第版医用物理学课后习题答案定稿版
医用物理学第07章 课后习题解答
![医用物理学第07章 课后习题解答](https://img.taocdn.com/s3/m/9d0111dc76a20029bd642d8b.png)
U ab IR Ir2 2
(b)
因为 I 0 ,故 U ab 2 ,即 a 、 b 两点之间的电压为 。
ε1,r1
I
ε1,r1
R I R
a
b
a
b
ε2,r2
R
ε2,r2
R
(a)
(b)
习题 7-9 附图 ②在图(b)的串联回路,设电流为 I ,方向如图所示,按顺时针绕行方向计算电势增 量,
第七章 电流与电路 通过复习后,应该: 1.掌握电流密度、欧姆定律的微分形式、含源电路的欧姆定律、基尔霍夫定律、电容 器的充电和放电规律、示波管的结构和作用; 2.理解电解质导电、示波原理、示波器的基本组成; 3.了解电解质的导电、电泳、应变片压力转换电路、心脏除颤器、心电示波器、人体 的导电特性、电流对人体的作用。
2 2 6
导率为 5.9 10 S m ,所以铜的电阻率为
7 1
R
1
1 m 1.7 108 m 7 5.9 10
根据电阻定律,铜棒的电阻为:
L 2 1.7 108 2.13 105 20 80 106 S
②已知铜棒两端的电势差为 50mV 0.05V , 铜棒的电阻为 2.13 10 , 故铜棒内的 电流为:
R
7-5
L L 3 2 2 7.64 1010 6 2 S 3.14 (5 10 ) r
三条截面积相同,长度一样的圆柱状导体相互串联在一起,它们的电导率分别为
1 、 2 、 3 ,且 1 2 3 ,通过电流时,三种导体的电场强度 E1 、 E2 、 E3 哪个最
U ab IR Ir2 2 I ( R r )
医用物理学第3章课后答案
![医用物理学第3章课后答案](https://img.taocdn.com/s3/m/9e796955ee06eff9aff80724.png)
式中 x 以 m 计,t 以 s 计,求它们合成振动的振幅、初相位及振动方程.
解:
根据公式 及 由题意可得
合振动方程为
A
A12
A
2 2
2 A1 A2
cos( 2
1)
tg 1
A1 sin A1 cos
1 1
A2 A2
sin 2 cos 2
A
0 .05 2
0 .06 2
得它们的周期都是 2s。现将两个振子都从平衡位置向右拉开 5cm,然后先释放
a 振子,经过 0.5s 后,再释放 b 振子。如果从 b 振子释放时开始计时,求两振
子的振动方程.在同一坐标中画出两者的振动曲线,并用旋转矢量表示这两个
振动。
解:因两振子的周期相同,所以圆频率也相同,其值为
2π T
2π 2
0 .4 cos(
4t
8
)
y2
0 .4 cos
4
(t
1 4
50 20
)
0 .4 cos(
4t
11
)
8
则两波传到 P 点时的位相差为 2 1 11 8 3 P 点的合振幅 A A1 A2 0.4 0.4 0
9
68 .22 68 13
x 8.92 10 2 cos( 10 t 68 13) m
3-8 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m,相位
与第一振动的相位差为 π/6,若第一振动的振幅为 0.173m,求第二振动的振幅
以及第一、第二两振动之间的相位差.
医用物理学习题册答案
![医用物理学习题册答案](https://img.taocdn.com/s3/m/37b82d90cf84b9d529ea7a79.png)
医用物理学习题册姓名班级学号包头医学院医学技术学院物理教研室成绩表1、书写整洁,字迹清楚,不得涂改。
2、独立完成,不得抄袭。
第1章力学基本规律教学内容:1、牛顿运动定律、功和能、能量守恒、动量守恒定律2、转动定律(1)角速度与角加速度。
角量与线量的关系。
•(2)刚体的定轴转动。
转动惯性。
转动惯量。
刚体绕定轴转动的动能。
力矩。
转动定律。
力矩作功。
(3)角动量守恒定律。
3、应力与应变:物体的应力与应变。
弹性模量:弹性与范性。
应力—应变曲线。
弹性模量。
一、填空题1. 刚体角速度是表示整个刚体转动快慢的物理量,其方向由右手螺旋定则确定。
2. 一个定轴转动的刚体上各点的角速度相同,所以各点线速度与它们离轴的距离r成正比,离轴越远,线速度越大。
3. 在刚体定轴转动中,角速度ω的方向由右手螺旋定则来确定,角加速度β的方向与角速度增量的方向一致。
4.质量和转动惯量它们之间重要的区别:同一物体在运动中质量是不变的;同一刚体在转动中, 对于不同的转轴, 转动惯量不同。
5. 刚体的转动惯量与刚体的总质量、刚体的质量的分布、转轴的位置有关。
6. 动量守恒的条件是合外力为0 ,角动量守恒的条件是合外力矩为0 .7. 跳水运动员在空中旋转时常常抱紧身体,其目的减小转动惯量,增加角速度。
8、角动量守恒的条件是合外力矩恒等于零。
9. 弹性模量的单位是 Pa ,应力的单位是 Pa 。
10.骨是弹性材料,在正比极限范围之内,它的应力和应变成正比关系。
二、选择题1. 下列说法正确的是[ C ](A)作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2.两物体的转动惯量相等,当其转动角速度之比为2:1时,它们的转动动能之比为[ A ](A)4:1 (B)2:1 (C)1:4 (D)1:23.溜冰运动员旋转起来以后,想加快旋转速度总是把两手靠近身体,要停止转动时总是把手伸展开,其理论依据是[ A ](A )角动量守恒定律 (B)转动定律 (C)动量定理 (D)能量守恒定律4.一水平圆盘可绕固定的铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统[ C ](A)动量守恒 (B)机械能守恒 (C)对中心轴的角动量守恒 (D)动量、机械能和角动量都守恒5. 求质量为m 、半径为R 的细圆环和圆盘绕通过中心并与圆面垂直的转轴的转动惯量分别是( C )。
(完整word版)医学物理学习题答案详解
![(完整word版)医学物理学习题答案详解](https://img.taocdn.com/s3/m/fa3264ba10661ed9ad51f3ac.png)
三式联立求解,得
I1=-0.01A;I2=0.015A;I3=0.025A
则高斯面内的电荷量之和
7-9.
解:以细棒的轴线为对称轴,做出如图所高斯面
因上底和下底面无电场线通过,故
7-10.
解:
在带电直线上取线元dr,
8-8.
解:由图可知,电路中有1个独立节点,对f点所列的支路电流方程为:
根据基尔霍夫定律选定afcba和fedcf两个回路,并规定绕行方向为逆时针方向,分别列出回路方程:
1-6.
解:地球自转角速度 = ,转动惯量J= ,则角动量 ,转动动能
1-7.
解: ,将各已知量代入即可求解
第二章习题答案
2-1.
1.皮球在上升和下降阶段均受恒力(重力),因而皮球上下运动不是简谐振动.
2.小球在半径很大的光滑凹球面的底部摆动时,所受的力是指向平衡位置的回复力,且由于是小幅度摆动,回复力的大小和位移成正比(类似于单摆的小幅度摆动)。所以此情况下小球小幅度摆动是简谐振动。
第一章习题答案
1-4
解:对滑轮:由转动定律
对 :
对 :
又因为 得 联立上式得
则
1-5.
解:以质心为转轴分析,摩擦力矩为转动力矩。因A、B、C的质量和半径相同,故支持力 相同。由摩擦力 =μ ,摩擦力矩M= ·R可知,三者的摩擦力矩也相同。
圆盘A的转动惯量 = m ;实心球B的转动惯量 = m ;圆环C的转动惯量 = m .由M=Jα可知 > > ,所以B先到达,C最后到达.
6-8.
解:如图所示的循环过程是由两条等温线和两条绝热线组成,因此该循环为卡诺循环。循环的效率
7-3.
解:1.做一高斯面S1,其球心为大球和小球的球心,半径r1>R1
(完整word版)医学物理学习题答案详解
![(完整word版)医学物理学习题答案详解](https://img.taocdn.com/s3/m/b0df85a12e3f5727a4e962d3.png)
第一章习题答案1-4解:对滑轮:由转动定律 (TT )rJ 1 mr 2122对 m: mg TmaTm ( g a )111111对 m :TKmgmaTm ( aK g )222222得T 1T 2ma 联立上式得 amgK mg又因为 ar122mm 1m2 2(1K)m2m则 Tmg ma2mg11 m mm1122(1K )mmKTmg m g12mgK222m 2m m1221-5.解: 以质心为转轴剖析 ,摩擦力矩为转动力矩。
因 A 、B 、C 的质量和半径相同, 故支持力 F N相同。
由摩擦力F f = μ,摩擦力矩 M =F f· R 可知,三者的摩擦力矩也相同。
F N圆盘 A 的转动惯量 J A = 1 m r 2;实心球 B 的转动惯量 J B =2 m r 2 ; 圆环 C 的转动惯量 J C =25m r 2 .由 M =J α可知B>A>C ,所以 B 先抵达 ,C 最后抵达 .1-6.解 :地球自转角速度=24 2 ,转动惯量 J= 2mR 2 ,则角动量 L J,转动动能60 60512E k = J1-7.解: EF/S = l 0F,将各已知量代入即可求解ll/l 0 S l第二章习题答案2-1.①.②. 皮球在上涨和下降阶段均受恒力(重力 ),因此皮球上下运动不是简谐振动.小球在半径很大的圆滑凹球面的底部摇动时,所受的力是指向均衡地点的答复力,且因为是小幅度摇动,答复力的大小和位移成正比(近似于单摆的小幅度摇动)。
所以此状况下小球小幅度摇动是简谐振动。
第四章习题答案4-1.答:射流在静止气体中发射时,射流双侧的一部分气体随射流流动,进而在射流双侧形成局部低压区。
远处的气压未变,所以远处气体不停流向低压区,以增补被卷吸带走的气体,进而形成了射流的卷吸作用。
4-2.答:关于必定的管子,在流量必定的状况下,管子越粗流速越小;在管子两头压强差必定的状况下,管子越粗流速越快。
第版医用物理学课后习题答案
![第版医用物理学课后习题答案](https://img.taocdn.com/s3/m/ba800c2d650e52ea551898f1.png)
习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa) 3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒1.4×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度? (0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。
(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
(0.22m·s—1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
(131Pa)3-12 20℃的水在半径为1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。
医用物理学第 章 课后习题解答
![医用物理学第 章 课后习题解答](https://img.taocdn.com/s3/m/049a3381b52acfc789ebc9da.png)
第十一章 几何光学通过复习后,应该:1.掌握单球面折射成像、共轴球面系统、薄透镜成像、薄透镜的组合、放大镜和显微镜;2.理解共轴球面系统的三对基点、眼的分辨本领和视力、近视眼、远视眼、散光眼的矫正;3.了解透镜像差、眼的结构和性质、色盲、检眼镜、光导纤维内窥镜。
11-1 一球形透明体置于空气中,能将无穷远处的近轴光线束会聚于第二个折射面的顶点上,求此透明体的折射率。
习题11-1附图(原11-2附图)解: 无穷远处的光线入射球形透明体,相当于物距u 为∞,经第一折射面折射,会聚于第二折射面的顶点,则v=2r(r 为球的半径),已知n 1 =1.0,设n 2 =n(即透明体的折射率),代入单球面折射成像公式,得rn r n 1.0-20.1=+∞ 解得n =2.0,即球形透明体的折射率。
11-2 在3m 深的水池底部有一小石块,人在上方垂直向下观察,此石块被观察者看到的深度是多少?(水的折射率n =1.33)习题11-2附图(原11-3附图)解: 这时水池面为一平面的折射面,相当于r 为∞,已知u =3m,n 1 =1.33,n 2 =1.0,观察者看到的是石块所成的像,设其像距为v ,应用单球面折射成像公式,得∞=+ 1.33-.010.1m 333.1v 解得v =-2.25m,这表明石块在水平面下2.25m 处成一虚像,即观察者看到的“深度”。
11-3 圆柱形玻璃棒(n =1.5)放于空气中,其一端是半径为2.0cm 的凸球面,在棒的轴线上离棒端8.0cm 处放一点物,求其成像位置。
如将此棒放在某液体中(n =1.6),点物离棒端仍为8.0cm,问像又在何处?是实像还是虚像?习题11-3附图 (a)【原11-5附图(a)】解: ①如本题附图(a)所示,已知n 1 =1.0,n 2 =1.5,u =8.0cm,r =2.0cm,代入单球面折射成像公式,得cm0.2 1.0-.515.1cm 0.80.1=+v得v =12cm,在玻璃棒中离顶点12cm 处成一实像。
医用物理学课后习题参考答案解析
![医用物理学课后习题参考答案解析](https://img.taocdn.com/s3/m/00a911e576eeaeaad1f3308e.png)
医用物理学课后习题参考答案第一章1-1 ① 1rad/s ② 6.42m/s1-2 ① 3.14rad/s - ② 31250(3.9310)rad π⨯ 1-3 3g =2l β 1-4 1W=g 2m l 1-5 ① 22k E 10.8(1.0710)J π=⨯ ② -2M=-4.2410N m ⨯⋅③ 22W 10.8(1.0710)J π=-⨯1-6 ① 26.28rad/s ② 314rad ③ 394J ④ 6.28N1-7 ① ω ② 1g 2m l 1-8 ① =21rad/s ω ② 10.5m/s1-9 ① =20rad/s ω ② 36J ③ 23.6kg m /s ⋅1-10 ① 211=2ωω ②1=-2k k1E E ∆ 1-11 =6rad/s ω 1-12 12F =398F 239NN = 1-13 ① 51.0210N ⨯ ② 1.9%1-14 ① 42210/N m ⨯ ② 52410/N m ⨯1-15 ① -65m(510)m μ⨯ ② -31.2510J ⨯第三章3-1 -33V=5.0310m ⨯3-2 ① 12m/s ② 51.2610a P ⨯3-3 ① 9.9m/s ② 36.0m3-4 ①-221.510;3.0/m m s ⨯ ② 42.7510a P ⨯ ③粗处的压强大于51.2910a P ⨯时,细处小于P 0时有空吸作用。
3-5 主动脉内Re 为762~3558,Re<1000为层流,Re>1500为湍流,1000< Re<1500为过渡流。
3-6 71.210J ⨯ 3-7 0.77m/s3-8 ①3=5.610a P P ∆⨯ ②173=1.3810a P s m β-⨯⋅⋅③-143Q=4.0610/m s ⨯3-9 0.34m/s 3-10 431.5210/J m ⨯第四章4-1 -23S=810cos(4t )m 2ππ⨯+ 或-2-2S=810cos(4t-)m=810sin 4t 2πππ⨯⨯4-2 ① ϕπ∆= ② 12t=1s S 0,S 0==当时, 4-3 ① S=0.1cos(t-)m 3ππ ②5t (0.833)6s s ∆= 4-4 ①-2S=810cos(2t-)m 2ππ⨯ ② -2=-1610s in(2t-)m/s 2v πππ⨯;2-22a=-3210cos(2t-)m/s 2πππ⨯③k E =0.126J 0.13J;F=0≈.4-5 ①max =20(62.8)m/s v π ②242max a =4000 3.9410m/s π=⨯ ③22321E=m A =1.9710J=200J 2ωπ⨯4-6 ①2A 5.010,=4,T=0.25,=1.25m Hz s m νλ-=⨯ ② -2S=5.010cos8(t-)0.5x m π⨯ 4-7 ①S=0.10cos (-)0.10cos 0.2(-)522x x t m t m ππ= ②S=-0.10m 4-8 ①=60,=1.0Hz m νλ ② -2S=5.010cos120(-)60x t m π⨯ 4-9 ①1s ϕπ-=②2A 6.010,=20,T=0.1,=0.2,c 2.m s m m/s ωπλ-=⨯= 4-10 ①22-31=A =25.44J m 2ερω⋅ ②328.4210W m -⨯⋅ 4-11 ① 0 ② 2A4-12 ①-39.1210a P ⨯ ②-9E=1.6510J ⨯4-13 ① 889.9 ② 0.54-14 ① -621.010W m -⨯⋅ ② -61.010W ⨯4-15 2=0.054 5.410v m/s m/s -=⨯第五章5-1 ①71.110a P ⨯ ②67.0810a P ⨯5-2 ① 2534.8310m -⨯ ② -9=2.7310;9d m ⨯倍。
医用物理习题答案第1章生物力学详细答案
![医用物理习题答案第1章生物力学详细答案](https://img.taocdn.com/s3/m/020cebfdfad6195f302ba6d9.png)
习题一解答1-1 决定刚体的转动惯量的因素有哪些?答:刚体的转动惯量与以下因素有关:①质量的大小;②质量的散布情形,即刚体的形状、大小和各部份的密度;③转轴的位置.1-2 花腔滑冰运动员在运动中如何改变自身的旋转速度?答:花腔滑冰运动员,当绕通过重心的铅直轴高速旋转时,由于外力(重力,支撑力)对轴的矩为零,角动量守恒,通过改变自身的转动惯量,来改变角速度.例如,当他在旋转进程中突然把手臂收起来的时候,他的旋转速度就会加速.1-3试应用角动量和转动惯量的概念来讲明荡秋千的原理.答:当系统不受外力作历时,总角动量维持不变.固然荡秋千时还受到地心吸引力,但可忽略这一作使劲.物体的角动量是物体的转动速度乘以它的转动惯量.物体质量中心越靠近旋转轴, 转动惯量就越小,由于角动量为常数,因此物体的转动速度就会增加.反之,物体的转动速度就会减少.1-4形变是如何概念的?它有哪些形式?答:物体在外力作用下发生的形状和大小的改变称为形变.形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在必然形变限度内,去掉外力后物体能够完全恢恢复状的形变,而范(塑)性形变去掉外力后物体再也不能完全恢恢复状的形变.1-5杨氏模量的物理含义是什么?答:在长度形变的情形下,在正比极限范围内,拉伸应力与拉伸应变之比或压应力与压应变之比,称为杨氏模量.杨氏模量反映物体发生长度形变的难易程度,杨氏模量越大,物体越不容易发生长度变形.1-6动物骨骼有些是空心的,从力学角度分析它有什么意义?答:骨骼受到使其轴线发生弯曲的载荷作历时,将发生弯曲效应.所产生的应力大小与至中心轴的距离成正比,距轴越远,应力越大.中心层周围各层的应变和应力都比小,它们对抗弯所起的作用不大.一样,骨骼受到使其沿轴线产生扭曲的荷载作历时,产生的切应力的数值也与该点到中心轴的距离成正比.因此,空心的骨头既能够减轻骨骼的重量,又可不能严峻阻碍骨骼的抗弯曲强度和抗扭转性能.习题1-1 当滑冰者转动的角速度原为0ω,转动惯量为0I ,当他收拢双臂后,转动惯量减少1/4,这时他转动的角速度为是多少?他假设不收拢双臂,而被另一滑冰者作用,角速度变成02ωω=,那么另一滑冰者对他施加力矩所作的功W 是多少?解:由角动量守恒定律得:ωωI I =00,即 4/3000ωωI I = 得 3/40ωω= 加力矩所作的功 200200200221)2(212121ωωωωI I I I W -=-=20021ωI W =1-2 一个每分钟78转的电唱机转盘在电动机关掉后慢慢慢下来,并与30s 内停止转动。
医用物理习题答案第1章生物力学详细答案.doc
![医用物理习题答案第1章生物力学详细答案.doc](https://img.taocdn.com/s3/m/70f96be727d3240c8547ef0a.png)
习题一解答1-1决定刚体的转动惯量的因素有哪些?答:刚休的转动惯量与卜冽因索有关:①质量的人小;②质量的分布情况,即刚体的形状、大小和各部分的密度;③转轴的位置.1-2花样滑冰运动员在运动中如何改变自身的旋转速度?答:花样滑冰运动员,当绕通过重心的铅直轴高速旋转时,由于外力(重力,支撑力)对轴的矩为零,角动量守恒,通过改变自身的转动惯量,來改变角速度.例如,当他在旋转过程小突然把手臂收起來的时候,他的旋转速度就会加快.1-3试应用角动量和转动惯量的概念来解释荡秋千的原理.答:当系统不受外力作用时,总角动虽保持不变.当然荡秋千时还受到地心吸引力,但可忽略这一作用力.物体的角动量是物体的转动速度乘以它的转动惯量.物体质量小心越靠近旋转轴,转动惯量就越小,山于角动量为常数,所以物体的转动速度就会增加.反之,物体的转动速度就会减少.1-4形变是怎样定义的?它有哪些形式?答:物体在外力作用下发生的形状和大小的改变称为形变.形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在一定形变限度内,去掉外力后物体能够完全恢复原状的形变,而范(塑)性形变去掉外力后物体不再能完全恢复原状的形变.1-5杨氏模量的物理含义是什么?答:在长度形变的情况下,在正比极限范围内,拉伸应力与拉伸应变之比或压应力与压应变Z 比,称为杨氏模量.杨氏模量反映物体发牛长度形变的难易程度,杨氏模量越人,物体越不容易发生长度变形.1-6动物骨骼有些是空心的,从力学角度分析它有什么意义?答:骨骼受到便其轴线发生弯曲的载荷作用吋,将发生弯曲效应.所产生的应力大小与至中心轴的距离成正比,距轴越远,应力越人.中心层附近各层的应变和应力都比小,它们对抗弯所起的作用不大.同样,骨骼受到使其沿轴线产生扭曲的荷载作用吋,产生的切应力的数值也与该点到中心轴的距离成止比.因此,空心的骨头既可以减轻骨骼的重量,又不会严重影响骨骼的抗弯曲强度和抗扭转性能.习题1-1当滑冰者转动的角速度原为转动惯量为人,当他收拢双臂后,转动惯量减少1/4, 这时他转动的角速度为是多少?他若不收拢双臂,而被另一滑冰者作用,角速度变为 3 =近3°,则另一滑冰者对他施加力矩所作的功炉是多少?解:由角动量守 定律得:/0690 = let),即 /0690 = 3/069/4 得 69 = 4® /3 加力矩所作的功W =-|/o ^o 2 =|Zo (V2^o)21-2 一个每分钟78转的电唱机转盘在电动机关掉后逐渐慢下来,并与30s 内停止转动。
医用物理学第05章 课后习题解答
![医用物理学第05章 课后习题解答](https://img.taocdn.com/s3/m/e577a9034a7302768e99398b.png)
其方向垂直向下。 ②求电势: 电荷元 dq 在圆心产生的电势 dU 为
θ
O dE⊥
dE∥ X dE
dq q dU k k 2 dl R r
将上式积分即得圆心处的电势
习题 5-7 附图
U dU k
q R 2
R
0
dl k
q R
5-8 长度为 L 的直线段上均匀分布有正电荷,电荷线密度为 λ,求该直线的延长线上, 且与线段较近一端的距离为 d 处的场强和电势。 解: ①求场强:在直线段 l 处取一线元 dl,其带电量为 dq=λdl,它在 P 处产生的场强方 向沿直线的延长线,大小为
(因为 E2 =E3 )
3Q 2 0 a 2
E Ey
3Q 2 0 a 2
其方向垂直向上。 由点电荷电势公式可得三个点电荷在重心的电势分别为
U
Q 3Q , 4 0 r 4 0 a
U2 U3
3Q 4 0 a
根据电势叠加原理,重心处的电势为
U U1 U 2 U 3
1 2 2
V 6.36 10 2 V
②求场强:根据场强与电势的关系 E=-dU/dn,对(c)式求关于 x 的导数,则场强 E 的 大小为
E
9 dU qx 9 5.0 10 0.05 k 2 9 . 0 10 V m 1 6.36 10 3V m 1 3 dx (R x 2 )3 / 2 (0.05 2 0.05 2 ) 2
5-2 两个点电荷分别带有+10C 和+40C 的电量,相距 40cm,求场强为零的点的位置及 该点处的电势。 解: ①求场强为零的位置: 只有在两电荷的连线中的某点 P,才能使该处场强为零,即 q1 、q2 在该点的场强 E1、E2 大小相等,方向相反,已知 q1 =10C,q2 =40C,则根据点电荷 r1 r2 ,有 k q1 k q2 场强公式 E k q 2 2 2 r r1 r2 由上式可得 r1 r2
医用物理学第02章_课后习题解答
![医用物理学第02章_课后习题解答](https://img.taocdn.com/s3/m/5a7ddbdd76eeaeaad1f3308b.png)
3
如果考虑水银上方水柱的压强,则 U 形管中水银柱的高度差:
h
p1 p2 4.22 103 0.0342m ( 水银 水 )g (13.6 - 1) 103 9.8
2-8 如附图所示将两管插入流水中测水流速度, -3 设两管中的水柱高度分别为 5.0×10 m 和 -2 5.4×10 m,求水流速度。 解: 已知 h A 5.0 10 m , hB 5.4 10 m ,
v2 。 2g
2-11 设橄榄油的粘滞系数为 1.8P,流过长度为 50cm,半径为 1.0cm 的管子,管两端 的压强差为 100mmHg,求其流量。 解: 已知 0.18Pa s , L 0.5m , r 0.01m , p 100mmHg 13.3 103 Pa 。 根据泊肃叶公式得流量
6
3.0 103 m3 s 1 , S1 40 104 m 2 , S2 10 104 m 2 。
根据连续性方程: S1 v1 S 2 v 2 Q
Q 3000 106 v1 0.75m s 1 4 40 10 S1
v2
S1=40 h
Q
πr 4 p 3.14 ( 10 2 )4 13.3 103 5.8 10 4 m 3 s 1 8L 8 0.18 0.5
-3
2-12 狗的一根大动脉,内半径为 4mm,长度为 10cm,血流粘度为 2.084×10 Pa·s, 3 -1 流过这段血管的血液流量为 1.0cm ·s 。求: ①血流的平均速度和最大速度; ②这段动脉 管的流阻; ③这段血管的血压降落。 解: ①已知 r 4 10 m , Q 1.0 10 m s , 2.084 10 Pa s , L 0.10m
医用物理学第4章课后答案
![医用物理学第4章课后答案](https://img.taocdn.com/s3/m/0446a69a941ea76e59fa0424.png)
四、习题解答4-1 如果某声压幅值增加至原来的3倍,问该声波的声强增至原来的几倍?如果使声波的声强增至原来的16倍,声压幅值必须增大多少倍?解:(1)已知312=m m p p 由声强与声压幅值的关系公式up I mρ22=得93)(2222122122212212=====m m m mm m p p p p up u p I I ρρ (2)已知1612=I I 则:212212212)(m m m mp p p p I I ==,4161212===I I p p m m 4-2 距一点声源10 m 的地方,某声强级是20 dB,若不计吸收衰减,求:(1)距离声源5 m 处的声强级?(2)距离声源多远,声音会听不见了?解:已知10=r m 处,20=L dB,声强为1I 。
5=r m 处,声强为2I ,声强级为2L 。
(1)根据声强级公式0lg10I IL =,1210110lg 10lg 1020-==I I I , 10101-=I W/m 2对于点声源(球面波)在不计吸收衰减的情况下,22212144I r I r ππ=,222121I r I r = 10102212121042510100--⨯=⨯==r I r I W/m 226104lg 1010104lg 10lg 102121002=⨯=⨯==--I I L dB (2)因为 323121I r I r =,则41210312123101010100=⨯==--I I r r m,2310=r m 4-3 由许多声源发至某一点的声波强度是各声波强度的和。
如果有5个相同的喇叭同时广播,所测得的声强级较一个喇叭多多少分贝?解:已知一个喇叭广播的声强和声强级分别为I 和1L ,则5个相同喇叭同时广播时的声强和声强级分别为I 5和2L ,则两者声强级的差值为75lg 105lg 10lg 10lg 10lg1012010212====-=-=II I I I I I I L L L ∆dB 4-4 一个窗户的面积是1 m 2,向街而开,窗外的声强级是60 dB,问传入窗内声波的声功率是多少?解:已知窗户面积1=S m 2,声强级60=L dB 根据声强级公式0lg 10I IL =可得 1210lg1060-=I ,610-=I W/m 2 声功率为 6610110--=⨯==IS P W4-5 震耳欲聋的雷声声强级是110 dB,树叶微动声约为10 dB,问其声强比是多少?解:已知雷声声强级为1101=L dB,树叶微动的声强级为102=L dB, 根据声强级公式0lg10I I L = 二者声强之比为:21020121lg 10lg 10lg10I I I I I I L L =-=- 2121lg 1010010110I I L L ==-=- 10lg21=I I ,102110=I I4-6一列火车以30 m/s 的速度在静止的空气中行驶,火车汽笛声的频率是500 Hz,声波在空气中传播速度为340 m/s。
医用物理学课后习题参考答案
![医用物理学课后习题参考答案](https://img.taocdn.com/s3/m/246c9d62561252d380eb6e88.png)
医用物理学课后习题参考答案练习一 力学基本定律(一)1.j i 55+;j i 54+;i 42.2/8.4s m ;2/4.230s m ;rad 15.3 3.(2);4.(3) 5.(1)由⎩⎨⎧-==22192ty t x 得)0(21192≥-=x x y ,此乃轨道方程 (2)j i r 1142+=,j i r 1721+=,,s m v /33.6=(3)i t i dt rd v 42-==,j dt v d a 4-== st 2=时,j i v 82-=, 6.(1)a dt dv = 2/1kv dtdv-=∴有⎰⎰-=-⇒-=-vv tkt v vkdt dv v2/102/12/122 当0=v 时,有kv t 02=(2)由(1)有2021⎪⎭⎫ ⎝⎛-=kt v vkvkt v k vdt x tk v 3221322/3000/2300=⎪⎭⎫⎝⎛--==∆⎰练习二力 学基本定律(二)1.kg m 2222.j i 431+;j i 321+3.(4)4.(1)5..(1) (2)r mg W f πμ2⋅-=∴j i v 62-=∴j a 4-=2020208321221mv mv v m E W k f -=-⎪⎭⎫ ⎝⎛=∆=rgv πμ163 2=∴(3)34)210(20=∆-=k E mv N (圈) 6.设人抛球后的速度为V,则人球系统抛球过程水平方向动量守恒)() (V u m MV v m M o ++=+∴ mM muv V +-=0人对球施加的冲量mM mMumv V u m I +=-+=0)( 方向水平向前练习三 刚体的转动(一)1.2.20-s rad ;1.48-s rad 2.034ω;2021ωJ 3.(1);4.(5)5.ααR a MR TR maT mg ===-221 R M m mg )2/(+=α;2/M m mga +=;6.(1)由角动量守恒得: 02211=+ωωJ J0222=+⋅ωJ RvMR )(05.0122--=-=S J mRv ω (2)πωω2)]([21=--t (s) 55.02π=t (rad) 1122πωθ==t (3)(s) 422ππωπ===vRT (r a d ) 0.2 2πωθ==∴T 练习四 刚体的转动(二)1.gl 3 2.06.0ω3.(1);πω4504.(3);5.1111a m T g m =- 2222a m g m T =- α)(2121J J r T R T +=- αR a =1 αr a =2联立解得:22212121)(rm R m J J gr m R m +++-=α 222121211)(r m R m J J Rg r m R m a +++-=222121212)(r m R m J J rgr m R m a +++-= g m r m R m J J r R r m J J T 12221212211)(++++++=g m r m R m J J r R R m J J T 22221211212)(++++++=6.23121202lmg ml =⋅ω lg30=ω 2222022131213121mv ml ml +⋅=⋅ωω lmv ml ml +=ωω2023131 gl v 321=练习五 流体力学(一)1.h 、P 、v 2.P 、v 3.(3) 4.(4)5.(1)粗细两处的流速分别为1v 与2v ;则 2211v S v S Q ==12131175403000--⋅=⋅==s cm cms cm S Q v ;121322*********--⋅=⋅==s cm cm s cm S Q v (2)粗细两处的压强分别为1P 与2P2222112121v P v P ρρ+=+)(1022.4)75.03(102121213223212221Pa v v P P P ⨯=-⨯⨯=-=-=∆ρρ P h g ∆=∆⨯⋅-)(水水银ρρ;m h 034.0=∆6.(1)射程 vt s =gh v ρρ=221 gh v 2 =∴ 又 221gt h H =- g h H t )(2-=)(2)(22 h H h gh H gh vt s -=-⋅==∴tt =0.5st t =0s (2)设在离槽底面为x 处开一小孔,则同样有:)(2121x H g v -=ρρ )(21x H g v -= 又 2121gt x = gxt 21= )()(2 111h H h s x H x t v s -==-==∴ h x =∴则在离槽底为h 的地方开一小孔,射程与前面相同。
医用物理学课后习题参考答案解析
![医用物理学课后习题参考答案解析](https://img.taocdn.com/s3/m/25d34d78a300a6c30d229f1a.png)
医用物理学课后习题参考答案解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN医用物理学课后习题参考答案第一章1-1 ① 1rad/s ② 6.42m/s1-2 ① 3.14rad/s - ② 31250(3.9310)rad π⨯ 1-3 3g =2l β 1-4 1W=g 2m l 1-5 ① 22k E 10.8(1.0710)J π=⨯ ② -2M=-4.2410N m ⨯⋅③ 22W 10.8(1.0710)J π=-⨯1-6 ① 26.28rad/s ② 314rad ③ 394J ④ 6.28N1-7 ① ω ② 1g 2m l 1-8 ① =21rad/s ω ② 10.5m/s1-9 ① =20rad/s ω ② 36J ③ 23.6kg m /s ⋅1-10 ① 211=2ωω ②1=-2k k1E E ∆ 1-11 =6rad/s ω 1-12 12F =398F 239NN =1-13 ① 51.0210N ⨯ ② 1.9%1-14 ① 42210/N m ⨯ ② 52410/N m ⨯1-15 ① -65m(510)m μ⨯ ② -31.2510J ⨯第三章3-1 -33V=5.0310m ⨯3-2 ① 12m/s ② 51.2610a P ⨯3-3 ① 9.9m/s ② 36.0m3-4 ①-221.510;3.0/m m s ⨯ ② 42.7510a P ⨯ ③粗处的压强大于51.2910a P ⨯时,细处小于P 0时有空吸作用。
3-5 主动脉内Re 为762~3558,Re<1000为层流,Re>1500为湍流, 1000< Re<1500为过渡流。
3-6 71.210J ⨯ 3-7 0.77m/s3-8 ①3=5.610a P P ∆⨯ ②173=1.3810a P s m β-⨯⋅⋅③-143Q=4.0610/m s ⨯3-9 0.34m/s 3-10 431.5210/J m ⨯第四章4-1 -23S=810cos(4t )m 2ππ⨯+或-2-2S=810cos(4t-)m=810sin 4t 2πππ⨯⨯4-2 ① ϕπ∆= ② 12t=1s S 0,S 0==当时,4-3 ① S=0.1cos(t-)m 3ππ ②5t (0.833)6s s ∆=4-4 ①-2S=810cos(2t-)m 2ππ⨯ ② -2=-1610s in(2t-)m/s 2v πππ⨯;2-22a=-3210cos(2t-)m/s 2πππ⨯③k E =0.126J 0.13J;F=0≈.4-5 ①max =20(62.8)m/s v π ②242max a =4000 3.9410m/s π=⨯③22321E=m A =1.9710J=200J 2ωπ⨯ 4-6 ①2A 5.010,=4,T=0.25,=1.25m Hz s m νλ-=⨯② -2S=5.010cos8(t-)0.5xm π⨯ 4-7 ①S=0.10cos(-)0.10cos 0.2(-)522x xt m t m ππ= ②S=-0.10m4-8 ①=60,=1.0Hz m νλ ② -2S=5.010cos120(-)60xt m π⨯ 4-9 ①1s ϕπ-=②2A 6.010,=20,T=0.1,=0.2,c 2.m s m m/s ωπλ-=⨯= 4-10 ①22-31=A =25.44J m 2ερω⋅ ②328.4210W m -⨯⋅ 4-11 ① 0 ② 2A4-12 ①-39.1210a P ⨯ ②-9E=1.6510J ⨯4-13 ① 889.9 ② 0.54-14 ① -621.010W m -⨯⋅ ② -61.010W ⨯ 4-15 2=0.054 5.410v m/s m/s -=⨯第五章5-1 ①71.110a P ⨯ ②67.0810a P ⨯5-2 ① 2534.8310m -⨯ ② -9=2.7310;9d m ⨯倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第版医用物理学课后习题答案精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒1.4×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度(0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。
(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
(0.22m·s—1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
(131Pa)3-12 20℃的水在半径为1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。
(8.7×10—4m3·s-1)3-15 假设排尿时,尿从计示压强为40mmHg的膀胱经过尿道后由尿道口排出,已知尿道长4㎝,体积流量为21㎝3· s-1,尿的粘度为6.9×10-4 Pa· s,求尿道的有效直径。
(1.4mm)3-16 设血液的粘度为水的5倍,如以72㎝·s-1的平均流速通过主动脉,试用临界雷诺数为1000来计算其产生湍流时的半径。
已知水的粘度为6.9×10-4Pa·s。
(4.6mm)3-17 一个红细胞可以近似的认为是一个半径为2.0×10-6m的小球,它的密度是1.09×103kg·m—3。
试计算它在重力作用下在37℃的血液中沉淀1㎝所需的时间。
假设血浆的粘度为1.2×10-3Pa·s,密度为1.04×103kg·m—3。
如果利用一台加速度(ω2r)为105g的超速离心机,问沉淀同样距离所需的时间又是多少(2.8×104s;0.28s)习题四第四章振动4-1 什么是简谐振动?说明下列振动是否为简谐振动:(1)拍皮球时球的上下运动。
(2)一小球在半径很大的光滑凹球面底部的小幅度摆动。
4-2 简谐振动的速度与加速度的表达式中都有个负号,这是否意味着速度和加速度总是负值是否意味着两者总是同方向4-3 当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。
4-4 轻弹簧的一端相接的小球沿x轴作简谐振动,振幅为A,位移与时间的关系可以用余弦函数表示。
若在t=o时,小球的运动状态分别为(1)x=-A。
(2)过平衡位置,向x轴正方向运动。
(3)过处,向x轴负方向运动。
(4)过处,向x轴正方向运动。
试确定上述各种状态的初相位。
4-5 任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将如何变化?4-6 一沿x轴作简谐振动的物体,振幅为5.0×10-2m,频率2.0Hz,在时间t=0时,振动物体经平衡位置处向x轴正方向运动,求振动表达式。
如该物体在t=o时,经平衡位置处向x轴负方向运动,求振动表达式。
[x=5.0×10—2cos(4πt—π/2)m;x=5.0×10-2cos(4πt+π/2)m]4-7 一个运动物体的位移与时间的关系为,x=0.10cos(2.5πt+π/3)m,试求:(1)周期、角频率、频率、振幅和初相位;(2) t=2s时物体的位移、速度和加速度。
[(1)0.80s;2.5π·s-1;1.25Hz;0.10m;π/3(2)-5×10-2m;0.68m/s;3.1m·s-2]4-8 两个同方向、同频率的简谐振动表达式为,x1=4cos(3πt+π/3)m和x2=3cos(3πt-π/6)m,试求它们的合振动表达式。
[x=5cos(3πt+0.128π)m]4-9 两个弹簧振子作同频率、同振幅的简谐振动。
第一个振子的振动表达式为x1=Acos(ωt+φ),当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点。
求第二个振子的振动表达式和二者的相位差。
[x2= Acos(ωt +φ—π/2),Δφ= -π/2]4-10 由两个同方向的简谐振动:(式中x以m计,t以s计)x1=0.05cos(10t十3π/4),x2=0.06cos(10t -π/4)(1)求它们合成振动的振幅和初相位。
(2)若另有一简谐振动x3= 0.07cos (10t+φ),分别与上两个振动叠加,问φ为何值时,x1+x3的振幅为最大;φ为何值时,x1+x3的振幅为最小。
[(1)1.0×l0-2m,-π/4;(2)当φ=2nπ+3π/4,n=1,2,…时,x1+x3的振幅为最大,当φ=2nπ+3π/4,n=1,2,…时,x2+x3的振幅为最小]习题五第五章波动5-1 机械波在通过不同介质时,它的波长、频率和速度中哪些会发生变化哪些不会改变5-2 振动和波动有何区别和联系?5-3,波动表达式y= Acos[(ω(t-x/u)+ φ]中,x/u表示什么φ表示什么?若把上式改写成y=Acos[(ωt—ωx/u)+ φ],则ωx/u表示什么?5-4 已知波函数为y=Acos(bt—cx),试求波的振幅、波速、频率和波长。
(A,b/c,b/2π,2π/c)5-5 有一列平面简谐波,坐标原点按y=Acos(ωt + φ)的规律振动。
已知A=0.10m,T=0.50s,λ=10m。
试求:(1)波函数表达式;(2)波线上相距2.5m的两点的相位差;(3)假如t=0时处于坐标原点的质点的振动位移为y。
= +0.050m,且向平衡位置运动,求初相位并写出波函数。
[(1)y=0.10cos [2π(2.0t-x/l0)+ φ]m,(2), π/2 ,(3)y=0.10cos[2π(2.0t-x /l0)+ π/3]m]5-6 P和Q是两个同方向、同频率、同相位、同振幅的波源所在处。
设它们在介质中产生的波的波长为λ,PQ之间的距离为1.5λ。
R是PQ连线上Q点外侧的任意一点。
试求:(1)PQ两点发出的波到达R时的相位差;(2)R点的振幅。
(3π;0)5-7 沿绳子行进的横波波函数为y=0.10cos(0.01πx—2πt)m。
试求(1)波的振幅、频率、传播速度和波长;(2)绳上某质点的最大横向振动速度。
[(1)0.10m;1.0Hz;200m·s-1;200m (2)0.63m·s-1]5-8 设y为球面波各质点振动的位移,r为离开波源的距离,A。
为距波源单位距离处波的振幅。
试利用波的强度的概念求出球面波的波函数表达式。
5-9 弦线上驻波相邻波节的距离为65cm,弦的振动频率为2.3x102Hz,求波的波长λ和传播速度u。
(1.3m;3.0×102m·s-1)5-10 人耳对1000Hz的声波产生听觉的最小声强约为1×10-12W,m-2,试求20℃时空气分子相应的振幅。
(1×10-11m)5-11 两种声音的声强级相差ldB,求它们的强度之比。
(1.26)5-12 用多普勒效应来测量心脏壁运动时,以5MHz的超声波直射心脏壁(即入射角为°),测出接收与发出的波频差为500Hz。
已知声波在软组织中的速度为1500m·s-1,求此时心壁的运动速度。
(7.5×10-2m·s-1)第七章习题七分子动理论7-14 吹一个直径为10cm的肥皂泡,设肥皂液的表面张力系数α=40×10-3N·m-1。
试求吹此肥皂泡所做的功,以及泡内外的压强差。
(8π×l0-4J;3.2N·m-2)7-15 一U形玻璃管的两竖直管的直径分别为lmm和3mm。
试求两管内水面的高度差。
(水的表面张力系数α=73×10-3N·m-1)。
(2cm)7-16 在内半径r=0.30mm的毛细管中注入水,在管的下端形成一半径R=3.0mm的水滴,求管中水柱的高度。
(5.5cm)7-17 有一毛细管长L=20cm,内直径d=1.5mm,水平地浸在水银中,其中空气全部留在管中,如果管子漫在深度h=10cm处,问管中空气柱的长度L1是多少(设大气压强P=76cmHg,已知水银表面张力系数α=0.49N·m-1,与玻璃的接触角θ=π)。
(O.179m)习题九第九章静电场9-1 如图所示的闭合曲面S内有一点电荷q,P为S面上的任一点,在S面外有一电荷q/与q的符号相同。
若将q/从A点沿直线移到B点,则在移动过程中:(A)A.S面上的电通量不变;B.S面上的电通量改变,P点的场强不变;C.S面上的电通量改变,P点的场强改变;D.S面上的电通量不变,P点的场强也不变。