DE ∥OA ,根据题意得出= = ,求得DE ,即D 的横坐标,代入AB 的解析式求得纵坐标,然后根据反比例函数图象上点的坐标特征即可求得k 1;(3)根据勾股定理求得AB 、OE ,进一步求得BE ,然后根据相似三角形的性质求得EF 的长,从而求得FM 的长,得出F 的坐标,然后根据反比例函数图象上点的坐标特征即可求得k 2.【解答】解:(1)∵A (3,0)、B (0,m )(m >0),∴OA=3,OB=m ,∵tan ∠BAO==2,∴m=6,设直线AB 的解析式为y=kx+b ,代入A (3,0)、B (0,6)得:解得:b=6,k=﹣2∴直线AB的解析式为y=﹣2x+6;(2)如图1,∵AD=2DB,∴= ,作DE∥OA,∴==,∴DE=OA=1,∴D的横坐标为1,代入y=﹣2x+6得,y=4,∴D(1,4),∴k1=1×4=4;(3)如图2,∵A(3,0),B(0,6),∴E(,3),AB==3,∵OE是Rt△OAB斜边上的中线,∴OE= AB=,BE=,∵EM⊥x轴,∴F的横坐标为,∵△OEF∽△OBE,∴=,∴,∴EF=,∴FM=3﹣=.∴F(,),∴k2=×=.。
2017中考数学真题汇编-----用相似三角形解决问题(解)
中考数学真题汇编-----用相似三角形解决问题(解答题)1.已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC?CE.(2)如图2,在边BC上取一点E,满足BE2=BC?CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∠CBF的值.2.已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED?EA=EC?EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)3.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC?CF的值.4.如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.5.如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:??=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.6.已知,在△ABC中,点D在AB上,点E是BC延长线上一点,且AD=CE,连接DE交AC于点F.(1)猜想证明:如图1,在△ABC中,若AB=BC,学生们发现:DF=EF.下面是两位学生的证明思路:思路1:过点D作DG∥BC,交AC于点G,可证△DFG≌△EFC得出结论;思路2:过点E作EH∥AB,交AC的延长线于点H,可证△ADF≌△HEF得出结论;…请你参考上面的思路,证明DF=EF(只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图1),过点D作DM⊥AC于点M,试探究线段AM,MF,FC之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图2,在△ABC中,若AB=AC,∠ABC=2∠BAC,=m,请你用尺规作图在图2中作出AD的垂直平分线交AC于点N(不写作法,只保留作图痕迹),并用含m的代数式直接表示的值.7.在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.8.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.9.如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.10.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.11.如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF ⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.12.【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;,连接PP′,寻找想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).13.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.14.如图,某同学相测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米,求旗杆的高度.15.如图,一种拉杆式旅行箱的示意图,箱体长AB=50cm,拉杆最大伸长距离BC=30cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,其直径为10cm,⊙A与水平地面切于点D,过A作AE∥DM.当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面(40+5)cm,求此时拉杆箱与水平面AE所成角∠CAE的大小及点B到水平地面的距离.16.小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面 1.70m,量得CD=12m,CF=1.8m,DH=3.8m.请你求出松树的高.17.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小军正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小聪正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高BE为1.74米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高AC的长(结果精确到0.01米)18.如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.。
成都市近十年中考数学相似三角形、折叠、几何压轴题
中线、角平分线、垂直平分线、中位线、相似、等量代换、三角函数、旋转、平移【2017成都中考】问题背景:如图1,等腰△ABC 中,AB=AC ,∠BAC=120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC=∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB ≌△AEC ;E ,连接AE 并延长交①证明△②若AE=5【2016,连结BD .(1)求(2)将①如图②②如图③点G ,连接GH 【2015 (1(i (ii )若(2)如图②,当四边形ABCD 和EFCG 均为矩形,且==k 时,若BE=1,AE=2,CE=3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【2014成都中考】如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG . (1)试判断四边形BFEG 的形状,并说明理由;BD(2)当a AB =(a 为常数),3=n 时,求FG 的长; (3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程) 【2013AD BC =.(1(2)若; i )当点ii )当点【2012形,∠的中点重合.将△相交于点P ,线段(1)△BPE ≌△CQE ;(2的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=P 、Q 两点间的距离【2011相交于点K ,E 是线段AD 上一动点。
中考压轴题之相似三角形、三角形面积最值问题
一、中考压轴题之相似三角形、三角形面积最值问题例1、如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A (2, m ). (1)求k 与m 的值;(2)此双曲线又经过点B (n , 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.图一解、(1)将点A (2, m )代入y =x +2,得m =4.所以点A 的坐标为(2, 4).将点A (2, 4)代入ky x=,得k =8.(2)将点B (n , 2),代入8y x=,得n =4.所以点B 的坐标为(4, 2).设直线BC 为y =x +b ,代入点B (4, 2),得b =-2. 所以点C 的坐标为(0,-2).由A (2, 4) 、B (4, 2) 、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB =BC =ABC =90°. 图2所以S △ABC =12BA BC ⋅=12⨯8.(3)由A (2, 4) 、D (0, 2) 、C (0,-2),得AD =AC = 由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE . 所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE ADCA AC=时,CE =AD = 此时△ACD ≌△CAE ,相似比为1.②如图4,当CE ACCA AD ==CE =.此时C 、E 两点间的水平距离和竖直距离都是10,所以E (10, 8).例2、如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1解、(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14bb =-.解得8b =±Q 为(1,2.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形中考压轴试题一、选择题1.(2014年江苏宿迁3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=8,AD=3,BC=4,点P 为AB 边上一动点,若△P 与A △DPBC 是相似三角形,则满足条件的点P 的个数是【】A.1个B.2个C.3个D.4个二、填空题1.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α= 3 4.有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD与△DBE 全等;③△BDE 为直角三角形时,BD 为12或 21 4 ;④0<BE ≤ 24 5,其中正确的结论是(填入正确结论的序号).三、解答题1.(2014年福建三明14分)如图,在平面直角坐标系中,抛物线y=ax 2+bx+4与x 轴的一个交点为A (﹣ 2,0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B .(1)求抛物线的函数表达式;(2)经过B ,C 的直线l 平移后与抛物线交于点M ,与x 轴交于点N ,当以B ,C ,M ,N 为顶点的四边形是平行四边形时,求出点M 的坐标;(3)若点D 在x 轴上,在抛物线上是否存在点P ,使得△PBD ≌△PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由.2.(2014年湖北十堰12分)已知抛物线C1:2yax12的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.3.(2014年湖南郴州10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°BC,=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CP是D等腰三角形?4.(2014年湖南衡阳10分)二次函数y=ax 2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△的面积为APCS,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△B相O似C?5.(2014年湖南益阳12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.6.(2014年内蒙古呼伦贝尔13分)以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△CO的B形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长;(3)当点E在线段OA上时,是否存在以点E、O、F为顶点的三角形与△A相B似C?若存在,请求出此时线段OE的长;若不存在,请说明理由.7.(2014年山东日照14分)如图1,在菱形OABC中,已知OA=23,∠AOC=60°,抛物线y=ax 2+bx+c (a≠0)经过O,C,B三点.(1)求出点B、C的坐标并求抛物线的解析式.(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.①当OP+PC的最小值时,求出点P的坐标;②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PE相F似?若存在,请求出点M的坐标;若不存在,请说明理由.8.(2014年山东威海12分)如图,已知抛物线y=ax 2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△C相O似B?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BD的A度数.9.(2014年宁夏区10分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.△与PB△QABC相似;有(1)试说明不论点P在BC边上何处时,都(2)若AC=3,BC=4,当BP为何值时,△AQ面P积最大,并求出最大值;R t△AOP(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=AC,是否存在一个的值,使既与Rt△ACP全等,也与Rt△BQP全等.与x轴交于A点,与y轴交于B点,动点P410.(2014年新疆区、兵团12分)如图,直线y x83A O方向向点O匀速运动,同时动点Q从B点出发,以每秒1个从A点出发,以每秒2个单位的速度沿单位的速度沿B A方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3.)(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQ的P面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△A相B似O,并直接写出此时点Q的坐标.11.(2014年新疆乌鲁木齐14分)如图.在平面直角坐标系中,边长为2的正方形ABCD的顶点A、B在x轴上,连接O D、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接O E,若点M是直线BF上的一动点,且△B与M△DOED相似,求点M的坐标.12.(2014年云南省9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段A C的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM 与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为A C2,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.13.(2014年浙江湖州12分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P 与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.10.(2013年山东日照14分)已知,如图(a),抛物线2yaxbxc经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。
∠ONE=30°,xx8。
12(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△AB与P△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;[来源学#科#网](3)如图(b),点Q为EBF上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由。
11.(2013年贵州黔西南16分)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C (1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.[来源学§科§网](3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A 为顶点的三角形与△B相O似C?若存在,求出点P的坐标;若不存在,请说明理由.12.(2013年福建南平14分)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;2 (2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△与A△CMAMO相似?若存在,求出此时m的值.13.(2013年云南曲靖12分)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.14.(2013年云南红河9分)如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.(1)求点A、B、C的坐标和直线BC的解析式;(2)求△ODE面积的最大值及相应的点E的坐标;[来源学科网ZXXK](3)是否存在以点P、O、D为顶点的三角形与△O相A似C?若存在,请求出点P的坐标,若不存在,请说明理由.[来源学#科#网Z#X#X#K]专业整理分享15.(2013年新疆乌鲁木齐14分)如图.在平面直角坐标系中,边长为2的正方形ABCD的顶点A、B在x轴上,连接O D、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接O E,若点M是直线BF上的一动点,且△B与M△DOED相似,求点M的坐标.16.(2013年广西百色10分)如图,在△AB中C,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED。