2017年中考数学相似三角形压轴题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形中考压轴试题

一、选择题

1.(2014年江苏宿迁3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=8,AD=3,BC=4,

点P 为AB 边上一动点,若△P 与A △DPBC 是相似三角形,则满足条件的点P 的个数是【】

A.1个

B.2个

C.3个

D.4个

二、填空题

1.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=

∠B=∠α,DE 交AB 于点E ,且tan ∠α= 3 4

.有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD

与△DBE 全等;③△BDE 为直角三角形时,BD 为12或 21 4 ;④0<BE ≤ 24 5

,其中正确的结论是(填

入正确结论的序号).

三、解答题

1.(2014年福建三明14分)如图,在平面直角坐标系中,抛物线y=ax 2

+bx+4与x 轴的一个交点为A (﹣ 2,0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B .

(1)求抛物线的函数表达式;

(2)经过B ,C 的直线l 平移后与抛物线交于点M ,与x 轴交于点N ,当以B ,C ,M ,N 为顶点的四边形

是平行四边形时,求出点M 的坐标;

(3)若点D 在x 轴上,在抛物线上是否存在点P ,使得△PBD ≌△PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由.

2.(2014年湖北十堰12分)已知抛物线C1:

2

yax12的顶点为A,且经过点B(﹣2,﹣1).

(1)求A点的坐标和抛物线C1的解析式;

(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,

求S△OAC:S△OAD的值;

(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与

y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.

3.(2014年湖南郴州10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°BC,=16cm,AD是斜边

BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,

与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止

运动,点N到达点C时停止运动.设运动时间为t(s).

(1)当t为何值时,点G刚好落在线段AD上?

(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关

于t的函数关系式并写出自变量t的取值范围.

(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CP是D等腰

三角形?

4.(2014年湖南衡阳10分)二次函数y=ax 2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D.

(1)求该二次函数的解析式(系数用含m的代数式表示);

(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△的面积为APCS,试求出S与

点P的横坐标x之间的函数关系式及S的最大值;

(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△B相O似C?

5.(2014年湖南益阳12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,

点P沿线段AB从点A向点B运动,设AP=x.

(1)求AD的长;

(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;

(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

6.(2014年内蒙古呼伦贝尔13分)以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、

BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:

(1)如图1,当点E与点O重合时,连接OC,试判断△CO的B形状,并证明你的结论;

(2)如图2,当DE=8时,求线段EF的长;

(3)当点E在线段OA上时,是否存在以点E、O、F为顶点的三角形与△A相B似C?若存在,请求出此

时线段OE的长;若不存在,请说明理由.

7.(2014年山东日照14分)如图1,在菱形OABC中,已知OA=23,∠AOC=60°,抛物线y=ax 2+bx+c (a≠0)经过O,C,B三点.

(1)求出点B、C的坐标并求抛物线的解析式.

(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.

①当OP+PC的最小值时,求出点P的坐标;

②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三

角形与△PE相F似?若存在,请求出点M的坐标;若不存在,请说明理由.

8.(2014年山东威海12分)如图,已知抛物线y=ax 2+bx+c(a≠0)经过A(﹣1,0),B(4,0),

C(0,2)三点.

(1)求这条抛物线的解析式;

(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△C相O似B?若存在,试求出

点E的坐标;若不存在,请说明理由;

(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BD的A度数.

相关文档
最新文档