河南最近10年中考数学试题分类汇编

合集下载

(word完整版)最近十年(2009--2018)河南中考数学压轴题汇编(选择、填空、解答)含详解答案,推荐文档

(word完整版)最近十年(2009--2018)河南中考数学压轴题汇编(选择、填空、解答)含详解答案,推荐文档

最近十年(2009----2018)河南中考数学压轴题汇编(选择、填空、解答)含详解答案参考答案与试题解析一.填空题(共17小题)1.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:22.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.3.如图矩形ABCD中,AB=1,AD=,以AD的长为半径的⊙A交BC于点E,则图中阴影部分的面积为.【解答】解:连接AE.根据题意,知AE=AD=.则根据勾股定理,得BE=1.根据三角形的内角和定理,得∠BAE=45°.则∠DAE=45°.则阴影部分的面积=﹣﹣.6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为1或2.【解答】解:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°﹣∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°﹣∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AC=BC•tan∠B=3×=,∠BAC=60°,如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=30°,∴CF=AC•tan∠FAC=×=1,∴BD=DF==1;如图②若∠EAF=90°,则∠FAC=90°﹣∠BAC=30°,∴CF=AC•tan∠FAC=×=1,∴BD=DF==2,∴△AEF为直角三角形时,BD的长为:1或2.7.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.【解答】解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=sin45°•OA=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.8.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.9.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.【解答】解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△OC′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:+﹣.10.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.12.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.14.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC 上,若△MB′C为直角三角形,则BM的长为+或1.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.17.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;。

【历年真题】河南省中考数学历年真题汇总 (A)卷(含答案详解)

【历年真题】河南省中考数学历年真题汇总 (A)卷(含答案详解)

河南省中考数学历年真题汇总 (A )卷 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2 C1 D1 2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 3、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )·线○封○密○外A .60︒B .75︒C .90︒D .105︒4、如图,等腰三角形ABC 的底边BC 长为4,面积是20,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .8B .10C .12D .145、如图,在ABC 中,AD BC ⊥,62B ∠=︒,AB BD CD +=,则BAC ∠的度数为( )A .87°B .88°C .89°D .90°6、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .367、下列运算正确的是( ) A .22352a b a b -=- B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF= 9、将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE =45°,那么∠BAF 的大小为( ) A .15° B .10° C .20° D .25° 10、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )·线○封○密·○外A .冬B .奥C .运D .会第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a ,()b a b <,则b a -的值为______.2、在平行四边形ABCD 中,对角线AC 长为8cm ,30BAC ∠=︒,5cm AB =,则它的面积为______cm 2.3、如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,当126BED ∠=︒时,EDA ∠的度数为______.4、在平面直角坐标系中,点A (10,0)、B (0,3),以AB 为边在第一象限作等腰直角△ABC ,则点C 的坐标为_______.5、如图,90,ACB AC BC ∠=︒=,D 为ABC 外一点,且,AD BD DE AC =⊥交CA 的延长线于E 点,若1,3AE ED ==,则BC =_______.三、解答题(5小题,每小题10分,共计50分)1、已知,点A ,B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.点A ,B ,M 分别表示数a ,b ,x .请回答下列问题. (1)若a =-1,b =3,则点A ,B 之间的距离为 ; (2)如图,点A ,B 之间的距离用含a ,b 的代数式表示为x = ,利用数轴思考x 的值,x = (用含a ,b 的代数式表示,结果需合并同类项);(3)点C ,D 分别表示数c ,d .点C ,D 的中点也为点M ,找到a b c d ,,,之间的数量关系,并用这种关系解决问题(提示:思考x 的不同表示方法,找相等关系). ①若a =-2,b =6,c =73则d = ; ②若存在有理数t ,满足b =2t +1,d =3t -1,且a =3,c =-2,则t = ; ③若A ,B ,C ,D 四点表示的数分别为-8,10,-1,3.点A 以每秒4个单位长度的速度向右运动,点B 以每秒3个单位长度的速度向左运动,点C 以每秒2个单位长度的速度向右运动,点D 以每秒3个单位长度的速度向左运动,若t 秒后以这四个点为端点的两条线段中点相同,则t = . 2、如图,抛物线2410233y x x =-++与x 轴相交于点A ,与y 轴交于点B ,C 为线段OA 上的一个动点,过点C 作x 轴的垂线,交直线AB 于点D ,交该抛物线于点E .·线○封○密○外(1)求直线AB 的表达式,直接写出顶点M 的坐标;(2)当以B ,E ,D 为顶点的三角形与CDA 相似时,求点C 的坐标;(3)当2BDE OAB ∠=∠时,求BDE 与CDA 的面积之比.3、已知:如图,在四边形ABCD 中,AB CD ∥,过点D 作DF BC ∥,分别交AC 、AB 点E 、F ,且满足AB AF DF BC ⋅=⋅.(1)求证:AEF DAF ∠∠=(2)求证:22AF DE AB CD = 4、如图,点O 在直线AB 上,90BOC ∠=°,BOD ∠和COD ∠互补.(1)根据已知条件,可以判断AOD COD ∠=∠,将如下推理过程补充完整(括号内填推理依据).推理过程:因为BOD ∠和COD ∠互补,所以BOD COD ∠+∠= °.( ),因为点O 在直线AB 上,所以180AOB ∠=︒.所以180BOD AOD ∠+∠=︒,所以AOD COD ∠=∠.( ) (2)求AOD ∠的度数. 5、计算:(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2. -参考答案- 一、单选题 1、C 【解析】 【分析】 取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案. 【详解】 解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D , ∵点A (1,0),B (3,0),·线·○封○密○外∴OA=1,OB=3,∴OE=2,∴ED∵∠ACB=90°,∴点C在以AB为直径的圆上,∴线段CD−1.故选:C.【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.2、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 4、C 【解析】 【分析】 连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论. 【详解】 解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC , ·线○封○密○外∴11•42022ABC S BC AD AD ==⨯⨯=,解得AD =10, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=CM +MD +CD =AD +110410222211BC =+⨯=+=.故选:C .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.5、A【解析】【分析】延长DB 至E ,使BE =AB ,连接AE ,则DE =CD ,从而可求得∠C =∠E =31°,再根据三角形内角和可求度数.【详解】解:延长DB 至E ,使BE =AB ,连接AE ,∴∠BAE =∠E ,∵62ABD ∠=︒,∴∠BAE =∠E =31°,∵AB +BD =CD∴BE +BD =CD即DE =CD ,∵AD ⊥BC ,∴AD 垂直平分CE ,∴AC =AE ,∴∠C =∠E =31°,∴18087BAC C ABC ∠=︒-∠-∠=︒;故选:A .【点睛】 此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键. 6、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ·线○封○密·○外∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=.故选:C .【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确;C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】根据AD∥BC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴AE AO OEFC CO OF==,故A正确,不符合题意;∵AD∥BC,∴△DOE∽△BOF,∴DE OE DO BF OF BO==,∴AE DE FC BF=,∴AE FCDE BF=,故B错误,符合题意;∵AD∥BC,∴△AOD∽△COB,∴AD AO DO BC CO BO==,·线○封○密·○外∴AD OEBC OF=,故C正确,不符合题意;∴DE ADBF BC=,∴AD BCDE BF=,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.9、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.10、D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“京”与“奥”是相对面,“冬”与“运”是相对面, “北”与“会”是相对面. 故选:D . 【点睛】 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 二、填空题 1、9 【解析】 【分析】 由重叠部分面积为c ,(b -a )可理解为(b +c )-(a +c ),即两个多边形面积的差. 【详解】 解:设重叠部分面积为c , b -a =(b +c )-(a +c )=22-13=9. 故答案为:9. 【点睛】 本题考查了等积变换,添括号,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 2、20 【解析】·线○封○密·○外【分析】根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【详解】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5,∴BE=12AB=52,S△ABC=12AC•BE=10,∴S▱ABCD=2S△ABC=20(cm2).故答案为:20.【点睛】本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.3、18°##18度【解析】【分析】由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=12∠BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠DAE =∠BAE =∠DCA =∠BCA =45°,在△DCE 和△BCE 中, CD BC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ), ∴∠CED =∠CEB =12∠BED =63°, ∵∠CED =∠CAD +∠ADE , ∴∠ADE =63°-45°=18°, 故答案为:18°. 【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE ≌△BCE 是本题的关键. 4、()()13133,13,13,10,,22⎛⎫ ⎪⎝⎭ 【解析】 【分析】 根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点C 的坐标 【详解】 解:如图, ·线○封○密○外当B 为直角顶点时,则1BC BA =,作1C D y ⊥轴,190C DB ∴∠=︒1190C BD BC D ∴∠+∠=︒190C BA ∠=︒190DBC OBA ∴∠+∠=︒1OBA DC B ∴∠=∠又1,BC BA =1DC B OBA ∴≌∴13C D OB ==,10BD OA ==1(3,13)C ∴同理可得3(13,10)C 根据三线合一可得2C 是1,A C 的中点,则21313,22C ⎛⎫ ⎪⎝⎭ 综上所述,点C 的坐标为()()13133,13,13,10,,22⎛⎫ ⎪⎝⎭ 故答案为:()()13133,13,13,10,,22⎛⎫ ⎪⎝⎭ 【点睛】本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键. 5、2 【解析】 【分析】 过点D 作DM ⊥CB 于M ,证出∠DAE=∠DBM ,判定△ADE ≌△BDM ,得到DM=DE =3,证明四边形CEDM 是矩形,得到CE=DM =3,由A E =1,求出BC=AC =2. 【详解】 解:∵DE ⊥AC , ∴∠E=∠C=90°, ∴CB ED ∥, 过点D 作DM ⊥CB 于M ,则∠M =90°=∠E , ∵AD=BD , ∴∠BAD =∠ABD , ∵AC=BC , ·线○封○密○外∴∠CAB=∠CBA ,∴∠DAE=∠DBM ,∴△ADE ≌△BDM ,∴DM=DE =3,∵∠E=∠C=∠M =90°,∴四边形CEDM 是矩形,∴CE=DM =3,∵A E =1,∴BC=AC =2,故答案为:2.【点睛】此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE ≌△BDM 是解题的关键.三、解答题1、 (1)4(2)b −b ,b +b 2 (3)①53;②7;③0或116或7【解析】【分析】(1)由图易得A 、B 之间的距离;(2)A 、B 之间的距离为两点表示的数差的绝对值;由数轴得点M 表示的数x 为b +12bb ,从而可求得x ;(3)①由(2)得:12(b +b )=12(b +b ),其中a 、b 、c 的值已知,则可求得d 的值; ②由12(b +b )=12(b +b )可得关于t 的方程,解方程即可求得t ; ③分三种情况考虑:若线段AB 与线段CD 共中点;若线段AC 与线段BD 共中点;若线段AD 与线段BC 共中点;利用(2)的结论即可解决. (1) AB =3+1=4 故答案为:4 (2) b =b −b ; 由数轴知:b =b +12bb =b +12(b −b )=b −b 2 故答案为:b −b ,b +b 2 (3) ①由(2)可得:12(b +b )=12(b +b ) 即12(−2+6)=12(73+b ) 解得:b =53故答案为:53 ·线○封○密○外②由12(b+b)=12(b+b),得12(3+2b+1)=12(−2+3b−1)解得:b=7故答案为:7③由题意运动t秒后b=4b−8,b=−3b+10,b=2b−1,b=−3b+3.分三种情况:若线段AB与线段CD共中点,则12(4b−8−3b+10)=12(−3b+3+2b−1),解得b=0;若线段AC与线段BD共中点,则12(4b−8+2b−1)=12(−3b+3−3b+10),解得b=116;若线段AD与线段BC共中点,则12(4b−8−3b+3)=12(2b−1−3b+10),解得b=7.综上所述,b=0,116,7故答案为:0或116或7【点睛】本题考查了数轴上两点间的距离,数轴上线段中点表示的数,解一元一次方程等知识,灵活运用这些知识是关键,注意数形结合.2、 (1)223y x=-+,5(4M,49)12(2)11(8,0)或5(2,0)(3)1225 104【解析】【分析】(1)求出A、B点的坐标,用待定系数法求直线AB的解析式即可;(2)由题意可知BED ∆是直角三角形,设(,0)C t ,分两种情况讨论①当90BED ∠=︒,时,//BE AC ,此时(,2)E t ,由此可求52t =;②当90EBD ∠=︒时,过点E 作EQ y ⊥轴交于点Q ,可证明ABO BEQ ∆∆∽,则AO BO BQ EQ =,可求3(,2)2E t t +,再由E 点在抛物线上,则可求118t =,进而求C 点坐标; (3)作BA 的垂直平分线交x 轴于点Q ,连接BQ ,过点B 作BG EC ⊥于点G ,则有BQO BED ∠=∠,在Rt BOQ △中,224(3)BQ BQ =+-,求出136BQ =,56QO =,则12tan tan 5BQO BEG ∠=∠=,设(,0)C t ,则2(,2)3D t t -+,2410(,2)33E t t t -++,则有212410533t t t =-+,求出3516t =,即可求2212253104BDE CDA S t S t ∆∆==-. (1) 解:令0y =,则24102033x x -++=, 12x ∴=-或3x =, (3,0)A ∴, 令0x =,则2y =,(0,2)B ∴,设直线AB 的解析式为y kx b =+,∴230b k b =⎧⎨+=⎩, ∴232k b ⎧=-⎪⎨⎪=⎩, 223y x ∴=-+, 2241045492()333412y x x x =-++=--+, 5(4M ∴,49)12; ·线○封○密○外(2)解:ADC BDE ∠=∠,90ACD ∠=︒,BED ∴∆是直角三角形,设(,0)C t ,①如图1,当90BED ∠=︒,时,//BE AC ,(,2)E t ∴,24102233t t ∴-++=, 0t ∴=(舍)或52t =, 5(2C ∴,0); ②如图2,当90EBD ∠=︒时, 过点E 作EQ y ⊥轴交于点Q , 90BAO ABO ∠+∠=︒,90ABO QBE ∠+∠=︒, QBE BAO ∴∠=∠, ABO BEQ ∴∆∆∽, ∴AO BO BQ EQ =,即32BQ t =, 32BQ t ∴=, 3(,2)2E t t ∴+, 2341022233t t t ∴+=-++, 0t ∴=(舍)或118t =, 11(8C ∴,0); 综上所述:C 点的坐标为11(8,0)或5(2,0); ·线○封○密○外(3)解:如图3,作BA 的垂直平分线交x 轴于点Q ,连接BQ ,过点B 作BG EC ⊥于点G ,BQ AQ ∴=,BQA QAB ∴∠=∠,2BED OAB ∠=∠,BQO BED ∴∠=∠,在Rt BOQ △中,222BQ BO OQ =+,224(3)BQ BQ ∴=+-,136BQ ∴=, 56QO ∴=, 12tan 5BQO ∴∠=, 12tan 5BEG ∴∠=,设(,0)C t ,则2(,2)3D t t -+,2410(,2)33E t t t -++, BG t =,2443DE t t =-+,3AC t =-,223DC t =-+,241033EG t t =-+, ∴212410533t t t =-+, 3516t ∴=, 12BDE S ED BG ∆∴=⋅, 12CDA S AC CD ∆=⋅, ∴224(4)21225323104(3)(2)3BDE CDA t t t S t S t t t ∆∆-+===---+. 【点睛】 本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键. 3、 (1)答案见解析 (2)答案见解析 【解析】 【分析】 (1)根据DF ∥BC ,得bb bb=bb bb ,由AB ⋅AF =DF ⋅BC ,得bb bb =bb bb ,∠AFE =∠DFA ,可证△AEF ∽△DAF ,即可得答案;(2)根据AB ∥CD ,得bb bb =bb bb ,由bb bb =bb bb ,得bb 2bb 2=bb bb ,再证四边形DFBC 是平行四边形,得bb 2bb 2=bb bb ,最后根据DF ∥BC ,即可得答案.·线○封○密○外(1)解:∵DF∥BC,∴bbbb=bbbb,∴bbbb=bbbb,∵AB⋅AF=DF⋅BC,∴bbbb=bbbb,∴bbbb=bbbb,∵∠AFE=∠DFA,∴△AEF∽△DAF,∴∠AEF=∠DAF;(2)∵AB∥CD,∴bbbb=bbbb,∴bbbb=bbbb,∵bbbb=bbbb,∴bbbb=bbbb,∴bb2bb2=bbbb×bbbb=bbbb,∵DF∥BC,AB∥CD,∴四边形DFBC是平行四边形,∴DF =BC ,∴bb 2bb 2=bb bb =bb bb , ∵DF ∥BC , ∴bb bb =bb bb , ∴22AF DE AB CD =. 【点睛】 本题考查了平行线分线段成比例、相似三角形的判定与性质、平行四边形的判定与性质,做题的关键是相似三角形性质的灵活运用. 4、 (1)180,补角定义,同角的补角相等 (2)45° 【解析】 【分析】 (1)根据补角的定义及同角的补角相等即可得出答案; (2)根据角平分线的性质求证即可. (1) 解:因为BOD ∠和COD ∠互补, 所以∠bbb +∠bbb =180°.(补角定义) 因为点O 在直线AB 上,所以180AOB ∠=︒. 所以180BOD AOD ∠+∠=︒. 所以AOD COD ∠=∠.(同角的补角相等) . 故答案是:180,补角定义,同角的补角相等; ·线○封○密○外(2)因为180AOB ∠=︒,90BOC ∠=°,所以∠bbb =∠bbb −∠bbb =180°−90°=90°.由(1)知AOD COD ∠=∠,所以OD 是AOC ∠的平分线.所以∠bbb =12∠bbb =45°.【点睛】本题考查补角的定义,同角的补角相等,角平分线的定义等内容,关键是根据互补的关系及角平分线的定义解答.5、4bb【解析】【分析】根据整式的乘法公式及运算法则化简,合并即可求解.【详解】(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2=a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab .【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.。

2017-2021年河南中考数学真题分类汇编之二次函数

2017-2021年河南中考数学真题分类汇编之二次函数

2017-2021年河南中考数学真题分类汇编之二次函数一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4 2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017-2021年河南中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】数形结合;二次函数图象及其性质.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=±4.【考点】二次函数的性质.【分析】根据二次函数顶点在x轴上得出Δ=b2﹣4ac=m2﹣4×2×2=0,即可得出答案.【解答】解:∵二次函数y=x2+bx+4的顶点在x轴上,∴Δ=b2﹣4ac=b2﹣4×1×4=0,∴b2=16,∴b=±4.故答案为:±4.【点评】本题考查了二次函数的性质以及二次函数顶点在x轴上的特点,根据题意得出Δ=b2﹣4ac=0是解决问题的关键.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【分析】(1)先求出点B,点A坐标,利用待定系数法代入解析式求出c的值,即可求解;(2)先求出点M,点N坐标,利用函数的图象即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),c>0.∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,顶点(1,4).∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴当M,N在对称轴的同侧时,﹣21≤y Q≤﹣5;当M,N在对称轴的两侧时,﹣21≤y Q≤4.∴点Q的纵坐标y Q的取值范围为﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n =5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,∴抛物线方程为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:3或;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【考点】二次函数综合题.【专题】代数综合题;分类讨论;一元一次不等式(组)及应用;数据分析观念.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得或(不符合题意,舍去),即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上所述,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【考点】二次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x ﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.【解答】解:(1)当x=0时,y=﹣x﹣2=﹣2,∴点C的坐标为(0,﹣2);当y=0时,﹣x﹣2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)①∵PM⊥x轴,∴∠PMC≠90°,∴分两种情况考虑,如图1所示.(i)当∠MPC=90°时,PC∥x轴,∴点P的纵坐标为﹣2.当y=﹣2时,x2+x﹣2=﹣2,解得:x1=﹣2,x2=0,∴点P的坐标为(﹣2,﹣2);(ii)当∠PCM=90°时,设PC与x轴交于点D.∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,∴∠OAC=∠OCD.又∵∠AOC=∠COD=90°,∴△AOC∽△COD,∴=,即=,∴OD=1,∴点D的坐标为(1,0).设直线PC的解析式为y=kx+b(k≠0),将C(0,﹣2),D(1,0)代入y=kx+b,得:,解得:,∴直线PC的解析式为y=2x﹣2.联立直线PC和抛物线的解析式成方程组,得:,解得:,,点P的坐标为(6,10).综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).②当y=0时,x2+x﹣2=0,解得:x1=﹣4,x2=2,∴点B的坐标为(2,0).∵点C的坐标为(0,﹣2),点B,B′关于点C对称,∴点B′的坐标为(﹣2,﹣4).∵点P的横坐标为m(m>0且m≠2),∴点M的坐标为(m,﹣m﹣2).利用待定系数法可求出:直线BM的解析式为y=﹣x+,直线B′M的解析式为y=x﹣,直线BB′的解析式为y=x﹣2.分三种情况考虑,如图2所示:当直线l∥BM且过点C时,直线l的解析式为y=﹣x﹣2;当直线l∥B′M且过点C时,直线l的解析式为y=x﹣2;当直线l∥BB′且过线段CM的中点N(m,﹣m﹣2)时,直线l的解析式为y=x﹣m﹣2.综上所述:直线l的解析式为y=﹣x﹣2,y=x﹣2或y=x﹣m﹣2.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)①分∠MPC=90°及∠PCM=90°两种情况求出点P的坐标;②利用待定系数法及平行线的性质,求出直线l的解析式.10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)由抛物线的顶点坐标可设抛物线的解析式为y=a(x﹣1)2+4,由点C的坐标利用待定系数法可求出抛物线的解析式,进而可得出a,b,c的值;(2)利用一次函数图象上点的坐标特征可求出点D,G的坐标,进而可求出DG的长度,分DG=DM,GD=GM两种情况考虑:①当DG=DM时,由等腰三角形的性质可得出HG=HM1,进而可得出点M1的坐标;②当GD=GM时,由等腰三角形的性质可得出GM2=GM3=,结合点G的坐标可得出点M2,M3的坐标.综上,此问得解;(3)过点E作EN⊥直线DE,交x轴于点N,则△DOE∽△DEN,利用相似三角形的性质可求出点N的坐标,由点E,N的坐标利用待定系数法可求出直线EN的解析式,设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R,设直线PQ 的解析式为y=﹣2x+m,利用一次函数图象上点的坐标特征可求出点Q的坐标,联立直线PQ和直线DE的解析式成方程组,通过解方程组可得出点R的坐标,进而可得出点P 的坐标,由点P的坐标利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可得出m的值,再将其代入点P的坐标中即可得出结论.【解答】解:(1)∵抛物线顶点F的坐标为(1,4),∴设抛物线的解析式为y=a(x﹣1)2+4.将C(0,3)代入y=a(x﹣1)2+4,得:a+4=3,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∴a=﹣1,b=2,c=3.(2)当y=0时,x+1=0,解得:x=﹣2,∴点D的坐标为(﹣2,0).当x=1时,y=x+1=,∴点G的坐标为(1,),∴DH=1﹣(﹣2)=3,GH=,∴DG==.分两种情况考虑(如图1):①当DG=DM时,HG=HM1,∴点M1的坐标为(1,﹣);②当GD=GM时,GM2=GM3=,∴点M2的坐标为(1,),点M3的坐标为(1,).综上所述:点M的坐标为(1,﹣),(1,)或(1,).(3)过点E作EN⊥直线DE,交x轴于点N,如图2所示.当x=0时,y=x+1=1,∴点E的坐标为(0,1),∴OE=1,DE==.∵∠DOE=∠DEN=90°,∠ODE=∠EDN,∴△DOE∽△DEN,∴=,即=,∴DN=,∴点N的坐标为(,0).∵点E(0,1),点N(,0),∴线段EN所在直线的解析式为y=﹣2x+1(可利用待定系数法求出).设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R.设直线PQ的解析式为y=﹣2x+m,当y=0时,﹣2x+m=0,解得:x=,∴点Q的坐标为(,0).联立直线PQ和直线DE的解析式成方程组,得:,解得:,∴点R的坐标为(,).∵点R为线段PQ的中点,∴点P的坐标为(,).∵点P在抛物线y=﹣x2+2x+3的图象上,∴﹣()2+2×+3=,整理,得:9m2﹣68m+84=0,解得:m1=6,m2=,∴点P的坐标为(1,4)或(﹣,).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、相似三角形的判定与性质、平行线的性质、中点坐标公式以及二次函数图象上点的坐标特征,解题的关键是:(1)巧设二次函数解析式,利用待定系数法求出a值;(2)分DG=DM,GD=GM两种情况,利用等腰三角形的性质求出点M的坐标;(3)利用二次函数图象上点的坐标特征,找出关于m的一元二次方程.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN 的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.考点卡片1.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.。

河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.待定系数法求反比例函数解析式(共1小题)1.(2022•河南)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.二.反比例函数的应用(共1小题)2.(2023•河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.三.二次函数综合题(共1小题)3.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.四.三角形综合题(共1小题)4.(2021•河南)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是 (填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.五.四边形综合题(共2小题)5.(2022•河南)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角: .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.6.(2023•河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1C1,再分别作△A1B1C1关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC绕点O顺时针旋转得到的,旋转角的度数为 ;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为 个单位长度.(2)探究迁移如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:①若∠PAP2=β,请判断β与α的数量关系,并说明理由;②若AD=m,求P,P3两点间的距离.(3)拓展应用在(2)的条件下,若α=60°,,∠PAB=15°,连接P2P3,当P2P3与▱ABCD 的边平行时,请直接写出AP的长.六.切线的性质(共1小题)7.(2021•河南)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠PAO=2∠PBO;(2)若⨀O的半径为5,AP=,求BP的长.七.作图—基本作图(共1小题)8.(2023•河南)如图,△ABC中,点D在边AC上,且AD=AB.(1)请用无刻度的直尺和圆规作出∠A的平分线(保留作图痕迹,不写作法);(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:DE=BE.八.解直角三角形的应用(共1小题)9.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).九.解直角三角形的应用-仰角俯角问题(共2小题)10.(2022•河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).11.(2021•河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.待定系数法求反比例函数解析式(共1小题)1.(2022•河南)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【答案】(1)y=;(2)作图见解析部分;(3)证明见解析部分.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.二.反比例函数的应用(共1小题)2.(2023•河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1)k=;(2)2;60°;(3)3﹣.【解答】解:(1)将A(,1)代入到y=中,得:1=,解得:k=;(2)过点A作OD的垂线,交x轴于G,∵A(,1),∴AG=1,OG=,OA==2,∴半径为2;∵AG=OA,∴∠AOG=30°,由菱形的性质可知,∠AOG=∠COG=60°,∴∠AOC=60°,∴圆心角的度数为:60°;(3)∵OD=2OG=2,∴S菱形AOCD=AG×OD=2,∴S扇形AOC=×π×r2=,在菱形OBEF中,S△FHO=S△BHO,∵S△FHO==,∴S△FBO=2×=,∴S阴影=S△FBO+S菱形AOCD﹣S扇形AOC=+2﹣π=3﹣.三.二次函数综合题(共1小题)3.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【答案】(1)m=﹣2,b=2;(2)B(﹣1,3),不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)﹣1≤x M<2 或x M=3.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得或(不符合题意,舍去),即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上所述,﹣1≤x M<2 或x M=3.四.三角形综合题(共1小题)4.(2021•河南)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是 ⑤ (填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.【答案】(1)⑤;(2)射线OP是∠AOB的平分线,理由见解答;(3)2或2+.【解答】解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,∴∠PGO=∠PHO=90°,∵OE﹣OC=OF﹣OD,∴CE=DF,∵CG=CE,DH=DF,∴CG=DH,∴OC+CG=OD+DH,∴OG=OH,∵OP=OP,∴Rt△PGO≌Rt△PHO(HL),故答案为:⑤.(2)射线OP是∠AOB的平分线,理由如下:如图2,∵OC=OD,∠DOE=∠COF,OE=OF,∴△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,∠PEO=∠PFO,PE=PF,∴△OPE≌△OPF(SAS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP是∠AOB的平分线.(3)如图3,OC<OE,连接OP,作PM⊥OA,则∠PMO=∠PME=90°,由(2)得,OP平分∠AOB,∠PEC=∠PFD,∴∠PEC+30°=∠PFD+30°,∵∠AOB=60°,∴∠POE=∠POF=∠AOB=30°,∵∠CPE=30°,∴∠OCP=∠PEC+∠CPE=∠PEC+30°,∠OPC=∠PFD+∠POF=∠PFD+30°,∴∠OCP=∠OPC=(180°﹣∠POE)=×(180°﹣30°)=75°,∴OC=OP,∠OPE=75°+30°=105°,∴∠OPM=90°﹣30°=60°,∴∠MPE=105°﹣60°=45°,∴∠MEP=90°﹣45°=45°,∴MP=ME,设MP=ME=m,则OM=MP•tan60°=m,由OE=+1,得m+m=+1,解得m=1,∴MP=ME=1,∴OP=2MP=2,∴OC=OP=2;如图4,OC>OE,连接OP,作PM⊥OA,则∠PMO=∠PMC=90°,同理可得,∠POE=∠POF=∠AOB=30°,∠OEP=∠OPE=75°,∠OPM=60°,∠MPC=∠MCP=45°,∴OE=OP=+1,∵MC=MP=OP=OE=,∴OM=MP•tan60°=×=,∴OC=OM+MC=+=2+.综上所述,OC的长为2或2+.五.四边形综合题(共2小题)5.(2022•河南)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角: ∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可) .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ= 15 °,∠CBQ= 15 °;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.【答案】(1)∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可);(2)①15,15;②∠MBQ=∠CBQ,理由见解析过程;(3)cm或cm.【解答】解:(1)∵对折矩形纸片ABCD,∴AE=BE=AB,∠AEF=∠BEF=90°,∵沿BP折叠,使点A落在矩形内部点M处,∴AB=BM,∠ABP=∠PBM,∵sin∠BME==,∴∠EMB=30°,∴∠ABM=60°,∴∠CBM=∠ABP=∠PBM=30°,故答案为:∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可);(2)①由(1)可知∠CBM=30°,∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°,由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴∠BM=BC,∠BMQ=∠C=90°,又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ(HL),∴∠CBQ=∠MBQ=15°,故答案为:15,15;②∠MBQ=∠CBQ,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°,由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴BM=BC,∠BMQ=∠C=90°,又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ(HL),∴∠CBQ=∠MBQ;(3)由折叠的性质可得DF=CF=4cm,AP=PM,∵Rt△BCQ≌Rt△BMQ,∴CQ=MQ,当点Q在线段CF上时,∵FQ=1cm,∴MQ=CQ=3cm,DQ=5cm,∵PQ2=PD2+DQ2,∴(AP+3)2=(8﹣AP)2+25,∴AP=,当点Q在线段DF上时,∵FQ=1cm,∴MQ=CQ=5cm,DQ=3cm,∵PQ2=PD2+DQ2,∴(AP+5)2=(8﹣AP)2+9,∴AP=,综上所述:AP的长为cm或cm.6.(2023•河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1C1,再分别作△A1B1C1关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC绕点O顺时针旋转得到的,旋转角的度数为 180° ;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为 8 个单位长度.(2)探究迁移如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:①若∠PAP2=β,请判断β与α的数量关系,并说明理由;②若AD=m,求P,P3两点间的距离.(3)拓展应用在(2)的条件下,若α=60°,,∠PAB=15°,连接P2P3,当P2P3与▱ABCD 的边平行时,请直接写出AP的长.【答案】(1)8;(2)①β=2α;②2m•sinα;(3)AP=3﹣或2.【解答】解:(1)答案为:8;(2)①如图1,β=2α,理由如下:连接AP1,由轴对称的性质可得:∠PAB=∠BAP1,∠P1AD=∠DAP2,∴∠PAB+∠DAP2=∠BAP1+∠DAP1=∠BAD=α,∴β=2α;②如图2,作DF⊥AB于F,作P1E⊥DF于E,∵PP1⊥AB,P3P1⊥CD,可得矩形EFGP1和矩形DEP1H,∴DE=HP1,EF=GP1,∵DF=AD•sin A=m•sinα,∴GP1+HP1=DE+EF=DF=m•sinα,∵HP3=HP1,PG=P1G,∴HP3+PG=GP1+HP1=m•sinα,∴PP3=2m•sinα;(3)如图3,在Rt△KMN中,∠M=90°,∠N=15°,KS=SN,则∠KSM=30°,设KM=1,则SN=KS=2,MS=,则KN=,∴sin15°=,当P2P3∥AD时,作DI⊥AB于I,设P1P2交AD于T,∵P1P2⊥AD,∴P2P3⊥P1P2,∴∠P3P2P1=90°,∵PP3∥DI,∴∠P2P3P1=∠ADI=30°,由(2)知:PP3=2AD•sin60°=6,设AP1=AP=x,则PP1=2AP•sin∠PAB=2x•sin15°=2x•=,∴P1P3=PP3﹣PP1=6﹣,∵∠BAP1=∠BAP=15°,∵∠P1AT=∠DAB﹣∠BAP1=60°﹣15°=45°,由轴对称性质得:∠ATP1=90°,∴TP1=AP1=,∴P1P2=,由P1P2=P1P3•sin∠P2P3P1=P1P3•sin30°得,6﹣=2x,∴x=3,如图5,当P2P3∥CD时,设AP=x,同理可得:P1P2=2P1P3,∴2[6﹣]=x,∴x=2,综上所述:AP=3﹣或2.六.切线的性质(共1小题)7.(2021•河南)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠PAO=2∠PBO;(2)若⨀O的半径为5,AP=,求BP的长.【答案】(1)见解析;(2)3.【解答】(1)证明:如图①,连接OP,延长BO与圆交于点C,则OP=OB=OC,∵AP与⨀O相切于点P,∴∠APO=90°,∴∠PAO+∠AOP=90°,∵MO⊥CN,∴∠AOP+∠POC=90°,∴∠PAO=∠POC,∵OP=OB,∴∠OPB=∠PBO,∴∠POC=∠OPB+∠PBO=2∠PBO,∴∠PAO=2∠PBO;(2)解:如图②所示,连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,则有:AO==,由(1)可知∠POC=∠PAO,∴Rt△POD∽Rt△OAP,∴,即,解得PD=3,OD=4,∴CD=OC﹣OD=1,在Rt△PDC中,PC==,∵CB为圆的直径,∴∠BPC=90°,∴BP===3,故BP长为3.七.作图—基本作图(共1小题)8.(2023•河南)如图,△ABC中,点D在边AC上,且AD=AB.(1)请用无刻度的直尺和圆规作出∠A的平分线(保留作图痕迹,不写作法);(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:DE=BE.【答案】(1)见解答;(2)见解答.【解答】(1)解:如图所示,即为所求,(2)证明:∵AE平分∠BAC,∴∠BAE=∠DAE,∵AB=AD,AE=AE,∴△BAE≌△DAE(SAS),∴DE=BE.八.解直角三角形的应用(共1小题)9.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).【答案】9.1m.【解答】解:由题意可知,∠BAE=∠MAF=∠BAD=90°,FG=1.8m,则∠EAF+∠BAF=∠BAF+∠BAH=90°,∴∠EAF=∠BAH,∵AB=30cm,BH=20cm,则tan∠EAF==,∴tan∠EAF==tan∠BAH=,∵AF=11m,则,∴EF=,∴EG=EF+FG= 1.8≈9.1m.答:树EG的高度为9.1m.九.解直角三角形的应用-仰角俯角问题(共2小题)10.(2022•河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【答案】拂云阁DC的高度约为32米.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.5,经检验:x≈30.5是原方程的根,∴DC=DH+CH=30.5+1.5≈32(米),∴拂云阁DC的高度约为32米.11.(2021•河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).【答案】见试题解答内容【解答】解:根据题意可知:∠DAB=45°,∴BD=AD,在Rt△ADC中,DC=BD﹣BC=(AD﹣4)m,∠DAC=37.5°,∵tan∠DAC=,∴tan37.5°=≈0.77,解得AD≈17.4m,∴BD=AD≈17.4m,答:佛像的高度约为17.4 m.。

中考45套汇编河南版数学试题及答案

中考45套汇编河南版数学试题及答案

中考45套汇编河南版数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共10个小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一个选项符合题意要求.1.12-的绝对值是A. -2B.12- C. 2 D.122. 图1所示的几何体的右视图是3. 某服装销售商在进行市场占有率的调查时,他最应该关注的是A. 服装型号的平均数B. 服装型号的众数C. 服装型号的中位数D. 最小的服装型号4. 下列命题中,正确的是A. 同位角相等B. 平行四边形的对角线互相垂直平分C. 等腰梯形的对角线互相垂直D. 矩形的对角线互相平分且相等5. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100! 98!的值为A. 5049B. 99!C. 9900D. 2!6. 如图2,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁四点中的A. 甲B. 乙C. 丙D. 丁7. 已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)8. 若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是 A. 12k <B. 12k ≤C. 12k >D. k ≥129. 若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为 A.2a b+ B.2a b- C.2a b +或2a b- D. a +b 或a -b10. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 . 其中所有正确结论的序号是A. ③④B. ②③C. ①④D. ①②③第Ⅱ卷(非选择题 共80分)注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接填在题中横线上.11. 若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______.12. 若实数m ,n 满足条件m +n =3,且m -n =1,则m =________,n =___________.13. 在△ABC 中,若D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,AD =1,DB =2,则△ADE 与△ABC 的面积比为____________.14. 函数121xy x-=+的自变量x 的取值范围是_______________. 15. 如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到 △A 'P 'B ,且BP =2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos15°)16. 已知n(n≥2)个点P1,P2,P3,…,P n在同一平面内,且其中没有任何三点在同一直线上. 设S n表示过这n个点中的任意2个点所作的所有直线的条数,显然,S2=1,S3=3,S4=6,S5=10,…,由此推断,S n=______________.三. 解答题:本大题共8个小题,共62分. 解答应写出必要的文字说明,证明过程或演算步骤.17. (本小题满分7分)(1) 已知a =sin60°,b =cos45°,c =11()2-,d =112+,从a 、b 、c 、d 这4个数中任意选取3个数求和;(2) 计算:44()()xy xyx y x y x y x y-++--+ .18. (本小题满分7分)如图5,已知点M 、N 分别是△ABC 的边BC 、AC 的中点,点P 是点A 关于点M 的对称点,点Q 是点B 关于点N 的对称点,求证:P 、C 、Q 三点在同一条直线上.19. (本小题满分7分)甲、乙两同学开展“投球进筐”比赛,双方约定:① 比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;② 若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③ 计分规则如下:a . 得分为正数或0;b . 若8次都未投进,该局得分为0;c . 投球次数越多,得分越低;d . 6局比赛的总得分高者获胜 .(1) 设某局比赛第n (n =1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案;(2) 若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):第一局 第二局 第三局 第四局 第五局 第六局 甲 5 × 4 8 1 3 乙82426×根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.20. (本小题满分7分)如图6,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.(1) 求证:AH AB=AC2;(2) 若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE AF=AC2;(3) 若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP AQ=AC2是否成立(不必证明).图 621. (本小题满分8分)已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1) 甲、乙两队单独完成这项工程分别需要多少天?(2) 若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.22. (本小题满分8分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图7. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):①甲在乙的前面;②甲与乙相遇;③甲在乙后面.图723. (本小题满分9分)阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2) 如图8②,若△ABC为直角三角形,且∠C=90°,在图8②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC是锐角三角形,且BC>AC>AB,在图8③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.24. (本小题满分9分)如图9,已知O 为坐标原点,∠AOB =30°,∠ABO =90°,且点A 的坐标为(2,0). (1) 求点B 的坐标;(2) 若二次函数y =ax 2+bx +c 的图象经过A 、B 、O 三点,求此二次函数的解析式;(3) 在(2)中的二次函数图象的OB 段(不包括点O 、B )上,是否存在一点C ,使得四边形ABCO 的面积最大?若存在,求出这个最大值及此时点C 的坐标;若不存在,请说明理由.数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步的累计分数;2. 给分和扣分都以1分为基本单位;3. 参考答案都只给出一种解法,若考生的解答与参考答案不同,请根据解答情况参考评分意见给分 .一、选择题:每小题4分,共10个小题,满分40分. 1-5. DABDC ;6-10. CABCB.二、填空题:每小题3分,共6个小题,满分18分.11. 51;12. m =2, n =1;13. 1:9;14. x ≤21,且x ≠-1;15. 6216. (1)2n n -.(13题填为19,16题填为2+3+…+n 或1+2+3+…+n -1均给分)三、解答题:共8个小题,满分62分 .17.(1) a +b +c 324++ a +b +d 3322+-, a +c +d 3222++,b +c +d 322+. ··············································································· 4分(按考生的选择,得出正确结果都给分.正确写出所选a ,b ,c ,d 的值各1分,得出最后结果1分)(2)原式=22()()x y x y x y x y +--+ ····························································· 6分=x 2-y 2 ········································································ 7分18.连结MN 、PC 、 CQ . ····························································· 1分 ∵点P 是A 点关于点M 的对称点,∴ M 是AP 的中点, ···················· 2分 又 M 是BC 的中点,∴ MN 是△APC 的中位线, ∴ CP ∥MN . ··············································································· 4分 同理可证,CQ ∥MN . ·································································· 5分 从而,CP 与CQ 都经过点C 且都平行于AB , ∴ P 、C 、Q 三点在同一直线上. ···················································· 7分(也可连结AQ 、CQ 、BP 、CP ,由ABCQ 、ABPC 为平行四边形证明,或根据全等三角形的性质证明) 19.(1)计分方案如下表:n (次)1 2 3 4 5 6 7 8 M (分)8 7 6 5 4 3 2 1 ····························································································· 4分 (用公式或语言表述正确,同样给分.)(2) 根据以上方案计算得6局比赛,甲共得24分,乙共得分23分, ······· 6分 所以甲在这次比赛中获胜 . ··························································· 7分 20.(1) 连结CB ,∵AB 是⊙O 的直径,∴∠ACB =90°. ····················· 1分 而∠CAH =∠BAC ,∴△CAH ∽△BAC . ·········································· 2分 ∴ACAH AB AC =, 即AH AB =AC 2 . ·················································· 3分 (2) 连结FB ,易证△AHE ∽△AFB , ··············································· 4分 ∴ AE AF =AH AB , ·································································· 5分 ∴ AE AF =AC 2 . ········································································· 6分 (也可连结CF ,证△AEC ∽△ACF ) (3) 结论AP AQ =AC 2成立 . ·························································· 7分 21.(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天. ············ 1分根据题意有 11210x x +-=112,························································· 3分解得x 1=3(舍去),x 2=20. ································································· 4分 ∴ 乙队单独完成需要 2x -10=30 (天).答:甲、乙两队单独完成这项工程分别需要20天、30天. ··················· 5分 (没有答的形式,但说明结论者,不扣分) (2) 设甲队每天的费用为y 元,则由题意有 12y +12(y -150)=138000,解得y =650 . ············································· 7分 ∴ 选甲队时需工程费用650×20=13000,选乙队时需工程费用500×30=15000. ∵ 13000 <15000,∴ 从节约资金的角度考虑,应该选择甲工程队. ·································· 8分 22.(1) 甲先出发;先出发10分钟;乙先到达终点;先到5分钟. ······· 2分 (2) 甲的速度为每分钟0.2公里, ··················································· 3分 乙的速度为每分钟0.4公里 . ························································· 4分 (3) 在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中. ······ 5分 设甲行驶的时间为x 分钟(10<x <25),则根据题意可得: 甲在乙的前面:0.2x >0.4(x -10) ; ··················································· 6分 甲与乙相遇:0.2x =0.4(x -10) ; ······················································· 7分 甲在乙后面:0.2x <0.4(x -10) . ·························································· 8分(设甲行驶的时间x 时,没有限定范围的,不扣分. 也可设乙行驶的时间列出相应的方程或不等式 .) 23. (1) 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”. ·············· 1分(2) 此时共有2个友好矩形,如图的BCAD 、ABEF . ································································ 3分 易知,矩形BCAD 、ABEF 的面积都等于△ABC 面积的2倍,∴ △ABC 的“友好矩形”的面积相等. ············ 4分(3) 此时共有3个友好矩形,如图的BCDE 、CAFG 及ABHK ,其中的矩形ABHK 的周长最小 . ················ 5分证明如下:易知,这三个矩形的面积相等,令其为S . 设矩形BCDE 、CAFG 及ABHK 的周长分别为L 1,L 2,L 3,△ABC 的边长BC =a ,CA =b ,AB =c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2S c+2c . ··············· 6分 ∴ L 1- L 2=(2S a +2a )-(2S b +2b )=2(a -b )ab Sab-, ·· 7分而 ab >S ,a >b ,∴ L 1- L 2>0,即L 1> L 2 . ································· 8分 同理可得,L 2> L 3 .∴ L 3最小,即矩形ABHK 的周长最小. ·············································· 9分 24.(1) 在Rt △OAB 中,∵∠AOB =30°,∴ OB =3. 过点B 作BD 垂直于x 轴,垂足为D ,则 OD =23,BD =23,∴ 点B 的坐标为(23,23) . ···················································· 1分 (2) 将A (2,0)、B (23,23)、O (0,0)三点的坐标代入y =ax 2+bx +c ,得420,933,4220.a b c a b c c ++=⎧⎪⎪++=⎨⎪=⎪⎩····································································· 2分 解方程组,有 a =332-,b =334,c =0. ········································ 3分 ∴ 所求二次函数解析式是 y =332-x 2+334x . ································· 4分 (3) 设存在点C (x , 332-x 2+334x ) (其中0<x <32),使四边形ABCO 面积最大. ∵△OAB 面积为定值,∴只要△OBC 面积最大,四边形ABCO 面积就最大. ·························· 5分 过点C 作x 轴的垂线CE ,垂足为E ,交OB 于点F ,则S △OBC = S △OCF +S △BCF =11||||||||22CF OE CF ED ⋅+⋅=||43||||21CF OD CF =⋅,································································································ 6分而 |CF |=y C -y F =22234332333333x x x x x -+-=-+,∴ S △OBC =x x 433232+- . ························································· 7分 ∴ 当x =43时,△OBC 面积最大,最大面积为3239. ··························· 8分此时,点C 坐标为(835,43),四边形ABCO 的面积为32325. ··············· 9分。

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案河南省历年中考数学试题及答案是许多准备参加中考的学生和家长十分关心的话题。

在这篇文章中,我们将为大家整理和介绍一些河南省历年中考数学试题,并附上详细的答案解析,希望能够为大家的复习提供帮助。

一、选择题选择题是中考数学试卷中的重要组成部分。

以下是河南省历年中考数学试卷中的一道选择题:题目:已知正比例函数y = kx,当x = 4时,y = 10;当x = 6时,y = 15。

求k的值。

解析:根据题意可得到方程组:4k = 106k = 15通过解方程可得k = 2.5,因此,选项B为正确答案。

二、填空题填空题是中考数学试卷中锻炼计算能力和应用能力的重要题型。

以下是河南省历年中考数学试卷中的一道填空题:题目:Kate利用1组花环,每个花环用3朵玫瑰和5朵郁金香制作,共制作了8个花束,请问她用了多少朵玫瑰?解析:设用了x朵玫瑰,则用了24 - x朵郁金香,由题意可得方程:3x + 5(24 - x) = 8 × 8通过解方程可得x = 15,因此,她用了15朵玫瑰,答案为15。

三、解答题解答题是中考数学试卷中考察学生分析问题和解决问题能力的重要题型。

以下是河南省历年中考数学试卷中的一道解答题:题目:如图,直线l1与直线l2相交于点O,∠AOB = 85°,求∠COB的度数。

解析:由于l1与l2相交,根据错综相交线性质,可得∠AOB =∠COE。

又∠AOB = 85°,因此∠COE = 85°。

由于角的两边是射线,所以∠COB = ∠COE - ∠BOE = 85° - 70° = 15°。

四、解析题解析题是中考数学试卷中考察学生解决复杂问题和综合运用知识的重要题型。

以下是河南省历年中考数学试卷中的一道解析题:题目:汽车维修站每天收取基本工时费80元,每小时超时费30元。

某辆车维修时间3小时30分钟,应支付多少元?解析:首先需要计算维修时间的分钟数:3小时30分钟 = 3 × 60 +30 = 210分钟。

2007-2012河南省中考数学试卷分类整理.doc

2007-2012河南省中考数学试卷分类整理.doc

2007—2012河南省数学中考题分类整理一.(1)实数的概念及运算1.(07年)计算3(1)-的结果是( ) A .—1 B .1 C .—3 D .3 7.(07年)25的相反数是______________. 1.(08年)-71的绝对值是 【 】 A .71 B .-71C .7D .-7(09年)1.﹣5的相反数是 【 】 (A )15 (B )﹣15(C) ﹣5 (D) 5 (09)7.16的平方根是 . (10河南省)1.21-的相反数是【 】 (A )21 (B )21- (C )2 (D )2-(11年河南省)1. -5的绝对值 【 】(A )5 (B )-5 (C )15 (D )15- (11年河南省)7. 27的立方根是 。

(12年河南省)1.下列各数中,最小的数是( ) A. -2 B. -0.1 C. 0 D. |-1|(12年河南省)9.计算:=-+-2)3()2(_______.二、(2)科学计数法2.(08年)为支援四川地震灾区,中央电视台于5月18日晚举办了《爱的奉献》赈灾晚会,晚会现场捐款达1514000000元.1514000000用科学计数法表示正确的是 【 】A .6101514⨯B .81015.14⨯C .9101.514⨯D .10101.514⨯(10河南省)2.我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】(A )11109367.1⨯元 (B )12109367.1⨯元(C )13109367.1⨯元 (D )14109367.1⨯元(12年河南省)3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学计数法表示为( ) A. 6.5×10-5 B. 6.5×10-6 C. 6.5×10-7 D.65×10-6三、 代数式8.(07年)计算:24(2)3x x -⋅=______________. 2.(07年)使分式2xx +有意义的x 的取值范围是否( ) 12.(07年)已知x为整数,且满足x ≤≤x = __________. 7.(08年)比-3小2的数是_______________.(09)9.下图是一个简单的运算程序.若输入X 的值为﹣2,则输出的数值为.(10河南省)8.若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________________四、 不等式与不等式组3.(08年)不等式的解集在数轴上表示正确的是 【 】(09年)2.不等式﹣2x <4的解集是 【 】 (A )x >﹣2 (B )x <﹣2 (C) x >2 (D) x <2五、 函数9.(07年)写出一个图象经过点(1,—1)的函数的表达式_____________________. 6.(07年)二次函数221y ax x a =++-的图象可能是( ) 8.(08年)图象经过(1,2)的正比例函数的表达式为 .(第8题)5CD5AB11.(08年)已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .(10河南省)9.写出一个y 随x 增大而增大的一次函数的解析式:__________________.(2011河南省)11.点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为 1y 2y (填“>”、“<”、“=”).(2011河南省)6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为 【 】(A )(3,1) (B )(1,3) (C )(3,-1) (D )(1,1) (12河南省)5.在平面直角坐标系中,将抛物线42-=x y 先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是( ) A .2)2(2++=x y B . 2)2(2--=x y C .2)2(2+-=x y D . 2)2(2-+=x y(12河南省)7.如图,函数x y 2=和4+=ax y 的图像相交于点A (m ,3),则不等式2x <ax +4的解集为( )A . x <23B . x <3C . x >23D . x >3六 函数与其它知识5.(08年)如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是 【 】A .)(),,(3-1.-3-1N MABCD第7题B .)(),,( 1.3-3-1-N MC .)(),,(3-1.3-1-N MD .)(),,(3-1.31-N M(09)l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.(12)19.(9分)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半小时后返回A 地,如图是他们离A 地的距离y (千米)与时间x (时)之间的函数关系式。

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.完全平方公式(共1小题)1.(2023•河南)(1)计算:;(2)化简:(x﹣2y)2﹣x(x﹣4y).二.分式的混合运算(共1小题)2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.三.负整数指数幂(共1小题)3.(2022•河南)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).四.分式方程的应用(共1小题)4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.五.一元一次不等式的应用(共1小题)5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.六.一次函数的应用(共1小题)6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:类别价格A 款玩偶B 款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)七.待定系数法求反比例函数解析式(共1小题)7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行,反比例函数y =的图象与大正方形的一边交于点A (1,2),且经过小正方形的顶点B .(1)求反比例函数的解析式;(2)求图中阴影部分的面积.八.二次函数的应用(共2小题)8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x (m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.(1)求点P的坐标和a的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.九.圆的综合题(共1小题)10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:∠BOC +∠BAD =90°.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得cos ∠BAD =.已知铁环⊙O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.一十.频数(率)分布表(共1小题)11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)50≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100频数7912166b .成绩在70≤x <80这一组的是(单位:分):70 71 72 7274 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为  .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.一十一.条形统计图(共1小题)12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第 (填序号)组,达到9小时的学生人数占被调查人数的百分比为 ;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.一十二.折线统计图(共1小题)13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲7.8m 7乙887根据以上信息,回答下列问题:(1)表格中的m =  ;S 甲2 S 乙2(填“>”“=”或“<”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.完全平方公式(共1小题)1.(2023•河南)(1)计算:;(2)化简:(x﹣2y)2﹣x(x﹣4y).【答案】(1),(2)4y2.【解答】解:(1)=3﹣3+=,(2)(x﹣2y)2﹣x(x﹣4y)=x2﹣4xy+4y2﹣x2+4xy=4y2.二.分式的混合运算(共1小题)2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.【答案】(1)1;(2).【解答】解:(1)原式=﹣+1=1;(2)原式=•=.三.负整数指数幂(共1小题)3.(2022•河南)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【答案】(1);(2)x+1.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.四.分式方程的应用(共1小题)4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【答案】(1)菜苗基地每捆A种菜苗的价格是20元;(2)本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.五.一元一次不等式的应用(共1小题)5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)选择活动一更合算;(2)一件这种健身器材的原价是400元;(3)300≤a<400或600≤a<800.【解答】解:(1)∵450×=360(元),450﹣80=370(元),∴选择活动一更合算;(2)设一件这种健身器材的原价为x元,若x<300,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;∴300≤x<500,∴x=x﹣80,解得x=400,∴一件这种健身器材的原价是400元;(3)当300≤a<600时,a﹣80<0.8a,解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a,∴600≤a<800;综上所述,300≤a<400或600≤a<800.六.一次函数的应用(共1小题)6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?【答案】(1)A款玩偶购进20个,B款玩偶购进10个;(2)按照购进A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)从利润率的角度分析,对于小李来说第二次的进货方案更合算.【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由题意,得40x+30(30﹣x)=1100,解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a),∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%,第二次的利润率=×100%=46%,∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.七.待定系数法求反比例函数解析式(共1小题)7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【答案】(1)反比例函数的解析式为y=;(2)8.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积﹣小正方形的面积=16﹣8=8.八.二次函数的应用(共2小题)8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x (m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.(1)求点P的坐标和a的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)点P的坐标为(0,2.8);a的值是﹣0.4;(2)选择吊球方式,球的落地点到C点的距离更近.【解答】解:(1)在y=﹣0.4x+2.8中,令x=0得y=2.8,∴点P的坐标为(0,2.8);把P(0,2.8)代入y=a(x﹣1)2+3.2得:a+3.2=2.8,解得:a=﹣0.4,∴a的值是﹣0.4;(2)∵OA=3m,CA=2m,∴OC=5m,∴C(5,0),在y=﹣0.4x+2.8中,令y=0得x=7,在y=﹣0.4(x﹣1)2+3.2中,令y=0得x=﹣2+1(舍去)或x=2+1≈3.82,∵|7﹣5|>|3.82﹣5|,∴选择吊球方式,球的落地点到C点的距离更近.9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【答案】(1)抛物线的表达式为y=﹣x2+x+;(2)当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.九.圆的综合题(共1小题)10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【答案】(1)证明见解答过程;(2)50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.一十.频数(率)分布表(共1小题)11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 78.5 分,成绩不低于80分的人数占测试人数的百分比为 44% .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【答案】见试题解答内容【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为=78.5(分),所以这组数据的中位数是78.(5分),成绩不低于8(0分)的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩7(7分)低于中位数78.(5分),所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于8(0分)的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).一十一.条形统计图(共1小题)12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第 ③ (填序号)组,达到9小时的学生人数占被调查人数的百分比为 17% ;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.【答案】见试题解答内容【解答】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,故落在第③组;睡眠达到9小时的学生人数占被调查人数的百分比为:×100%=17%,故答案为:③,17%.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.一十二.折线统计图(共1小题)13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲7.8m 7乙887根据以上信息,回答下列问题:(1)表格中的m = 7.5 ;S 甲2 < S 乙2(填“>”“=”或“<”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5,<;(2)小丽应选择甲公司(答案不唯一),理由见解答;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解答】解:(1)甲公司配送速度得分从小到大排列为:6 6 7 7 7 8 9 9 9 10,一共10个数据,其中第5个与第6个数据分别为7、8,所以中位数m==7.5.=×[3×(7﹣7)2+4×(8﹣7)2+2×(6﹣7)2+(5﹣7)2]=1,=×[(4﹣7)2+(8﹣7)2+2×(10﹣7)2+2×(6﹣7)2+(9﹣7)2+2×(5﹣7)2+(7﹣7)2]=4.2,∴<,故答案为:7.5,<;(2)小丽应选择甲公司(答案不唯一),理由如下:∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)。

河南省中考数学真题分类41页word文档

河南省中考数学真题分类41页word文档

TOC \o "1-3" \h \z \u 一、数与代数....... PAGEREF_Toc298873768 \h 21.数与式 (3)(1)有理数 (3)(2)实数 (4)(3)代数式 (4)(4)整式与分式 (5)2.方程与不等式 (7)(1)方程与方程组 (7)(2)不等式与不等式组 (8)3.函数 (10)(1)探索具体问题中的数量关系和变化规律 (10)(2)函数 (10)(3)一次函数 (10)(4)反比例函数 (12)(5)二次函数 (13)二、空间与图形 (15)1.图形的认识 (15)(1)点、线、面 (15)(2)角 (15)(3)相交线与平行线 (16)(1)求点D沿三条圆弧运动到G所经过的路线长; (17)(4)三角形 (17)(5)四边形 (20)(6)圆 (23)(7)尺规作图 (25)(8)视图与投影。

(25)2.图形与变换 (26)(1)图形的轴对称 (26)(2)图形的平移 (27)(3)图形的旋转 (28)(4)图形的相似 (29)3.图形与坐标 (31)4.图形与证明 (32)(1)了解证明的含义 (32)(2)掌握以下基本事实,作为证明的依据 (32)(3)利用(2)中的基本事实证明下列命题【1】 (32)(4)通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值 (33)三、统计与概率 (33)1.统计 (33)2.概率 (36)四、探索题 (39)一、数与代数1.数与式(1)有理数 ○1理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

7. (2008·河南)比 -3 小 2 的数是 。

○2借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

1. (2011·河南)-5的绝对值 【 】 (A )5 (B )-5 (C )15 (D )15-1、(2010•河南)-21的相反数是( )A 、21- B 、21C 、﹣2D 、21、(2009•河南)-5的相反数是 ()A 、51B 、51- C 、-5 D 、5 1. (2008•河南)71-的绝对值是 【 】A. 71 B. 71- C.7 D.-7 7.(2007•河南)52的相反数是 . 1、(2006•河南)﹣的倒数是( )A 、3B 、﹣C 、D 、﹣3○3理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。

河南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.相反数(共1小题)1.(2022•河南)﹣的相反数是( )A.B.2C.﹣2D.﹣二.绝对值(共1小题)2.(2022•大连)﹣2的绝对值是( )A.2B.﹣2C.D.﹣三.科学记数法—表示较大的数(共3小题)3.(2023•河南)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A.4.59×107B.45.9×108C.4.59×108D.0.459×109 4.(2022•河南)《孙子算经》中记载:“凡大数之法,万万曰亿,万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1亿.则1兆等于( )A.108B.1012C.1016D.1024 5.(2021•河南)河南人民济困最“给力”!据报道,2020年河南省人民在济困方面捐款达到2.94亿元.数据“2.94亿”用科学记数法表示为( )A.2.94×107B.2.94×108C.0.294×108D.0.294×109四.实数大小比较(共1小题)6.(2023•河南)下列各数中最小的数是( )A.﹣1B.0C.1D.五.完全平方公式(共1小题)7.(2021•河南)下列运算正确的是( )A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣1六.分式的加减法(共1小题)8.(2023•河南)化简的结果是( )A.0B.1C.a D.a﹣2七.二次根式的性质与化简(共1小题)9.(2022•河南)下列运算正确的是( )A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3八.根的判别式(共3小题)10.(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11.(2022•河南)一元二次方程x2+x﹣1=0的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根12.(2021•河南)若方程x2﹣2x+m=0没有实数根,则m的值可以是( )A.﹣1B.0C.1D.九.规律型:点的坐标(共1小题)13.(2022•河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为( )A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)一十.函数的图象(共1小题)14.(2022•河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是( )A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100ΩC.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态一十一.动点问题的函数图象(共2小题)15.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A.6B.3C.D.16.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为( )A.4B.5C.6D.7一十二.二次函数的性质(共1小题)17.(2023•河南)二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限一十三.专题:正方体相对两个面上的文字(共1小题)18.(2022•河南)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是( )A.合B.同C.心D.人一十四.对顶角、邻补角(共1小题)19.(2023•河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE 的度数为( )A.30°B.50°C.60°D.80°一十五.垂线(共1小题)20.(2022•河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为( )A.26°B.36°C.44°D.54°一十六.平行线的性质(共1小题)21.(2021•河南)如图,a∥b,∠1=60°,则∠2的度数为( )A.90°B.100°C.110°D.120°一十七.菱形的性质(共2小题)22.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为( )A.6B.12C.24D.48 23.(2021•河南)关于菱形的性质,以下说法不正确的是( )A.四条边相等B.对角线互相垂直C.对角线相等D.是轴对称图形一十八.圆周角定理(共1小题)24.(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A.95°B.100°C.105°D.110°一十九.旋转的性质(共1小题)25.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)二十.简单几何体的三视图(共1小题)26.(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同二十一.简单组合体的三视图(共1小题)27.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )A.B.C.D.二十二.众数(共1小题)28.(2022•河南)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )A.5分B.4分C.3分D.45%二十三.列表法与树状图法(共2小题)29.(2023•河南)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A.B.C.D.30.(2021•河南)现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A.B.C.D.河南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.相反数(共1小题)1.(2022•河南)﹣的相反数是( )A.B.2C.﹣2D.﹣【答案】A【解答】解:﹣的相反数是,故选:A.二.绝对值(共1小题)2.(2022•大连)﹣2的绝对值是( )A.2B.﹣2C.D.﹣【答案】A【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.三.科学记数法—表示较大的数(共3小题)3.(2023•河南)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A.4.59×107B.45.9×108C.4.59×108D.0.459×109【答案】C【解答】解:4.59亿=459000000=4.59×108.故选:C.4.(2022•河南)《孙子算经》中记载:“凡大数之法,万万曰亿,万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1亿.则1兆等于( )A.108B.1012C.1016D.1024【答案】B【解答】解:1兆=104×108=1012,故选:B.5.(2021•河南)河南人民济困最“给力”!据报道,2020年河南省人民在济困方面捐款达到2.94亿元.数据“2.94亿”用科学记数法表示为( )A.2.94×107B.2.94×108C.0.294×108D.0.294×109【答案】B【解答】解:2.94亿=294000000=2.94×108,故选:B.四.实数大小比较(共1小题)6.(2023•河南)下列各数中最小的数是( )A.﹣1B.0C.1D.【答案】A【解答】解:∵1<3<4,∴1,根据实数的大小可得:,所以﹣1最小.故选:A.五.完全平方公式(共1小题)7.(2021•河南)下列运算正确的是( )A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣1【答案】C【解答】解:A.(﹣a)2=a2,故本选项不符合题意;B.2a2﹣a2=a2,故本选项不符合题意;C.a2•a=a3,故本选项符合题意;D.(a﹣1)2=a2﹣2a+1,故本选项不符合题意;故选:C.六.分式的加减法(共1小题)8.(2023•河南)化简的结果是( )A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.七.二次根式的性质与化简(共1小题)9.(2022•河南)下列运算正确的是( )A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【答案】D【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.八.根的判别式(共3小题)10.(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解答】解:∵Δ=m2﹣4×1×(﹣8)=m2+32>0,∴方程有两个不相等的实数根.故选:A.11.(2022•河南)一元二次方程x2+x﹣1=0的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【答案】A【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.12.(2021•河南)若方程x2﹣2x+m=0没有实数根,则m的值可以是( )A.﹣1B.0C.1D.【答案】D【解答】解:∵关于x的方程x2﹣2x+m=0没有实数根,∴Δ=(﹣2)2﹣4×1×m=4﹣4m<0,解得:m>1,∴m只能为,故选:D.九.规律型:点的坐标(共1小题)13.(2022•河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为( )A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【答案】B【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.一十.函数的图象(共1小题)14.(2022•河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是( )A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100ΩC.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【答案】C【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.一十一.动点问题的函数图象(共2小题)15.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A.6B.3C.D.【答案】A【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O 沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OC⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.16.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC 的长为( )A.4B.5C.6D.7【答案】C【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到PA﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴t=3.∴BC=2BE=2t=2×3=6.故选:C.一十二.二次函数的性质(共1小题)17.(2023•河南)二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:由函数图象可得,a<0,﹣>0,∴b>0,∴y=x+b的图象过一,二,三象限,不过第四象限,故选:D.一十三.专题:正方体相对两个面上的文字(共1小题)18.(2022•河南)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是( )A.合B.同C.心D.人【答案】D【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.一十四.对顶角、邻补角(共1小题)19.(2023•河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE 的度数为( )A.30°B.50°C.60°D.80°【答案】B【解答】解:∵∠AOD=∠1=80°,∴∠AOE=∠AOD﹣∠2=80°﹣30°=50°.故选:B.一十五.垂线(共1小题)20.(2022•河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为( )A.26°B.36°C.44°D.54°【答案】B【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.一十六.平行线的性质(共1小题)21.(2021•河南)如图,a∥b,∠1=60°,则∠2的度数为( )A.90°B.100°C.110°D.120°【答案】D【解答】解:由图得∠2的补角和∠1是同位角,∵∠1=60°且a∥b,∴∠1的同位角也是60°,∠2=180°﹣60°=120°,故选:D.一十七.菱形的性质(共2小题)22.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为( )A.6B.12C.24D.48【答案】C【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.23.(2021•河南)关于菱形的性质,以下说法不正确的是( )A.四条边相等B.对角线互相垂直C.对角线相等D.是轴对称图形【答案】C【解答】解:A.菱形的四条边相等,故选项A不符合题意,B.菱形的对角线互相垂直,故选项B不符合题意,C.菱形的对角线不一定相等,故选项C符合题意,D.菱形是轴对称图形,故选项D不符合题意,故选:C.一十八.圆周角定理(共1小题)24.(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A.95°B.100°C.105°D.110°【答案】D【解答】解:∵∠AOB=2∠C,∠C=55°,∴∠AOB=110°,故选:D.一十九.旋转的性质(共1小题)25.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)【答案】B【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴.∴.∴OC=2.∴C(2,0).故选:B.二十.简单几何体的三视图(共1小题)26.(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【答案】A【解答】解:这个几何体的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.二十一.简单组合体的三视图(共1小题)27.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.二十二.众数(共1小题)28.(2022•河南)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )A.5分B.4分C.3分D.45%【答案】B【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.二十三.列表法与树状图法(共2小题)29.(2023•河南)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A.B.C.D.【答案】B【解答】解:把三部影片分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,∴这两个年级选择的影片相同的概率为=,故选:B.30.(2021•河南)现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A.B.C.D.【答案】A【解答】解:把4张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,∴两张卡片正面图案恰好是“天问”和“九章”的概率为=,故选:A.。

河南省中考数学历年真题分类卷3 整式计算及因式分解

河南省中考数学历年真题分类卷3 整式计算及因式分解

河南省中考数学历年真题分类卷3 整式计算及因式分解姓名:________ 班级:________ 成绩:________一、单选题 (共31题;共62分)1. (2分)(2019·江北模拟) 下列计算正确的是()A . x2·x3=x5B . x6÷x2=x3C . x3+x3=x6D . 2x-x=22. (2分)(2019·香洲模拟) 下列计算正确的是()A . (a3)4=a7B . a3•a4=a7C . a3+a4=a7D . (ab)3=ab33. (2分)(2017·槐荫模拟) 下列计算正确的是()A . a3÷a2=1B . a2+a3=a5C . (a3)2=a5D . a2•a3=a54. (2分)计算的结果是()A .B .C .D .5. (2分) (2020八上·黔东南州月考) 下列运算正确的是()A . x2+x3=x5B . (-x2)3=x6C . x6÷x2=x3D . -2x·x2=-2x36. (2分) (2020九上·长沙期中) 若,则的值等于()A .B .C .D .7. (2分) (2017九上·邗江期末) 如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai ,交直线于点Bi .则的值为()A .B . 2C .D .8. (2分) (2021八上·鄂州期末) 下列计算正确的是()A .B .C .D .9. (2分)(2021·襄城模拟) 下列运算正确的是()A .B .C .D .10. (2分)下列运算正确的是()A . 2a+3b=5abB . 5a﹣2a=3aC . a2•a3=a6D . (a+b)2=a2+b211. (2分)(2021·天河模拟) 下列运算正确的是()A .B .C .D .12. (2分) (2018七上·南昌期中) 下列各算式中,合并同类符合题意的是()A . x2+x2=2x2B . x2+x2=x4C . 2x2﹣x2=2D . 2x2﹣x2=2x13. (2分)(2021·平房模拟) 下列运算一定正确的是()A .B .C .D .14. (2分)下列计算正确的是()A . x2+x2=x4B . x2+x3=2x5C . 3x-2x=1D . x2y-2x2y=-x2y15. (2分) (2016九上·罗平开学考) 下列运算正确的是()A . 3 ﹣ =3B . a6÷a3=a2C . a2+a3=a5D . (3a3)2=9a616. (2分)(2019·许昌模拟) 下列运算中正确的是()A .B .C .D .17. (2分)(2017·眉山) 下列运算结果正确的是()A . ﹣ =﹣B . (﹣0.1)﹣2=0.01C . ()2÷ =D . (﹣m)3•m2=﹣m618. (2分)(2019·无锡模拟) 在下列运算中,计算正确的是()A . m2+m2=m4B . (m+1)2=m2+1C . (3mn2)2=6m2n4D . 2m2n÷(﹣mn)=﹣2m19. (2分) (2016八上·正定开学考) 下列运算中,正确的是()A . 4m﹣m=3B . (m2)3=m6C . ﹣(m﹣n)=m+nD . m2÷m2=m20. (2分) (2016七下·宝丰期中) 下列各式可以用平方差公式的是()A . (﹣a+4c)(a﹣4c)B . (x﹣2y)(2x+y)C . (﹣3a﹣1)(1﹣3a)D .21. (2分)(2020·铜川模拟) 若,则下列运算正确的是()A .B .C .D .22. (2分)已知x2﹣x﹣1=0,则x3﹣2x+1的值为()A . ﹣1B . 2C . -1D . -223. (2分)化简,结果正确的是()A .B .C .D .24. (2分)满足等式:(﹣2)3•(﹣2)x=﹣的x的值为()A . ﹣8B . ﹣5C . 5D . 325. (2分) (2017七上·洪湖期中) 下列每组中的两个代数式,属于同类项的是()A . 3m3n2和﹣3m2n3B . xy与2xyC . 53与a3D . 7x与7y26. (2分)已知am=2,an=3,则a3m+2n的值是()A . 24B . 36C . 72D . 627. (2分) (2017七下·北海期末) 如果(a3)2=64,则a等于()A . 2B . -2C . ±2D . 以上都不对28. (2分)下列计算正确的是()A . ﹣x3+3x3=2x3B . x+x=x2C . x3+2x5=3x3D . x5﹣x4=x29. (2分) (2019七下·苏州期末) 下列运算中,正确的是()A .B .C .D .30. (2分) (2020七上·西安期末) 下列整式计算正确的是()A .B .C .D .31. (2分) (2019八下·遂宁期中) 化简的结果是()A .B .C .D .二、填空题 (共24题;共24分)32. (1分) (2017七下·苏州期中) 分解因式:=.33. (1分) (2017七上·渭滨期末) 数、、在数轴上对应点的位置如图所示,则;34. (1分)(2013·绍兴) 分解因式:x2﹣y2=.35. (1分)分解因式:ax2﹣a=.36. (1分) (2018七上·西城期末) 已知,则多项式的值为.37. (1分)(2017·正定模拟) 如图,在平面直角坐标系xOy中,点A1 , A2 , A3 ,…和B1 , B2 , B3 ,…分别在直线y=kx+b和x轴上,△OA1B1 ,△B1A2B2 ,△B2A3B3 ,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点An的纵坐标是.38. (1分) (2020七下·长兴期中) 一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2020的智慧数共有个。

河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.列代数式(共1小题)1.(2023•河南)某校计划给每个年级配发n套劳动工具,则3个年级共需配发 套劳动工具.二.分式有意义的条件(共1小题)2.(2021•河南)若代数式有意义,则实数x的取值范围是 .三.解二元一次方程组(共1小题)3.(2023•河南)方程组的解为 .四.解一元一次不等式组(共1小题)4.(2022•河南)不等式组的解集为 .五.一次函数的性质(共1小题)5.(2022•河南)请写出一个y随x的增大而增大的一次函数的表达式: .六.正比例函数的性质(共1小题)6.(2021•河南)请写出一个图象经过原点的函数的解析式 .七.等腰直角三角形(共1小题)7.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为 .八.矩形的性质(共1小题)8.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为 .九.切线的性质(共1小题)9.(2023•河南)如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在PA上,且CB=CA.若OA=5,PA=12,则CA的长为 .一十.弧长的计算(共1小题)10.(2021•河南)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为 .一十一.扇形面积的计算(共1小题)11.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .一十二.翻折变换(折叠问题)(共1小题)12.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB =90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为 .一十三.扇形统计图(共1小题)13.(2023•河南)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有 棵.一十四.方差(共1小题)14.(2021•河南)某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是 (填“甲”或“乙”).一十五.列表法与树状图法(共1小题)15.(2022•河南)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 .河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.列代数式(共1小题)1.(2023•河南)某校计划给每个年级配发n套劳动工具,则3个年级共需配发 3n 套劳动工具.【答案】3n.【解答】解:∵给每个年级配发n套劳动工具,∴3个年级共需配发3n套劳动工具.故答案为:3n.二.分式有意义的条件(共1小题)2.(2021•河南)若代数式有意义,则实数x的取值范围是 x≠1 .【答案】见试题解答内容【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.三.解二元一次方程组(共1小题)3.(2023•河南)方程组的解为 .【答案】.【解答】解:,①+②,得4x+4y=12,∴x+y=3③.①﹣③,得2x=2,∴x=1.②﹣①,得2y=4,∴y=2.∴原方程组的解为.故答案为:.四.解一元一次不等式组(共1小题)4.(2022•河南)不等式组的解集为 2<x≤3 .【答案】2<x≤3.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.五.一次函数的性质(共1小题)5.(2022•河南)请写出一个y随x的增大而增大的一次函数的表达式: 答案不唯一,如y=x .【答案】答案不唯一,如y=x【解答】解:例如:y=x,或y=x+2等,答案不唯一.六.正比例函数的性质(共1小题)6.(2021•河南)请写出一个图象经过原点的函数的解析式 y=x(答案不唯一) .【答案】y=x(答案不唯一).【解答】解:依题意,正比例函数的图象经过原点,如y=x(答案不唯一).故答案为:y=x(答案不唯一).七.等腰直角三角形(共1小题)7.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为 或 .【答案】或.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.八.矩形的性质(共1小题)8.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为 2或1+ .【答案】2或1+.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.九.切线的性质(共1小题)9.(2023•河南)如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在PA上,且CB=CA.若OA=5,PA=12,则CA的长为 .【答案】.【解答】解:连接OC,∵PA与⊙O相切于点A,∴∠OAP=90°,∵OA=OB,OC=OC,CA=CB,∴△OAC≌△OBC(SSS),∴∠OAP=∠OBC=90°,在Rt△OAP中,OA=5,PA=12,∴OP===13,∵△OAC的面积+△OCP的面积=△OAP的面积,∴OA•AC+OP•BC=OA•AP,∴OA•AC+OP•BC=OA•AP,∴5AC+13BC=5×12,∴AC=BC=,故答案为:.一十.弧长的计算(共1小题)10.(2021•河南)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为 .【答案】见试题解答内容【解答】解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴的长==.故答案为:.一十一.扇形面积的计算(共1小题)11.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 + .【答案】+.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.一十二.翻折变换(折叠问题)(共1小题)12.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB =90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为 或2﹣ .【答案】或2﹣.【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.AB=2AC=2,∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.一十三.扇形统计图(共1小题)13.(2023•河南)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有 280 棵.【答案】280.【解答】解:由统计图可得,该基地高度不低于300cm的“无絮杨”品种苗约占10%+18%=28%,∵1000×28%=280(棵),∴该基地高度不低于300cm的“无絮杨”品种苗约有280棵.故答案为:280.一十四.方差(共1小题)14.(2021•河南)某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是 甲 (填“甲”或“乙”).【答案】见试题解答内容【解答】解:从图中折线可知,乙的起伏大,甲的起伏小,所以乙的方差大于甲的方差,因为方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,所以产品更符合规格要求的厂家是甲.故答案为:甲.一十五.列表法与树状图法(共1小题)15.(2022•河南)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 .【答案】.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.。

河南2006——2010五年中考数学试卷汇总比照

河南2006——2010五年中考数学试卷汇总比照

河南2006——2010五年中考数学试卷汇总比照一、选择题(每小题3分,共18分) 1.31-的倒数是 【 】 A .3- B .3 C .31- D .311.计算31)(-是【 】 A .-1 B . 1 C .-3 D . 31.-71绝对值是【 】 A .71 B .-71 C .7 D .-7 1.﹣5的相反数是【 】 (A )15(B )﹣15(C) ﹣5 (D) 51.21-的相反数是【 】 (A )21 (B )21- (C )2 (D )2-1. -5的绝对值 【 】 (A )5 (B )-5 (C )15(D )15-2.2005年末我国外汇储备达到的倒数是8189亿美元,8189亿用科学记数法表示(保留三位有效数字)是【 】 A .111019.8⨯ B .111018.8⨯ C .121019.8⨯ D .121018.8⨯ 2.使分式2+x x 有意义的x 的取值范围为 【 】A .2≠xB .2-≠xC .2->x C .2<x2.为支援四川地震灾区,中央电视台于5月18日晚举办了《爱的奉献》赈灾晚会,晚会现场捐款达1514000000元.1514000000用科学计数法表示正确的是 【 】A .6101514⨯B .81015.14⨯C .9101.514⨯D .10101.514⨯ 2.不等式﹣2x <4的解集是【 】 (A )x >﹣2 (B )x <﹣2 (C) x >2 (D) x <2 2.我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】(A )11109367.1⨯元 (B )12109367.1⨯元 (C )13109367.1⨯元 (D )14109367.1⨯元2. 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为 【 】(A )35° (B )145° (C )55° (D )125°3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是【 】 A .6 B .16 C .18 D .24 3.如图,ΔABC 与ΔA ’B ’C ’关于直线l 对称, 则∠B 的度数为 【 】A .30°B .50°C .90°D .100° 3.不等式的解集在数轴上表示正确的是 【 】3.下列调查适合普查的是【 】 (A )调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况(C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m )分别为: 1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是【 】 (A )1.85和0.21 (B )2.11和0.46 (C )1.85和0.60 (D )2.31和0.603. 下列各式计算正确的是 【 】 (A )011(1)()32---=- (B )=(C )224246a a a += (D )236()a a =30︒lC'B'A'B CA50︒(第3题)5AB5CD4.如图,一次函数b kx y +=的图像经过A 、B 两点, 则0>+b kx 解集是 【 】 A .0>x B .3>xC .2>xD .23<<-x4.为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的约用水量,下列说法错误的是【 】 A .中位数是5吨 B . 极差是3吨C .平均数是5.3吨D .众数是5吨4.如图①是大小相同的小正方体组成的几何体,主视图如图②所示,俯视图是【 】4.方程2x =x 的解是【 】 (A )x =1(B )x =0 (C) x1=1 x 2=0 (D) x 1=﹣1 x 2=04.如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论: ①BC =2DE ;②△ADE ∽△ABC ;③ACAB AEAD =.其中正确的有【 】(A )3个 (B )2个 (C )1个 (D )0个4.不等式5.由一些大小相同的小正方形组成的几何体三视图如图所示, 那么,组成这个几何体的小正方体个数有【 】A .6块B .5块C .4块D .3块主视图左视图俯视图图①图②A B C DEDCBA(第4题)x +2>0,x -1≤2 的解集在数轴上表示正确的是 【 】5.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 【 】5.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是 【A.)(),,(3-1.-3-1N M B .)(),,( 1.3-3-1-N M C .)(),,(3-1.3-1-N M D .)(),,(3-1.31-N M5.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为【 】(A )(2,2) (B )(2,4) (C)(4,2) (D)(1,2) 5.方程032=-x 的根是【 】(A )3=x (B )3,321-==x x (C )3=x (D )3,321-==x x5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是2S甲=29. 6, 2S 乙=2. 7.则关于两种小麦推广种植的合理决策是 【 】(A )甲的平均亩产量较高,应推广甲(B )甲、乙的平均亩产量相差不多,均可推广(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6.如图,一块含有30º角的直角三角形ABC ,在水平 桌面上绕点C 按顺时针方向旋转到 A ’B ’C ’的位置。

43-2017-2021年河南中考数学真题分类汇编之数与式

43-2017-2021年河南中考数学真题分类汇编之数与式

2017-2021年河南中考数学真题分类汇编之数与式一、选择题(共10小题)1.(2021•河南)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-2.(2020•河南)电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1012GB MB =,1012MB KB =,1012KB B =.某视频文件的大小约为1GB ,1GB 等于( )A .302B B .308BC .10810B ⨯D .30210B ⨯3.(2019•河南)下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .222()x y x y -=-D .4.(2019•河南)12-的绝对值是( ) A .12- B .12 C .2 D .2-5.(2019•河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( )A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯6.(2018•河南)下列各数中最小的数是( )A .3-B .C .4-D . 3.5-7.(2018•河南)25-的相反数是( ) A .25- B .25 C .52- D .528.(2018•河南)下列运算正确的是( )A .246x x x +=B .336()x x -=C .236x x x =D .22220x y yx -=9.(2017•河南)今年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯10.(2017•河南)下列各数中比1-小的数是( )A .2-B .1-C .13-D .1二、填空题(共7小题)11.(2021•河南)若代数式11x -有意义,则实数x 的取值范围是 . 12.(2020•河南)请写出一个大于1且小于2的无理数 .13.(201912-= .14.(2018•河南)计算:|5|-= .15.(2018•河南)计算:01()2- .16.(2017•河南)计算:32 .17.(2017•河南)计算:01|3+= .三、解答题(共7小题)18.(2021•河南)(1)计算:103(3-; (2)化简:2122(1)x x x --÷.19.(2020•河南)先化简,再求值:21(1)11a a a -÷+-,其中1a =.20.(2019•河南)先化简,再求值:2212(1)244x x x x x x +--÷--+,其中x = 21.(2018•河南)先化简,再求值:24142()11a a a a a a ++--÷+-然后从22a -<的范围内选取一个合适的整数作为a 的值代入求值.22.(2018•河南)先化简,再求值:21(1)11x x x -÷+-,其中1x =.23.(2017•河南)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x =,1y .24.(2017•河南)先化简,再求值:2222x y x y x y x xy y x y++-÷--+-,其中2x =,2y .2017-2021年河南中考数学真题分类汇编之数与式参考答案与试题解析一、选择题(共10小题)1.(2021•河南)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【考点】合并同类项;同底数幂的乘法;完全平方公式【专题】整式;运算能力【分析】A .根据幂的乘方运算法则判断; B .根据合并同类项法则判断;C .根据同底数幂的乘法法则判断;D .根据完全平方公式判断.【解答】解:A .22()a a -=,故本选项不符合题意;222.2B a a a -=,故本选项不符合题意;C .23a a a ⋅=,故本选项符合题意;D .22(1)21a a a -=-+,故本选项不符合题意;故选:C .【点评】本题考查了合并同类项,完全平方公式,合并同类项以及幂的乘方,掌握相关公式与运算法则是解答本题的关键.2.(2020•河南)电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1012GB MB =,1012MB KB =,1012KB B =.某视频文件的大小约为1GB ,1GB 等于( )A .302BB .308BC .10810B ⨯D .30210B ⨯【答案】A 【考点】同底数幂的乘法【专题】应用意识;实数;数感;运算能力【分析】列出算式,进行计算即可.【解答】解:由题意得:10101010101030122222GB B B B ++=⨯⨯==,故选:A .【点评】本题考查同底数幂的乘法,底数不变,指数相加是计算法则.3.(2019•河南)下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .222()x y x y -=-D .【考点】35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式;78:二次根式的加减法【专题】512:整式【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:235a a a +=,A 错误;22(3)9a a -=,B 错误;222()2x y x xy y -=-+,C 错误;D 正确;故选:D .【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.4.(2019•河南)12-的绝对值是( ) A .12- B .12 C .2 D .2-【答案】B【考点】绝对值【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:11||22-=, 故选:B .【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.5.(2019•河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( )A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯【答案】C 【考点】科学记数法-表示较小的数【专题】实数【分析】本题用科学记数法的知识即可解答.【解答】解:60.0000046 4.610-=⨯.故选:C .【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.6.(2018•河南)下列各数中最小的数是( )A .3-B .C .4-D . 3.5-【答案】C【考点】实数大小比较【专题】实数【分析】根据0大于一切负数;正数大于0;对于负数,绝对值大的反而小,解答即可.【解答】解:4 3.53-<-<-, 最小的数是4-,故选:C .【点评】考查实数的比较;用到的知识点为:0大于一切负数;正数大于0;对于负数,绝对值大的反而小,注意应熟记常见无理数的约值.7.(2018•河南)25-的相反数是( ) A .25- B .25 C .52- D .52【答案】B【考点】相反数【专题】常规题型【分析】直接利用相反数的定义分析得出答案.【解答】解:25-的相反数是:25. 故选:B .【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.8.(2018•河南)下列运算正确的是( )A .246x x x +=B .336()x x -=C .236x x x =D .22220x y yx -=【考点】46:同底数幂的乘法;35:合并同类项;47:幂的乘方与积的乘方【专题】512:整式【分析】本题运用整式的运算,进行计算即可选出答案.【解答】解:A .等式左边不是同类项不能合并,故A 错;B .339()x x -=-,故B 错;C .235x x x =,故C 错.故选:D .【点评】本题考查整式的加减、幂的乘方、同底数幂的乘法,熟练掌握整式的相关运算是解题的关键,为基础题.9.(2017•河南)今年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯【考点】1I :科学记数法-表示较大的数【专题】511:实数【分析】根据科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:3050万730500000 3.0510==⨯,故选:C .【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(2017•河南)下列各数中比1-小的数是( )A .2-B .1-C .13-D .1【考点】18:有理数大小比较【专题】511:实数【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:A、21-<-,故A正确;B、11-=-,故B错误;C、113->-,故C错误;D、11>-,故D错误;故选:A.【点评】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.二、填空题(共7小题)11.(2021•河南)若代数式11x-有意义,则实数x的取值范围是1x≠.【考点】62:分式有意义的条件【专题】69:应用意识;513:分式【分析】分式有意义时,分母10x-≠,据此求得x的取值范围.【解答】解:依题意得:10x-≠,解得1x≠,故答案为:1x≠.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.12.(2020•河南)请写出一个大于1且小于2【考点】估算无理数的大小【专题】开放型;数感【分析】由于所求无理数大于1且小于2,则该数的平方大于1小于4,所以可选其中的任意一个数开平方即可.【解答】解:大于1且小于2【点评】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.(201912-= 112. 【考点】2C :实数的运算;6F :负整数指数幂【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】12-122=- 112=. 故答案为:112. 【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.14.(2018•河南)计算:|5|-= 2 .【考点】2C :实数的运算【专题】1:常规题型【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式53=-2=.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.15.(2018•河南)计算:01()2- 2- . 【考点】6E :零指数幂;2C :实数的运算【专题】11:计算题;511:实数【分析】根据零指数幂的性质和立方根的定义求解即可.【解答】解:原式132=-=-.故答案为:2-.【点评】此题主要考查了实数的运算,正确化简各数是解题的关键.16.(2017•河南)计算:32 6 .【考点】1E :有理数的乘方;22:算术平方根【分析】4的算术平方根,值为2.【解答】解:32826=-=,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.17.(2017•河南)计算:01|3+【考点】2C :实数的运算;6E :零指数幂【专题】11:计算题【分析】直接利用绝对值的性质以及零指数幂的性质化简得出答案.【解答】解:原式11=+【点评】此题主要考查了实数运算,正确化简各数是解题关键.三、解答题(共7小题)18.(2021•河南)(1)计算:103(3-; (2)化简:2122(1)x x x --÷. 【答案】(1)1;(2)2x . 【考点】实数的运算;负整数指数幂;分式的混合运算;零指数幂【专题】实数;运算能力【分析】(1)直接利用负整数指数幂的性质以及算术平方根、零指数幂的性质分别化简得出答案;(2)将括号里面通分运算,再利用分式的乘除运算法则化简得出答案.【解答】解:(1)原式11133=-+ 1=;(2)原式212(1)x x x x -=⋅- 2x =.【点评】此题主要考查了分式的混合运算以及实数运算,正确掌握分式的混合运算法则是解题关键.19.(2020•河南)先化简,再求值:21(1)11a a a -÷+-,其中1a =. 【考点】分式的化简求值【专题】分式;运算能力【分析】先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【解答】解:21(1)11a a a -÷+- 11(1)(1)1a a a a a+--+=⨯+ 1a =-,把1a =代入111a -=-=【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(2019•河南)先化简,再求值:2212(1)244x x x x x x +--÷--+,其中x = 【考点】6D :分式的化简求值【专题】513:分式【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【解答】解:原式212(2)()22(2)x x x x x x x +--=-÷--- 322x x x -=- 3x =,当x== 【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.(2018•河南)先化简,再求值:24142()11a a a a a a ++--÷+-然后从22a -<的范围内选取一个合适的整数作为a 的值代入求值.【考点】分式的化简求值【专题】计算题;分式【分析】根据分式的运算法则即可求出答案.【解答】解:原式2211(1)2(21)a a a a a --=⋅+- 12a a-=, 由题意可知:1a ≠±且0a ≠且12a ≠, ∴当2a =时, 原式14=. 【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(2018•河南)先化简,再求值:21(1)11x x x -÷+-,其中1x =. 【考点】6D :分式的化简求值【专题】11:计算题【分析】根据分式的运算法则即可求出答案,【解答】解:当1x =时, 原式(1)(1)1x x x x x -+-=+ 1x =-=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(2017•河南)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x =,1y .【考点】4J :整式的混合运算-化简求值【专题】11:计算题【分析】首先化简2(2)()()5()x y x y x y x x y ++-+--,然后把1x =,1y 代入化简后的算式,求出算式的值是多少即可.【解答】解:2(2)()()5()x y x y x y x x y ++-+--222224455x xy y x y x xy =+++--+9xy =当1x =,1y =时,原式1)=9(21)=⨯-91=⨯9=【点评】此题主要考查了整式的混合运算-化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.24.(2017•河南)先化简,再求值:2222x y x y x y x xy y x y++-÷--+-,其中2x =,2y . 【考点】6D :分式的化简求值;76:分母有理化【专题】11:计算题;513:分式【分析】先将除法转化为乘法,再约分,然后利用同分母分式的减法法则计算得到最简结果,最后把x 与y 的值代入计算即可求出值.【解答】解:原式22()x y x y x y x y x y +-=---+ 21x y x y =--- 1x y=-,当2x ,2y 时,原式14==-. 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.考点卡片1.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.(2)有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.3.作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.4.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.5.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.6.科学记数法—表示较小的数用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【规律方法】用科学记数法表示有理数x的规律x的取值范围表示方法a的取值n的取值|x|≥10a×10n1≤|a|<10整数的位数﹣1|x|<1a×10﹣n第一位非零数字前所有0的个数(含小数点前的0)7.算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.记为.(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.8.实数大小比较实数大小比较(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.9.估算无理数的大小估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.10.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.11.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.12.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数)(2)推广:a m•a n•a p=a m+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.13.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.14.完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.15.整式的混合运算—化简求值先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.16.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.17.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.18.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.19.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.20.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.21.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.例如:①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:﹣的有理化因式可以是+,也可以是a(+),这里的a可以是任意有理数.22.二次根式的加减法(1)法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.(2)步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)合并被开方数相同的二次根式的方法:二次根式化成最简二次根式,如果被开方数相同则可以进行合并.合并时,只合并根式外的因式,即系数相加减,被开方数和根指数不变.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2005)1、32的相反数是( ) A 、-9B 、9C 、6D 、-6(2006)1.12-的倒数是( ) A.2- B.12 C.12-D.2(2007)7.52的相反数是 .(2008)1.-7的相反数是( ) A. 7 B. -7 C.D. (2009)1.﹣5的相反数是 【 】 (A ) (B )﹣ (C) ﹣5 (D) 5(2005)2、2004年9月26日,中国西电东送北部通道骨干电源点之一的公伯峡水电站一号机组投产发电。

至此,中国水电装机容量突破100000000000瓦,用科学记数法表示是()瓦。

A 、1×109B 、1×1010C 、1×1011D 、1×1012(2006)9.蜜蜂建造的蜂房既坚固又省料.蜂房的巢壁厚约0.000073 米,用科学记数法表示为_______________米.(2005……依次观察左边的三个图形,并判断照此规律从左向右第四个图形是( )(2005)14、观察下列单项式:0、3x2、8x 3、15x 4、24x 5、……,按 此规律写出第13个单项式是_________。

(2005)23、已知:在Rt △ABC 中,∠C =900,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l 。

⑴、填表:7117-1515⑵、如果a +b -c =m ,观察上表猜想:Sl =__________(用含有m 的代数式表示)。

⑶、证明⑵中的结论。

(2007)13.将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样 的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第n 个图形中共有 个正六边形.(2009)9.下图是一个简单的运算程序.若输入X 的值为﹣2,则输出的数值为.(2005)7、函数y =x +7 中,自变量x 的取值范围是__________ (2005)8、对代数式4a作一个合理解释:____________________________________________________(2006)7.计算:)13+-=_______________.(2006)8.函数15y x =-中,自变量x 的取值范围是_______________. (2007)2.使分式2+x x有意义的x 的取值范围为 【 】 A .2≠x B .2-≠x C .2->x C .2<x (2006)14.(5分)先化简,再求值:()221193x x x x x x⎛⎫-+- ⎪+⎝⎭,其中1005x =. (第13题图)① ∙∙∙②③(2007)16.(8分)32223=-++x x x (2009)16.(8分)先化简中选取一个你认为合适..的数作为x 的值代入求值. (2007)8.计算:423)2(x x ⋅-= . (2005)16、已知x =2+1,求x +1-x 2x -1 的值。

(2007)1.计算31)(- 的结果是【 】A .-1B . 1C .-3D . 3 (2008)7.16的平方根是 (2009)7.16的平方根是 . (2006)11.方程组2235y x x y =-+⎧⎨+=⎩的解是_______________.(2007)12.已知x 为整数,且满足32≤≤x -,则x = . (2008)5.如果关于x 的一元二次方程有两个不相等的实数根,那么的取值范围是( )A.>B.>且C.<D.且(2009)4.方程=x 的解是 【 】 (A )x =1 (B )x =0 (C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=0 (2008)18. (本小题满分9分)已知是关于的一元二次方程的两个实数根,且——=115(1)求k 的值;(2)求++8的值。

211()1122x x x x -÷-+-1-22(21)10k x k x -++=k k 14-k 14-0k ≠k 14-14k ≥-0k ≠2x 2x 2x x 062=+-k x x 21x 22x 1x 2x 21x 22x(2005)19、某商场购进甲、乙两种服装后,都加价40%标价出售。

“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售。

某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的进价和标价各是多少元?(2006)17.(6分)同一种商品在甲、乙两个商场的标价都是每件10元,在销售时都有一定的优惠.甲的优惠条件是:购买不超过10件按原价销售,超过10件,超出部分按7折优惠;乙的优惠条件是:无论买多少件都按9折优惠.(1)分别写出顾客在甲、乙两个商场购买这种商品应付金额y 甲(元),y 乙(元)与购买件数x (件)之间的函数关系式;(2)某顾客想购买这种商品20件,他到哪个商场购买更实惠?(2006)18.(6分)关于x 的一元二次方程210x mx m ++-=的两个实数根为1x ,2x ,且22125x x +=,求实数m 的值.(2007)22.(10分)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A 、B 两种商品各多少件?(2) 商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2倍,A 种商品按原价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?(2008)20、(本题满分9分)在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务。

问接到指示后,该部队每天加固河堤多少米?(2009)l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.(2009)22. (10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?(2008)16、(本小题满分8分)解不等式组并把解集在已画好的数轴上表示出来。

(2009)2.不等式﹣2x <4的解集是 【 】 (A )x >﹣2 (B )x <﹣2 (C) x >2 (D) x <2(2005)6、如图,Rt △ABC 中,∠C =900,AC =4,BC =8,P 是AB 上一动点,直线PQ ⊥AC 于点Q ,设AQ =x ,则图中阴影部分的面积y 与x 之间的函数关系式的图象是()(2006)4.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )(2007)6.二次函数122-++=a x ax y 的图像可能是 【 】(2008)6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E与点A 不重合,可与点B 重合),设AE=,DE 的延长线交CB 的延长线于点F ,设CF=,则下列图象能正确反映与的函数关系的是( )()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x x y y x OahA.Oa hB.Oa hC.OahD.A.B.C.D.y(2009)5.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为【 】(A )(2,2) (B )(2,4) (C)(4,2) (D)(1,2)(2005)12、两个变量y 与x 之间的函数图象如图所示,则y 的取值范围是__________(2005)13、双曲线y =kx 和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,m),则a +2b =____________。

(2007)9.写出一个经过点(1,-1)的函数的表达式 . (2008)14、如图是二次函数图像的一部分,该图在轴右侧与轴交点的坐标是(2008)15、如图,直线(>0)与双曲线在第一象限内的交点面积为R ,与轴的交点为P ,与轴的交点为Q ;作RM ⊥轴于点M ,若△OPQ 与△PRM 的面积是4:1,则2)1(2++=x a y y x 2-==kx y k xky =x y x =k(2009)12.点A (2,1)在反比例函数的图像上,当1﹤x ﹤4时,y 的取值范围是 .(2005)4、如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A 、25B 、310C 、320D 、15(2007)4.为了某小区居民的用水情况,随机抽查了 10户家庭的月用水量,结果如下表:则关于这10户家庭的约用水量,下列说法错误的是【 】A .中位数是5吨B . 极差是3吨C .平均数是5.3吨D .众数是5吨 (2008)4.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( )A. 9,10,11B.10,11,9C.9,11,10D.10,9,11(2008)9.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是 (2009)3.下列调查适合普查的是 【 】 (A )调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况 (C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间(2009)13.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 .(2005)17、下图反映了被调查用户对甲、乙两种品牌空调售后服务的满意程度(以下称:用户满意程度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分。

相关文档
最新文档